POINTWISE ESTIMATES FOR THE BERGMAN KERNEL OF THE WEIGHTED
FOCK SPACE

JORDI MARZO AND JOAQUIM ORTEGA-CERDA

ABSTRACT. We prove upper pointwise estimates for the Bergman kernel of the weighted Fock
space of entire functions in L?(e~2?) where ¢ is a subharmonic function with A¢ a doubling
measure. We derive estimates for the canonical solution operator to the inhomogeneous Cauchy-
Riemann equation and we characterize the compactness of this operator in terms of A¢.

1. INTRODUCTION

Let ¢ be a subharmonic function in C whose Laplacian A¢ is a doubling measure. For 1 <
p < 0o, we consider the Fock spaces

7y = {F em(©: 1l = [ 17GIPe am(:) < o0},
and
5 = {f € H(C) : || fllrz = sup|f(z)|e P < oo})
zeC

where dm denotes the Lebesgue measure in C.

Let K(z,() = K.(C) denote the Bergman kernel for F7, i.e. for any f € F

f(2) =}, K.)pz = /C FIOK (2 Q)e D dm(¢), =z€C.

If 4 = Ag, the function p(z) denotes the positive radius such that u(D(z, p(z))) = 1. The
function p~2 can be considered as a regularized version of A¢, see [Chr91]] or [MMOO3]. We
write D"(z) = D(z,7p(2)) and D'(z) = D(z) (we will write ps(z) and Dj(z) if we need to
stress the dependence on ¢).

In this context the Bergman kernel has already been studied. In [[Chr91]] M. Christ obtained
pointwise estimates under the hypothesis that ¢ is a subharmonic function such that ;4 = A¢ is a
doubling measure and
(1) inf u(D(z,1)) > 0.

zeC
This result was extended to several complex variables by H. Delin and N. Lindholm in [Del9§]]
and [LinO1]] under similar hypothesis. They obtain a very fast decay of the Bergman kernel away
from the diagonal.
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We will remove hypothesis (1)) (which in somes sense is related to the strict pseudoconvexity)
and keep only the doubling condition (that is morally closer to finite-type). We still obtain some
decay away from the diagonal, we derive estimates for the canonical solution operator to the
inhomogeneous Cauchy-Riemann equation and we characterize the compactness of this operator
in terms of A¢. Our main result is the following estimate.

Theorem 1.1. Let K (z,() be the Bergman kernel for F, ; There exist positive constants C' and €
(depending only on the doubling constant for A¢) such that for any z,( € C

(2)+a(
@ K0l s ot 00

Although the estimate above seems to be asymmetric in the variables z,  one can see that for
|z — (| < Cmax{p(z), p(¢)} the values of p(z) and p(() are comparable, see Lemma[2.3] Also
when |z — (| > C'max{p(z), p(¢)} one can use Lemma 2.6]to see that the same estimate holds
with p(() inside the exponential for a different positive exponent € (this new exponent depending
only on the doubling constant for A¢). The symmetry becomes apparent when we write (2) in
terms of the distance d, induced by the metric p~2(z)dz ® dz. Indeed, by using Lemma one
can write (2) as

1 P +6(0)
p(2)p(C) exp (dy(z,¢))’

for some ¢ > 0 (different from the previous one but still positive). The estimate proved in [Chr91]]
for the Bergman kernel of F; 3) defined for a ¢ with doubling Laplacian and satisfying (1)) is

G K (2,0 <C

—_

K20 < C e®(2)+6(¢)
Z, S )
p*(z) exp (edy(z, ()
for some € > O and all z,( € C. B B
Let N be the canonical solution operator to 0, i.e. 9N f = f and N f is of minimal L2(e~2?)
norm and let C'(z, ¢) be the integral kernel such that

Nf(z) = / OO0z, ) £(C) dm(C).

The boundedness and compactness of this canonical solution operator from L?(e=2?) to itself
has been extensively studied in one and several variables; for a survey on this problem and its
applications see [ESO1]. It is shown in [Has06] that for weights on the class considered by
M. Christ, the condition p(z) — 0 when |z| — oo is sufficient for compactness. In the same
paper it is shown that the canonical solution operator with ¢(z) = |z|? fails to be compact, all
these results are contained in Theorem [[.3] Finally, in [HHO7] the authors prove a result similar
to Theorem [1.3| with some extra regularity conditions on A¢.

