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We analyze the dynamics of Brownian ratchets in a confined environment. The motion of the parti-
cles is described by a Fick-Jakobs kinetic equation in which the presence of boundaries is modeled
by means of an entropic potential. The cases of a flashing ratchet, a two-state model, and a ratchet
under the influence of a temperature gradient are analyzed in detail. We show the emergence of a
strong cooperativity between the inherent rectification of the ratchet mechanism and the entropic
bias of the fluctuations caused by spatial confinement. Net particle transport may take place in situa-
tions where none of those mechanisms leads to rectification when acting individually. The combined
rectification mechanisms may lead to bidirectional transport and to new routes to segregation phe-
nomena. Confined Brownian ratchets could be used to control transport in mesostructures and to
engineer new and more efficient devices for transport at the nanoscale. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4804632]

I. INTRODUCTION

Breaking detailed balance due to the presence of unbal-
anced forces acting on a system causes rectification of thermal
fluctuations and leads to new dynamical behaviors, very dif-
ferent from those observed in equilibrium situations.1, 2 Typ-
ical realizations of rectified motion include the transport of
particles under the action of unbiased forces of optical,3, 4

mechanical,5, 6 or chemical7, 8 origin. Hence, the implications
of rectification has attracted the interest of researchers in a
variety of fields, ranging from biology to nanoscience, due to
its relevance in the transport and motion at small scales.2, 9

Accordingly, the behavior of such small engines, referred to
as Brownian ratchets, have been deeply studied and several
models that capture some of their main features have been
proposed.1, 2, 10, 11

Given the small size of rectifying elements, it is likely
that their motion takes place close to boundaries or in confined
environments. Nevertheless, ratchet models usually assume
that rectification develops in an unbound medium. Since rec-
tification develops as an interplay associated to how a particle
experiences local forces while it explores the space around
it, confinement plays an important role because it signifi-
cantly reduces the number of allowed states of the rectifying
elements. This restriction can be understood as an effective
change of the entropy of the Brownian ratchet as it displaces
along the confined environment.12

The relevance of entropic barriers to promote entropic
transport13, 14 in confined environments has been recognized
in a variety of situations that include molecular transport in
zeolites,15 ionic channels,16 or in microfluidic devices,17, 18

where their shape explains, for example, the magnitude of
the rectifying electric signal observed experimentally.19 In
fact, spatially varying geometric constraints provide them-
selves an alternative means to rectify thermal fluctuations.12

a)Author to whom correspondence should be addressed. Electronic mail:
paolomalgaretti@ffn.ub.es

Modulations in the available explored region lead to gradients
in the system effective free energy, by inducing a local bias
in its diffusion that can promote a macroscopic net velocity
for aperiodic channel profiles12 or due to applied alternating
fields.20

We will analyze the interplay between rectification and
confinement, and will characterize the new features associ-
ated to confined Brownian ratchets (CBR). We show that
the presence of strong cooperative rectification21 between the
ratchet and the geometrical confinement may lead to rectifi-
cation even when none of them can rectify the particle current
on their own. Such an interplay strongly affects particle mo-
tion. To understand the mutual influence between both recti-
fying sources, we will analyze three different ratchet models,
namely, the flashing ratchet, the two-level ratchet, and a ther-
mal ratchet. In the first two cases, the equilibrium is broken by
the energy injected in the system through the intrinsic ratchet
mechanism as it happens in the case of molecular motors. In
the third one, the driving force is a thermal gradient that cou-
ples to the probability current, hence inducing a, local, Soret
effect.

The article is distributed as follows. In Sec. II, we present
the main features of entropic transport and formulate the ki-
netic framework, based on the Fick-Jacobs equation, that will
allow us to describe the evolution of the probability distribu-
tion of a particle in the presence of free energy barriers. The
ratchet models that will be analyzed in detail are described in
Sec. III. In Secs. IV– VII we discuss the different scenarios
generated by different symmetric/asymmetric ratchets and/or
channel shapes, and conclude in Sec. VIII where we draw the
main conclusions and outlook of this piece of work.

