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In this article, we explore the possibility of modifying the silicon nanocrystal areal density in SiOx

single layers, while keeping constant their size. For this purpose, a set of SiOx monolayers with

controlled thickness between two thick SiO2 layers has been fabricated, for four different

compositions (x¼ 1, 1.25, 1.5, or 1.75). The structural properties of the SiOx single layers have

been analyzed by transmission electron microscopy (TEM) in planar view geometry.

Energy-filtered TEM images revealed an almost constant Si-cluster size and a slight increase in the

cluster areal density as the silicon content increases in the layers, while high resolution TEM

images show that the size of the Si crystalline precipitates largely decreases as the SiOx

stoichiometry approaches that of SiO2. The crystalline fraction was evaluated by combining the

results from both techniques, finding a crystallinity reduction from 75% to 40%, for x¼ 1 and 1.75,

respectively. Complementary photoluminescence measurements corroborate the precipitation of

Si-nanocrystals with excellent emission properties for layers with the largest amount of excess

silicon. The integrated emission from the nanoaggregates perfectly scales with their crystalline

state, with no detectable emission for crystalline fractions below 40%. The combination of the

structural and luminescence observations suggests that small Si precipitates are submitted to a

higher compressive local stress applied by the SiO2 matrix that could inhibit the phase separation

and, in turn, promotes the creation of nonradiative paths. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4847536]

I. INTRODUCTION

In the last two decades, silicon nanocrystals (Si-NCs)

have been investigated for their fundamental properties as

well as for potential applications in fields of electronics and

photonics.1,2 Recently, it has been proposed to use them in

solar cells for down-conversion, to generate multi-excitons

or as a top absorber in multifunction solar systems.3–7

Several different methods for fabricating Si-NCs, all compat-

ible with the semiconductor industry standards, have been

developed, such as ion implantation,8 cosputtering,9 or

plasma enhanced or low pressure chemical vapor deposition

(CVD).10 Even so, all these techniques face difficulties in

accurately controlling the Si-NCs size and density, leading

to a certain degree of uncertainty in interpreting how the

actual Si-NCs morphology affects their electronic properties.

Many efforts have been put so far to control the Si-NCs

size, either by controlling the silicon concentration, the post-

deposition thermal process8–10 or limiting the thickness of

SiOx layers between SiO2 stoichiometric barriers (as the one

proposed by Zacharias et al.11). Nevertheless, only few

works can be found in literature dedicated to control and an-

alyze the Si-NC areal density in similar systems.12 The

approaches used are generally based on an estimation of the

Si-NC volumetric density by transmission electron micros-

copy (TEM) in samples with either bulk silicon-rich oxide

(SRO) systems or SRO/SiO2 multilayered samples and,

through it, the areal density with large uncertainty.12 In addi-

tion, changes in the density of nucleation centers can lead to

Si-precipitates with structural properties strongly dependent

on their environment.13

In the present work, we analyze the role of the silicon

excess in the formation of Si-NCs in a single SiOx layer, fo-

cusing the study on the modification of the Si-NC areal den-

sity. We use a direct method based on energy filtered TEM

analysis applied to a single Si-NC layer to quantitatively

evaluate this property. Additional high resolution TEM

images from the same areas have been acquired, in order to

determine the crystalline size of the Si precipitates. Finally,

the optical properties of the Si-NC were monitored by means

of photoluminescence (PL) measurements at 77 K. A direct

correlation between the structural and optical properties has

been established, finding that PL intensity scales with the

crystalline degree of the Si aggregates. These observations

suggest that, for stoichiometries close to that of SiO2, the

inhibited crystallization is related to the higher compressive

local stress, which strongly affects the radiative transitions.