With Theorem [[.T] we obtain a pointwise estimate on the kernel of the canonical solution
operator.
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Theorem 1.2. There exists an integral kernel G(z, () such that
u(z) = [ OG0 f(C) dm(c),
c

solves Ou = f and

- — ¢l <p(2)
ciol<d o lE=d E |2 = ¢l < p(2),
e TR R M
Moreover, the integral kernel C (z, () giving the canonical solution to 0 in L?(e~2®) has the same
estimate (with a different exponent € > ().

One can compare this result with the estimate on [Chr91, Theorem 1.13] where the author
proves that

|Z_(|71’ |Z_C| Sp(z),
) [SCHOIIS { pH(z) exp(—edy(2,Q)), |z — (| > p(2).

As an application of the estimate (2]) we characterize the compactness of the canonical solution
operator to 0 in terms of the measure A¢.

Theorem 1.3. Let ¢ be a subharmonic function such that A¢ is doubling. The canonical solution
operator N of minimal norm in L?(e~2?) to the inhomogeneous O-equation defines a bounded
compact operator from L*(e=2?) to itself if and only if p(z) — 0 when |z| — oc.

Any of the estimates on C'(z, () (the estimate in Theorem [1.2]or the result by Christ, (4)) can
be used in order to prove this theorem, because as soon as one supposes the compactness of the
canonical solution operator N, the function p turns out to be bounded and therefore (I]) holds.

There is some natural gain (or loss) in the Hormander estimates if the Laplacian of ¢ is big
(or small). If we incorporate the Laplacian in the weight then we always get boundedness, under
some mild regularity assumption (the doubling property) but we never get compactness:

Proposition 1.4. Let ¢ be a subharmonic function such that A¢ is doubling. The solution u to
the equation Ou = f of minimal norm in L (e=2?) is such that ||ue=®| 1ocy < || fe=pll o), for
all p € [1,00]. Moreover, the canonical solution operator N acting from L*(e=2?p?) to L?(e2?)
is always bounded but it is never compact.

Remark. The first statement in this proposition has been proved already in [MMOO03, Theorem C]
by using peak functions instead of estimates for the Bergman kernel.

2. PRELIMINAIRES

In this section we collect some material from [Chr91]] and [MMOQ3] that will be used along
the proofs and we deduce some easy estimates for the Bergman kernel near the diagonal.

Definition 2.1. A nonnegative Borel measure i is called doubling if there exists C' > 0 such that
p(D(z,2r)) < Cpu(D(z,7))

forall z € Candr > 0. The smallest constant C' in the previous inequality is called the doubling
constant for [u.
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Lemma 2.2. [[Chr91, Lemma 2.1] Let i be a doubling measure in C. There exists a constant
v > 0 such that for any disks D, D' with respective radius r > r' and with D N D’ # ()

(553)))7 S ; < <5((11))/)))1/W.

Remark. In particular for any z € C and r > 1 there exists a constant v > 0 (depending only on
the doubling constant for 1) such that

(5) rT S D (z) St

It follows inmediately from Lemma [2.2]that the function p is nearly constant on balls.

Lemma 2.3. If D(z) N D(¢) # 0 then p(z) ~ p(C), with constants depending only on the
doubling constant for A¢.

Remark. There exist constants 7, C' > 0 and 0 < § < 1 such that
C—l
- B
o <02 <Cle
for |z| > 1, [MMOO3), Remark 1].
The following lemma shows that our main estimate (2)) is symmetric in the variables z, (.
Lemma 2.4. [Chr91] p. 205] If ¢ & D(z) then
1-6
o(z) _ <|z—<|>
p(€) 7\ p(C)
for some 0 < 0 < 1 depending only on the doubling constant for A¢.
Definition 2.5. Given z,( € C

oz, = inf [ O

where 7y runs on the piecewise C' curves ~ : [0,1] — C with v(0) = z and (1) = (.

The following lemma was proved in [MMOO03, Lemma 4].

Lemma 2.6. There exists 6 > 0 such that for every r > 0 there exists C,. > 0 such that

‘Zp(;)c' <dy(=0) < OT%, for ¢ € D'(2),

o (‘Zp(;f')& < dy(2,0) < C, <‘Zp(;z)€|)“, for ¢ € D' (2)".