II. PARTICLE DYNAMICS IN A CONFINED MEDIUM

A Brownian ratchet, with diffusion constant D, under
the action of a potential, V (r, t), moving in a confined en-
vironment characterized by a varying cross-section channel
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http://dx.doi.org/10.1063/1.4804632
http://dx.doi.org/10.1063/1.4804632
mailto: paolomalgaretti@ffn.ub.es
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4804632&domain=pdf&date_stamp=2013-05-21


194906-2 Malgaretti, Pagonabarraga, and Rubi J. Chem. Phys. 138, 194906 (2013)

Δ φ

-kBTS(x)

A(x)

V(x)

FIG. 1. Brownian ratchet and entropic barriers. A Brownian motor moving
in a confined environment will be sensitive to the free energy A(x) (solid)
generated by the ratchet potential V (x) (dotted) and the entropic potential
(dashed), −kBTS(x), induced by the channel shape.

of width, h(x, z), such as the one depicted in Fig. 1, can be
characterized in terms of the probability distribution function
(pdf), P(r, t), which obeys the Smoluchowsky equation,

∂

∂t
P (r, t) = ∇ · [βD∇W (r)P (r, t) + D∇P (r, t)], (1)

where β−1 = kBT is the inverse of the temperature, T, at which
the particle diffuses, while kB stands for Boltzmann constant.
Instead of being regarded as an explicit boundary condition,
the geometrical constraint can be included, alongside any ad-
ditional potential the diffusing particle may be subject to, as
an effective potential

W (r) =
{

V (x), |y| ≤ h(x), & |z| ≤ Lz,

∞, |y| > h(x) or |z| > Lz,
(2)

where we have considered, without lack of generality, that the
long axis of the channel coincides with the axis x, that par-
ticles cannot penetrate the confining channel walls, and that
the channel is periodic, W (r) = W (r + Lex), of length L, as
shown in Fig. 1, and has a finite section. If the channel width
varies slowly, ∂xh � 1, one can assume that the particle equi-
librates in the transverse section on time scales smaller than
the ones in which the particle experiences the variations in
channel section. It is then possible to factorize the pdf

P (r, t) = p(x, t)
e−βW (r)

e−βA(x)
, (3)

e−βA(x) =
∫ Lz

−Lz

∫ h(x)

−h(x)
e−βW (r)dydz. (4)

By integration over the channel section one arrives at

∂

∂t
p(x, t) = ∂x{D[βp(x, t)∂xA(x) + ∂xp(x, t)]}, (5)

the Fick-Jacobs equation,22–24 an effective one-dimensional
Smoluchowsky equation that determines the particle diffusion
along the channel. Such motion is characterized by the local
effective free energy

A(x) = V (x) − kBT ln[2h(x)], (6)

where S(x) = ln (2h(x)) accounts for the entropic contribution
due to confinement. One can identify an entropy barrier,

�S = ln

(
hmax

hmin

)
(7)

in terms of the maximum, hmax, and minimum, hmin chan-
nel apertures. Therefore, ∂xA(x) is the driving force that con-
tains entropic, ∂xS(x), and enthalpic, ∂xV (x), contributions.
The range of validity of the Fick-Jacobs equation has been
analyzed,13, 25 and it has been found that introducing the vary-
ing diffusion coefficient24

D(x) = D0[
1 + (

∂h
∂x

)2
]α (8)

with α = 1/3, 1/2 for 3D, 2D, respectively, with the reference
diffusion D0 = kBT/γ (R) and γ (R)∝R, enhances the range of
validity of the factorization assumption, Eq. (4). Although we
will keep D(x) for completeness, the results do not change
qualitatively if a constant diffusion coefficient, D0, is consid-
ered instead.

The free energy difference over a channel period

�F =
∫ L

0
∂xA(x)dx (9)

governs the particle current onset. Looking for the steady so-
lution of Eq. (5) in a periodic system, pst(0) = pst(L), we find
that a net current, J �= 0, arises only when �F �= 0, which
can have both an enthalpic,

∫ L

0 V (x)dx �= 0, and entropic,

kBT
∫ L

0 ln(h(x))dx �= 0, origin. Indeed the picture of A(x) as
a free energy is suggestive: a net current sets only when the
difference in free energy along the period is not vanishing.
Clearly, at equilibrium, periodic potentials, V (x), in periodic
channels, h(x), do not give rise to any difference in the free
energy and consequently no current. The relative performance
of a ratchet in an uniform channel can be quantified in terms
of the dimensionless parameter,

