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TRACES OF FUNCTIONS IN FOCK SPACES ON LATTICES OF CRITICAL
DENSITY.

JEREMIAH BUCKLEY, XAVIER MASSANEDA, AND JOAQUIM ORTEGA-CERDÀ

ABSTRACT. Following a scheme of Levin we describe the values that functions in Fock spaces
take on lattices of critical density in terms of both the sizeof the values and a cancelation condition
that involves discrete versions of the Cauchy and Beurling-Ahlfors transforms.

1. INTRODUCTION

We are interested in describing the set of valuesc = (cλ)λ∈Λ such that there exists some
function f in a Fock space satisfying the conditionf |Λ = c whereΛ is a sequence that ‘just
fails’ to be interpolating. While we shall prove our resultsin a more general context, we begin
by introducing the problem in the classical Bargmann-Fock space, where the results are more
easily digestible.

We define the classical Bargmann-Fock space, as studied in [Sei92] and [SW92], by

Fp = {f ∈ H(C) : ‖f‖pFp =

∫

C

|f(z)|pe−p|z|2dm(z) < +∞}, for 1 ≤ p < +∞

and
F∞ = {f ∈ H(C) : ‖f‖F∞ = sup

z∈C
|f(z)|e−|z|2 < +∞}

wherem denotes the Lebesgue measure on the plane. Seip and Wallstén completely characterised
sets of sampling and sets of interpolation in these spaces. We begin with a definition.

Definition 1. A sequenceΛ ⊆ C is aninterpolating sequence forFp, where1 ≤ p < +∞ if for
every sequence of valuesc = (cλ)λ∈Λ such that

∑

λ∈Λ

|cλ|
pe−p|λ|2 < +∞

there existsf ∈ Fp such thatf |Λ = c.

AlsoΛ is aninterpolating sequence forF∞ if for every sequence of valuesc such that

sup
λ∈Λ

|cλ|e
−|λ|2 < +∞

there existsf ∈ F∞ such thatf |Λ = c.
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Thus the interpolating sequences are the sequences such that the values functions from the
space take on the sequence can be described purely in terms ofa natural growth condition. Seip
and Wallstén then proved the following result:

Theorem 1 ([Sei92, Theorem 2.2, Theorem 2.4],[SW92, Theorem 1.2]). A sequenceΛ is an
interpolating sequence forFp, wherep ∈ [1,∞], if and only if

• Λ is a uniformly separated sequence, that isinfλ6=λ′ |λ− λ′| > 0 and

• The upper uniform density ofΛ, D+(Λ) = lim sup
r→∞

sup
z∈C

#
(

Λ ∩D(z, r)
)

πr2
<

2

π
.

There are many generalisations of this result, see [MMO03] and the references therein. We
shall consider instead sequencesΛ ⊂ C that are uniformly separated but whose density is exactly
the critical value, that isD+(Λ) = 2/π. We shall not consider all such sequences but instead
restrict ourselves to those sequences that we have extra information about.

We consider first, as an instructive example, the integer lattice (suitably scaled)

Λ =

√

π

2
(Z+ iZ),

which is a sequence of critical density2/π. The Weierstrassσ-function associated toΛ is defined
by

σ(z) = z
∏

λ∈Λ0

(

1−
z

λ

)

e
z
λ
+ 1

2

z2

λ2 ,

where we use the notationΛλ = Λ\{λ}. Note thatΛ is the zero-set ofσ, and

|σ(z)| ≃ e|z|
2

d(z,Λ)

for all z ∈ C [SW92, p. 108]. Hered refers to the usual distance between a point and a set.

Given a sequence(aλ)λ∈Λ, we define the principal value of its sum to be

p.v.
∑

λ∈Λ

aλ = lim
R→∞

∑

|λ|<R

aλ.

We are ready to state our main result, in this special case:

Theorem 2. LetΛ =
√

π
2
(Z+ iZ). There existsf ∈ F1 satisfyingf |Λ = c if and only if

•
∑

λ∈Λ

|cλ|e
−|λ|2 < +∞,

•
∑

λ′∈Λ

∣

∣

∣

∑

λ∈Λλ′

cλ
σ′(λ)(λ− λ′)

∣

∣

∣
< +∞ and

•
∑

λ′∈Λ

∣

∣

∣

∑

λ∈Λλ′

cλ
σ′(λ)(λ− λ′)2

∣

∣

∣
< +∞.

There existsf ∈ Fp for 1 < p < ∞ satisfyingf |Λ = c if and only if
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•
∑

λ∈Λ

|cλ|
pe−p|λ|2 < +∞ and

•
∑

λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

cλ
σ′(λ)(λ− λ′)

∣

∣

∣

p

< +∞.

There existsf ∈ F∞ satisfyingf |Λ = c if and only if

• sup
λ∈Λ

|cλ|e
−|λ|2 < +∞,

• sup
λ′∈Λ0

∣

∣

∣
−

c0
σ′(0)λ′

+ p.v.
∑

λ∈Λλ′\{0}

cλ
σ′(λ)

( 1

λ− λ′
−

1

λ

)

∣

∣

∣
< +∞ and

• sup
λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

cλ
σ′(λ)(λ− λ′)2

∣

∣

∣
< +∞.

In fact these results hold for any sequenceΛ that is the zero set of a functionτ with growth
similar to the Weierstrassσ-function. Specifically, supposeτ is an entire function such that

• The zero-sequenceZ(τ) of τ is uniformly separated,
• supz∈C d(z,Z(τ)) < +∞ and
• |τ(z)| ≃ e|z|

2

d(z,Z(τ)) for all z ∈ C.

Then Theorem 2 holds if we replaceσ by τ and takeΛ = Z(τ). Such a set is always a set of
critical density. The existence of many such functionsτ is guaranteed by Theorem 7.

Our work, both the results and the proofs, is inspired by a similar result due to Levin in the
classical Paley-Wiener spaces [Lev96, Lecture 21]. In these spaces, the integers are an inter-
polating sequence in almost every situation, however this fails in the two extremes, namely the
L1 andL∞ cases. Levin completely described the traces of functions in theL∞ spaces on the
integers, and Ber (see [Lev96, Lecture 21] and also [Ber80])solved the same problem in theL1

case. While a discrete version of the Hilbert transform is the key ingredient in these results, we
shall see that it is discrete versions of the Cauchy and Beurling-Ahlfors transforms that shall play
a similar role in the Fock context.

We shall in fact consider more general spaces, in which the function |z|2 is replaced by a
subharmonic functionφ whose Laplacian∆φ is a doubling measure.

The paper is structured as follows: In Section 2 we state somedefinitions and basic properties
to be used later (namely of doubling measures, generalised Fock spaces and generalised lattices).
Section 3 contains the statements of our results. In Section4 we prove two representation formu-
las for functions in our generalised Fock spaces in terms of the values of the function on a critical
lattice. In Section 5 we study a discrete version of the Beurling-Ahlfors transform. Finally in
Section 6 we prove the statements in Section 3.

We shall use the following standard notation: The expression f . g means that there is a
constantC independent of the relevant variables such thatf ≤ Cg, andf ≃ g means thatf . g
andg . f .
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2. TECHNICAL PRELIMINARIES

This section contains technical results that we shall repeatedly use in our proofs, as well as a
precise definition of the spaces we are studying. Much of the development follows [MMO03].