The following lemma will be used repeatedly in what follows.

071

and
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Lemma 2.7. Let ¢ be a subharmonic function with . = A¢ doubling. Then for any ¢ > 0 and
k>0

’Z—C‘k k
]QQQEERZZS;mAz>s<?p<<L

where C' > 0 is a constant depending only on k, €, and on the doubling constant for .

Proof. Let f(t) =t — %tfﬂ then for any x > 0

+0c0
/ etf(t) dt = e Tzk/e,

We will also use some Cauchy-type estimates for functions in the space,

Lemma 2.8. [MMOO3| Lemma 19] For any r > 0 there exists C' = C(r) > 0 such that for any
feH(C)and z € C:

(@U(W*%”<Cbr F(Q)Pe 058,
) [V([fle=?)(2)* < /72(2 wa FOPe 0%

_ _26(¢) dm(Q)
©) Ifs>r, |f(z)Pe ) < Crsfpa (NDr(a) [ (P2

The following result proved in [MMOO3, Theorem 14] shows that the same space ]—"j can be
defined with a more regular weight.

Proposition 2.9. Let ¢ be a subharmonic function such that A¢ is doubling. There exists gb €
C>(C) such that |¢ — ¢\ < C with A(b doubling and

1 1
(6) Ap~ — ~ =
/)¢ Py

As afirst step in proving Theorem|1.1] in the remainder of the section we derive some estimates
for the Bergman kernel on the diagonal or near the diagonal.

Proposition 2.10. There exist C' > 0 such that

‘()
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Proof. Let z € C be fixed. For any M € N there exists a holomorphic function P, such that

P,(z) =1and
M
[P(Q)] £ ¢#9%) min {1= (|f - )q) } ,

see [MMOO3, Appendix]. For some ¢y > 0 (to be determined) we define the entire function

£0) = o ()
z =C— 1> .
p(z)
Then
2M
] p(x) \Mdm(Q) .
£(OPe2Cdm(¢ §002+/ ( ) =C(l+—-)<1
/«:‘ © ) * " Jpee \z =] p*(2) ’ M — 1)
for ¢ small enough. For such a fixed ¢y we have f.(z) = coe?®) p~1(z) and therefore
, , £26(2)
K(z,2) =sup{|f ()" : f € F§, 1 flr <1} 2 20
The other estimate follows by using the reproducing property for the Bergman kernel, Lemma[2.3]
and inequality (a) in Lemma[2.§] see the next proposition, where this is done in detail. U

The following coarse estimate will give us (2) when the points z, { € C are close to each other.

Proposition 2.11. Let K (z,() be the Bergman kernel for .7-"33. Then there exists C' > 0 (depend-
ing only on the doubling constant for A¢) such that for any z,( € C

® K(2.0)| < C e®(2)+6(C)
z, <(C————--.
p(2)p(C)
Moreover there is an r > 0 such that
©) K0z S0 e prie)
2,0)| 2 ————, € D" (2).
p(2)p(C)

Proof. Let z € C be fixed. Applying (a) in Lemma [2.8] to the reproducing kernel K, and using
Lemma[2.3]

B _ dm(w)
2,-26(¢) < 2,—26(w) <
KO0 5 [ a0 S <
_ dm(w)  K(z,2)
< 2 —2¢(w) —
$ [ tape e = S

By using Proposition [2.10] the estimate () follows. Finally again by Proposition [2.10] the claim
(©) holds when z = (. Moreover Lemma[2.8|b) implies that for all ¢ € D"(z),

1K(Q)e™ ") = [K.(2)]e )] < Ce®P |z — ¢|/p*(2) < Cre?™ /p*(2),
and if we pick r small enough then (9) follows. U
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3. PROOF OF THEOREM

One technical difficulty is that our function ¢ is not smooth enough, so first of all we define a
regularized version.
Let 0 < € < 1 a constant to be chosen later. Let

w — ¢\
w = ,
Ps(C)
(we will write . if we need to stress the dependence on €). The function ¢ is subharmonic and

a_(p(w) — €|w_<|6_2(E_Z) — 62‘w_d6_2
Ow 2050) 405(C)

Considering the dependence on € one has

Ap(w)

2

_ |9
Aw%@o—4\&uwo

The Laplacian of ¢ is not bounded above, so we define

Qﬂ = —5 = QXY
7‘p¢(<) ©

where X, (¢) = XD(0,04(¢)) 18 the characteristic function of D(0, p4(C)).