μ0 = Lv0

μ̃�F0
, (10)

defined as the ratio between the Brownian ratchet aver-
age speed, v̄ = 1

L

∫ L

0 J (x)dx with J(x) = D[βp(x, t)∂xA(x)
+ ∂xp(x, t)] derived from Eq. (5), and the average speed of
a particle with mobility μ̃ ≡ βD0 under the action of a uni-
form effective force, f0 ≡ �F0/L. In the absence of intrinsic
ratchet rectification, �F0 = 0 and μ0 remains 1. If the ratchet
leads to an intrinsic rectification, the interplay between ratch-
eting and confinement can be alternatively quantified in terms
of the dimensionless parameter

μ = Lv̄

μ̃�F
(11)

that accounts for the overall free energy drop �F. For
a uniform channel, when rectification is purely enthalpic,
μ/μ0 = 1. Therefore, deviations of μ/μ0 from 1 constitute a
convenient means to address the role of entropic constraints to
particle rectification; μ/μ0 > 1 indicates that the geometrical
constraints cooperate with the force associated to the Brow-
nian ratchet to induce an efficient cooperative rectification,
larger than the one obtained in an unstructured environment,
while the opposite holds for μ/μ0 < 1. The absolute value
of μ gives additional information. On one hand, when μ > 1
the performance of the cooperative rectification beats the one
obtained under a constant force f ≡ �F/L, on the other hand,
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μ also easily identifies the nonlinear rectifying regime, when
∂ fμ �= 0.

To analyze the interplay between the Brownian ratchet
and confinement, we will consider that all Brownian ratchets
are subject to the same underlying, driving periodic potential,

V0(r) = V0

[
sin

2π

L
x + λ sin

4π

L
x

]
. (12)

This is a simple potential, explored in detail previously in
which rectification is controlled by a single parameter, λ.26

We will consider a channel width that varies with the same
periodicity as V0 and with a similar functional dependence

h(x)=h0−R+h1 sin

[
2π

L
(x + φ0)

]
+ h2 sin

[
4π

L
(x + φ0)

]
,

(13)

where h0 is the average channel section and h1 and h2 de-
termine its modulation. In particular h2 is responsible for
the symmetry of the channel along its transverse axis. When
h2 �= 0 the left-right symmetry along the channel longitudinal
axis is broken while, for h2 = 0, the left-right symmetry of
channel along its longitudinal axis is restored. hmax and hmin

depend both on h1 and h2 and the dephasing, φ0. The latter
will be useful to displace the geometrical and potential mod-
ulations, as discussed in Secs. IV–VII. The particle radius, R,
affects the available transverse section and will hence con-
tribute to the entropic barrier, Eq. (7).

III. RATCHET MODELS

In order to analyze the impact of confinement in the rec-
tification of a Brownian particle, we will consider three differ-
ent types of complementary, well-established ratchet models
that have the same periodicity that the geometric confinement.

A. Flashing ratchet

A colloidal particle subjected to a periodic external po-
tential

V (x) = V1V0(x) (14)

behaves as a flashing ratchet when the random force
breaks detailed balance.4 This can be simply achieved for
a Gaussian white noise with a second moment amplitude
g(x) =

√
D(x) + Q (∂xV0(x))2,11 where Q controls Brown-

ian rectification. The Fick-Jacobs equation for such a flashing
ratchet in a varying-section channel reads

∂

∂t
p(x) = ∂

∂x

{
g(x)

∂[p(x)g(x)]

∂x
+ D(x)p(x)

∂βA(x)

∂x

}
,

(15)

which reduces to equilibrium diffusion for Q = 0. For Q > 0
detailed balance is broken and net fluxes arise when

β�F =
∫ L

0

[
D(x)∂xA(x)

g(x)2
+ ∂

∂x

ln g(x)

]
dx �= 0. (16)

Since
∫ L

0 ∂x ln g(x)dx = 0 for a periodic channel, particle
currents emerge from the interplay between both the en-

tropic and enthalpic forces, encoded in A(x) and the position-
dependent noise, g(x). Three dimensionless parameters gov-
erns the Brownian ratchet performance: βV1 and �S quantify
the relevance of the enthalpic and entropic contributions, re-
spectively, while Q/(L2D0(R)) determines rectification.