2.1. Doubling Measures.

Definition 2. A nonnegative Borel measureµ in C is calleddoublingif there existsC > 0 such
that

µ(D(z, 2r)) ≤ Cµ(D(z, r))

for all z ∈ C andr > 0. We denote byCµ the infimum of the constantsC for which the inequality
holds.

Let φ be a (non-harmonic) subharmonic function whose Laplacian∆φ is a doubling measure.
Canonical examples of such functions are given byφ(z) = |z|γ whereγ > 0. Writing µ = ∆φ
we define, forz ∈ C, ρφ(z) to be the radius such thatµ(D(z, ρφ(z))) = 1. We shall normally
ignore the dependence onφ and simply writeρ(z).

We have the following estimates from [MMO03, p. 869]: There exist η > 0, C0 > 0 and
β ∈ (0, 1) such that

(1) C−1
0 |z|−η ≤ ρ(z) ≤ C0|z|

β for |z| > 1.

and

(2) |ρ(z)− ρ(ζ)| ≤ |z − ζ | for z, ζ ∈ C.

Soρ is a Lipschitz function, and so in particular is continuous.We will write

Dr(z) = D(z, rρ(z))

and
D(z) = D1(z).

We then have the following estimate, which we shall repeatedly make use of:

Lemma 3 ([Chr91, p. 205]). If ζ 6∈ D(z) then

ρ(z)

ρ(ζ)
.

(

|z − ζ |

ρ(ζ)

)1−t

for somet ∈ (0, 1) depending only on the doubling constant,Cµ.

We note, as in [Chr91], thatρ−2 can be seen as a regularisation of∆φ. Then if we definedφ
to be the distance induced by the metricρ(z)−2dz ⊗ dz we have:

Lemma 4 ([MMO03, Lemma 4]). There existsδ > 0 such that for everyr > 0 there exists
Cr > 0 such that

• C−1
r

|z − ζ |

ρ(z)
≤ dφ(z, ζ) ≤ Cr

|z − ζ |

ρ(z)
if |z − ζ | ≤ rρ(z) and
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• C−1
r

(

|z − ζ |

ρ(z)

)δ

≤ dφ(z, ζ) ≤ Cr

(

|z − ζ |

ρ(z)

)2−δ

if |z − ζ | > rρ(z).

2.2. Generalised Fock spaces and interpolating sequences.As before letφ be a subharmonic
function whose Laplacian∆φ is a doubling measure. The following are all generalisations of the
development in the Introduction, withφ(z) playing the role of|z|2. The generalised Fock spaces
we deal with are defined as

Fp
φ = {f ∈ H(C) : ‖f‖p

Fp
φ
=

∫

C

|f(z)|pe−pφ(z)dm(z)

ρ(z)2
< +∞}, for 1 ≤ p < +∞

and
F∞

φ = {f ∈ H(C) : ‖f‖F∞

φ
= sup

z∈C
|f(z)|e−φ(z) < +∞}.

We shall assume (see [MMO03, Theorem 14]) thatφ ∈ C∞(C). It is worth noting, as in [MMO03,
p. 863], that there are many spaces of functions which correspond toFp

φ for someφ, although this
may not be initially apparent. We shall take the following definitions verbatim from [MMO03]:

Definition 3. A sequenceΛ ⊆ C is aninterpolating sequence forFp
φ, where1 ≤ p < +∞ if for

every sequence of valuesc such that
∑

λ∈Λ

|cλ|
pe−pφ(λ) < +∞

there existsf ∈ Fp
φ such thatf |Λ = c.

AlsoΛ is aninterpolating sequence forF∞
φ if for every sequence of valuesc such that

sup
λ∈Λ

|cλ|e
−φ(λ) < +∞

there existsf ∈ F∞
φ such thatf |Λ = c.

Definition 4. A sequenceΛ is ρ-separatedif there existsδ > 0 such that

|λ− λ′| ≥ δmax{ρ(λ), ρ(λ′)}, for λ 6= λ′.

One consequence of Lemma 4 is that a sequenceΛ is ρ-separated if and only if it is uniformly
separated with respect to the distancedφ, that isinfλ6=λ′ dφ(λ, λ

′) > 0.

Definition 5. Assume thatΛ is aρ-separated sequence and denoteµ = ∆φ as before. Theupper
uniform density ofΛ with respect to∆φ is

D+
∆φ(Λ) = lim sup

r→∞
sup
z∈C

#
(

Λ
⋂

D(z, rρ(z))
)

µ(D(z, rρ(z)))
.

It should be noted that replacingφ(z) by |z|2 in this definition does not produce the density
given in Theorem 2, but rather a constant multiple of it. We have:

Theorem 5([MMO03, Theorem B]). A sequenceΛ is interpolating forFp
φ, wherep ∈ [1,∞], if

and only ifΛ is ρ-separated andD+
∆φ(Λ) <

1
2π

.
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We finish with a Plancherel-Polya type inequality:

Lemma 6([MMO03, Lemma 19(a)]). Let1 ≤ p < ∞. For anyr > 0 there existsC = C(r) > 0
such that for anyf ∈ H(C) andz ∈ C

|f(z)|pe−pφ(z) ≤ C

∫

Dr(z)

|f(ζ)|pe−pφ(ζ)dm(ζ)

ρ(ζ)2
.

This has an elementary but useful consequence. Suppose thatΛ is aρ-separated sequence and
thatf ∈ Fp

φ. Then
(3)
∑

λ∈Λ

|f(λ)|pe−pφ(λ) ≤ C
∑

λ∈Λ

∫

Dδ/2(λ)

|f(ζ)|pe−pφ(ζ)dm(ζ)

ρ(ζ)2
≤ C

∫

C

|f(ζ)|pe−pφ(ζ)dm(ζ)

ρ(ζ)2
< ∞

whereδ is the constant appearing in the definition ofρ-separation andC = C(δ/2).

Moreover, iff ∈ Fp
φ for 1 ≤ p < ∞ then

|f(z)|pe−pφ(z) → 0

uniformly as|z| → ∞, from which we infer thatFp
φ ⊆ F∞

φ .

2.3. Generalised lattices.We shall now consider analogues of the integer lattice considered
earlier, that play a similar role in our generalised spaces.

Theorem 7 ([MMO03, Theorem 17]). Letφ be a subharmonic function such that∆φ is a dou-
bling measure. There exists an entire functiong such that

• The zero-sequenceZ(g) of g is ρφ-separated andsup
z∈C

dφ(z,Z(g)) < ∞.

• |g(z)| ≃ eφ(z)dφ(z,Z(g)) for all z ∈ C.

The functiong can be chosen so that, moreover, it vanishes on a prescribedz0 ∈ C. We say that
g is a multiplier associated toφ.

Furthermore [MMO03, Lemma 37] shows thatD+
∆φ(Z(g)) = 1/2π. We shall now regardφ

andg (and consequentlyρ) as fixed and we will say thatΛ = Z(g) is acritical lattice associated
to the multiplierg. The multiplier can be thought of as playing the same role in Fock spaces that
sine-type functions play in Paley-Wiener spaces.