By Holder’s inequality
o ?
ow

2 - 1 ‘&p
S 57X * 15
Wpi(() pe(€) Ow

Y

and

¢
We denote @ (w) = Atpac(w)/4.
Let ¢ € C>°(C) the regularized version of ¢ given by Proposition

) (w).

Lemma 3.1. There exist 0 < ¢g < 1 and 0 < C1,Cy < 1 (depending only on the doubling
constant for A¢) such that for any 0 < € < ¢

o0,
)

This lemma is an easy consequence of the following:

1 1 Do,
Atpze(w) = (Wm(o * As%) (w) = (mm(o x4 ‘%

2

< CiAG(w), and  Ap(w) < CoAd(w).

Lemma 3.2. For any C > 0 there exists 0 < €y < 1 (depending only on the doubling constant
for A¢ and C') such that

P = )

if0 <e<e.
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Lemma 3.2]implies Lemma[3.1} By (6) there exists C’ > 0 such that
1
po(w)
Let €y > 0 the one provided by Lemma [3.2]for C' > 0 such that 4CC" < 1. If 0 < € < ¢ we
have

< C'Ad(w).

O, 1 ;o ~
< < <
)] < o) < Oy < € i),
and )
A (w) = 4D, jo(w) < 4 < Ad(w).
) = 40lu) 40 3(w)
Then it is enough to take C; = C'C” and Cy = 4C'C". O

Lemma (3.2l We want to see that for C' > 0 there exists 1 > ¢5 > 0 such that for 0 < € < ¢,

1 dp 1
X w) < (C—s—-—r.
(m(o o35 >< )=
We will split the proof in two cases:

CASE 1: Suppose that D(w) N D?(¢) # (). The function ®, has a maximum in w = ( (because
|00/ Ow[*(u) ~ 1/|u — ¢[*7%) so it is enough to see that ®(¢) < Cp,*(w). But

b=y [ e ey
J(0) = m(z
70%(C) Jp(0,p()) 4p*(()
€ / 2e—2 € /p(g) /27r 2e—1 €
- A2 dm(z) = — 21 g — ,
5770 Joomey T T ey Jy 20
so we need

1= ()

and this property holds for 0 < € < ¢ because p(C) ~ p(w).
CASE 2: Suppose that D(w) N D?*(¢) = (). Then

1 e2lw—z — (>
d, = d
(w) mp%(() /D(O 2()) 4p*(¢) m{z)

62

9 o 6222—25
- lw — ul*“ "= dm(u) < .
4 p?+2(C) /D(o,p(g)) 4p*(Q)|w — ¢[*~2

So we need
62|w . C|2672 1

22p%(¢) ™ pP(w)

) o

or equivalently

(10)
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and this follows from Lemma 2.4]because ( ¢ D(w). We would like to mention that, as |w—¢| >
p(C), the last inequality holds also for any exponent smaller than the § appearing in Lemma
Finally, as 2°C'/e goes to infinity when ¢ — 0, one can find ¢, such that (I0) holds for any
0 <e<e. [l

From now on we will fix ¢ > 0 in such a way that the conclusions of Lemma/[3.T|do hold. The
following lemma is an easy consequence of the previous ones.

Lemma 3.3. For o = gz~5 — 1), one has

~ 1 1
Ao~ A¢p, and — ~ —.

Py P

Proof. As 1 is subharmonic Ag > Agg — Ay = Ap. The other inequality follows from
Lemma since Ap > (1 — Cy)A¢p, with 0 < Cy < 1. The relation between the corresponding
regularization follows automatically. U

The proof of Theorem [I.1} We will follow a similar argument as in [Lin01] when Lindholm
studies the case when A¢ is bounded. In fact the basic trick goes back to Kerzman in [Ker72],
where the Bergman kernel is estimated using the estimates on the solution to an inhomogeneous
Cauchy-Riemann equation.

We are interested in studying the behaviour of K (z, () wh en the points z,  are far apart.

