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Abstract

We present the induced generalized ordered weighted averaging (IGOWA) operator. It 

is a new aggregation operator that generalizes the OWA operator by using the main 

characteristics of two well known aggregation operators: the generalized OWA and the 

induced OWA operator. Then, this operator uses generalized means and order inducing 

variables in the reordering process. With this formulation, we get a wide range of aggregation 

operators that include all the particular cases of the IOWA and the GOWA operator, and a lot 

of other cases such as the induced ordered weighted geometric (IOWG) operator and the 

induced ordered weighted quadratic averaging (IOWQA) operator. We further generalize the 

IGOWA operator by using quasi-arithmetic means. The result is the Quasi-IOWA operator. 

Finally, we also develop a numerical example of the new approach in a financial decision 

making problem.
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1. Introduction

In the literature, we find a wide range of aggregation operators for aggregating the 

information. A very common aggregation method is the ordered weighted averaging (OWA) 

operator [26]. It provides a parameterized family of aggregation operators that include the 

maximum, the minimum and the average, as special cases. Since its appearance, the OWA 

operator has been used in a wide range of applications [1-8,11-40].

In [39], Yager and Filev, motivated by the work of Mitchell and Estrakh [18],

developed an extension of the OWA operator called induced ordered weighted averaging 

(IOWA) operator. The difference is that the reordering step is not developed with the values 

of the arguments. In this case, the reordering step is induced by another mechanism such that 

the ordered position of the arguments depends upon the values of their associated order 

inducing variables. In the last years, the IOWA operator has been receiving increasing 

attention as it is seen in the different works developed about it such as [7-8,12-13,25,31-

32,34].

Another interesting extension is the generalized OWA (GOWA) operator [14,35] that 

generalizes the OWA operator by using generalized means. The generalized mean [9-10] 

generalizes a wide range of mean operators such as the arithmetic mean, the geometric mean 

and the quadratic mean. Then, with the GOWA operator, it is possible to generalize a wide 

range of OWA operators such as the OWA itself, the ordered weighted geometric (OWG) 

operator and the ordered weighted quadratic averaging (OWQA) operator. In [3], Beliakov 

developed a further extension of the GOWA operator by using quasi-arithmetic means. Then, 

he obtained the Quasi-OWA operator developed by [11]. Further studies on these 

generalizations are found in [4-5]. 



The objective of this paper is to introduce the induced generalized OWA (IGOWA) 

operator. It is an extension of the OWA operator that uses the main characteristics of the 

IOWA and the GOWA operator. That is to say, it uses order inducing variables in the 

reordering process and generalized means. Then, we can obtain a generalization that includes 

the IOWA operator and its particular cases, and a lot of other situations such as the induced 

OWG (IOWG) operator [7,25], the induced OWQA (IOWQA) operator and the induced 

OWHA (IOWHA) operator. Note that this generalization also includes the GOWA operator 

and its special cases such as the OWA, the generalized mean (GM), the weighted generalized 

mean (WGM), etc. We will study different properties and families of this operator such as the 

olympic-IGOWA, the median-IGOWA, the S-IGOWA, etc.

We will further generalize the IGOWA operator by using quasi-arithmetic means. 

Then, we will get the Quasi-IOWA operator. Note that the Quasi-IOWA can be seen as an 

extension of the Quasi-OWA operator that uses order inducing variables in the reordering 

process. With this generalization, we will get as special cases, the IGOWA operator and a lot 

of other situations such as the exponential IOWA, the trigonometric IOWA, the radical 

IOWA, etc.

We will also develop an application of the new approach. We will focus on a financial 

decision making problem about selection of investments. Note that the main advantage of the 

IGOWA operator in decision making is that it includes a lot of particular cases that can be 

used for taking the decision. Then, it is possible to consider different types of aggregations 

that may lead to different decisions. Note that this situation is also found with the OWA 

operator but with the IGOWA, we have more possibilities. Note also that other decision 

making applications could be developed such as the selection of financial products, human 

resource management, strategic decision making, product management, etc.



