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Abstract—Chiral symmetrical alk-2-yne-1,4-diols have been stereoselectively transformed into 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-
2-ones, which are precursors of quaternary α-amino β-hydroxy acids. The key step was the cyclization of the bis(tosylcarbamates) of 2-
phenylalk-2-yne-1,4-diols, easily obtained from the starting chiral diols. These cyclizations were accomplished with complete 
regioselectivity and up to 92:8 dr in the presence of catalytic amounts of Ni(0) or Pd (II) derivatives under microwave heating. © 2009 
Elsevier Science. All rights reserved 

——— 
* Corresponding author. Tel.: +34 934034819; fax: +34 933397878; e-mail: jordigarciagomez@ub.edu (J. Garcia); xariza@ub.edu (X. Ariza). 
 

Enantioenriched 1,4-diols have been shown to be versatile 
synthons for asymmetric synthesis.1 In the course of a 
project aimed to develop synthetic applications of 
unsaturated 1,4-diols,2 we have recently reported the 
preparation of both erythro and threo β-hydroxy α-amino 
acids from a common precursor, namely a C2-symmetrical 
alk-2-yne-1,4-diol (1) (Scheme 1).3 The key step of our 
approach was a stereoselective Pd(0)-catalyzed 
intramolecular N-alkylation of the allylic (Z)- or (E)-1,4-
dicarbamates (2) derived from 1.4 It should be noted that, 
due to the C2-symmetrical properties of the starting 
materials, only one regioisomer was possible in such 
processes. 

Scheme 1. Reported synthesis of erythro and threo β-hydroxy α-amino 
acids. 

Herein, we extend the scope of our work to allylic 1,4-
dicarbamates 3, in which symmetry is broken by an 
additional substituent R' on the double bond. Cyclization on 
3 is a challenging issue since two regioisomers, 4 or 5 are 
possible (Scheme 2). We were interested in the preferential 
formation of carbamates 4, potential precursors of 
quaternary amino acids after the oxidative cleavage of the 
double bond. In particular, we envisaged that when R' = Ph 
in 3, the ionization of the carbamate group on C(4), leading 
to 4, will be favored for steric and electronic reasons. Thus, 
the Ph group could better extend the conjugation of the 
transient π-allylic cations in a Pd(0)-catalyzed process.  

 

 

 

 

Scheme 2. Cyclization of dicarbamates 3 

Thus, we embarked on a study aimed to obtain compounds 
3 (with R' = Ph) and their further transformation into the 
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quaternary carbamates 4. We wish to report herein our 
findings in this connection. 

As expected, starting chiral diols 1 were readily 
desymmetrized by reaction with phenylboronic acid in the 
presence of [Pd(PPh3)4].5 As observed in Scheme 3, diols 
6a–d were isolated in 50–78% yield with complete Z 
selectivity using 2% mol of Pd catalyst and 10% mol of 
AcOH in dioxane.6 Diols 6 were quantitatively transformed 
into dicarbamates 3 by treatment with tosyl isocyanate (2 
equiv.) in CH2Cl2. 

 

 

 

 

Scheme 3. Preparation of 2-phenylalk-2-ene-1,4-diols, 6. 

We chose 3b as a representative model to test the 
cyclization step. We first applied to 3b the experimental 
conditions used for the Pd(0)-catalyzed intramolecular N-
alkylation of 2.3a Unfortunately, the expected quaternary 
compound 4b was not observed (Table 1, entries 1 and 2) 
or appeared just as a minor component in a mixture (entry 
3). A series of experiments were then undertaken in which 
we changed the solvent (DMF, DMSO, mixtures with THF 
and CH3CN), the source of palladium ([Pd(Ph3P)4], 
[(C3H5)ClPd]2), additives [(PhO)3P, dppe, dppp] and 
temperatures (rt to 80 ºC) without success.7 Although in 
some cases the overall yields of cyclic carbamates were 
acceptable, mixtures of regio- and stereoisomers were 
always obtained. 