B. Two state molecular motor

The two-state ratchet model constitutes a standard, sim-
ple framework to describe molecular motor motion. A Brow-
nian particle jumps between two states, i = 1, 2, (strongly and
weakly bound) that determine under which potential, Vi=1,2,
it displaces.10 A choice of the jumping rates ω12, 21 that break
detailed balance, jointly with an asymmetric potential of the
bound sate, V1(x), determines the average molecular motor
velocity v0 �= 0. The conformational changes of the molecu-
lar motors introduce an additional scale that will compete with
rectification and geometrical confinement. Infinitely proces-
sive molecular motors remain always attached to the filament
along which they displace and are affected by the geometrical
restrictions only while displacing along the filament; accord-
ingly, we choose channel-independent binding rates ω21, p(x)
= k21. On the contrary, highly non-processive molecular mo-
tors detach frequently from the biofilament and diffuse away;
an effect we account for considering a channel-driven binding
rate, ω21, np(x) = k21/h(x). Motors jump to the weakly bound
state only in a region of width δ around the minima of V1(x),
with rate ω12 = k12. Accordingly, the motor densities in the
strong(weak) states, p1(2) along the channel follow10

∂tp1(x) + ∂xJ1 = −ω12(x)p1(x) + ω21(x)p2(x),
(17)

∂tp2(x) + ∂xJ2 = ω12(x)p1(x) − ω21(x)p2(x),

where J1, 2(x) = −D(x)[∂xp1, 2(x) + p1, 2(x)∂xβA1, 2(x)] stands
for the current densities in each of the two states in which
motor displaces. Depending on the motor internal state, two
free energies, A1,2(x) = V1,2(x) − kBT S(x), account for the
interplay between the biofilament interaction and the channel
constraints. Since molecular motors can jump between two in-
ternal states, the corresponding expression for the overall free
energy drop, �F, must be generalized to account for these in-
ternal changes. Accordingly, the overall free energy drop must
be identified from a two-dimensional particle flux, a treatment
that we leave for a future study. This system is also character-
ized by three dimensionless parameters: βV1 and �S control
the amplitude of the enthalpic and entropic contribution, re-
spectively, while ω1/ω2 quantifies the departure from detailed
balance.

C. Thermal ratchet

As a last example, we will consider a Brownian particle
moving in a varying-section channel under the influence of a
local temperature gradient. In the absence of entropic barriers,
the transport induced by the imposed temperature gradient
has been analyzed previously.27, 28 By assuming local equi-
librium along the radial directions the probability distribution
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function obeys23

P (r, t) = p(x, t)
e

−W (r)
KB T (x)

e
−A(x)
kB T (x)

, (18)

and the corresponding Fick-Jacobs equation reads

∂

∂t
p(x, t) = ∂

∂x

{
μ(x)p(x, t)

(
T (x)

∂

∂x

A(x)

T (x)

+V (x)
∂

∂x
ln T (x)

)
+ μ(x)

∂

∂x
[T (x)p(x, t)]

}
,

(19)

where we keep the phenomenological dependence of the dif-
fusion on the channel width through the local mobility μ(x)
= βD(x). The overall free energy drop can be expressed as

�F =
∫ L

0

[
∂

∂x

A(x)

T (x)
+

(
V (x)

T (x)
+ 1

)
∂

∂x
ln T (x)

]
dx,

(20)
which differs qualitatively from the one obtained for the
flashing ratchet, Eq. (16). For a periodic thermal ratchet
under a periodic temperature gradient, the entropic contri-
bution,

∫ L

0
∂
∂x

A(x)
T (x)dx, vanishes and does not contribute to

�F. Therefore, rectification in a periodic thermal ratchet,
quantified by �F = ∫ L

0
V (x)
T (x) ∂x ln T (x)dx, can only develop

from an interplay between the enthalpic and temperature
variations.28, 29 Although both the flashing and the thermal
ratchet are characterized by a multiplicative noise, their dif-
ferent physical origin is at the basis of this different re-
sponse. For the thermal ratchet the spatial inhomogeneity
affects both the amplitude of the fluctuations and the lo-
cal equilibrium distribution while for the flashing ratchet the
noise amplitude is regarded as an effective coarse-graining
of a molecular mechanism that is decoupled from the un-
derlying equilibrium properties of the Brownian particle. In
fact, if we would (inconsistently) neglect the spatial depen-
dence of the temperature in the equilibrium distribution of
the thermal ratchet that appears in Eq. (18), we would derive
a �FT,

�FT =
∫ L

0

∂xA(x)

T (x)
+ ∂x ln T (x)dx (21)

qualitatively analogous to the one obtained for the flashing
ratchet, Eq. (16). A similar result, and hence the possibility
of constrained-controlled rectification, is obtained if one as-
sumes that the temperature becomes anisotropic. This corre-
sponds to situations where the equilibration transverse to the
channel is determined by a temperature that differs from the
one characterizing the particle diffusion along the channel.
Such situations can develop if there is an intrinsic mechanism
for energy dissipation, as has been reported, e.g., in vibrated
granular gases.30