II. EXPERIMENTAL

Two different sets of samples with variable silicon concen-

tration of SiOx were fabricated by evaporation on (100) silicon
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substrates at 100 �C: samples with a single SiO2/SiOx/SiO2

structure and samples containing 20 bilayers of SiOx/SiO2. The

stoichiometric SiO2 layers were deposited by evaporating tar-

gets of pure SiO2, whereas the sub-stoichiometric SiOx ones

were obtained by co-evaporating SiO and SiO2 from a thermal

source and an electron beam gun, respectively. The final com-

position was obtained using different evaporation rates. Taking

account the reaction SiOx ! (1–x/2) Siþ x/2 SiO2, the result-

ing silicon excesses in the SiOx layers were of 25, 16, 10, and 5

atomic % (at. %) that correspond to relative oxygen-to-silicon

concentrations of x¼ 1, 1.25, 1.5, and 1.75, respectively. In all

samples, the thickness of the SiOx layers was kept constant at

3 nm, while the SiO2 barrier layers were of 9 nm and 5 nm, for

the case of SiO2/SiOx/SiO2 single layers and SiOx/SiO2 multi-

layers, respectively. During the evaporation of either SiOx or

SiO2, the rate was monitored by a quartz microbalance and

maintained constant at 0.1 nm/s. After deposition, the samples

were annealed at 1050 �C for 5 min under nitrogen atmosphere

in a rapid thermal annealing system.

The precipitation process was monitored by Fourier

transform infrared spectroscopy in 200-nm thick SiOx sam-

ples annealed at different temperatures (not shown), by fol-

lowing the shift of the position of the Si–O–Si asymmetric

stretching mode. We found an excellent phase separation for

all the used compositions when the samples are annealed at

temperatures above 900 �C: in all samples, the Si-O-Si

stretching mode presents a position (x� 1080 cm�1) and a

lineshape typical for pure SiO2 treated at this temperature or

higher.

Slices for transmission electron microscopy using

SiO2/SiOx/SiO2 single layers were fabricated by the purely

mechanical tripod method, in order to minimize any influ-

ence by the preparation method on the structural properties

of the system. In-plane high resolution TEM (HRTEM) and

energy filtered TEM (EFTEM) measurements were per-

formed both in the same areas using a JEOL 2010F TEM

operating at 200 keV coupled with a Gatan image filter, with

a resolution in energy of 0.8 eV. In the case of EFTEM meas-

urements, the Si contrast was enhanced by energetically fil-

tering the TEM image, choosing only the electrons with an

energy loss within a window around the Si plasmon energy

(ESi¼ 17 eV). Consequently, valuable information about the

size and density of the precipitated Si nanoclusters of the sin-

gle SiOx layers can be extracted directly from those images.

PL measurements were performed on both sets of sam-

ples at 77 K in a liquid-nitrogen-cooled optical cryostat. The

samples were excited by using the 313-nm line of a mercury

arc lamp with a power density of 5 mW/cm2, low enough to

neglect any local temperature effects. The spectra were

acquired in the range of 500–1000 nm and analyzed by using

a monochromator equipped with a 150 grooves/mm grating

and by a high sensitive CCD detector cooled at 140 K.

III. RESULTS AND DISCUSSION

TEM analysis was performed in SiO2/SiOx/SiO2 single

layers observed in planar view geometry. We present in Fig. 1,

the energy filtered and high resolution TEM images of the pre-

cipitated Si-clusters in SiO2/SiOx/SiO2 samples for different

stoichiometries: x¼ 1, 1.25, 1.5, and 1.75. In the case of

EFTEM images [Figs. 1(a)–1(d)], the bright spots correspond

to silicon precipitates, while the darker grey areas correspond

to SiO2 (and the black region corresponds to the empty space

beyond the sample). On the other hand, HRTEM images of the

same areas are shown in Figs. 1(e)–1(h), where silicon crystal-

lographic planes can be observed and distributed along the

samples (see encircled areas). It is apparent in all the images

that Si nanoaggregates have precipitated after the high

FIG. 1. Transmission electron microscopy images of SiO2/SiOx/SiO2 single layers for different silicon stoichiometries: x¼ 1, 1.25, 1.5, and 1.75. Images from

(a) to (d) were acquired by energy filtering the energy loss spectra around the Si-plasmon energy, while images from (e) to (h) were obtained using high resolu-

tion TEM (the crystalline clusters seen in the images are encircled in red). EFTEM and HRTEM images of each sample were taken in the same region.