In order to do so, this paper is organized as follows. In Section 2, we briefly review 

some basic concepts such as the OWA, the IOWA and the GOWA operator. In Section 3, we 

present the IGOWA operator. Section 4 analyzes different families of IGOWA operators. In 

Section 5 we present the Quasi-IOWA operator. In Section 6 we develop an application of the 

new approach. Finally, Section 7 summarizes the main conclusions of the paper.

2. Preliminaries

In this Section, we will briefly describe the OWA operator, the IOWA operator and 

the GOWA operator.

2.1. OWA operator

The OWA operator was introduced by Yager in [26] and it provides a parameterized 

family of aggregation operators that include the arithmetic mean, the maximum and the 

minimum. It can be defined as follows.

Definition 1. An OWA operator of dimension n is a mapping OWA:Rn
!R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj !

[0,1], then:

                                                              

    OWA(a1, a2,…, an) = "
#

n

j
jjbw

1

                                                                         (1)



where bj is the jth largest of the ai. 

From a generalized perspective of the reordering step, we can distinguish between the 

descending OWA (DOWA) operator and the ascending OWA (AOWA) operator [27]. The 

OWA operator is commutative, monotonic, bounded and idempotent [26].

2.2. IOWA operator

The IOWA operator was introduced by Yager and Filev [39] and it represents an 

extension of the OWA operator. Its main difference is that the reordering step is not 

developed with the values of the arguments ai. In this case, the reordering step is developed 

with order inducing variables. The IOWA operator also includes as particular cases the 

maximum, the minimum and the average criteria. It can be defined as follows.

Definition 2. An IOWA operator of dimension n is a mapping IOWA: Rn $ R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj !

[0,1], then:

   IOWA(%u1,a1&, %u2,a2&…, %un,an&) =  "
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where bj is the ai value of the IOWA pair %ui,ai& having the jth largest ui, ui is the order 

inducing variable and ai is the argument variable.

Note that it is possible to distinguish between the Descending IOWA (DIOWA) 

operator and the Ascending IOWA (AIOWA) operator. The IOWA operator is also 

monotonic, bounded, idempotent and commutative [39].



2.3. GOWA operator

The generalized OWA (GOWA) operator was introduced in [11,35]. In the following, 

we are going to define it.

Definition 3. A GOWA operator of dimension n is a mapping GOWA:Rn
!R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj !

[0,1], then:

GOWA(a1, a2,…, an) = 

!

!
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where bj is the jth largest of the ai, and ! is a parameter such that ! ! (-., .).

In this case, it is also possible to distinguish between the descending generalized OWA 

(DGOWA) operator and the ascending generalized OWA (AGOWA) operator. The weights 

of these operators are related by wj = w*n+1"j, where wj is the jth weight of the DGOWA (or 

GOWA) operator and w*n+1"j the jth weight of the AGOWA operator.

As it is demonstrated in [11,35], the GOWA operator is a mean operator. This is a 

reflection of the fact that the operator is commutative, monotonic, bounded and idempotent 

both for the DGOWA and the AGOWA operator. It can also be demonstrated that the GOWA 

operator has as special cases the maximum, the minimum, the generalized mean and the 

weighted generalized mean. Note that the weighted generalized mean is obtained when j = i,

for all i and j, where j is the jth argument of the bj and i is the ith argument of the ai.



If we look to different values of the parameter !, we can also obtain other special 

cases as the usual OWA operator [26], the ordered weighted geometric (OWG) operator 

[6,24], the ordered weighted harmonic averaging (OWHA) operator [35] and the ordered 

weighted quadratic averaging (OWQA) operator [35]. When ! = 1, we obtain the usual OWA 

operator. When ! = 0, the OWG operator. When ! = -1, the OWHA operator. And when ! = 

2, the OWQA operator.

Another interesting issue to consider is the attitudinal character of the GOWA 

operator. In [35], Yager defined it as:
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It can be shown that # ! [0, 1]. The more of the weight located near the top of W, the 

closer # to 1 and the more of the weight located toward the bottom of W, the closer # to 0. 

Note that for the optimistic criteria #(W) = 1 and for the pessimistic criteria #(W) = 0.

