
Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

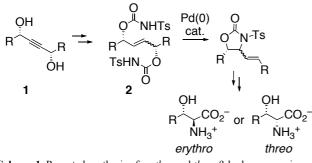
Regio- and stereoselective microwaveassisted synthesis of 5-alkyl-4-alkenyl-4phenyl-1,3-oxazolidin-2-ones

Leave this area blank for abstract info.

Marta Amador^a, Xavier Ariza^{a,*}, Jérémie Boyer^a, Lucia D'Andrea^b, Jordi Garcia^{a,*}, Jaume Granell^b Dpt. Química Orgànica and Dpt. Química Inorgànica, Universitat de Barcelona, C/Martí i Franquès 1-11, E-08028-Barcelona (Spain)

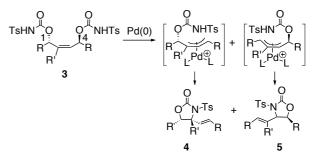
TETRAHEDRON LETTERS

Regio- and stereoselective microwave-assisted synthesis of 5alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-ones


Marta Amador^a, Xavier Ariza^{a,*}, Jérémie Boyer^a, Lucia D'Andrea^b, Jordi Garcia^{a,*}, Jaume Granell^b

^aDepartament de Química Orgànica and IBUB, Universitat de Barcelona, C/Martí i Franquès 1-11, E-08028-Barcelona (Spain)

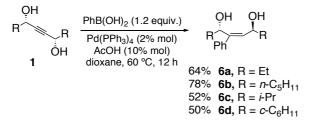
^bDepartament de Química Inorgànica and IBUB, Universitat de Barcelona, C/Martí i Franquès 1-11, E-08028-Barcelona (Spain)


Abstract—Chiral symmetrical alk-2-yne-1,4-diols have been stereoselectively transformed into 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-ones, which are precursors of quaternary α -amino β -hydroxy acids. The key step was the cyclization of the bis(tosylcarbamates) of 2phenylalk-2-yne-1,4-diols, easily obtained from the starting chiral diols. These cyclizations were accomplished with complete regioselectivity and up to 92:8 *dr* in the presence of catalytic amounts of Ni(0) or Pd (II) derivatives under microwave heating. © 2009 Elsevier Science. All rights reserved

Enantioenriched 1,4-diols have been shown to be versatile synthesis for asymmetric synthesis. $^{\rm 1}$ In the course of a project aimed to develop synthetic applications of unsaturated 1,4-diols,² we have recently reported the preparation of both *erythro* and *threo* β -hydroxy α -amino acids from a common precursor, namely a C₂-symmetrical alk-2-yne-1,4-diol (1) (Scheme 1).³ The key step of our stereoselective approach was Pd(0)-catalyzed а intramolecular N-alkylation of the allylic (Z)- or (E)-1,4dicarbamates (2) derived from 1.⁴ It should be noted that, due to the C2-symmetrical properties of the starting materials, only one regioisomer was possible in such processes.

Scheme 1. Reported synthesis of *erythro* and *threo* β -hydroxy α -amino acids.

Herein, we extend the scope of our work to allylic 1,4dicarbamates **3**, in which symmetry is broken by an additional substituent R' on the double bond. Cyclization on **3** is a challenging issue since two regioisomers, **4** or **5** are possible (Scheme 2). We were interested in the preferential formation of carbamates **4**, potential precursors of quaternary amino acids after the oxidative cleavage of the double bond. In particular, we envisaged that when R' = Ph in **3**, the ionization of the carbamate group on C(4), leading to **4**, will be favored for steric and electronic reasons. Thus, the Ph group could better extend the conjugation of the transient π -allylic cations in a Pd(0)-catalyzed process.


Scheme 2. Cyclization of dicarbamates 3

Thus, we embarked on a study aimed to obtain compounds 3 (with R' = Ph) and their further transformation into the

^{*} Corresponding author. Tel.: +34 934034819; fax: +34 933397878; e-mail: jordigarciagomez@ub.edu (J. Garcia); xariza@ub.edu (X. Ariza).

quaternary carbamates **4**. We wish to report herein our findings in this connection.