We then moved to other low valent metal complexes that 
were able to give allylic alkylation via π-allyl complexes 
looking for a better control of regioselectivity. Among 
others, Mo,8 Ir9 or Ni10 derivatives, are less efficient 
catalyst for allylic substitution than Pd(0)-complexes. As a 
result, high temperatures and longer reactions times are 
usually required. However, these complexes often showed 
regio– and stereoselectivities quite different from those 
recorded in palladium complex–catalysed allylic 
aminations.11 In practice, the treatment of 3b with 20% mol 
of [Mo(CO)6] or [Mo(CO)4(bpy)]12 in refluxing toluene 
afforded preferently isomer 5b in low yields (Table 1, 
entries 4 and 5). The use of an Ir(0)-catalyst generated as 
described in the literature in some examples of 
intermolecular allylic amination9b,c gave only the undesired 
isomer 5b (entry 6).13 

The most favorable results were obtained with Ni(0) 
catalysts. To our knowledge only a few Ni(0)-catalyzed 
allylic aminations have been reported14 and none of them 
related with the creation of quaternary centers. After a few 
preliminary experiments with [Ni(COD)2],15 we achieved 
more reliable results with the Ni(0) catalyst generated in 

situ from [NiCl2(PPh3)2] or [NiCl2(dppe)] and i-PrMgCl, 
following a protocol described by Cuvigny et Julia.10b 

Table 1. M(0)–Catalyzed cyclization of 3b.  

 

 

Entry Catalyst, 
additive 

Solvent, 
T 

Time Yield 
(%) 

Ratio 
4b:4'b:5b 

1a Pd2(dba)3
.CHCl3 

(i-PrO)3P 
THF, rt 20 h 10< - 

2a,b,c Pd2(dba)3
.CHCl3 

(i-PrO)3P 
THF, 
MW 

2 h 80 0:0:100 

3a Pd2(dba)3
.CHCl3 

(i-PrO)3P 
CH3CN, 

rt 
4 h 89 41:0:59 

4d [Mo(CO)6] Toluene, 
reflux 

12 h 20 15:8:77 

5d [Mo(CO)4(bpy)] Toluene, 
reflux 

12 h 11 11:6:83 

6a,c [Ir(COD)Cl]2  
(PhO)3P 

EtOH,      
reflux 

20 h 35 0:0:100 

7d [NiCl2(PPh3)2]    
i-PrMgCl 

THF   
reflux 

20 h  15 83:17: 0 

8d [NiCl2(dppe)]     
i-PrMgCl 

THF   
reflux 

20 h  10 83:17: 0 

9b,d [NiCl2(PPh3)2]    
i-PrMgCl 

THF, 
MW 

2 h  58 92:8: 0 

10b,d [NiCl2(PPh3)2]     THF, 
MW 

2 h  – –:–: – 

a5% mol catalyst was used. 
bMW heating at 120 ºC. 
c 1H NMR of 5b indicated a mixture of 2:1 cis/trans oxazolidinones. 
d20% mol catalyst was used. 

 

In sharp contrast with our previous attempts, the quaternary 
carbamates 4 were readily obtained with complete 
regioselectivity, and high stereoselectivity,16 albeit in low 
yield (entries 7 and 8). With Ni(0) catalyst showing 
promise, we performed the reaction heating in a microwave 
oven to accomplish the consumption of the starting 
material.17 To our satisfaction, 4b was isolated in 58% yield 
and a remarkably 92:8 diastereomeric ratio (entry 9).18 In 
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an additional experiment in which the addition of i-PrMgCl 
was omitted, neither 4 nor 5 was observed. Thus, the 
possibility that a Ni(II) specie acts as the true catalyst was 
ruled out. 

 

 

 

Scheme 4. Ni(0)-Catalyzed cyclization of dicarbamates 3. 

As shown in Scheme 4, this new Ni(0)-catalyzed process 
was extended to dicarbamates 4a, 4c and 4d with complete 
regioselectivity but in moderate yields. As far as the 
diastereoselectivity is concerned, a similar trend of ~9:1 
ratio was observed when R was α-branched, and slightly 
lower for a smaller R (4a). 

We then considered using a Lewis acid to promote the 
cyclization.19 Lu et al recently described the cyclization of 
allylic dicarbamates using Pd(AcO)2 and LiBr in THF.20 
We presumed that in compounds 3, the Ph group could act 
as directing group by stabilizing the positive charge in the 
benzylic position (Scheme 5).  

Scheme 5. Pd(II)-catalyzed transformation of 3 into 4. 