If we replace b
!
 with a general continuous strictly monotone function g(b) [3], then, 

the GOWA operator becomes the Quasi-OWA operator [11]. It can be formulated as follows.

Definition 4. A Quasi-OWA operator of dimension n is a mapping QOWA: Rn $ R that has 

an associated weighting vector W of dimension n such that the sum of the weights is 1 and wj

! [0, 1], then:

      QOWA(a1, a2, …, an) = / 0''
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where bj is the jth largest of the ai.

3. The induced generalized OWA operator

The induced generalized OWA (IGOWA) operator represents an extension to the 

GOWA operator. The main difference between them is that the reordering step of the IGOWA 

operator is not developed with the values of the arguments ai. In this case, the reordering step 

is induced by another mechanism represented as ui, where the ordered position of the 

arguments ai depends upon the values of the order inducing variable ui.

Definition 5. An IGOWA operator of dimension n is a mapping IGOWA: Rn $ R that has an 

associated weighting vector W of dimension n such that the sum of the weights is 1 and wj !

[0,1], then:

IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) =
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where bj is the ai value of the IGOWA pair %ui,ai& having the jth largest ui, ui is the order 

inducing variable, ai is the argument variable and ! is a parameter such that ! ! (-., .).

From a generalized perspective of the reordering step, we can distinguish between the 

descending induced generalized OWA (DIGOWA) operator and the ascending induced 

generalized OWA (AIGOWA) operator. The weights of these operators are related by wj = 



w*n+1"j, where wj is the jth weight of the DGOWA (or GOWA) operator and w*n+1"j the jth 

weight of the AGOWA operator.

If B is a vector corresponding to the ordered arguments bj
!
, we shall call this the ordered 

argument vector and W
T
 is the transpose of the weighting vector, then, the IGOWA operator 

can be expressed as:

      IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) = / 0 !/1
BW T                                                (7)

Note that if the weighting vector is not normalized, i.e., W =" 1#
n
j jw1 1, then, the 

IGOWA operator can be expressed as:

      IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) =
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The IGOWA operator is a mean or averaging operator. This is a reflection of the fact 

that the operator is commutative, monotonic, bounded and idempotent. These properties can 

be proved with the following theorems.

Theorem 1 (Monotonicity). Assume f is the IGOWA operator, if ai "#ei, for all ai, then:

f (%u1,a1&, …, %un,an&) "#f (%u1,e1&, …, %un,en&)                                                    (9)

Proof. Let



f (%u1,a1&, …, %un,an&) = 
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f (%u1,e1&, …, %un,en&) = 
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Since ai "#ei, for all ai, it follows that, ai "#ei, and then

f (%u1,a1&, …, %un,an&) "#f (%u1,e1&, …, %un,en&)                                                        $

Theorem 2 (Commutativity). Assume f is the IGOWA operator, then:

f (%u1,a1&, …, %un,an&) = f (%u1,e1&, …, %un,en&)                                                   (12)

where (%u1,a1&, …, %un,an&) is any permutation of the arguments (%u1,e1&, …, %un,en&).

Proof. Let

f (%u1,a1&, …, %un,an&) = 
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Since (%u1,a1&, …, %un,an&) is a permutation of (%u1,e1&, …, %un,en&), we have aj = ej, for all j, 

and then

f (%u1,a1&, …, %un,an&) = f (%u1,e1&, …, %un,en&)                                                         $

Theorem 3 (Idempotency). Assume f is the IGOWA operator, if ai = a, for all ai, then:

f (%u1,a1&, …, %un,an&) = a                                                                      (15)

Proof. Since ai = a, for all ai, we have

f (%u1,a1&, …, %un,an&) = 
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Since " ##
n
j jw1 1, we get

f (%u1,a1&, …, %un,an&) = a                                                                          $

Theorem 4 (Bounded). Assume f is the IGOWA operator, then:

Min{ai} %#f (%u1,a1&, …, %un,an&) %#&'()ai}                                                     (17)

Proof. Let max{ai} = c, and min{ai} = d, then
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Since " ##
n
j jw1 1 , we get

f (%u1,a1&, …, %un,an&) = c                                                                   (20)

f (%u1,a1&, …, %un,an&) = d                                                                   (21)