As expected, starting chiral diols **1** were readily desymmetrized by reaction with phenylboronic acid in the presence of $[Pd(PPh_3)_4]$.⁵ As observed in Scheme 3, diols **6a–d** were isolated in 50–78% yield with complete *Z* selectivity using 2% mol of Pd catalyst and 10% mol of AcOH in dioxane.⁶ Diols **6** were quantitatively transformed into dicarbamates **3** by treatment with tosyl isocyanate (2 equiv.) in CH₂Cl₂.

Scheme 3. Preparation of 2-phenylalk-2-ene-1,4-diols, 6.

We chose **3b** as a representative model to test the cyclization step. We first applied to **3b** the experimental conditions used for the Pd(0)-catalyzed intramolecular *N*-alkylation of **2**.^{3a} Unfortunately, the expected quaternary compound **4b** was not observed (Table 1, entries 1 and 2) or appeared just as a minor component in a mixture (entry 3). A series of experiments were then undertaken in which we changed the solvent (DMF, DMSO, mixtures with THF and CH₃CN), the source of palladium ([Pd(Ph₃P)₄], [(C₃H₅)ClPd]₂), additives [(PhO)₃P, dppe, dppp] and temperatures (rt to 80 °C) without success.⁷ Although in some cases the overall yields of cyclic carbamates were always obtained.

We then moved to other low valent metal complexes that were able to give allylic alkylation via π -allyl complexes looking for a better control of regioselectivity. Among others, Mo,⁸ Ir⁹ or Ni¹⁰ derivatives, are less efficient catalyst for allylic substitution than Pd(0)-complexes. As a result, high temperatures and longer reactions times are usually required. However, these complexes often showed regio– and stereoselectivities quite different from those recorded in palladium complex–catalysed allylic aminations.¹¹ In practice, the treatment of **3b** with 20% mol of [Mo(CO)₆] or [Mo(CO)₄(bpy)]¹² in refluxing toluene afforded preferently isomer **5b** in low yields (Table 1, entries 4 and 5). The use of an Ir(0)-catalyst generated as described in the literature in some examples of intermolecular allylic amination^{9b,c} gave only the undesired isomer **5b** (entry 6).¹³

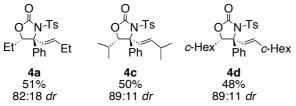
The most favorable results were obtained with Ni(0) catalysts. To our knowledge only a few Ni(0)-catalyzed allylic aminations have been reported¹⁴ and none of them related with the creation of quaternary centers. After a few preliminary experiments with [Ni(COD)₂],¹⁵ we achieved more reliable results with the Ni(0) catalyst generated in

situ from [NiCl₂(PPh₃)₂] or [NiCl₂(dppe)] and *i*-PrMgCl, following a protocol described by Cuvigny *et* Julia.^{10b}

Table 1. M(0)-Catalyzed cyclization of 3b.

O TsHN [⊥] C₅H ₁₁	$\begin{array}{c} O \\ O $	$(0) \qquad O \qquad $	Ŋ-Ts 5, C₅H ₁₁	+ 0 C ₅ H ₁₁	O N-Ts Ph C₅H ₁₁
3b		46) (Тs-м	2 2	4'b
		C	+ ^{IS·N} ₅ H ₁₁ Ph	`0 ⁻ ∕C₅H ₁₁	5b
Entry	Catalyst, additive	Solvent, T	Time	Yield (%)	Ratio 4b:4'b:5b
1 ^a	Pd ₂ (dba) ₃ CHCl ₃ (<i>i</i> -PrO) ₃ P	THF, rt	20 h	10<	-
2 ^{a,b,c}	Pd ₂ (dba) ₃ CHCl ₃ (<i>i</i> -PrO) ₃ P	THF, MW	2 h	80	0:0:100
3 ^a	Pd ₂ (dba) ₃ CHCl ₃ (<i>i</i> -PrO) ₃ P	CH₃CN, rt	4 h	89	41:0:59
4 ^d	[Mo(CO) ₆]	Toluene, reflux	12 h	20	15:8:77
5 ^d	[Mo(CO) ₄ (bpy)]	Toluene, reflux	12 h	11	11:6:83
6 ^{a,c}	[Ir(COD)Cl] ₂ (PhO) ₃ P	EtOH, reflux	20 h	35	0:0:100
7 ^d	[NiCl ₂ (PPh ₃) ₂] <i>i</i> -PrMgCl	THF reflux	20 h	15	83:17:0
8 ^d	[NiCl ₂ (dppe)] <i>i</i> -PrMgCl	THF reflux	20 h	10	83:17: 0
9 ^{b,d}	[NiCl ₂ (PPh ₃) ₂] <i>i</i> -PrMgCl	THF, MW	2 h	58	92:8: 0
10 ^{b,d}	[NiCl ₂ (PPh ₃) ₂]	THF, MW	2 h	-	-:-:-