233101-2 Hern�andez et al. J. Appl. Phys. 114, 233101 (2013)



temperature annealing for all the spanned range of stoichiome-

tries, obtaining similar sizes and surface densities. For each

sample, large areas have been analyzed to accurately deter-

mine both parameters. Consequently, size distribution of the

whole cluster and their areal density can be extracted from

EFTEM images, while the size distribution of the crystalline

precipitates is obtained by means of HRTEM imaging (only

the precipitates oriented along a high symmetry crystalline

direction are observed using this configuration). Assuming that

the Si-nanoaggregates have a spherical shape and are formed

by a crystalline core surrounded by an amorphous shell (core-

shell model14,15), EFTEM and HRTEM configurations are

complementary, providing information either from the whole

clusters or only on their crystalline core, respectively.

We found that the diameter of the Si-aggregates

obtained by both configurations nicely follow a log-normal

distribution, f(dclu,cry, rclu,cry)

f dclu;cry; rclu;cry

� �
/ e

�
ðln d

clu;cry

0
�ln dclu;cryÞ2

2r2
clu;cry

� �
;

where dclu,cry, d0
clu,cry, and rclu,cry are the diameter, mean di-

ameter, and broadening of the size distribution, respectively,

for either whole clusters (clu) or crystalline cores (cry).

Those parameters have been determined in all the samples

by fitting the experimental distribution to the previous equa-

tion. In addition, the Si-NC areal density has been also deter-

mined using the data from EFTEM images. In Table I, we

have summarized the results obtained from both techniques.

We have found that the diameter distribution of the

whole cluster presents a similar distribution for all composi-

tions, with a mean size d0
clu around 2.7–2.8 nm (see Table I).

The small discrepancies from sample to sample in the size

distribution are the consequence of the uncertainty in the

size determination, indicating that an almost identical size

distribution is obtained for all stoichiometries. Nevertheless,

the amount of Si-nanoaggregates is modified for the different

samples, finding a variation of their areal density from

3.0� 1012 cm�2 to 3.8� 1012 cm�2, as the stoichiometry

changes from x¼ 1.75 to x¼ 1.0. By using these values of

areal density and mean sizes, the average distance between

clusters was also evaluated. Even though the areal density

variation is rather small, only around 30%, it is large enough

to produce an important modification in the inter-dot dis-

tance. In fact, aggregates are separated by 2.2–2.4 nm for the

highest silicon content (i.e., x¼ 1.0 and 1.25), while the av-

erage separation is much larger, taking values of 2.7 and

3.0 nm, for the lower silicon content (x¼ 1.5 and 1.75,

respectively). This difference in the inter-dot distance can be

directly observed on the EFTEM measurements: Si-NCs are

very close to the adjacent ones in the samples with highest Si

content [Figs. 1(a) and 1(b)], and are well separated in the

samples with the lowest Si content [Figs. 1(c) and 1(d)].

Therefore, we demonstrated that, by employing

SiO2/SiOx/SiO2 structure-like systems and controlling the

thickness and stoichiometry of the SiOx layer, it is possible

to modify the surface density, while keeping almost constant

the size of Si precipitates.