Therefore,

Min{ai} %#f (%u1,a1&, …, %un,an&) %#&'()ai}                                                         $####

An interesting issue when analysing induced aggregation operators is the problem of 

ties in the reordering step. In order to solve this problem, we recommend to follow the policy 

developed by Yager and Filev [39] where they replace each argument of the tied IOWA pair

by their average. For the GOWA operator, instead of using the arithmetic mean, we will 

replace each argument of the tied IGOWA pair by its generalized mean. Then, depending on 

the parameter of !, we will use a different type of mean to replace the tied arguments.

As it is explained in [39] for the IOWA operator, when studying the order inducing 

variables of the IGOWA operator, we should note that the values used can be drawn from a 



space such that the only requirement is to have a linear ordering. Then, it is possible to use 

different kinds of attributes for the order inducing variables that permit us, for example, to 

mix numbers with words in the aggregations [39]. For the IGOWA operator, this would mean 

that we have numerical arguments to be ordered by linguistic order inducing variables. Note 

that in some situations it is possible to use the implicit lexicographic ordering associated with 

words such as the ordering of words in dictionaries [39]. 

The IGOWA operator is a generalization of the IOWA operator. Therefore, the 

IGOWA operator is applicable to different situations already discussed for the IOWA 

operator. For example, we could use it for modeling nearest neighbour rule [39], for model 

building [39] and for the aggregation of complex objects [32]. Other potential applications 

could be developed for decision making, group decision making, business decisions, etc. Note 

that in this paper we will develop an application in financial decision making.

4. Families of IGOWA operators

In this Section, we will consider different types of IGOWA operators. We will 

distinguish between two main classes. The first class will focus on the weighting vector W

and the second class on the parameter !.

4.1. Analysing the weighting vector W

By choosing a different manifestation of the weighting vector in the IGOWA operator, 

we are able to obtain different types of aggregation operators. For example, we can obtain the 

maximum, the minimum, the generalized mean, the weighted generalized mean and the 



GOWA operator. Note that these results can be obtained both for the DIGOWA and the 

AIGOWA operators.

The maximum is obtained if wp = 1 and wj = 0, for all j 1 p, and up = Max3ai4, then, 

IGOWA(%u1,a1&, %u2,a2&…, %un,an&) = Max{ai}. The minimum is obtained if wp = 1 and wj = 0, 

for all j 1 p, and  up = Min3ai4, then, IGOWA(%u1,a1&, %u2,a2&…, %un,an&) = Min{ai}. More 

generally, if wk = 1 and wj = 0, for all j 1 k, we get for any !, IGOWA(%u1,a1&, …, %un,an&) = bk, 

where bk is the the ai value of the IGOWA pair %ui,ai& having the kth largest ui. The 

generalized mean is found when wj = 1/n, for all ai. The weighted generalized mean is 

obtained if ui > ui+1, for all i, and the GOWA operator is obtained if the ordered position of ui

is the same than the ordered position of bj such that bj is the jth largest of ai. 

Other families of IGOWA operators could be obtained by using a different weighting 

vector. For example, when wj = 1/m for k 2 j 2 k + m - 1 and wj = 0 for j > k + m and j < k, we 

are using the window-IGOWA operator that it is based on the window-OWA operator [28]. 

Note that k and m must be positive integers such that k + m - 1 2 n. Also note that if m = k = 

1, and the initial position of the highest ui is also the initial position of the highest ai, then, the 

window-IGOWA is transformed in the maximum. If m = 1, k = n, and the initial position of 

the lowest ui is also the initial position of the lowest ai, then, the window-IGOWA becomes 

the minimum. And if m = n and k = 1, the window-IGOWA becomes the generalized mean.

If w1 = wn = 0, and for all others wj = 1/(n - 2), we are using the olympic induced 

generalized average that it is based on the olympic average [30]. Note that if n = 3 or n = 4, 

the olympic induced generalized average is transformed in the IGOWA median and if m = n -

2 and k = 2, the window-IGOWA is transformed in the olympic induced generalized average. 