Let z,({ € C be fixed points such that D(z) N D({) = 0. Let 0 < x < 1 be a function in
C>°(C) with suppx C D(¢) such that x = 1 in D'/?(() and

5 X
ox 2 S .
19x] (9
We have that
1
K.(¢ 2,=26(C) § / 2,=20(w) 4oy,
K.(C) T g 0P (w)

1 / 2, —2¢(w) 1 2
= w)| K, (w)|*e """ dm(w) S K, o—
G o XN (0) () $ 1K
Then || K. || r2(ye—2¢) = sup; [(f, K.) 12(ye-2¢)| Where the supremum runs over all the holomor-

phic functions f in D(() such that
/ |fIPe 2?x dm = 1.

As fx € L*(e~??) one has
<f7 KZ>L2(X6*2‘7’) = P(fX)(Z),

where P = P, stands for the Bergman projection

- /CK(z,g)f(g)eW) dm(Q),



10 JORDI MARZO AND JOAQUIM ORTEGA-CERDA

which is bounded from L?(e™*?) to F}. Now

u=fx—P(fx),
is the canonical solution (in L?(e~2?)) of
(1) Ou = 0(fx) = fox,

and, since x(z) = 0, one has

[(f, KC) 12 (20| = [P(f)(2)] = [u(2)].

As Dy(C) N Dy(z) = 0, the function fy vanishes off D, (¢) and therefore (recall that p, ~ ps ~
pg by Lemma the function u is holomorphic in D} (z) for some r > 0, so by Lemma a)

|u(z)|26 2¢(2)+2¢(z < |u( )| e 26(2)+2 (= |u(z)|2 —20(2)
S [ qutwpe D) < E e dnu)
1
(12) ~ —/ w(w) 229 dm(w).
2 L) (w)

We estimate this last integral using the classical Hormander theorem:

Theorem 3.4 (Hormander). Let Q C C be a domain and ¢ € C*(2) be such that Ap > 0. For
any f € L2 () there exist a solution u to Ju = f such that

/l |2 —2q5< |f|2

and also a variant due to Berndtsson:

Theorem 3.5. [BerOl, Lemma 2.2] If

oy |? ~
’8% < CiAgp, with 0<(C) <1,
and for any g one can find v such that Ov = g with
2
(13) /|v|2 —26-2) < |g| —2¢—2¢’
A¢

then for the canonical solution vy in L?(e=2?), one has

2
/|v0|26_2¢+2“/’ < 0/&6—2%%7
A¢

where C' = 6/(1 — C)>
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 We know that A((Z + 1) > 0, then applying Theorem to O(fx), one has v such that
Ov = 0(fx) with
/|v|2 —26—2¢ < / |(') | 25727;;
A(p+ ¢)

< / |3Ul 672572@
Ag

As |¢ — ¢| < C we have that (T3) holds and by Theoremﬁ

/|u|2 2124 <C/ lau] o202
Aé

The functions ¢, (E are pointwise equivalent and Agg ~ p;Q so one can estimate (12)) as

wlw)12e=22) dm(w 1 2ow) g o
e /' d<>5pi(z)/m) @)D w)[Pe ) dmiw)

1 2 (M F () 22X ~200) g
(14) S 7, o A e dm).

The function 1 is bounded above in D({) by a constant depending only on the doubling
constant for A¢, indeed, for w € D(()

1
W /Xp¢(<) (w —u)p(u) dm(u) <
So finally (14) can be estimated by
[ AOHORD) gy ¢ [ VD iy )
D(¢) D(¢) ) )

p5(2)p3(C) P32 Pz

1 €
Wﬂi(f) /DQ(() o(u) dm(u) < 2°.

and we have

) KR < - 12 €2¢(Z+2¢>(<)
pe(2)p5(C) e (z)

3.1. Pointwise estimates. In this subsection we deduce a new expression, without 1, for (15
The new expression is the one appearing in Theorem [I.T]and therefore this will finish the proof.

Lemma 3.6. If D(¢) N D(w) = ( there exists C' > 0 such that
[ (w) — p(w)] < C.