Further analyses have been performed on the same set

of samples (also on the same areas) by considering the

images obtained by HRTEM [see Figs. 1(e)–1(h)]. We found

that the mean crystalline diameter d0
cry for each sample

varies from 2.5 nm to 1.9 nm as the silicon content decreases

(x from 1 to 1.75), values much smaller than the ones

observed by EFTEM. As we mentioned above, this discrep-

ancy is explained in terms of the amorphous Si-shell that sur-

rounds the crystalline core.14,15 We found that the thickness

of the amorphous shell gets larger as the stoichiometry

approaches the one of pure SiO2, while the total cluster size

is almost constant in all the explored range. The crystalline

fraction (i.e., relative volume ratio between the crystalline

and amorphous silicon regions) has been estimated by con-

sidering the size distribution of the whole clusters and the

crystalline parts, obtained from the images of both TEM con-

figurations. We observed that the crystalline fraction scales

with the silicon content, with values ranging from 40% to

75% (see last column of Table I). Therefore, the stoichiome-

try of the SiOx layers is affecting both the crystallinity and

the areal density, obtaining a reduction of both magnitudes

as the Si content is reduced.

The optical properties of the precipitated Si-

nanoaggregates have been studied by means of PL. In Fig.

2(a), we present the PL emission of SiO2/SiOx/SiO2 samples

at 77 K, where a strong emission between 700 and 800 nm

(typical from silicon nanoaggregates)16,17 is observed only

for samples with the highest silicon content (i.e., x¼ 1.0 and

1.25). The PL peak position of samples with x¼ 1.0 and

1.25 shifts to longer wavelengths, from 1.76 to 1.65 eV,

respectively, as the silicon content decreases. Nevertheless,

an intensity drop occurs as the silicon stoichiometry gets

closer to SiO2, getting no signal for samples with the lowest

silicon content; i.e., x¼ 1.5 and 1.75. In fact, these samples

with the lowest Si content present only a broad and weak

defect-related emission in the blue-green region that is

TABLE I. Size distribution from the whole Si-cluster and from the crystalline core determined by EFTEM and HRTEM, respectively. The surface density was

determined directly from the EFTEM images. The crystalline fraction has been calculated considering the size distribution obtained from both techniques.

EFTEM HRTEM

x in SiOx

Mean cluster

diameter (nm), d0
clu

Standard

deviation (nm), rclu

Areal density

(�1012 cm�2)

Mean crystalline

diameter (nm), d0
cry

Standard

deviation (nm), rcry

Crystalline

fraction, fc

1.0 2.8 0.12 3.8 2.5 0.19 0.75

1.25 2.7 0.14 3.8 2.3 0.19 0.65

1.5 2.8 0.15 3.4 2.1 0.20 0.50

1.75 2.7 0.16 3.0 1.9 0.20 0.40

233101-3 Hern�andez et al. J. Appl. Phys. 114, 233101 (2013)



associated to oxygen vacancy defects characteristics to

amorphous SiOx.18

In order to extract information of the optical emission

from stoichiometries closer to SiO2, special multilayered

samples containing 20 periods of SiO2/SiOx bilayers nomi-

nally identical to the single layers were fabricated to increase

their active volume and, in turn, their optical emission. In

Fig. 2(b), we present the PL spectra of the multilayered sam-

ples for different stoichiometries. An intensity increase with

respect to the single layers was observed in all the multilay-

ered samples, which scales with the number of multilayers,

allowing to detect Si-NC related emission also from sample

x¼ 1.5. Despite the fabrication of this new set of samples, no

signal was observed for the lowest silicon content, x¼ 1.75,

which is a strong indication that sufficient crystallization is

not yet attained for this composition, in agreement with our

TEM observations.

The PL peak position in the multilayered samples

presents the same trend than in the single SiOx layers: there is

a shift to shorter wavelengths as the silicon content decreases.

However, there is a clear difference in the emission energy

for single and multilayered samples with the same nominal

stoichiometry: lower energy emission is observed for multi-

layered samples, compared to the single ones, of about 67

and 28 meV for x¼ 1 and 1.5, respectively. In any case, the

energy emission of both sets of samples lays well within the

reported values found in the literature for samples with simi-

lar stoichiometry.16,17

Actually, the PL energy shift to higher energies

observed in both sets of samples (single and multilayered

ones) as the stoichiometry approaches to SiO2 is related to

an increase of electronic quantum confinement in small

Si-NCs, favored by the low Si excess (the control of the Si

content has been widely employed by many authors to tune

their emission energy; see, for instance, Refs. 19 and 20).