Also note that the olympic induced generalized average is transformed in the olympic 



generalized average if wp = wq = 0, such that up = Maxi3ai4 and uq = Mini3ai4, and for all 

others wj = 1/(n - 2). 

Another type of aggregation that could be used is the E-Z IGOWA weights that it is

based on the E-Z OWA weights [33]. In this case, we should distinguish between two classes. 

In the first class, we assign wj = (1/k) for j = 1 to k and wj = 0 for j > k, and in the second class, 

we assign wj = 0 for j = 1 to n - k and wj = (1/k) for j = n - k + 1 to n. Note that the E-Z 

IGOWA weights becomes the E-Z GOWA weights for the first class if the ordered position of 

ui is the same than the ordered position of bj such that bj is the jth largest of ai, from j = 1 to k. 

And for the second class, the E-Z IGOWA weights becomes the E-Z GOWA weights if the 

ordered position of ui is the same than the ordered position of bj such that bj is the jth largest 

of ai, from j = n - k + 1 to n. 

We note that the generalized median and the weighted generalized median [29] can 

also be used as induced aggregation operators. For the IGOWA median, if n is odd we assign 

w(n + 1)/2 = 1 and wj = 0 for all others, and this affects the argument ai with the [(n + 1)/2]th 

largest ui. If n is even we assign for example, wn/2 = w(n/2) + 1 = 0.5, and this affects the 

arguments with the (n/2)th and [(n/2) + 1]th largest ui. For the weighted IGOWA median, we 

select the argument ai that has the kth largest inducing variable ui, such that the sum of the 

weights from 1 to k is equal or higher than 0.5 and the sum of the weights from 1 to k - 1 is 

less than 0.5. Note that if the ordered position of ui is the same than the ordered position of bj

such that bj is the jth largest of ai, then, the IGOWA median and the weighted IGOWA 

median become the GOWA median and the weighted GOWA median respectively.

Another interesting family is the S-IGOWA operator based on the S-OWA operator 

[28,38]. It can be divided in three classes, the “orlike”, the “andlike” and the generalized S-

IGOWA operator. The “orlike” S-IGOWA operator is found when wp = (1/n)(1 - #) + #, up = 



Max3ai4, and wj = (1/n)(1 - #) for all j 1 p with # ! [0, 1]. Note that if # = 0, we get the 

arithmetic mean and if # = 1, we get the maximum. The “andlike” S-IGOWA operator is 

found when wq = (1/n)(1 - $) + $, uq = Min3ai4, and wj = (1/n)(1 - $) for all j 1 q with $ ! [0, 

1]. Note that in this class, if $ = 0 we get the average and if $ = 1, we get the minimum. 

Finally, the generalized S-IGOWA operator is obtained when  wp = (1/n)(1 - (# + $) + #, 

with up = Max3ai4; wq = (1/n)(1 - (# + $) + $, with uq = Min3ai4; and wj = (1/n)(1 - (# + $) 

for all j 1 p,q where #, $ ! [0, 1] and # + $ 2 1. Note that if # = 0, the generalized S-IGOWA 

operator becomes the “andlike” S-IGOWA operator and if $ = 0, it becomes the “orlike” S-

IGOWA operator.

Other families of IGOWA operators could be developed such as the weights that 

depend on the aggregated objects [28]. For example, we could develop the BADD-IGOWA 

operator that it is based on the OWA version developed in [28,38]. 
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where # ! (-., .), bj is the jth largest element of the arguments ai. Note that the sum of the 

weights is 1 and wj ! [0,1]. Also note that if # = 0, we get the generalized mean and if # = ., 

we get the maximum. Another family of IGOWA operator that depends on the aggregated 

objects is
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where # ! (-., .), bj is the jth largest element of the arguments ai. Note that in this case if #

= 0, we also get the generalized mean and if # = ., we get the minimum. A third family of 

IGOWA operator that depends on the aggregated objects is

" #
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                                                                               (24)

where # ! (-., .), bj is the jth largest element of the arguments ai. In this case, we also get 

the generalized mean if # = 0. If # = 1, we obtain the harmonic mean and if # = ., we get the 

minimum.