Suppose now thatf ∈ Fp
φ, thatz is uniformly bounded away fromΛ in the distancedφ and

ǫ > 0 is arbitrary. Then
∣

∣

∣

∣

f(z)

g(z)

∣

∣

∣

∣

p

≃ |f(z)|pe−pφ(z) < ǫ

uniformly as |z| → ∞, where we have used Theorem 7 and Lemma 6. In fact, ifzn is any
ρ-separated sequence that satisfiesdφ(zn,Λ) ≥ C > 0 for all n (hereC is any positive constant),
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then Theorem 7 implies that

(4)
∑

n

∣

∣

∣

f(zn)

g(zn)

∣

∣

∣

p

< ∞.

For anyλ ∈ Λ Theorem 7 and Lemma 4 show that|g′(λ)| ≃ eφ(λ)/ρ(λ) and we conclude that

(5)
∑

λ∈Λ

∣

∣

∣

f(λ)

g′(λ)ρ(λ)

∣

∣

∣

p

< +∞

by invoking (3).

There existsδ1 > 0 such that|λ − λ′| > 2δ1max{ρ(λ), ρ(λ′)} for all λ 6= λ′. Recall that
Dr(z) = D(z, rρ(z)) andD(z) = D1(z). We will write

Qλ = {z ∈ C : dφ(z,Λ) = dφ(z, λ)}

for λ ∈ Λ. Lemma 4 implies that for any0 < δ ≤ δ1 thenDδ(λ) ⊆ Qλ and for some constant
R1 > 0 we haveQλ ⊆ DR1(λ). In fact the setsDδ1(λ) are pairwise disjoint andC =

⋃

λ∈Λ Qλ.
Additionally we have

(6)
∫

Qλ

dm(z)

ρ(z)2
≃

1

ρ(λ)2

∫

Qλ

dm(z) =
|Qλ|

ρ(λ)2
≤

|DR1(λ)|

ρ(λ)2
= πR2

1

where|A| is the Lebesgue measure of the setA.

We shall henceforth assume that0 ∈ Λ. This can always be achieved by fixing someλ0 ∈ Λ
and translating this point to the origin. This is merely a matter of convenience and will simplify
many of our calculations.

Let β andη be as in (1) and choseα > 2 + 2η. Then, for0 < δ < δ1,
∑

|λ|>1

1

|λ|α
.

∑

|λ|>1

ρ(λ)2

|λ|α−2η
≃

∑

|λ|>1

∫

Dδ(λ)

1

|z|α−2η
≤

∫

C\Dδ(0)

1

|z|α−2η
< +∞

so that
∑

λ∈Λ0
λ−α is an absolutely convergent sum.

2.4. Discrete potentials. In this section we shall only assume thatΛ is ρ-separated, although
when we apply it later we shall takeΛ = Z(g). Given a sequence(dλ)λ∈Λ such that(dλρ(λ)α)λ∈Λ ∈
ℓp whereα is real, we will say thatd ∈ ℓp(ρα). We shall repeatedly need the following result:

Lemma 8. (i) If Λ is ρ-separated,1 ≤ p ≤ 2 andd ∈ ℓp(ρ−1) then
∑

λ∈Λλ′

dλ
|λ′ − λ|3

∈ ℓp(ρ2).

(ii) If Λ is ρ-separated,1 ≤ p ≤ +∞ andd ∈ ℓp(ρ−1) then
∑

λ∈Λλ′

dλ
|λ′ − λ|N+1

∈ ℓp(ρN )

for any integerN > 1/t wheret is the constant occurring in Lemma 3.
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Proof. (i) Define d̃λ = dλ/ρ(λ) and

Lλ′(d̃) =
∑

λ∈Λλ′

d̃λρ(λ)ρ(λ
′)2

|λ′ − λ|3
.

Hölder’s inequality and Lemma 3 show that this sum converges, and it clearly gives rise to a
linear operator onℓp. We will show that it is in fact a bounded operator fromℓp to ℓp, which will
imply the claimed result. Note first that

∑

λ′∈Λ

|Lλ′ | ≤
∑

λ∈Λ

|d̃λ|ρ(λ)
∑

λ′∈Λλ

ρ(λ′)2

|λ′ − λ|3
.

∑

λ∈Λ

|d̃λ|

so thatL is a bounded linear operator fromℓ1 to ℓ1. Here we have used the fact that

∑

λ′∈Λλ

ρ(λ′)2

|λ′ − λ|3
≃

∑

λ′∈Λλ

∫

Dδ(λ′)

dm(z)

|z − λ|3
≤

∫

C\Dδ(λ)

dm(z)

|z − λ|3
≃ ρ(λ)−1

where0 < δ < δ1.

We now show thatL is a bounded operator fromℓ2 to ℓ2, using Schur’s test (see eg. [Wik10]).
We considerL as an integral operator with kernelK(λ′, λ) = ρ(λ)ρ(λ′)2

|λ′−λ|3
for λ 6= λ′ andK(λ, λ) =

0. Now

(7)
∑

λ∈Λ

K(λ′, λ)ρ(λ) = ρ(λ′)2
∑

λ∈Λλ′

ρ(λ)2

|λ′ − λ|3
. ρ(λ′)

and
∑

λ′∈Λ

K(λ′, λ)ρ(λ′) = ρ(λ)
∑

λ′∈Λλ

ρ(λ′)3

|λ′ − λ|3
. ρ(λ)

∫

C\D(λ′)

ρ(z)

|λ′ − z|3
dm(z).

Applying Lemma 3 we have
∫

C\D(λ′)

ρ(z)

|λ′ − z|3
dm(z) . ρ(λ′)t

∫

C\D(λ′)

dm(z)

|λ′ − z|2+t
≃ 1

so that

(8)
∑

λ′∈Λ

K(λ′, λ)ρ(λ′) . ρ(λ).

Combining now (7) and (8) and applying the Schur test shows thatL is indeed bounded fromℓ2

to ℓ2. Applying now the Riesz-Thorin interpolation theorem (see, eg. [Fol84, Chap. 6,§5, Thm
(6.27)]) completes the proof.

(ii) We use the same notation. Define

Mλ′(d̃) =
∑

λ∈Λλ′

d̃λρ(λ)ρ(λ
′)N

|λ′ − λ|N+1
.
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SinceΛ is ρ-separated andN ≥ 2 we have

ρ(λ′)N

|λ′ − λ|N+1
.

ρ(λ′)2

|λ′ − λ|3

so that (i) shows thatM defines a bounded linear operator fromℓ1 to ℓ1.

Also

sup
λ′∈Λ

|Mλ′ | ≤ ‖d̃‖ℓ∞ sup
λ′∈Λ

ρ(λ′)N
∑

λ∈Λλ′

ρ(λ)

|λ′ − λ|N+1
.

Applying again Lemma 3 we have
∑

λ∈Λλ′

ρ(λ)

|λ′ − λ|N+1
.