Therefore, the PL energy should be correlated to the size of

the Si-aggregates. Through TEM characterization, we found

that there is a similar Si-cluster size for all samples, but

presenting a crystalline size reduction for lower Si content,

in agreement with the PL energy band displacement for dif-

ferent stoichiometries. Consequently, we represented, in Fig.

3(a), the PL peak energy of the two sets of samples (single

layers and multilayered samples) as a function of the crystal-

line size. For both sets of samples, the PL peak energy

decreases for larger crystalline sizes following an inverse

power law: E – ESi¼A/dd,21 being ESi the band-gap energy

of bulk silicon, d the crystalline diameter, and d the decay

factor. The obtained decay factor for multilayered samples

was found to be 1.27, in very good agreement to report val-

ues in Si-NC embedded in SiO2.14,21 On the other hand, a

larger d was found for single layer samples, obtaining a

value around 2.1. However, in the latter case only two points

have been used for its determination, giving rise to a large

inaccuracy. Nevertheless, the higher emission energy for the

two sizes is a clear indication that a much larger d value is

associated to single layer samples.

Assuming that there is no change in the morphology of

the precipitated Si-nanoaggregates in both sets of samples

(the relative PL intensity between the two sets perfectly

scales with the number of multilayers), the energy difference

of some tenths of meV observed between single layer and

multilayered samples could be related to a small loss of elec-

tronic confinement by interaction between adjacent SiOx

layers. Actually, the distance between adjacent layers in the

multilayered samples is short enough (the SiO2 barrier thick-

ness is 5 nm) that can induce the excitonic migration between

clusters, either via tunneling of individual electrons or holes,

or by resonance energy transfers by a dipole-dipole cou-

pling.22 Both effects favorize the overlapping of the wave-

functions from Si-NCs in adjacent SiOx layers, reducing the

electronic quantum confinement. Consequently, the PL emis-

sion from Si-NCs in multilayered samples would present a

peak energy slightly lower than the ones in single layer

samples, as the latter ones are close to an isolated system.

This effect is well established for CdSe nanocrystals23 and

has been previously observed in Si-NCs/SiO2 systems,

FIG. 2. PL spectra at 77 K of SiO2/SiOx/SiO2 (a) single layers and (b) multi-

layered systems for samples with different silicon excesses. The square-line,

triangle-line, circle-line, and star-line curves correspond to x¼ 1, 1.25, 1.5,

and 1.75, respectively.

FIG. 3. (a) PL peak position of the SiO2/SiOx/SiO2 single layers (open

circles) and multilayered samples (full squares) for samples with different

silicon excesses as a function of the crystalline size determined by HRTEM.

(b) Relative PL intensity for the multilayered samples as a function of the

crystalline fraction, normalized by the amount of Si atoms in crystalline

state. The red-dotted lines are the best fits to (a) E – ESi¼A/dd equation or

to (b) a linear trend.

233101-4 Hern�andez et al. J. Appl. Phys. 114, 233101 (2013)



presenting a slightly reduction in the electronic confinement

energy as Si-NCs get closer.24

Another possible explanation arises by considering the

different geometry of the two sets of samples (single or mul-

tilayers): thicker samples may be affected by a higher matrix

induced compressive stress.17,24,25 The total SiO2 thickness

is of 105 nm for the multilayered samples and only of 18 nm

in the case of the single layer samples, exhibiting a differ-

ence of more than a factor 5. So, Si-NCs in multilayered

samples are more influenced by the SiO2 matrix and are also

submitted to a higher compressive stress than in single

layers. Recently, Kůsov�a et al. have reported the influence of

the compressive stress in Si-NC/SiO2 systems on the PL

peak emission.17 They conclude that there is a large red shift

in PL when the Si-NCs are submitted to a high compressive

stress, which is typically induced by the surrounding SiO2

matrix. The PL emission from our two sets of samples lays

in the scattered data corresponding to compressed Si-NC in

Ref. 17, which suggests that single layers are also subjected

to a strong influence from the SiO2 environment.