A very useful approach for obtaining the weights that it is also applicable for the 

IGOWA operator is the functional method introduced by Yager [30] for the OWA operator. It 

can be summarized as follows. Let 5 be a function 5: [0, 1] $ [0, 1] such that 5(0) = 5(1) and 

5(x) 6 5(y) for x > y. We call this function a basic unit interval monotonic function (BUM). 

Using this BUM function we obtain the IGOWA weights wj for j = 1 to n as
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It can easily be shown that using this method, the w satisfy that the sum of the weights 

is 1 and wj ! [0,1].

Another family of aggregation operators that could be used in the IGOWA operator is 

the centered IGOWA weights. This type of operator has been suggested by Yager [36] for the 

OWA operator. Following the same methodology, we could say that an IGOWA operator is a 

centered aggregation operator if it is symmetric, strongly decaying and inclusive. It is 



symmetric if wj = wj+n"1. It is strongly decaying when i < j 2 (n + 1)/2 then wi < wj and when i

> j 6 (n + 1)/2 then wi < wj. It is inclusive if wj > 0. Note that it is possible to consider a 

softening of the second condition by using wi 2 wj instead of wi < wj. We shall refer to this as 

softly decaying centered IGOWA operator. Note that the generalized mean is an example of 

this particular case of centered IGOWA operator. Another particular situation of the centered 

IGOWA operator appears if we remove the third condition. We shall refer to it as a non-

inclusive centered IGOWA operator. For this situation, we find the IGOWA median as a 

particular case.

A special type of centered IGOWA operator is the Gaussian IGOWA weights which 

follows the same methodology than the Gaussian OWA weights suggested by Xu [23]. In 

order to define it, we have to consider a Gaussian distribution 7(8, 9) where
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we define the IGOWA weights as
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Note that the sum of the weights is 1 and wj ! [0,1].

Other families of IGOWA operators could be obtained in the weighting vector 

following a similar methodology as developed for the OWA operator such as those developed 

in [1-2,15-16,20-23,37].

4.2. Analysing the parameter !

If we analyze different values of the parameter ! in the IGOWA operator, we obtain 

another group of particular cases such as the usual IOWA operator, the induced OWG 

(IOWG) operator [7,25], the induced OWHA (IOWHA) operator and the induced OWQA 

(IOWQA) operator.

When ! = 1, the IGOWA operator becomes the IOWA operator. 

IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) = "
#

n

j
jjbw

1

                                                 (30)

From a generalized perspective of the reordering step we have to distinguish between 

the DIOWA operator and the AIOWA operator. In both cases, the formulation is the same 

with the difference that the DIOWA operator has a descending order and the AIOWA 

operators an ascending order.



When ! = 0, the IGOWA operator becomes the IOWG operator. 

IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) = <
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With the DIGOWA operator we obtain the descending IOWG (DIOWG) operator and 

with the AIGOWA operator, the ascending IOWG (AIOWG) operator.

When ! = -1, we get the IOWHA operator.

IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) = 
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Note that from a generalized perspective of the reordering step we get the descending 

IOWHA (DIOWHA) operator and the ascending IOWHA (AIOWHA) operator.

When ! = 2, we get the IOWQA operator.

IGOWA(%u1,a1&, %u2,a2&, …, %un,an&) = 
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In this case, we obtain the descending IOWQA (DIOWQA) operator and the 

ascending IOWQA (AIOWQA) operator.

Note that other families could be obtained by using different values in the parameter !. 

Note also that it is possible to study these families individually. Then, we could develop for 



each case, a similar analysis as it has been developed in Section 3 and 4.1, where we study 

different properties and families of the induced aggregation operators.

5. Induced Quasi-OWA operators

As it is explained in [3], a further generalization of the GOWA operator is possible by 

using quasi-arithmetic means. Following a similar methodology, we can suggest a similar 

generalization of the IGOWA operator by using quasi-arithmetic means. Then, we will get the 

Quasi-IOWA operator. It can be defined as follows.