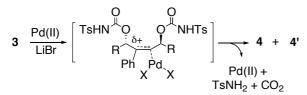
^a5% mol catalyst was used.


^bMW heating at 120 °C.

^{c1}H NMR of **5b** indicated a mixture of 2:1 *cis/trans* oxazolidinones.

^d20% mol catalyst was used.

In sharp contrast with our previous attempts, the quaternary carbamates **4** were readily obtained with complete regioselectivity, and high stereoselectivity, ¹⁶ albeit in low yield (entries 7 and 8). With Ni(0) catalyst showing promise, we performed the reaction heating in a microwave oven to accomplish the consumption of the starting material.¹⁷ To our satisfaction, **4b** was isolated in 58% yield and a remarkably 92:8 diastereomeric ratio (entry 9).¹⁸ In


an additional experiment in which the addition of *i*-PrMgCl was omitted, neither **4** nor **5** was observed. Thus, the possibility that a Ni(II) specie acts as the true catalyst was ruled out.

Scheme 4. Ni(0)-Catalyzed cyclization of dicarbamates 3.

As shown in Scheme 4, this new Ni(0)-catalyzed process was extended to dicarbamates **4a**, **4c** and **4d** with complete regioselectivity but in moderate yields. As far as the diastereoselectivity is concerned, a similar trend of ~9:1 ratio was observed when R was α -branched, and slightly lower for a smaller R (**4a**).

We then considered using a Lewis acid to promote the cyclization.¹⁹ Lu *et al* recently described the cyclization of allylic dicarbamates using $Pd(AcO)_2$ and LiBr in THF.²⁰ We presumed that in compounds **3**, the Ph group could act as directing group by stabilizing the positive charge in the benzylic position (Scheme 5).

Scheme 5. Pd(II)-catalyzed transformation of 3 into 4.

As expected, treatment of 3c with $Pd(AcO)_2$ and LiBr in refluxing THF yielded the expected product 4 with total regioselectivity but low stereoselectivity (entry 1, Table 2). Once again, the use of microwave heating was beneficial since the ratio 4b/4'b was improved to 80:20 (entry 2).

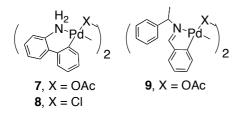


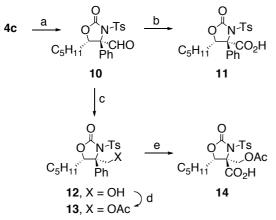
Figure 1. Palladacycles 7-9.

We also attempted the use of palladacycles **7–9** as a source of Pd(II).²¹ Palladacycles are organometallic compounds of growing interest in catalysis.²² Remarkably, the performance of **7** was comparable to or even slightly better than that obtained with the above mentioned Ni(0) catalyst (Table 2, entries 9 and 10). These positive preliminary results and the structural variety of palladacycles, indicated that there is room for future improvements in this field.

Table 2. Pd(II)-Catalyzed cyclization of 3.