Proof. Using the subharmonicity

! “dm(u) — |w — (|
w<w>—¢<w>—p€<o{WO/D(OW—Md ()~ Cl}zo
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On the other hand, if |w — (| < 2p(() it is plain that
1
Y(w) = —/ lw — ul|*dm(u) < 3°
> () Jp(oy

and therefore 0 < ¢(w) — p(w) < 3.
For |w — ¢| > 2p(¢) (we will write v(z) = |w — z|°) we have

1 1
() = pl) = — {W [ (Ov<u>dm<u>—v<<>}

o L P2 (5 e

for the second equality see [BO97, section 3.3.]. By [MMOO3, Lemma 5] the last integral is
smaller than

1
277 (0) /D(g) Av(u) dm(u),

times a constant depending only on the doubling constant for Av (which in turn depends only on
€). For any u € D(() one deduces from |w — (| > 2p(() that |u — w| > p(¢), and

Aoy dm(u) < () 5 (Om(D(Q).

D(¢) “\2/ p

so finally

62

v(w) - p(w) 5 5.
4. PROOF OF THEOREMS [I.2] AND [L.3]

Theorem[[.2] Let r > 0 be as in Proposition Let {z;} be a sequence of points in C such
that { D"(z;)} is a covering of C. Let { x;} be a partition of unity subordinate to the covering. Let

k.(¢) = K(z,¢)/+/K(z, z) be the normalized reproducing kernel in 7. Consider the operator

Pl g =it [ OO

By Cauchy-Pompeiu formula one has that du; = f;. Then the kernel

G(z,¢) = (Z %) o#(O)—9(2)

(2

dm(¢).

1s such that

u(z) = / 496Gz, ) £(¢) dm(Q)
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solves Ju = f. Let z € C be fixed and |z — (| < Rp(z) for some fixed R > 0, then there is a
finite number of balls of the covering intersecting D(z) and by Proposition one has

Gz Ol S == ¢
Also when |z — (| > Rp(z) there is a finite number of balls in the covering containing ¢ and

this will give us a finite number of summands in G. For one of these terms summands one has

by Theorem [I.1] that

S PP ear

and
’ k., (2)x:(C) O < () —0(2) oo(2) < 1
C— k(0] ™ expdy(z, 202 (2)p Qe ~ pl(z) exp dylz, 2)°
but as dy(z, z;) ~ dy(z, ¢) this gives us the estimate of G.
Now we want to show that the same estimate holds for the kernel C'. If N is the canonical
solution operator and M is the solution operator given by the kernel GG above, one can see that
N = M — PM where P stands for the Bergman projection. Then for f & .7-";

Nf(z) = / Oz, €)™ =40 £(¢) dmi(¢)

where
C(2,0) = G(z,0) — ) / K (2, )G, e dm(©).
C

Suppose first that |z — | < p(z). We split the last integral and use the estimates on G and the
Bergman kernel

1
2,6)G o~ (@E+6(2) g (£) < i .
/C|K( ,EG(E Q) &)=< o) /DK(OP (Sl =q (6)
! p(§)
—d
+ 2(C) /DK(OC oxp (&, OF m(§)

and we get that the first integral is bounded by a constant, where K > 1 is such that D(z) C
DX (¢). Now by Proposition [2.4| there exists € > 0 such that

p~'(§) 1(0)
—>2 —dm(é) < G
/DK(C)C exp d¢)(£7 C)E m(’f) ~ LK(C)CO{55|<—E<p(§)} exp d¢(£7 C)E m(f)
pQ)  dm() _
+/17K(C)Cﬂ{frc—£|2p(£)} expdg(€.O)7 p?(6) " (€

where for the first integral we use that {¢ : [¢ — &| < p(€)} € D®'(¢) for some K’ > 0 and for
the second one we use Lemma[2.7]together with Proposition [2.9] getting

O (2, Q) S 1z = ¢|7", when |2 — (] < p(2).
For |z — (| > p(z) and given 0 < 7 < 1 we split the integral in the regions defined by
(i) dy(&,¢) < ndy(z,Q),
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(i) dy(€, 2) < nd(2, ).
(iii) dy(&, ¢) > ndy(z,¢) and dy (&, z) > ndy(z, ).
In case (i) we have dy(z, ©) < (2, €)+dy(€,C) < dy(z,€)+dy(z, ) anddy(z,€) < (2, C)
d¢(£><) = (1 + n)d¢( 7€) then
(L =n)dy(z,¢) < dy(2,§) < (14 n)dy(z,¢)
and (recall that [G/(€, )] < p=(0) exp(—dy(€,)F) for [€ — | > p(C))