∫

C\D(λ′)

dm(z)

|λ′ − z|N+1ρ(z)
. ρ(λ′)−

1

t

∫

C\D(λ′)

dm(z)

|λ′ − z|2+N− 1

t

≃ ρ(λ′)−N

sinceN > 1/t. Consequently
sup
λ′∈Λ

|Mλ′ | . ‖d̃‖ℓ∞

so thatM defines a bounded linear operator fromℓ∞ to ℓ∞. Once more the Riesz-Thorin inter-
polation theorem completes the proof. �

3. STATEMENT OF OUR MAIN RESULTS.

We are ready to state our results, in full generality. As before Λ is a critical lattice, the zero
sequence ofg a multiplier associated toφ. We begin with the simplest case, which is the Hilbert
spaceF2

φ, where we need only slightly modify Theorem 2:

Theorem 9. Let Λ be a critical lattice associated to the multiplierg. There existsf ∈ F2
φ

satisfyingf |Λ = c if and only if

•
∑

λ∈Λ

|cλ|
2e−2φ(λ) < +∞ and

•
∑

λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)

∣

∣

∣

2

< +∞.

Our result inF1
φ is also only a slight modification of Theorem 2.

Theorem 10. Let Λ be a critical lattice associated to the multiplierg. There existsf ∈ F1
φ

satisfyingf |Λ = c if and only if

•
∑

λ∈Λ

|cλ|e
−φ(λ) < +∞ and

•
∑

λ′∈Λ

∣

∣

∣

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)

∣

∣

∣
< +∞ and

•
∑

λ′∈Λ

∣

∣

∣
ρ(λ′)

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)2

∣

∣

∣
< +∞
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In general, the situation is slightly more complicated. We begin with the case1 < p < 2. Here
there are two possibilities, depending on whether or notρp−2 is a MuckenhouptAp weight (see
Section 5 for the definition). If this additional assumptionholds then our result is essentially the
same as in the classical case, otherwise we add an additionalcondition to our result. We also
show in Section 5 that both of these possibilities can occur.

Theorem 11. LetΛ be a critical lattice associated to the multiplierg and suppose1 < p < 2.

• If ρp−2
φ is anAp weight then there existsf ∈ Fp

φ satisfyingf |Λ = c if and only if

(a)
∑

λ∈Λ

|cλ|
pe−pφ(λ) < +∞ and

(b)
∑

λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)

∣

∣

∣

p

< +∞.

• If ρp−2
φ is not anAp weight then there existsf ∈ Fp

φ satisfyingf |Λ = c if and only if (a)
and (b) hold, and in addition

(c)
∑

λ′∈Λ

∣

∣

∣
ρ(λ′)p.v.

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)2

∣

∣

∣

p

< +∞.

If 2 < p < ∞ then our result becomes more complicated, depending on the doubling constant.

Theorem 12. LetΛ be a critical lattice associated to the multiplierg and suppose2 < p < ∞.
Let t be the constant occurring in Lemma 3 (which depends on the doubling constant).

(i) If t > 1/2 andρp−2
φ is anAp weight then there existsf ∈ Fp

φ satisfyingf |Λ = c if and
only if (a) and (b) hold.

(ii) If t > 1/2 andρp−2
φ is not anAp weight then there existsf ∈ Fp

φ satisfyingf |Λ = c if
and only if (a), (b) and (c) hold.

(iii) If t ≤ 1/2 then there existsf ∈ Fp
φ satisfyingf |Λ = c if and only if (a) holds and

(b′) There exists an integerN > 1
t

such that, for every1 ≤ n ≤ N ,
∑

λ′∈Λ

∣

∣

∣
ρ(λ′)n−1p.v.

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)n

∣

∣

∣

p

< +∞.

We finally state our result forF∞
φ , which again depends on the doubling constant.

Theorem 13. LetΛ be a critical lattice associated to the multiplierg and lett be the constant
occurring in Lemma 3. There existsf ∈ F∞

φ satisfyingf |Λ = c if and only if

• sup
λ∈Λ

|cλ|e
−φ(λ) < +∞,

• sup
λ′∈Λ0

∣

∣

∣
−

c0
g′(0)λ′

+ p.v.
∑

λ∈Λλ′\{0}

cλ
g′(λ)

( 1

λ− λ′
−

1

λ

)

∣

∣

∣
< +∞ and

• There exists an integerN > 1
t

such that, for every2 ≤ n ≤ N ,

sup
λ′∈Λ

∣

∣

∣
ρ(λ′)n−1p.v.

∑

λ∈Λλ′

cλ
g′(λ)(λ− λ′)n

∣

∣

∣
< +∞.
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We finish this section by showing that the casest ≤ 1/2 andt > 1/2 are both possible. In the
classical example ofφ(z) = |z|2 we may taket to be arbitrarily close to1. For the other case we
consider the functionφ(z) = |z|γ whereγ > 0. We may assume, by normalising appropriately,
thatρ(0) = 1. Then forζ 6∈ D(0) we haveρ(ζ) ≃ |ζ |1−γ/2. Taking nowz = 0 in Lemma 3 we
see that we must have

|ζ |1−γ/2 . |ζ |1−t

for ζ 6∈ D(0) so thatt ≤ γ/2. Thus, for the functionφ(z) = |z|γ whenγ ≤ 1, we must have
t ≤ 1/2.

4. REPRESENTATION FORMULAS

In this section we will prove two representation formulas for functions in our generalised Fock
spaces in terms of the values of the function on a critical lattice. These formulas are reminiscent
of the Lagrange interpolation formula.

Lemma 14. LetΛ be a critical lattice associated to the multiplierg. If f ∈ F∞
φ then

(9) f(z) = g(z)
[

w0 +
f(0)

g′(0)z
+ p.v.

∑

λ∈Λ0

f(λ)

g′(λ)

(

1

z − λ
+

1

λ

)

]

wherew0 = limz→0
d
dz
( zf(z)

g(z)
) = f ′(0)

g′(0)
− g′′(0)

2g′(0)
.

Proof. We denotedλ = f(λ)/g′(λ) and note that|dλ/ρ(λ)| ≃ |cλ|e
−φ(λ) ≤ supz∈C |f(z)|e

−φ(z) =
‖f‖F∞

φ
so that(dλ/ρ(λ))λ∈Λ ∈ ℓ∞ and‖dλ/ρ(λ)‖∞ . ‖f‖F∞

φ
. Let β andη be as in (1) and fix

a positive integern > 2 + 2η + β. We will write

(10) f(z) =
∑

λ∈Λ

f(λ)gλ(z)

wheregλ are entire functions satisfyinggλ(λ′) = δλλ′ . The obvious candidate forgλ(z) is the
functiongλ(z) =

g(z)
g′(λ)(z−λ)

, however the resultant series is in general not convergent.We shall

keepg0(z) =
g(z)
g′(0)z

, but instead takegλ(z) =
g(z)
g′(λ)

(

1
z−λ

− pn−1(z)
)

for λ 6= 0, wherepn−1 is the

Taylor polynomial of degreen − 1 of the functionCλ(z) =
1

z−λ
expanded around0. Note that

we still havegλ(λ′) = δλλ′ but now the series is pointwise convergent. In fact

(11)
1

z − λ
− pn−1(z) =

1

z − λ
+

1

λ
+

z

λ2
+ · · ·+

zn−1

λn
=

zn

λn(z − λ)

so that if we define

G(z) =
d0
z

+
∑

λ∈Λ0

dλ

(

1

z − λ
+

1

λ
+

z

λ2
+ · · ·+

zn−1

λn

)

=
d0
z

+
∑

λ∈Λ0

dλ
zn

λn(z − λ)

then for anyK a compact subset ofC\Λ we have
∑

λ∈Λ0

∣

∣

∣
dλ

zn

λn(z − λ)

∣

∣

∣
.