Entry	3 R	Catalyst, additive	Solvent T	Time	Yield (%) ratio 4 : 4'
1 ^a	3b	Pd(AcO) ₂	THF,	15 h	52
	C_5H_{11}	LiBr	reflux		56:49
2 ^{a,b}	3b	Pd(AcO) ₂	THF,	2 h	50
	$C_{5}H_{11}$	LiBr	MW		80:20
3 ^a	3b	[PdCl ₂ (PPh ₃) ₂]	THF,	15 h	<10
	C_5H_{11}	LiCl	reflux		
4 ^a	3b	[PdCl ₂ (PhCN) ₂]	THF,	15 h	<10
	C_5H_{11}	LiCl	reflux		
5°	3b	7	THF,	15 h	55
	C_5H_{11}	LiBr	reflux		80:20
6 ^c	3b	8	THF,	15 h	48
	C_5H_{11}	LiBr	reflux		80:20
7 ^c	3b	9	THF,	15 h	36
	C_5H_{11}	LiBr	reflux		78:22
8 ^{b,c}	3b	7	THF,	2 h	61
	C_5H_{11}	LiBr	MW		80:20
9 ^{b,c}	3c	7	THF,	2 h	40
	<i>i</i> -Pr	LiBr	MW		92:8
10 ^{b,c}	3d	7	THF,	2 h	52
	c-Hex	LiBr	MW		91:9

^a10% mol Pd(II) catalyst was used.


^bMW heating at 120 °C.

°8% mol Pd(II) catalyst was used.

Finally, in order to demonstrate the value of compounds 4 in synthesis, we successfully transformed 4c into quaternary amino acids 11 and 14 (Scheme 6). Thus, ozonolysis of 4c followed by oxidation of the crude aldehyde 10 with NaClO₂²³ gave protected α -amino α phenyl β -hydroxy acid 11. On the other hand, aldehyde 10 was reduced and then the resulting primary alcohol 12 was protected as acetate 13. Ruthenium-mediated oxidation²⁴ of the phenyl group afforded the α -amino β , β '-dihydroxy acid 14. It should be noted that the substructure of the α -amino α -hydroxymethyl β '-hydroxy acid is present in a number of bioactive natural products such as myriocin, mycesterycins, and sphingofungins.²⁵

In summary, we have developed a new, stereoselective, approach to 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-ones. The key step was either a Ni(0)- or Pd(II)-catalyzed cyclization in which the use of palladacycles and the

microwave heating are pivotal. The cyclic carbamates obtained are precursors of quaternary α -amino β -hydroxy acids, as demonstrated with the compound in which R = *n*-C₅H₁₁. Further applications, specially on palladacycle catalysts, will be reported in due course.

Scheme 6. Reagents and conditions: (a) O_3 , CH_2Cl_2 , -78 °C, then Me_2S , rt, 98%; (b) $NaClO_2$, H_2O_2 , NaH_2PO_4 , H_2O/CH_3CN , 95%; (c) $NaBH_4$, THF, 0 °C, 100%; (d) Ac_2O , Et_3N , 4-DMAP cat., CH_2Cl_2 , 0 °C, 97%; (e) $RuCl_3$ cat., $NaIO_4$, $CH_3CN/CCl_4/H_2O$ 1:1:1.5, 45%.

Acknowledgments

This work has been supported by the Ministerio de Educación y Ciencia (BQU2003-01269 and CTQ2006-13249); We thank the Secretaría de Estado de Universidades e Investigación (MEC, Spain) for a postdoctoral fellowship to J.B. and to the Universidad de Barcelona for doctoral studentships to M.A. and L.D.