IV. FULLY SYMMETRIC CASE

We will first consider the case of symmetric ratchet and
entropic potentials, implemented for h2 = λ = 0. Under these
conditions, current rectification is not possible when entropic
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FIG. 2. Rectification of a Brownian motor moving due to a symmetric flash-
ing ratchet in a symmetric channel. (a) Particle velocity, in units of D0/L,
being D0 = D0(R = 1), as a function of the phase shift φ0 for different values
of the parameter �S = 1.73, 2.19, 2.94 (the larger the symbol size, the larger
�S), being V1 = 0.2 and Q = 2. (Inset) μ as a function of φ0 for the same
parameters. (b) Particle velocity as a function of �S upon variation of particle
radius R (solid lines, with h0 = 1.25, h1 = 0.2), h0 (solid points, with R = 1,
h1 = 0.2) or h1 (open points, with R = 1, h0 = 1.25) for φ0 = 0.1, 0.2 and
V1 = 0.2,Q = 2 (the larger the symbol the larger φ0). As a comparison the
case with V1 = 0.2,Q = 0.02 and φ0 = 0.1, 0.2 (the larger the symbol the
larger φ0), is shown (blue diamonds). (Inset) μ as a function of �S for
the same parameters. (c) Particle velocity as a function of the ratchet po-
tential amplitude V1 for Q = 0.02, 0.2, 2 (the larger the symbol the larger
Q), while �S = 2.94, φ0 = 0.1. (Inset) μ as a function of φ0 for the same
parameters. (d) Particle velocity as a function of Q for V1 = 0.02, 0.2, 2 and
�S = 2.94, φ0 = 0.1 (the larger the symbol the larger V1).

and enthalpic forces act separately. We will show in this sec-
tion that rectification may arise due to the interplay between
both drivings, when they are phase shifted an amount φ0.

Flashing ratchet: Figure 2(a) shows the particle current
obtained by solving Eq. (15) under the steady-state condition
ṗ(x) = 0. As shown in Fig. 2(a), a net particle current de-
velops when the phase shift, φ0, is not a multiple of π . Such
a particle flux is the result of the interplay between confine-
ment and the potential leading to particle rectification. In fact,
Eq. (16) together with Eq. (6) clearly show that, if the chan-
nel and the ratchet are not in phase, φ0 �= 0, the overall free
energy drop, Eq. (16), is finite and a net current develops. The
Fick-Jacobs equation identifies φ0 and �S as the relevant pa-
rameters that control rectification. φ0 is responsible for the
spatial symmetry breaking31 for any finite channel modula-
tion, �S. A straight channel, �S = 0, will not induce rec-
tification because the underlying potential is symmetric. As
shown in Fig. 2(b), �S quantifies the changes in the system
geometrical properties by tuning the particle radius, R, or the
channel corrugation, h1.

Particle current varies smoothly with the other dimen-
sionless parameters, V1 and Q. For example, the value of �S
providing the maximum current is only weakly affected by a
drop of Q of two orders of magnitude, as shown in Fig. 2(b).
For small values of Q, the particle velocity does not increase
monotonously with V1. While Fig. 2(c) indicates that there
exists a finite value of V1 at which particle flux is optimal,
Fig. 2(d) shows that the particle current increases
monotonously with Q, leading to a monotonous increase of
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the particle current. Since both the channel corrugation and
the ratchet potential are symmetric, Fig. 2(a) is symmetric
under inversion of the velocity and dephasing angle. There-
fore, a uniform distribution of φ0 will not induce any net
current, but any asymmetric distribution will.

The insets of Fig. 2 display the changes of the dimension-
less velocity, μ (Eq. (15)), as a function of the relevant dimen-
sionless parameters. They show that there are regimes where
confinement and the ratchet potential cooperate to induce an
efficient particle rectification, μ > 1, and regimes where they
compete with each other, partially hindering rectification, μ