∑

λ∈Λ0

|dλ|

|λ|n
.

∑

λ∈Λ0

ρ(λ)

|λ|n
.

∑

λ∈Λ0

1

|λ|n−β
< +∞
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for all z ∈ K, sincen − β > 2 + 2η. HenceG defines a meromorphic function onC with a
simple pole at eachλ ∈ Λ. ConsequentlygG is an entire function that agrees withf at each
λ ∈ Λ. This implies that there exists an entire functionh such thatf − gG = gh.

Fix ǫ > 0 and0 < δ < δ1, and defineΩ = C\
⋃

λ∈Λ D
δ(λ). Now for eachz ∈ Ω we have

∣

∣

∣

∣

f(z)

g(z)

∣

∣

∣

∣

≃
|f(z)|e−φ(z)

dφ(z,Λ)
≃ |f(z)|e−φ(z) ≤ ‖f‖F∞

φ
.

Also, whenz ∈ Ω, we obviously have

|G(z)| ≤
|d0|

|z|
+ |z|n

∑

λ∈Λ0

∣

∣

∣

dλ
λn(z − λ)

∣

∣

∣
.

We split this sum over two separate ranges. For anyR > 1,
∑

|λ|>R

∣

∣

∣

dλ
λn(z − λ)

∣

∣

∣
.

∑

|λ|>R

ρ(λ)

|λ|n|z − λ|
.

∑

|λ|>R

1

|λ|n
< ǫ

for sufficiently largeR. Fixing one suchR we then have, for|z| > 2R,
∑

0<|λ|≤R

∣

∣

∣

∣

dλ
λn(z − λ)

∣

∣

∣

∣

≤
2

|z|

∑

0<|λ|≤R

|dλ|

|λ|n
=

C

|z|

for some constantC. Hence

|G(z)| ≤

∣

∣

∣

∣

d0
z

∣

∣

∣

∣

+ |z|n
( C

|z|
+ ǫ

)

= o(zn)

for |z| ≥ 2R. Gathering these estimates we have|h(z)| = o(zn) for z ∈ Ω of sufficiently large
modulus. Applying now the maximum principle toh on Dδ(λ) for eachλ ∈ Λ far from the
origin we see that this holds for allz ∈ C of sufficiently large modulus. We conclude thath is a
polynomial of degree less than or equal ton− 1.

Note that if we define

H(z) = G(z)−
d0
z

=
∑

λ∈Λ0

dλ

(

1

z − λ
+

1

λ
+

z

λ2
+ · · ·+

zn−1

λn

)

thenH(j)(0) = 0 for 0 ≤ j < n. Since

h(z) =
f(z)

g(z)
−G(z) =

1

z

(

zf(z)

g(z)
− d0

)

−H(z)

we may evaluateh by computing the Laurent expansion off/g around0. This yields

(12) h(z) =
n

∑

m=1

1

m!
lim
w→0

dm

dwm

(

wf(w)

g(w)

)

zm−1.

Fix some0 < δ′ < δ1 and defineγ(R) to be the closed curve consisting of the portion of the
circle |z| = R for which |z − λ| ≥ δ′ρ(λ) and of the portions the circles|z − λ| = δ′ρ(λ) that
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intersect the circle|z| = R in such a manner thatλ is in the domain bounded byγ(R) if and only
if |λ| < R. Then the Cauchy residue theorem implies that

1

2πi

∫

γ(R)

f(w)

g(w)wm
dw =

1

m!
lim
w→0

dm

dwm

(

wf(w)

g(w)

)

+
∑

0<|λ|<R

dλ
λm

.

Now the length of the contour of integration is comparable tothe length of the circle of radiusR.
Moreoverdφ(z,Λ) is bounded away from0 for z ∈ γ(R) so that|f(z)/g(z)| is bounded above.
This implies that

lim
R→∞

1

2πi

∫

γ(R)

f(w)

g(w)wm
dz = 0

for m ≥ 2, whence
1

m!
lim
w→0

dm

dwm

(

wf(w)

g(w)

)

= −p.v.
∑

λ∈Λ0

dλ
λm

.

Inserting this expression into (12) yields

h(z) = lim
w→0

d

dw

(

wf(w)

g(w)

)

− p.v.
∑

λ∈Λ0

dλ

n
∑

m=2

zm−1

λm
.

Computing nowf = g(G+ h) completes the proof. �

Remark.Given any functionf ∈ F∞
φ the functionf +Cg is also inF∞

φ for any constantC, and
the functions agree at everyλ ∈ Λ. ThusΛ is not a set of uniqueness for this space. This result,
however, tells us that this is the only possibility, that is if f, f̃ ∈ F∞

φ andf(λ) = f̃(λ) for all

λ ∈ Λ thenf − f̃ = Cg for some constantC.

Corollary 15. LetΛ be a critical lattice associated to the multiplierg. If f ∈ Fp
φ for 1 ≤ p <

+∞ then

(13) f(z) = g(z)p.v.
∑

λ∈Λ

f(λ)

g′(λ)(z − λ)
.

Proof. We use the same notation. SinceFp
φ ⊆ F∞

φ we know that (9) must hold. But now

lim
R→∞

1

2πi

∫

γ(R)

f(w)

g(w)w
dz = 0

so thatw0 = −p.v.
∑

λ∈Λ0

dλ
λ

. �

Remarks.This shows thatΛ is a set of uniqueness for these spaces.

This representation is (10) with the obvious choice ofgλ, except that we are taking principal
values of the sum. In fact ifp = 1 then the sum appearing in (13) is absolutely convergent, so the
principal value may be ignored. In this case the proof may be simplified by takingG to be this
sum and estimating similarly. The decay of this function away from the lattice means we have
no need to invoke the Cauchy residue theorem, or involve principal values.
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5. THE DISCRETEBEURLING-AHLFORS TRANSFORM

It is well known that the Beurling-Ahlfors transform given by

(14) T [f ](ζ) = lim
ǫ→0

∫

C\D(ζ,ǫ)

f(z)

(ζ − z)2
dm(z),

wherem denotes the Lebesgue measure on the plane, is a bounded linear operator fromLp(C) to
Lp(C) for 1 < p < +∞. (It should be noted that this differs from the usual definition by a factor
of − 1

π
, and that it is customary to denote this limit as a principle value. We have avoided doing

so to eliminate any possible confusion with the principal value of a sum.) In fact this also holds
if we replaceLp(C) by a more general weighted space. We make use of the followingdefinition:

Definition 6. [Ste93, Ch.V§1 p. 194] A weightω onRn is said to be aMuckenhouptAp weight
if it is locally integrable and there exists some constantA such that

(15)

(

1

|B|

∫

B

ω(x)dm(x)

)(

1

|B|

∫

B

ω(x)−
q
pdm(x)

)
p
q

≤ A < ∞

for all ballsB in R
n. Herem is Lebesgue measure onRn, q is the Hölder conjugate exponent of

p (that is 1
p
+ 1

q
= 1) and|B| is the Lebesgue measure of the ballB. The least constantA for

which this holds is called theAp bound ofω, denotedAp(ω)

We shall of course be interested inR2 which we identify withC. Now the corollary to [Ste93,
Ch. V,§4.2, Th. 2] combined with [Ste93, Ch. V,§4.5.2] show thatT is a bounded linear operator
from Lp(ω) to Lp(ω) for 1 < p < +∞ for anyAp weightω. (In fact the proof is given for a
much more general class of integral operators, of whichT is a special case.) We aim to use this
property to study a discrete analogue.