References

- C₂-Symmetrical 1,4-diols and their derivatives have been used for the preparation *inter alia* of 2,5-disubstituted pyrrolidines:(a) Pichon, M.; Figadère, B. *Tetrahedron: Asymmetry* 1996, 7, 927–964; thiolanes:(b) Otten, S.; Fröhlich, R.; Haufe, G. *Tetrahedron: Asymmetry* 1998, 9, 189–191; and phosphine ligands of interest for asymmetric hydrogenation:(c) Tang, W.; Zhang, X. *Chem. Rev.* 2003, 103, 3029–3070.
- (a) Ariza, X.; Garcia, J.; López, M.; Montserrat, L. Synlett 2001, 120–122; (b) Amador, M.; Ariza, X.; Garcia, J.; Ortiz, J. Tetrahedron Lett. 2002, 43, 2691–2694; (c) Ariza, X.; Garcia, J.; Ortiz, J. Tetrahedron: Asymmetry. 2003, 14, 1127– 1131; (d) Ariza, X.; Fernández, N.; Garcia, J.; López, M.; Montserrat, L.; Ortiz, J. Synthesis 2004, 128–134; (e) Amador, M.; Ariza, X.; Garcia, J.; Ortiz, J. J. Org. Chem. 2004, 69, 8172–8175; (f) Boyer, J.; Allenbach, Y.; Ariza, X.; Garcia, J.; Georges, Y.; Vicente, M. Synlett, 2006, 1895– 1898; (g) Ariza, X.; Garcia, J.; Georges, Y.; Vicente, M. Org. Lett. 2006, 8, 4501–4504; (h) Georges, Y.; Ariza, X.; Garcia, J. J. Org. Chem. 2009, 74, 2008–2012.
- (a) Amador, M.; Ariza, X.; Garcia, J.; Sevilla, S. Org. Lett. 2002, 4, 4511–4514. Enantioenriched diols 1 are readily available by stereoselective reduction of the parent acetylenic diketones: (b) Bach, J; Berenguer, R.; Garcia, J.; Loscertales, T.; Manzanal, J.; Vilarrasa, J. Tetrahedron Lett. 1997, 38, 1091–1094; (c) Ariza, X.; Bach, J.; Berenguer, R.; Farràs, J.;

Fontes, M.; Garcia, J.; López, M.; Ortiz, J. J. Org. Chem. **2004**, 69, 5307–5313. Alternately, diols **1** can be obtained by stereoselective addition of alk-1-yn-3-ols to aldehydes (see ref. 2b)

- For an recent review on Pd catalysts, see: Tsuji, J. Palladium Reagents and Catalysts; John Wiley and Sons Ltd: Chichester, England, 2004.
- (a) Oh, C. H.; Jung, H. H.; Kim, K. S.; Kim, N. Angew. Chem. Int. Ed. 2003, 42, 805–808. For a review on palladium-catalysed cross-coupling reactions of organoboron compounds, see: (b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483.
- Typical experimental procedure: Acetic acid (43 µL, 0.75 mmol) was added to a solution of (S,S)-1c (1.707 g, 7.54 mmol), phenylboronic acid (1.103 g, 9.05 mmol) and Pd(PPh₃)₄ (174 mg, 0.15 mmol) in dioxane (20 mL) at 0 °C under Ar. The mixture was heated to 60-65 °C until the TLC (hexane/AcOEt 7:3) revealed the disappearance of the starting diol (12 h) and then guenched by addition of water (15 mL). The mixture was extracted with Et₂O (3 x 30 mL). The combined organic layers were washed with water (15 mL), dried (MgSO₄) and concentrated. The crude was purified by flash chromatography (hexane/AcOEt 7:3) to afford 6c (1.790 g, 78%). Colorless oil; R_f (CH₂Cl₂): 0.48; $[\alpha]_D^{20} = +32.0$ $(c=1.0 \text{ in CHCl}_3);$ ¹H NMR (400 MHz, CDCl₃): $\delta 0.84$ (t, J=6.8 Hz, 3H, CH₃), 0.90 (t, J = 7.0 Hz, 3H, CH₃), 1.22-1.37(m, 10H, CH₂), 1.38-1.45 (m, 2H, CH₂), 1.51-1.59 (m, 2H, CH₂), 1.62-1.69 (m, 2H, CH₂), 2.36 (bs, 2H, OH), 4.70 (dt, J = 8.8, 6.8 Hz, 1H, =CH-CH-OH), 4.74 (dd, J = 8.0, 5.2 Hz, 1H, =CPh-C<u>H</u>-OH), 5.58 (d, J = 8.8 Hz, 1H, CH=), 7.28-7.35 (m, 5H, Ar); ¹³C NMR (CDCl₃, 101 MHz): δ13.9 and 14.0 (CH₃), 22.5, 22.6, 25.3, 25.8, 31.6, 31.8, 36.6, and 37.8 (CH₂), 67.6 (=CH<u>C</u>H-OH), 72.8 (CPh<u>C</u>H-OH), 127.3, 127.8, 127.8, 128.1 and 128.1 (Ar), 134.2 (CH=), 141.4 (Ar), 146.0 (CPh=); IR (film): v_{max} 3388, 2956, 2931, 2860, 1493, 1459, 1028
- 7. A series of experiments performed with **3a** showed even worse regio- and stereoselectivities.
- 8. For a recent review on molybdenum-catalyzed asymmetric allylic alkylations, see: (a) Belda, O.; Moberg, C. *Acc. Chem. Res.* **2004**, *37*, 159–167.
- For a very recent review on iridium-catalyzed asymmetric allylic substitutions, see: (a) Helmchen, G. In *Iridium Complexes in Organic Synthesis*; Oro, L. A.; Claver, C., Ed.; Wiley-Interscience: Weinheim, 2009; pp 211–250. (b) Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. **1998**, *120*, 8647–8655; (c) Takeuchi, R.; Ue, N.; Tanabe, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. **2001**, *123*, 9525–9534. For exemples of Ir-catalysed intramolecular N-alkylations, see: (d) Miyabe, H.; Yoshida, K.; Kobayashi, Y.; Matsumura, A.; Takemoto, Y. Synlett **2003**, 1031–1033; (e) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Dübon, P.; Helmchen, G. Org. Lett. **2005**, *7*, 1239–1242.
- (a) Yamamoto, T.; Ishizu, J.; Yamamoto, A. J. Am. Chem. Soc. 1981, 103, 6863–6869; (b) Cuvigny, T.; Julia, M. J. Organomet. Chem. 1986, 317, 383–408 and references therein; (c) Cuvigny, T.; Julia, M. J. Organomet. Chem. 1983, 250, C21–C24.
- In contrast to the situation with Pd, allylic alkylation takes place mostly at the more substituted carbon atom when unsymmetrical substrates are used. See, for instance: Co, T. T.; Paek, S. W.; Shim, S. C.; Cho, C. S.; Kim, T.-J.; Choi, D. W.; Kang, S. O.; Jeong, J. H. Organometallics, 2003, 22, 1475–1482. For a review on structure-reactivity relationship in allyl complexes of group 10 metals, see: Kurosawa, H.; Ogoshi, S. Bull. Chem. Soc. Jpn. 1988, 71, 973–984.