As expected, treatment of 3c with Pd(AcO)2 and LiBr in 
refluxing THF yielded the expected product 4 with total 
regioselectivity but low stereoselectivity (entry 1, Table 2). 
Once again, the use of microwave heating was beneficial 
since the ratio 4b/4'b was improved to 80:20 (entry 2).  

Table 2. Pd(II)–Catalyzed cyclization of 3. 

Entry 3        
R 

Catalyst, 
additive 

Solvent 
T 

Time Yield (%) 
ratio 4:4' 

1a 3b 
C5H11 

Pd(AcO)2    
LiBr 

THF, 
reflux 

15 h 52       
56:49 

2a,b 3b 
C5H11 

Pd(AcO)2    
LiBr 

THF, 
MW 

2 h 50       
80:20 

3a 3b 
C5H11 

[PdCl2(PPh3)2] 
LiCl 

THF, 
reflux 

15 h <10 

4a 3b 
C5H11 

[PdCl2(PhCN)2] 
LiCl 

THF, 
reflux 

15 h <10 

5c 3b 
C5H11 

7                  
LiBr 

THF, 
reflux 

15 h 55       
80:20 

6c 3b 
C5H11 

8                 
LiBr 

THF, 
reflux 

15 h 48       
80:20 

7c 3b 
C5H11 

9                 
LiBr 

THF, 
reflux 

15 h 36       
78:22 

8b,c 3b 
C5H11 

7                 
LiBr 

THF, 
MW 

2 h 61       
80:20 

9b,c 3c       
i-Pr 

7                 
LiBr 

THF, 
MW 

2 h 40         
92:8 

10b,c 3d      
c-Hex 

7                 
LiBr 

THF, 
MW 

2 h 52         
91:9 

a10% mol Pd(II) catalyst was used. 
bMW heating at 120 ºC. 
c8% mol Pd(II) catalyst was used.

 

 

 

 

Figure 1. Palladacycles 7–9. 

We also attempted the use of palladacycles 7–9 as a source 
of Pd(II).21 Palladacycles are organometallic compounds of 
growing interest in catalysis.22 Remarkably, the 
performance of 7 was comparable to or even slightly better 
than that obtained with the above mentioned Ni(0) catalyst 
(Table 2, entries 9 and 10). These positive preliminary 
results and the structural variety of palladacycles, indicated  
that there is room for future improvements in this field. 

Finally, in order to demonstrate the value of compounds 4 
in synthesis, we successfully transformed 4c into 
quaternary amino acids 11 and 14 (Scheme 6). Thus, 
ozonolysis of 4c followed by oxidation of the crude 
aldehyde 10 with NaClO2

23 gave protected α-amino α-
phenyl β-hydroxy acid 11. On the other hand, aldehyde 10 
was reduced and then the resulting primary alcohol 12 was 
protected as acetate 13. Ruthenium-mediated oxidation24 of 
the phenyl group afforded the α-amino β,β'-dihydroxy acid 
14. It should be noted that the substructure of the α-amino 
α-hydroxymethyl β'-hydroxy acid is present in a number of 
bioactive natural products such as myriocin, mycesterycins, 
and sphingofungins.25 

In summary, we have developed a new, stereoselective, 
approach to 5-alkyl-4-alkenyl-4-phenyl-1,3-oxazolidin-2-
ones. The key step was either a Ni(0)- or Pd(II)-catalyzed 
cyclization in which the use of palladacycles and the 
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microwave heating are pivotal. The cyclic carbamates 
obtained are precursors of quaternary α-amino β-hydroxy 
acids, as demonstrated with the compound in which R = n-
C5H11. Further applications, specially on palladacycle 
catalysts, will be reported in due course. 

Scheme 6. Reagents and conditions: (a) O3, CH2Cl2, –78 ºC, then Me2S, rt, 
98%; (b) NaClO2, H2O2, NaH2PO4, H2O/CH3CN, 95%; (c) NaBH4, THF, 0 
ºC, 100%; (d) Ac2O, Et3N, 4-DMAP cat., CH2Cl2, 0 ºC, 97%; (e) RuCl3 
cat., NaIO4, CH3CN/CCl4/ H2O 1:1:1.5, 45%. 
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