Definition 6. A Quasi-IOWA operator of dimension n is a mapping QIOWA: Rn $ R that has 

an associated weighting vector W of dimension n such that the sum of the weights is 1 and wj

! [0,1], then:

QIOWA(%u1,a1&, %u2,a2&, …, %un,an&) = / 0/ 0
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where bj is the ai value of the Quasi-IOWA pair %ui,ai& having the jth largest ui, ui is the order 

inducing variable, ai is the argument variable and g(b) is a general strictly monotone function. 

As we can see, we replace b! with a general continuous strictly monotone function g(b).

Note that in this case we can also distinguish between descending (Quasi-DIOWA) 

and ascending (Quasi-AIOWA) orders. The weights of these operators are related by wj = 



w*n+1-j, where wj is the jth weight of the Quasi-DIOWA (or Quasi-IOWA) operator and 

w*n+1-j the jth weight of the Quasi-AIOWA operator.

Note also that all the properties and particular cases commented in the IGOWA 

operator are also applicable in this generalization. Then, the Quasi-IOWA operator is 

monotonic, bounded, idempotent and commutative. The problem of ties is solved by replacing 

the tied arguments by the quasi-arithmetic mean. And different families of Quasi-IOWA 

operator can be studied such as the olympic-Quasi-IOWA, the S-Quasi-IOWA, the IOWA 

itself, the IOWQA, etc.

A further interesting aspect is that the Quasi-IOWA operator includes a lot of other 

particular cases that are not included in the IGOWA operator. For example, we could mention 

the trigonometric IOWA operator, the exponential IOWA operator and the radical IOWA 

operator.

The trigonometric IOWA is found when g1(t) = sin((=/2) t), g2(t) = cos((=/2) t) and 

g3(t) = tan((=/2) t) are the generating functions. Then, the trigonometric IOWA functions are:
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The exponential IOWA is found when g(t) = >t
 , if > 1 1, and g(t) = t, if > = 1. Then, 

the exponential IOWA operator is: '
(
)*

+
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n
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b
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jw1log )) , if > 1 1, and the IOWA if > = 1.

The radical IOWA is found if > > 0, > 1 1, and the generating function is g(t) = >1/t
. 

Then, the radical IOWA operator is:
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Finally, note that in these cases it is also possible to study their properties and different 

particular cases as it has been explained in Section 3 and 4.1.

6. Numerical example

In the following, we are going to develop an illustrative example of the new approach 

in a decision making problem. We will study an investment selection problem where an 

investor is looking for an optimal investment. Note that other decision making applications 

could be developed such as the selection of financial products [17], etc.

We will analyze different particular cases of the IGOWA operator such as the AM, the 

WA, the OWA, the AOWA, the IOWA, the AIOWA, the QA, the IOWG, the IOWQA, the 

step-IOWA (k=2), the median-IOWA and the olympic-IOWA. Note that with this analysis,

we can analyze the optimal choice depending on the aggregation operator used. Then, we will 

see that each aggregation operator may lead to different results and decisions. Obviously, the 

question, as in other decision making problems, is the selection of the aggregation operator. 



By now, the answer we can give is that each decision maker will select one or more 

aggregation operators according to its interests. And depending on the aggregation operator 

used, his decisions will be different. The main advantage of the IGOWA is that it includes a 

wide range of particular cases that can be considered in the decision making problem. Then, 

the decision maker can consider a lot of possibilities and select the aggregation operator that 

is in accordance with its interests.

Assume an investor wants to invest some money in an enterprise in order to get high 

profits. Initially, he considers five possible alternatives.

? A1 is a computer company.

? A2 is a chemical company.

? A3 is a food company.

? A4 is a car company.

? A5 is a TV company.

In order to evaluate these investments, the investor uses a group of experts. This group 

considers that the key factor is the economic environment of the economy. After careful 

analysis, they consider five possible situations for the economic environment: S1 = Negative 

growth rate, S2 = Growth rate near 0, S3 = Low growth rate, S4 = Medium growth rate, S5 = 

High growth rate. The expected results depending on the situation Si and the alternative Ak are 

shown in Table 1.