- The dipyridyl-ligated molybdenum complex was prepared by the simple ligand exchange between 2,2'-bipyridyl (bpy) and Mo(CO)₆: Stiddardt, M. H. B. J. Chem. Soc. **1962**, 4712– 4715.
- 13. In THF no reaction was observed.
- (a) Moberg, C. Tetrahedron Lett. 1980, 21, 4539–4542; (b) Bricout, H.; Carpentier, J.-F.; Mortreux, A. J. Chem. Soc.; Chem. Comm. 1995, 1863–1864; (c) Bricout, H.; Carpentier, J.-F.; Mortreux, A. Tetrahedron 1998, 54, 1073–1084; (d) Berkowitz, D. B.; Bose, M.; Choi, S. Angew. Chem. Int. Ed. 2002, 41, 1603–1607: (e) Berkowitz, D. B.; Maiti, G. Org. Lett. 2004, 6, 2661–2664.
- 15. A series of experiments were performed in which we changed the amount of catalyst $(0.1-0.4 \% \text{ mol of } [Ni(COD)_2])$, in presence or absence of base (LiHMDS), ligands (PPh₃, BINAP) and temperatures (rt to MW heating to 120 °C) gave poor and/or erratic results.
- Relative configuration of cyclic carbamates 4 were readily determined by ¹H NMR nOe experiments.
- For very recent reviews on microwave synthesis, see: (a) Caddick, S.; Fitzmaurice, R. *Tetrahedron* 2009, 65, 3325– 3355; (b) Polshettiwar, V.; Varma, R. S. Acc. Chem. Res. 2008, 41, 629–639; (c) Kappe, C. O. Chem. Soc. Rev. 2008, 37, 1127–1139; (d) Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591.
- 18. *Typical procedure*: To a solution of $[NiCl_2(PPh_3)_2]$ (19 mg, 28.6 µmol) in dry THF (0.6 mL) was added *i*-PrMgCl (29 µL, 57.2 µmol, 2.0M solution in Et₂O) at 0 °C under Ar. After 10 min the solution changed from green to brownish. Then the mixture was transfered via cannula to a flask containing a solution of dicarbamate (*S*,*S*)-**3c** (100 mg, 0.143 mmol) in THF (0.6 mL) under Ar and the mixture was heated in a microwave oven for 2 h to 120 °C (inside pressure was 5–6 bars). Then, the solvent was removed and the crude was filtered through a short pad of Celite (AcOEt). The solvent was removed and the residue was purified by flash chromatography (hexane/AcOEt 8:2) to afford a 92:8 mixture of **4c/4'c** (40 mg, 0.083 mmol, 58%). (b) Compound **4c**: white solid, mp 84–85 °C ;*R_f* (hexane/AcOEt 7:3): 0.47;