< 1. Both regimes depend weakly on confinement, as shown
in the top panels of Fig. 2, while μ is significantly affected
by the magnitude both of the ratcheting potential, V1, and the
noise amplitude, Q. In particular, μ < 1 is typical for small
values of V1 and Q while, upon increasing both V1, and Q,
the μ > 1 regime arises. As the magnitude of V1 increases, μ

decreases drastically and the net current eventually vanishes.
Two state model: Figure 3(a) shows that a net particle

current develops when the ratchet potential and the channel
corrugation are out of registry. The symmetry of the chan-
nel and rectifying potentials imply that the velocity profile is
invariant if both axis of the figure are inverted; hence a uni-
form distribution of φ0 will not induce a net current, but any
asymmetric distribution will. The internal reorganization of
the molecular motor as it moves along the channel allows for
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FIG. 3. Rectification of a processive (circles), non-processive (triangles)
Brownian particle moving due to the two state model in a symmetric chan-
nel. (a) Particle velocity, in units of D0/L, with D0 = D0(R = 1), as a function
of the phase shift φ0 for different values of the parameter �S = 1.73, 2.19,
2.94 (the larger the symbol size, the larger �S), for V1 = 0.2 and ω21/ω12
= 0.01. (b) Processive (circles), non-processive (triangles) Brownian motor
velocity, in units of D0/L, as a function of �S upon variation of particle ra-
dius R (solid lines, for h0 = 1.25, h1 = 0.2), h0 (solid points, for R = 1, h1
= 0.2) or h1 (open points, for R = 1, h0 = 1.25) for φ0 = 0.1, 0.2 (larger
symbols correspond to larger φ0). As a comparison, the case for φ0 = 0.1,
0.2 and V1 = 0.2 is shown (green diamonds) (the larger the symbol, the larger
φ0) with ω21/ω12 = 0.01. (The curves for V1 = 1 have been magnified by a
factor of 5 for the sake of clarity.) (c) Processive (circles), non-processive (tri-
angles) Brownian motor velocity as a function of the ratchet potential ampli-
tude V1 for �S = 1.73, 2.19, 2.94 (the larger the symbol, the larger �S) with
ω21/ω12 = 0.01. (d) Processive (circles), non-processive (triangles) Brownian
motor velocity, in units of D0/L, as a function of ω12/ω21 for φ0 = 0.1 (0.3),
open (solid) points and �S = 0.4, 7.6 (the larger the symbol, the larger �S),
with V1 = 2.

qualitatively new scenarios with respect to the rectifica-
tion features observed for the flashing ratchet. For example,
Figs. 3(b) and 3(c) show that the particle flux can reverse its
direction as �S and V1 increase, respectively, although flux
reversal is more sensitive to channel corrugation. This flux re-
versal can be exploited to induce particle separation according
to their size (due to the implicit dependence of �S on particle
radius, R), or the differential particle response to V1.32

Although �S captures the essential features of net molec-
ular motor motion, Fig. 3(b) shows separate sensitivity to the
rest of the geometrical channel parameters, h0, h1, as well as
motor size R. Such sensitivity is remarkable at smaller en-
tropic barrier magnitudes where the confining-tuned diffusion
coefficient, Eq. (8), plays a relevant role. If h1 → 0 then both
the entropic barrier and the modulation of the diffusion co-
efficient vanish. On the contrary if R or h0 decrease at fixed
h1, then �S → 0 but the modulation of the diffusion coef-
ficient persists, allowing for rectification. As �S increases,
the sensitivity to the separate variation of h0, h1, and R for
the case of non-processive motors intensifies. These deviation
from the geometrical dependence only through �S arise be-
cause the binding rate, ω21, depends on the probability that
the motor is close to the filament, which depends indirectly
on the channel section. Hence, different channel amplitudes
h0, h1, R, even if leading to the same �S, give rise to different
binding rates that modulate the molecular motor velocity. This
sensitivity is not present for processive motors, as observed in
Fig. 3(b).

Molecular motors show a maximum current for an opti-
mal �S that depends weakly on V1, as displayed in Fig. 3(c),
while Fig. 3(d) shows that an optimum velocity, sensitive both
to φ0 and �S, can also be achieved on increasing the ratio of
binding and unbinding rates, ω21/ω12.

V. SYMMETRIC POTENTIAL AND ASYMMETRIC
CHANNEL

The channel asymmetry with respect to its transverse
axis, h2 �= 0, breaks the left-right spatial symmetry along the
channel longitudinal axis. Such an asymmetry leads to sub-
stantial changes in rectification with respect to the symmetric
channel described earlier because now there exists a geomet-
rically induced preferential direction for particle rectification.
As in the previous case, rectification here is induced by the
asymmetric confinement.