We shall be interested in the case whenρp−2 is anAp weight. Substituting into (15) and
re-formulating shows that this is equivalent to saying thatthere exists some constantA such that

(16)
1

|D|

(
∫

D

ρ(z)pdν(z)

)
1

p
(
∫

D

ρ(z)qdν(z)

)
1

q

≤ A

for all discsD in the plane. Heredν(z) = dm(z)/ρ(z)2. We note that this is trivially satisfied
if p = 2. It is also satisfied for allp if ρ(z) ≃ 1, as is the case in the classical Bargmann-Fock
space. We now construct an example to show that there are situations where this condition does
not hold. As a first observation, since (16) is symmetric inp andq, we can assumep < 2. We
note that ifD = D(ζ, R) is of sufficiently small radius, thenρ(z) ≃ ρ(ζ) for all z ∈ D by (2).
Thus

1

|D|

(
∫

D

ρ(z)pdν(z)

)
1

p
(
∫

D

ρ(z)qdν(z)

)
1

q

≃
1

|D|

(

ρ(ζ)p−2

∫

D

dm(z)

)
1

p
(

ρ(ζ)q−2

∫

D

dm(z)

)
1

q

= 1
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so that it suffices to check only discs of large radius.

We will takeφ(z) = Cγ |z|
γ for some positive constantsγ andCγ, which means thatρ(z) ≃

ρ(0) for z ∈ D(0) andρ(z) ≃ |z|1−
γ
2 for z 6∈ D(0). By choosingCγ appropriately, we may

assumeρ(0) = 2. We pickR > ρ(0) and takeD = D(0, R). Now

(
∫

D

ρ(z)pdν(z)

)
1

p

=

(
∫

D(0)

ρ(z)pdν(z) +

∫

D\D(0)

ρ(z)pdν(z)

)
1

p

≃

(

ρ(0)p−2|D(0)|+

∫ R

ρ(0)

r(1−
γ
2
)(p−2)rdr

)

1

p

≃

(

ρ(0)p +
Rp− γp

2
+γ − ρ(0)p−

γp
2
+γ

p− γp
2
+ γ

)

1

p

≃
(

Rp− γp
2
+γ

)
1

p
= R1− γ

2
+ γ

p

sincep − γp
2
+ γ > 0 for p < 2. We now chose someγ such thatq − γq

2
+ γ < 0. Then an

identical computation gives

(
∫

D

ρ(z)qdν(z)

)
1

q

≃

(

ρ(0)q +
Rq− γq

2
+γ − ρ(0)q−

γq
2
+γ

q − γq
2
+ γ

)

1

q

≃ ρ(0) = 2.

Therefore

1

|D|

(
∫

D

ρ(z)pdν(z)

)
1

q
(
∫

D

ρ(z)qdν(z)

)
1

q

≃
2

R2
R1− γ

2
+ γ

p ≃ R−1− γ
2
+ γ

p

which is only uniformly bounded if−1− γ
2
+ γ

p
< 0. However

−1 −
γ

2
+

γ

p
= −1−

γ

2
+ γ(1−

1

q
) = −1 +

γ

2
+

γ

q

which we have assumed to be positive. This shows that there exist situations whereρp−2 is not
anAp weight.

As beforeΛ = Z(g) will be the irregular lattice we are considering. Given a sequenced ∈
ℓp(ρ−1) we define, for eachλ′ ∈ Λ,

(17) Bλ′(d) =
∑

λ∈Λλ′

dλ
(λ′ − λ)2

which we shall normally write asBλ′ , suppressing the dependence ond. It is clear that this is the
discrete analogue of (14). Lemma 8 shows that, for1 ≤ p ≤ 2, this sum converges absolutely
for eachλ′ ∈ Λ. Also, by Lemma 8, this sum converges for2 < p < ∞ if t > 1/2 wheret is
the constant occurring in Lemma 3. Our main result is the following, which is proved using the
boundedness of (14).
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Theorem 16. Fix 1 < p < +∞ and suppose thatρp−2 is anAp weight. Define the operator

B : ℓp(ρ−1) → C
Λ

d 7→ (Bλ′)λ′∈Λ

whereBλ′ is given by(17). ThenB is a bounded linear operator fromℓp(ρ−1) to ℓp(ρ) for
1 < p ≤ 2. If in addition t > 1/2 then the result also holds for2 < p < +∞. Here t is the
constant occurring in Lemma 3.

Proof. We first note that it is obvious thatB is linear, we are interested in showing that it indeed
mapsℓp(ρ−1) to ℓp(ρ), and is a bounded operator. Recall that the setsDδ1(λ) are pairwise
disjoint. Suppose thatd ∈ ℓp(ρ−1) and definef : C → C by

f(z) =
1

πδ21

∑

λ∈Λ

dλ
ρ(λ)2

χDδ1 (λ)(z)

whereχD is the characteristic function of the setD. Then clearlyf ∈ Lp(ρp−2). In fact

‖f‖pLp(ρp−2) ≃
πδ2

1

πpδ2p
1

∑

λ∈Λ

∣

∣

∣

dλ
ρ(λ)

∣

∣

∣

p

so that, by ourAp assumption,T [f ] ∈ Lp(ρp−2) and indeed

‖T [f ]‖Lp(ρp−2) ≤ ‖T‖‖f‖Lp(ρp−2) ≃ ‖T‖‖dλ‖ℓp(ρ−1).

Now

T [f ](λ′) = lim
ǫ→0

∫

C\D(λ′,ǫ)

f(z)

(λ′ − z)2
dm(z)

=
∑

λ∈Λλ′

∫

Dδ1 (λ)

f(z)

(λ′ − z)2
dm(z) + lim

ǫ→0

∫

Dδ1 (λ′)\D(λ′,ǫ)

f(z)

(λ′ − z)2
dm(z)

=
∑

λ∈Λλ′

∫

Dδ1 (λ)

dλ
πδ21ρ(λ)

2

1

(λ′ − z)2
dm(z)

=
∑

λ∈Λλ′

dλ
(λ′ − λ)2

= Bλ′ ,

sincef is constant onDδ1(λ) for eachλ ∈ Λ and the average value of a harmonic function on a
disk is the value at the centre. Fix0 < δ < δ1. It is obvious that

|ρ(λ′)Bλ′|p = ρ(λ′)p|T [f ](λ′)|p .ρ(λ′)p
∣

∣

∣
T [f ](λ′)−

1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ)
∣

∣

∣

p

+ ρ(λ′)p
∣

∣

∣

1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ)
∣

∣

∣

p

(18)
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and we shall estimate these terms separately. The second term is especially easy to bound since,
by Jensen’s inequality,

ρ(λ′)p
∣

∣

∣

∣

1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ)

∣

∣

∣

∣

p

≤ ρ(λ′)p
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

|T [f ](ζ)|pdm(ζ)

≃
1

πδ2

∫

Dδ(λ′)

|T [f ](ζ)|p
dm(ζ)

ρ(ζ)2−p
.(19)

We now estimate the first term. Applying the definitions and computing gives

T [f ](λ′)−
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ) =
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](λ′)− T [f ](ζ)dm(ζ)

=
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

(

lim
ǫ→0

∫

C\D(λ′,ǫ)

f(z)

(λ′ − z)2
dm(z)− lim

ǫ→0

∫

C\D(ζ,ǫ)

f(z)

(ζ − z)2
dm(z)

)

dm(ζ)

=
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

{

∫

C\Dδ1 (λ′)

f(z)
[ 1

(λ′ − z)2
−

1

(ζ − z)2

]

dm(z)

+ lim
ǫ→0

∫

Dδ1 (λ′)\D(λ′,ǫ)

f(z)

(λ′ − z)2
dm(z)− lim

ǫ→0

∫

Dδ1 (λ′)\D(ζ,ǫ)

f(z)

(ζ − z)2
dm(z)

}

dm(ζ).