________________________

Insert Table 1 about here

________________________

In this problem, the experts assume the following weighting vector: W = (0.1, 0.2, 0.2, 

0.2, 0.3). Due to the fact that the attitudinal character is very complex because it involves the 

opinion of different members of the board of directors, the experts use order inducing 

variables to express it. The results are represented in Table 2.

________________________

Insert Table 2 about here

________________________

With this information, we can aggregate the expected results for each state of nature in 

order to take a decision. In Table 3 and 4, we present different results obtained by using 

different types of IGOWA operators.

________________________

Insert Table 3 about here

________________________

________________________

Insert Table 4 about here

________________________



If we establish an ordering of the alternatives, a typical situation if we want to consider 

more than one alternative, then, we get the following results shown in Table 5. Note that the 

first alternative in each ordering is the optimal choice.

________________________

Insert Table 5 about here

________________________

            As we can see, depending on the aggregation operator used, the ordering of the 

investments may be different. Then, the decision about which investment or investments 

select may be also different.

7. Conclusions

In this paper, we have presented the IGOWA operator. It uses the main characteristics 

of two well known aggregation operators: the GOWA and the IOWA operator. Therefore, this 

operator uses generalized means and order inducing variables in the reordering of the 

arguments. Then, it can be seen from two different points of view: as a generalization of the 

IOWA operator by using generalized means or as an extension of the GOWA operator that 

uses order inducing variables in the reordering process. With the IGOWA operator, we have 

been able to generalize a wide range of OWA operators that include all the cases of the IOWA

and the GOWA operator, and a lot of other cases such as the IOWG and the IOWQA 

operator. Moreover, we have further generalized the IGOWA operator by using quasi-

arithmetic means. As a result, we have obtained the Quasi-IOWA operator which is a wider 

generalization that includes the IGOWA operator as a particular case and a lot of other cases.



We have also developed a numerical example of the new approach in order to see the 

applicability of the IGOWA operator in a financial decision making problem. The main 

advantage of this aggregation operator is that it includes a wide range of special cases. Then, 

depending on the special case used, the results and decisions may be different.

In future research, we expect to develop further extensions by adding new 

characteristics in the problem such as the use of uncertain information represented in the form 

of interval numbers, fuzzy numbers, linguistic variables, etc. We will also consider other 

decision making problems such as strategic decision making, product management, etc.
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Table 1

Payoff matrix

S1 S2 S3 S4 S5

A1 80 50 70 40 60

A2 60 30 80 80 40

A3 70 50 20 70 90

A4 50 40 60 60 70

A5 20 50 50 80 80

Table 1



Table 2

Inducing variables

S1 S2 S3 S4 S5

A1 17 10 15 22 12

A2 15 20 22 25 13

A3 24 18 20 22 15

A4 16 19 21 25 28

A5 18 12 26 23 21

Table 2



Table 3

Aggregated results 1

AM WA OWA AOWA IOWA AIOWA

A1 60 58 56 64 61 59

A2 58 56 53 63 54 62

A3 60 62 53 67 62 58

A4 56 58 53 59 54 58

A5 56 62 50 62 56 56

Table 3



Table 4

Aggregated results 2

QA IOWQA IOWG Step Median Olympic

A1 56.92 62.36 59.58 80 70 70

A2 61.48 57.44 50.41 80 30 56.6

A3 64.49 66.93 54.92 70 20 46.6

A4 56.92 54.77 53.19 60 60 53.3

A5 60.33 60.33 50.23 80 80 60

Table 4



Table 5

Ordering of the investments

Ordering Ordering

AM A1=A3!A2!A4=A5 QA A3!A2!A5!A1=A4

WA A3=A5!A1=A4!A2 IOWQA A3!A1!A5!A2!A4

OWA A1!A2=A3=A4!A5 IOWG A1!A3!A4!A2!A5

AOWA A3!A1!A2!A5!A4 Step-IOWA A1=A2=A5!A3!A4

IOWA A3!A1!A5!A2=A4 Median-IOWA A5!A1!A4!A2!A3

AIOWA A2!A1!A3=A4!A5 Olympic-IOWA A1!A5!A2!A4!A3

Table 5
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