Flashing ratchet: Figure 4(a) shows that the channel
asymmetry leads to asymmetric net particle current as a func-
tion of the phase shift, φ0. Non-vanishing average velocities
develop even when the channel and the ratchet are in reg-
istry, φ0 = 0, 1/2, 1. Hence now a mean, non-vanishing ve-
locity can persist for a uniform distribution of φ0 as shown
in the inset of Fig. 4(b). The average particle velocity in the
case of a broader distribution of φ0 is quite reduced with
respect to the values obtained for a single fixed value of φ0,
see Fig. 4(b). Moreover, the average velocity in the former
case in not significantly affected by the channel corrugation,
while the dimensionless mobility, μ, takes values compara-
ble to those obtained in the case of a fixed φ0. The channel
asymmetry also enhances the rectifying velocity magnitude,
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FIG. 4. Rectification of a Brownian motor moving due to a symmetric flash-
ing ratchet in an asymmetric channel, for h2/h1 = 0.25. (a) Particle veloc-
ity, in units of D0/L, D0 = D0(R = 1), as a function of the phase shift φ0
for different values of the parameter �S = 0.84, 2.19, 2.94 (the larger the
symbol size, the larger �S), with V1 = 0.2 and Q = 2. (Inset) μ as a func-
tion of φ0 for the same parameters. (b) Particle velocity as a function of
�S, varied increasing h1 (with R = 1, h0 = 1.25) at constant ratio h2/h1
= 0.1 (open points) and h2/h1 = 0.25 (solid points), for φ0 = 0.1, 0.5 and
V1 = 0.2,Q = 2 (the larger the symbol size, the larger φ0). Cyan open cir-
cles represent the average velocity obtained by a uniform distribution of φ0
as a function of �S. (Inset) μ as a function of �S for the same parameters.
(c) Particle velocity as a function of the channel asymmetry parameter h2,
with φ0 = 0 and �S = 1.09, 2.19 (the larger the symbol size, the larger �S),
for R = 1, h0 = 1.25,V1 = 0.2,Q = 2. (Inset) μ as a function of h2 for the
same parameters.

which is almost twofold larger than the one obtained for the
symmetric channel (Fig. 2(a)). The net velocity also shows a
strong dependence on the channel asymmetry, �S. The insets
of Fig. 4 show that μ > 1 for all regimes considered, under-
lying the strong cooperative regime between the symmetric
ratchet and the geometric confinement. Finally, we register a
linear dependence of the particle velocity upon increasing h2

at fixed h1. As also shown in Fig. 4(b), the slope of the lin-
ear relation between h2 and v̄ depends on �S: increasing the
entropic barrier leads to a steeper slope.

Two-state model: As for the flashing ratchet, the channel
asymmetry leads to an asymmetric velocity profile upon vari-
ation of φ0, as shown in Fig. 5(a). In particular, we notice that
for φ0 = 0 the net velocity of processive or non-processive
motors are very similar as �S varies (Fig. 3(a)). The asym-
metric channel profile leads to an overall non-vanishing flux
when averaged over the, equally weighted, values of φ0.
Hence, as for the flashing ratchet, we expect the channel
asymmetry to provide the onset of net currents even in the
case of a broader distribution of phase shifts φ0. The depen-
dence of the particle velocity on �S, shown in Fig. 5(b),
is similar to the one obtained for the symmetric channel,
Fig. 3(b), where an optimal value of �S is observed for both
processive and non processive motors. As in the symmetric
configuration, the dependence of motors’ velocity on the dif-
ferent geometric parameters (h1 and R) is quite well captured
by the entropic barrier �S, although a separate sensitivity
on h1 and R persists for both processive and non-processive
motors. Particle current depends linearly on h2, as shown in
Fig. 5(c). increasing the slope for larger values of �S.
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FIG. 5. Rectification of a processive (circles), non-processive (triangles)
Brownian motor moving according to the two state model in symmetric
ratchet and asymmetric channel, for h2/h1 = 0.25. (a) Particle velocity, in
units of D0/L, D0 = D0(R = 1), as a function of the phase shift φ0 for differ-
ent values of the parameter �S = 1.73, 2.19, 2.94 (the larger the symbol size,
the larger �S), with V1 = 0.2 and ω21/ω12 = 0.01. (b) Processive (circles),
non-processive (triangles) Brownian motor velocity, in units of D0/L, as a
function of �S as a function of particle radius R (solid lines, with h0 = 1.25,
h1 = 0.2) or h1 (open points, with R = 1, h0 = 1.25) for φ0 = 0.1, 0.4
(the larger the symbol size, the larger φ0) for V1 = 1 and ω21/ω12 = 0.01.
Green open circles (triangles) represent the average velocity of processive
(non-processive) motors obtained by a uniform distribution of φ0 as a func-
tion of �S. (c) Processive (circles), non-processive (triangles) Brownian mo-
tor velocity as a function of h2, being φ0 = 0, with h0 = 1.25,V1 = 0.2,

ω21/ω12 = 0.01. The larger the symbol size, the larger the value of h1
(h1 = 0.125, 0.2).