[α]_D²⁰= -47.0 (*c*=0.6 in CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ 0.80 (t, *J* = 6.8 Hz, 3H, CH₃), 0.92 (t, *J* = 7.2 Hz, 3H, CH₃), 1.15-1.20 (m, 6H, CH₂), 1.33-1.40 (m, 6H, CH₂), 1.49-1.54 (m, 2H, CH₂), 2.25-2.31 (m, 2H, CH₂), 2.42 (s, 3H, CH₃-Ar), 4.44 (dd, *J* = 10.0, 2.8 Hz, 1H, C<u>H</u>-O), 5.92 (dt, *J* = 15.6, 1.4 Hz, 1H, C<u>H</u>=CHCH₂), 6.18 (dt, *J* = 15.6, 6.8 Hz, 1H, CH=C<u>H</u>-CH₂), 7.23 (d, *J* = 8.4 Hz, 2H, Ar), 7.39-7.49 (m, 5H, Ar), 7.63 (d, *J* = 8.4 Hz, 2H, Ar). ¹³C NMR (CDCl₃, 101 MHz): δ 13.8 (CH₃), 14.0 (CH₃), 21.6 (CH₃-Ar), 22.2, 22.4, 25.5, 28.5, 28.9, 31.3, 31.4 and 32.7 (CH₂), 74.1 (CPh-NTs), 87.9 (CH-O), 123.5 (TsNCPh -<u>C</u>H=), 127.6, 128.5, 129.0, 129.1, 129.2 and 135.8 (Ar), 137.1 (CH₂<u>C</u>H=), 138.9 (C(Ar)), 145.0 (C(Ar)-SO₂)), 152.5 (C=O).; IR (KBr): ν_{max} 2929-2860, 1781, 1175, 1090.

- 19. Experiments performed with 3c and DBU in the presence of 20% mol of Sc(OTf)₂ (THF, rt or 60 °C) caused the degradation of starting material. The use of PtCl₂ led to the recovery of starting dicarbamate. In THF no reaction was observed.
- 20. Lei, A.; Liu, G.; Lu, X. J. Org. Chem. 2002, 67, 974-980.
- (a) Albert, J.; Granell, J.; Luque, A.; Minguez, J.; Moragas, R.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 1996, 522, 87–95; (b) Albert, J.; Granell, J.; Zafrilla, J.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2005, 690, 422– 429; (c) Albert, J.; D'Andrea, L.; Granell, J.; Tavera, R.; Font-Bardia, M.; Solans, X. J. Organomet. Chem. 2007, 692, 3070–3080.
- For a very recent review on palladacycles, see: Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527– 2572.
- Dalcanale, E.; Montanari, F. J. Org. Chem. 1986, 51, 567– 569.
- Carlsen, H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936–3938.
- 25. For very recent reviews on stereoselective construction of α,α-disubstituted α-amino acids, see: (a) Ohfune, Y.; Shinada, T. *Eur. J. Org. Chem.* 2005, 5127–5143; (b) Byun, H.-S.; Lu, X.; Bittman, R. *Synthesis* 2006, 2447–2474.