We shall bound each of these three terms separately. First note that, by symmetry,

lim
ǫ→0

∫

Dδ1(λ′)\D(λ′,ǫ)

f(z)

(λ′ − z)2
dm(z) = 0.

Note also that if
∫

Dδ(λ′)

∫

C\Dδ1 (λ′)

f(z)
[ 1

(λ′ − z)2
−

1

(ζ − z)2

]

dm(z)dm(ζ)

is absolutely convergent then it vanishes similarly, sincewe may apply Fubini’s theorem. But

∣

∣

∣

∫

Dδ(λ′)

∫

C\Dδ1 (λ′)

f(z)
[ 1

(λ′ − z)2
−

1

(ζ − z)2

]

dm(z)dm(ζ)
∣

∣

∣

=
∣

∣

∣

∫

Dδ(λ′)

∫

C\Dδ1 (λ′)

f(z)
[(ζ + λ′ − 2z)(ζ − λ′)

(λ′ − z)2(ζ − z)2

]

dm(z)dm(ζ)
∣

∣

∣

.

∫

Dδ(λ′)

|ζ − λ′|dm(ζ)

∫

C\Dδ1 (λ′)

|f(z)|

|λ′ − z|3
dm(z)

since forζ ∈ Dδ(λ′) andz ∈ C\Dδ1(λ′) we have|ζ − z| ≃ |λ′ − z|. The integral inζ is clearly
finite. It remains only to estimate

∫

C\Dδ1 (λ′)

|f(z)|

|λ′ − z|3
dm(z) =

∑

λ∈Λλ′

|dλ|

πδ21ρ(λ)
2

∫

Dδ1 (λ)

dm(z)

|λ′ − z|3
≃

∑

λ∈Λλ′

|dλ|

|λ′ − λ|3
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which we have already seen is finite under our hypothesis, in Lemma 8. We consequently have

T [f ](λ′)−
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ)

=
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

− lim
ǫ→0

∫

Dδ1 (λ′)\D(ζ,ǫ)

f(z)

(ζ − z)2
dm(z)dm(ζ)

= −
dλ′

π2δ2δ21ρ(λ
′)4

∫

Dδ(λ′)

lim
ǫ→0

∫

Dδ1 (λ′)\D(ζ,ǫ)

dm(z)

(ζ − z)2
dm(ζ)

Now the inner integral does not change in value forǫ ≤ (δ1 − δ)ρ(λ′). We therefore have

(20)
∣

∣T [f ](λ′)−
1

πδ2ρ(λ′)2

∫

Dδ(λ′)

T [f ](ζ)dm(ζ)
∣

∣

≤
|dλ′|

π2δ2δ21ρ(λ
′)4

∫

Dδ(λ′)

∫

Dδ1 (λ′)\D(ζ,(δ1−δ)ρ(λ′))

dm(z)

|ζ − z|2
dm(ζ)

≤
|dλ′|

π2δ2δ21ρ(λ
′)4

1

(δ1 − δ)2ρ(λ′)2
|Dδ(λ′)||Dδ1(λ′)\D(ζ, (δ1 − δ)ρ(λ′))| ≃

|dλ′|

ρ(λ′)2
.

Inserting (19) and (20) into (18) gives finally that

∑

λ′∈Λ

|ρ(λ′)Bλ′ |p .
∑

λ′∈Λ

(
∫

Dδ(λ′)

|T [f ](ζ)|p
dm(ζ)

ρ(ζ)2−p
+

|dλ′|p

ρ(λ′)p

)

≤

∫

C

|T [f ](ζ)|p
dm(ζ)

ρ(ζ)2−p
+

∑

λ′∈Λ

|dλ′|p

ρ(λ′)p

= ‖T [f ]‖pLp(ρp−2) + ‖d‖pℓp(ρ−1) . (1 + ‖T‖p)‖d‖pℓp(ρ−1)

so thatB is indeed a bounded operator as claimed. �

6. PROOFS

We shall use the same notation as before. We writedλ = cλ/g
′(λ) which, by virtue of the

growth conditions ong, satisfies(dλ/ρ(λ))λ∈Λ ∈ ℓp. We are essentially going to give a unified
proof of Theorems 9, 10, 11 and 12. We shall refer to an integerN which should be thought of
as2 for the case of Theorems 9, 10, 11 and 12(i) and (ii), but to be the integerN appearing in
the statement of Theorem 12(iii). We also note that ifN = 2 andρp−2 satisfies theAp condition
then we may apply Theorem 16. We begin by showing the necessity of the stated results.

Proof of the necessity.We have already remarked in (5) that (a) follows from the Plancherel-
Polya type estimate. We defineγ(R) as in the proof of Lemma 14. Computing, for anyλ′ ∈ Λ,

1

2πi

∫

γ(R)

f(w)

g(w)(w − λ′)n
dw
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in exactly the same manner as in the proof of Lemma 14, where1 ≤ n ≤ N , shows that

p.v.
∑

λ∈Λλ′

dλ
(λ− λ′)n

is well-defined. Fix some0 < δ < δ1 and some integer0 ≤ k < N . Defineωk = e2πik/N and
zkλ′ = λ′ + δωkρ(λ

′). Then, for eachk, (zkλ′)λ′∈Λ is aρ-separated sequence that is bounded away
from Λ in the distancedφ. (4) implies that

∑

λ′∈Λ

∣

∣

∣

∣

f(zkλ′)

g(zkλ′)

∣

∣

∣

∣

p

< +∞.

Replacingz by δωkρ(λ
′) andλ by λ− λ′ in Identity (11) yields

1

zkλ′ − λ
+

1

λ− λ′
+

δωkρ(λ
′)

(λ− λ′)2
+ · · ·+

(δωkρ(λ
′))n−1

(λ− λ′)n
=

(δωkρ(λ
′))n

(λ− λ′)n(zkλ′ − λ)
.

Consequently, invoking (13), we compute that

f(zkλ′)

g(zkλ′)
+ p.v.

∑

λ∈Λλ′

dλ

(

1

λ− λ′
+

δωkρ(λ
′)

(λ− λ′)2
+ · · ·+

(δωkρ(λ
′))N−1

(λ− λ′)N

)

=
dλ′

δωkρ(λ′)
+ p.v.

∑

λ∈Λλ′

dλ(δωkρ(λ
′))N

(λ− λ′)N(zkλ′ − λ)
.