Nevertheless, it is needed to also consider that, apart from

the SiO2 from the above and below layers, the SiO2 between

Si-NCs in the same suboxide layer may also contribute to the

stress over the nanostructures. From the structural characteri-

zation, we observed that the inter-dot distance increases for

lower Si content (due to the reduction of their areal density),

increasing as well the amount of SiO2 surrounding the nano-

aggregates. Consequently, the Si-NCs from SiOx layers with

lower Si content (i.e., smaller Si-NCs and larger inter-dot

distance) are more likely to be submitted to a higher com-

pressive stress than the ones from SiOx layers with higher Si

content (i.e., bigger Si-NCs and lower inter-dot distance),

affecting also their emission properties.

Once the possible origins of the different emission ener-

gies of the two sets of samples have been evaluated, we have

analyzed the intensity emission as the stoichiometry of the

SiOx layers is changed from x¼ 1 to x¼ 1.75. The multilay-

ered samples were chosen for this comparison, as they pres-

ent stronger emission than the single layers. As we

commented above, there is a progressive intensity reduction

of the PL integrated intensity as the stoichiometry

approaches the one of SiO2, scaling with the crystalline frac-

tion. In Fig. 3(b), we have depicted the relative PL intensity

evolution as a function of the crystalline fraction, once nor-

malized to the amount of Si atoms in the crystalline state

(considering their areal density and mean crystalline size

from Table I). With a good approximation, we observe that

the intensity linearly depends on the crystalline fraction, pre-

senting no detectable emission for crystalline fraction below

40%. Therefore, there is an onset of PL emission of about

fc� 40%, indicating that the crystalline fraction is playing a

major role in reducing nonradiative paths, and thus, enhanc-

ing the PL intensity. Similar results were reported for par-

tially crystalline Si-nanoclusters, observing PL only from

nanoaggregates with a sizeable crystalline component and no

emission from those with large amorphous component.26

The oxygen out-diffusion has been proved to be the

mechanism involved in the local phase separation that allows

Si crystallization.13 Both structural and optical data point to

an enhanced retardation of this diffusion for reduced Si

excess, where the crystalline core of the precipitates is sub-

mitted to larger compressive stress. Higher annealing tem-

peratures during longer times may produce Si-NCs with

bigger crystalline domains, red-shifting and enhancing the

PL emission and, at the same time, reducing the Si-

amorphous phase. However, the use of large thermal budgets

may induce the destruction of the multilayered/single layer

structure, leading to a loss of control in the Si-NC size, den-

sity, and crystalline fraction.

IV. CONCLUSIONS

We analyzed the formation of silicon nanocrystals in sin-

gle SiOx layers with different stoichiometries, in order to

explore the possibility of controlling the silicon nanostructure

areal density. Using EFTEM and HRTEM, we have deter-

mined the size distribution of clusters and crystalline nanoag-

gregates. The size of the Si-clusters was found to be almost

constant as the silicon content increases in the layers, whereas

the areal density is slightly larger. The crystalline fraction of

the nanoaggregates for each stoichiometry has been deter-

mined by combining the data from both TEM modes. The PL

measurements show emission energies that increase as the

stoichiometry gets closer to SiO2, together with an intensity

reduction. These observations are in good agreement with the

TEM data, which indicate a reduction of the crystalline sizes

and a loss of the crystalline fraction for lower Si excesses.

Moreover, the PL emission linearly scales with the crystalline

fraction, finding an onset of the PL emission for 40% crystal-

line fraction. In the layers with a low Si excess the weak PL

emission, together with the reduced crystalline fraction, indi-

cate that the phase separation is not sufficiently attainted for

the outer suboxide shell of the small nanoaggregates that

could have its origin in the high compressive local stress.
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