K (2. )G(E, Ol @O+ gme) < ! d
/ o B EEE Ol m““p(z)/ o O = expdy(z.0r

—~

)
9

1
i /{d¢(£,<)<nd¢(z,<)}mDT(oe p(C)p(2)p(§) exp(dy(z, §)c + dy(z,§)°)

- 1 p(§)
<p ! —d IN1+—= ——d
S es(-doz.0) (14 [ m(e)).
( ) ( ¢>( ) IO(C) (¢ XD d¢(2,§)€ )
and the last integral can be bounded as above. An entirely analogous argument proves case
(7). Let A be denote the region defined by (i7i) (in the estimates which follow the value of the
exponent € may change from line to line although it is always strictly positive)

o~ (GO+0() g 1 '(©)
/ (=06 0) &) 2 o0 >/Aexp<d¢<z, & +dy6.0")

dm(¢)

1 p’l( p (&)
< - d —d
™~ p(Q)p(2) (/Aﬂ{dq;(g 2)<dg(£,0)} €XP 2d¢>( m(&) + /Aﬂ{d¢ £,2)>dy(£,0)} €XP 2d¢(§ ¢)e m(§)>

1 p(€) 1 p(§)
<o e a0 MOt SO0 / exp (e, 0 M)

now we have

1 p(f) 1 +00 »
WS | iz MO s dtd
) /Aexpd¢<z,s>f #l) N/,qexpd¢(z,£)f ue) 3 /d¢<z,§>>nd¢(z,o / (@

+00 —+o00 1
< / p({€ - dy(z,€) <tV Ve tdt < / e tdt < ———
nedy(2,0)° nedy(2,0)¢ exp dy (2, Q)¢
where as before p = A¢. O

Theorem[L3] Let {z;} be a sequence of complex numbers such that z; — oo for j — oco. We
want to show that p(z;) — 0 when N is compact. Defining holomorphic (0, 1)—forms f; and
functions u; as

fi(2) = ke (2)dz, wy(2) = (2 = 2))k,(2),
then Ju; = f;. Observe that u; € L%(e~2?) because of the above estimate, Lemma and
Proposition [2.9]

/az — 2 Plks, (2)Pe O dm(z) S p(z) < oc.
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Finally, as the reproducing kernels {k,,},cc are dense in F, ; and
(g, kw) = ((z = 2j)kz; (2), ku(2)) = 0,

the solution w; is the canonical solution to 0 i.e. u; = N f;. By hypothesis, the operator N is
compact and || f;|| = 1 therefore there exist a convergent subsequence of {u; } (which we denoted
as before).

The functions w; are basically concentrated on D(z;). Indeed, by Proposition one has
[z, (2)] < P71 (2)e?™ so

1
[ 1P @) € o [ e P dm(e) £ 4()
Dr(z;) p*(25) Jpr(zy)
and conversely by Lemma [2.8|(c)
[ 1=k @pe O dm() 2 [ (2 = 2k, ()2 dm(2)
Dr(z) Dr(z;)\D/2(z;)

oz dM(2) 2(z
2 P4(Zj)/ ko, (2)[Pe 20 =222 > p(z)) ks, (25)Pe275) ~ p?(25).
D7 (5\D7/2(2) PA(2)

In particular, just because the operator N is bounded, the sequence {p(z;)} has to be bounded.
Also by Lemma[2.7|and Proposition [2.9|one has

[l =k (P9 dm(e) 5 €t (z)
DT(Z]')C
where C, — 0 when r — o0.
The sequence {u;} is a Cauchy sequence so
lluj = urll® = llug 1 + luwl® + 2 Reuy, ) — 0,

for j, k — oco. To complete this part of the proof we have to see that the scalar product is small
also when z; and z;, are far enough from each other. Indeed, given € > 0 there exists 7. such that
forr > r,

/ |(z — 21) ks, (z)\zezd’(z)dz,/ |(z — zj)kzj(z)ﬁe’w(z)dz < e
D7 (zx)° Dr(z;)e

Now let |z; — 2| > r. max{p(z;), p(z)}. The L?*—norm of u; on D" (z;) is pointwise equivalent
to p(z;) (and this value is bounded above) so applying Holder’s inequality to

[{uj )| < /C |2 = zllz = 2l ()|l (2) 720 dm(2)

’Sl/ ot ]'Z‘Zj"z—Zk||kzj<z>||kzk<z>|e-2¢<z>dm<z>,
Dre(z;) Dre(z) C\Dre(z;)UD"e (2)

we deduce that the scalar product is arbitrarily small and

p*(2) ~ s> = 0, j — oo
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Suppose now that p(z) — 0 when |z| — oo and let
M : L*(e™®) — L*(e”%?)

be such a solution operator, i.e. 9M f = f. If M is compact then the canonical solution operator
will be compact because it can be written as N = M — PM where P is the Bergman projection.