Hence

∑

λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

dλ
( 1

λ− λ′
+

δωkρ(λ
′)

(λ− λ′)2
+ · · ·+

(δωkρ(λ
′))N−1

(λ− λ′)N
)

∣

∣

∣

p

.
∑

λ′∈Λ

{

(

δNρ(λ′)Np.v.
∑

λ∈Λλ′

|dλ|

|λ− λ′|N |zkλ′ − λ|

)p
+
∣

∣

dλ′

δρ(λ′)

∣

∣

p
+
∣

∣

f(zkλ′)

g(zkλ′)

∣

∣

p
}

.

We know that the second and third terms are summable, it remains only to estimate the first. All
of the terms in this sum are positive, so we may ignore the principal value. Moreover|zkλ′ −λ| ≃
|λ − λ′|, so that Lemma 8 shows that this sum is convergent. (It is herethat the value ofN is
important.) Taking now linear combinations over differentk completes the proof, for example

∑

λ′∈Λ

∣

∣p.v.
∑

λ∈Λλ′

dλ
λ− λ′

∣

∣

p
=

∑

λ′∈Λ

∣

∣

∣
p.v.

∑

λ∈Λλ′

dλ
( 1

N

N−1
∑

k=0

1

λ− λ′
+

δωkρ(λ
′)

(λ− λ′)2
+ · · ·+

(δωkρ(λ
′))N−1

(λ− λ′)N
)

∣

∣

∣

p

< +∞

�

We now turn to the proof of the sufficiency, which is similar. We use the same notation.
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Proof of the sufficiency.We wish to construct a function, that solves the interpolation problem
f |Λ = c. As in the proof to Lemma 14, the naı̈ve attempt at Lagrange interpolation is not in
general convergent. We modify in the exact same manner, and asimilar argument shows that

G(z) =
d0
z

+
∑

λ∈Λ0

dλ

(

1

z − λ
+

1

λ
+

z

λ2
+ · · ·+

zN−1

λN

)

defines a meromorphic function onC. (Here we invoke Lemma 8 to see the series is convergent,
which once more determines the value ofN .) Hence

G(z) +
N
∑

k=1

zk−1p.v.
∑

λ∈Λ0

dλ
λk

= p.v.
∑

λ∈Λ

dλ
z − λ

is a well-defined meromorphic function. It follows thatf(z) = g(z)p.v.
∑

λ∈Λ
dλ
z−λ

is an entire
function satisfyingf(λ) = cλ. It remains to show thatf ∈ Fp

φ. We must show the following
integral is finite (Recall thatQλ = {z ∈ C : dφ(z,Λ) = dφ(z, λ)}):

∫

C

|f(z)|pe−pφ(z)dm(z)

ρ(z)2
=

∑

λ′∈Λ

∫

Qλ′

|f(z)|pe−pφ(z)dm(z)

ρ(z)2

=
∑

λ′∈Λ

∫

Qλ′

∣

∣g(z)e−φ(z)p.v.
∑

λ∈Λ

dλ
z − λ

∣

∣

pdm(z)

ρ(z)2

≃
∑

λ′∈Λ

∫

Qλ′

∣

∣

∣
dφ(z, λ

′)
( dλ′

z − λ′
+ p.v.

∑

λ∈Λλ′

dλ
z − λ

)

∣

∣

∣

pdm(z)

ρ(z)2

.
∑

λ′∈Λ

∣

∣

dλ′

ρ(λ′)

∣

∣

p
+

∑

λ′∈Λ

∫

Qλ′

∣

∣p.v.
∑

λ∈Λλ′

dλ
z − λ

∣

∣

pdm(z)

ρ(z)2
,

where we have used the fact thatdφ(z, λ
′) ≃ |z − λ′|/ρ(λ′) . 1 for z ∈ Qλ′ by Lemma 4.

The first term is finite by hypothesis, so we need only bound thesecond. Once more we use
Identity (11) which suitably modified yields

1

z − λ
=

(z − λ′)N

(z − λ)(λ− λ′)N
−

1

λ− λ′
−

z − λ′

(λ− λ′)2
− · · · −

(z − λ′)N−1

(λ− λ′)N

whence

∑

λ′∈Λ

∫

Qλ′

∣

∣p.v.
∑

λ∈Λλ′

dλ
z − λ

∣

∣

pdm(z)

ρ(z)2
.

∑

λ′∈Λ

∫

Qλ′

∣

∣p.v.
∑

λ∈Λλ′

dλ(z − λ′)N

(z − λ)(λ− λ′)N

∣

∣

p

+

N
∑

n=1

∣

∣p.v.
∑

λ∈Λλ′

dλ(z − λ′)n−1

(λ− λ′)n
∣

∣

pdm(z)

ρ(z)2
.
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Now for z ∈ Qλ′ we have|z − λ′| . ρ(λ′) and|z − λ| ≃ |λ′ − λ|. Hence, by (6),
∑

λ′∈Λ

∫

Qλ′

∣

∣p.v.
∑

λ∈Λλ′

dλ
z − λ

∣

∣

pdm(z)

ρ(z)2
.

∑

λ′∈Λ

(

ρ(λ′)Np.v.
∑

λ∈Λλ′

|dλ|

|λ− λ′|N+1

)p
+

N
∑

n=1

∑

λ′∈Λ

∣

∣ρ(λ′)n−1p.v.
∑

λ∈Λλ′

dλ
(λ− λ′)n

∣

∣

p
.

The first term is finite by Lemma 8 (again the value ofN is important here), the remainder by
hypothesis. This completes the proof. �

The proof of Theorem 13 is similar and omitted.

REFERENCES

[Ber80] G. Z. Ber,The phenomenon of interference in an integral metric, and approximation by entire functions
of exponential type. (Russian), Teor. Funktsiı̆ Funktsional. Anal. i Prilozhen.34 (1980), 11–24, i.

[Chr91] Michael Christ,On the∂ equation in weightedL2 norms inC1, J. Geom. Anal.1 (1991), no. 3, 193–230.
[Fol84] Gerald B Folland,Real Analysis: Modern Techniques and Their Applicagtions, John Wiley & Sons

(1984).
[Lev96] B. Ya. Levin,Lectures on Entire Functions, Providence: American Mathematical Society. (1996).
[MMO03] Nicolas Marco, Xavier Massaneda and Joaquim Ortega-Cerdà,Interpolating and Sampling Sequences

for Entire Functions., Geom. Funct. Anal.13 (2003), 862–914.
[Sei92] Kristian Seip,Density theorems for sampling and interpolation in the Bargmann-Fock space. I, J. Reine

Angew. Math.429(1992), 91–106.
[Ste93] Elias M. Stein,Harmonic Analysis: Real-Variable Methods, Orthogonalityand Oscillatory Integrals.,

New Jersey: Princeton University Press. (1993)
[SW92] Kristian Seip and Robert Wallstén,Density theorems for sampling and interpolation in the Bargmann-

Fock space. II, J. Reine Angew. Math.429(1992), 107–113.
[Wik10] Wikipedia contributors,Schur test, Wikipedia, The Free Encyclopedia, 4 April 2010, 15:45 UTC,

〈http://en.wikipedia.org/w/index.php?title=Schur_test&oldid=353922848〉
[accessed 26 July 2010]
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