So all we have to show is that there exists a solution operator for the @ problem which is
compact. First of all, the operator M; : L?(e~2?) — L%(e~2?) defined as

Maf(a) = | G(2 Q) F(Qe"=) dm(¢)
{¢€eC:dy(2,0)<6}
has norm O(d) as 6 — 0. Indeed, let z € C be fixed, then

1
M5 (2)e] < [l fe L im(c) /

dm(¢) < Cép(2)|| fe | (o),
z—cl<cop(z) 12 — €l

where the constant C' only depends on the doubling constant for A¢. Also

/c (M5 f(2)|e”*® dm(z) S 6llplli=@ll fe i),

and by the Marcinkiewicz interpolation theorem, when p is bounded, the norm of the operator
from L?(e=2?) to L%(e=%?) is O(9).
We define now (for big R > 0) the operator M as

MEF(2) = oo (2) / G (2 O F(O)e?49) dm(Q).

{¢eC:d<dy(2,0)}

This operator is compact because it is Hilbert-Schmidt

[ Gz, OF dm(¢)dm(2)
D(0,R) J{¢eC:6<dy(2,()}

S /D(O,R) p?(2) /Ds(z)c exp(2dy (2, O)) dm(¢)dm(z) < O(R?).

Finally, for big R > 0, we define the operator M % as

MPF(2) = v (2) / G2, €) f(Q)e*® 9 dm(()

{¢eC:o<dy(2,0)}

We can control its norm, because

IMP f(2)e” )| < xpo,rye(2)p(2) 1 fe |l ooy
and therefore

le M fl| ooy S |S|1§;% p(2)||l fe™?| L= (0)-
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For the L' norm

Br)e ) dm(z L L e dm(¢)dm(z
[t ane s [ o | M@ ()

su z e () 1 (N dim
. (Iz>€%p( >> /CWC)' /d¢(C,z)>5 p*(2) exp(dy(z, C)°) dm(z)dm(¢),

the inner integral is finite again because of Lemma [2.7] combined with Proposition [2.9] Finally,
by the Marcinkiewicz interpolation theorem

le™*M" fllz2c) < lSE%p(Z)er“’bllmm,

and the norm of M goes to 0 when R — oco. So we have that M = M;+ M[ + M*® is compact
because the norm of Ms + M?™ can be made arbitrarily small and M is compact. U

Remark. The proof of Theorem |l.3|shows an interesting feature. The compactness of the canon-
ical solution operator to O follows if the restriction of the operator to (0, 1)-forms with holmor-
phic coefficients is compact. A similar situation appears in [ES98]], where compactness of the
O-Neumann operator for convex domains in C” is characterized. The obstruction to compactness
also happens already on the space of (0, 1)-forms with holomorphic coeffcients, see for instance
[Kra88]].

Proposition[l.4) We will use again the Marcinkiewicz interpolation theorem. Because of the
decay of C'(z, () we have for fe=?p € LP(C) that

wazéc@ommwwwwmx

is a well defined function. Now the estimates on the kernel C'(z, (),

dm(() dm(¢)
é} 2 < (e), mjAQ@ < ()

(2) ‘Z - €xp dd)(Z, C)

yield ||ue™?|| () S || fe™?pll=(c) and |lue |11y S || fe ?pllri(c)- The rest of the proof is
similar to the proof of Theorem|I.3]

Assume now that the operator is compact. Let {z;} be a sequence of complex numbers such
that the disks D(z;) are pairwise disjoint. If

)= k., (2)
fi(2) o(2)

dz,  u(2) = (2 = 2)

one has du; = f; and
[ 1R dmiz) 51
and one can extract a converging(csubsequence of {u;}. But as before, from
luj — well* = Jlus|* + luxl|* + 2 Refwy, ux) — 0

we get a contradiccion because ||u;|| ~ 1 and |(u;, u;)| — 0 for a fixed k when j — oc. O
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