VI. ASYMMETRIC POTENTIAL AND SYMMETRIC
CHANNEL

An asymmetric ratchet potential, λ �= 0, in the presence of
a symmetric periodic channel, h2 = 0, allows us to address the
impact that an inhomogeneous environment has on an intrin-
sically rectifying Brownian ratchet. In particular, cooperative
rectification modulates the particle velocity allowing for the
emergence of effective particle fluxes opposing the direction
of motion of the intrinsic Brownian ratchet.

Flashing ratchet: Figure 6(a) shows that the intrinsic
Brownian ratchet net velocity, v0, is strongly modulated by
the channel corrugation. CBR in this case can exhibit both
regimes where the average velocities exceed v0, showing
strong velocity enhancements, as well as conditions where the
velocity changes sign, indicating confinement-induced flow
reversal. In the latter case, particles moving against the di-
rection imposed by the ratchet can display speeds larger than
v0. As in the case of symmetric ratchet, these effects are
magnified when rising the entropy barrier �S, as shown in
Fig. 6(b). In the presence of flux reversal, geometrical con-
finement leads to a mechanism for particle separation based
on their size because �S depends both on the channel geom-
etry and the particle size. As shown in Fig. 6(b), modulating
particles size one can control and switch their velocities, of-
fering new venues to manipulate particles and even trap them.
The average particle current obtained in a disordered channel,
i.e., with a uniform distribution of φ0, is not much affected by
the geometrical constraint.
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FIG. 6. Rectification of a Brownian motor moving due to a asymmetric flash-
ing ratchet in symmetric channel. (a) Particle velocity, in units of v0, for �S
= 0, as a function of the phase shift φ0 for different values of the param-
eter �S = 0.84, 2.19, 2.94 (the larger the symbol size, the larger �S), for
V1 = 0.2 and Q = 2. (Inset) μ, in units of the dimensionless mobility, μ0,
as a function of φ0 for the same parameters. (b) Particle velocity as a func-
tion of �S as a function of particle radius R (solid lines, with h1 = 1.25,
h2 = 0.2), h1 (solid points, with R = 1, h2 = 0.2) or h2 (open points, with R
= 1, h1 = 1.25) for φ0 = 0.2, 0.3, 0.5, 0.6 and V1 = 0.2,Q = 2 (the larger
the symbol size, the larger φ0). Cyan open circles represent the average ve-
locity obtained by a uniform distribution of φ0 as a function of �S. (Inset)
μ/μ0 as a function of φ0 for the same parameters. (c) Particle velocity as a
function of the ratchet potential amplitude, V1, for Q = 0.02, 0.2, 2 (the larger
the symbol size, the larger Q), for �S = 2.94, φ0 = 0.1. (Insets) μ and μ/μ0
as a function of φ0 for the same parameters. (d) Particle velocity as a func-
tion of Q. Squares for V1 = 0.1, 1, 10 and �S = 2.94, φ0 = 0.1 (the larger
the symbol size, the larger V1); triangles: Q = 1, �S = 1.1, φ0 = 0.5, and
V1 = 1. (Insets) μ and μ/μ0 as a function of φ0 for the same parameters.

The absolute value of particle current (not shown) is also
very sensitive to V1 and Q, analogously to the results obtained
for the symmetric channel (Figs. 2(c) and 2(d)). Figures 6(c)
and 6(d) display strong enhancements of the net particle ve-
locity, up to two orders of magnitude larger than v0. These
large enhancements are observed when V1/�S � 1, indicat-
ing that cooperativity relies mostly on the interplay between
the geometrical confinement and the position-dependent noise
amplitude rather than on the asymmetric potential V (x) itself.

Since the Brownian ratchet is characterized by an in-
trinsic rectifying velocity, v0, it is useful to study the ra-
tio μ/μ0 in order to quantify the relative variation in the
mobility of a CBR due to the geometrical constraints. In
Figs. 6(a) and 6(b) μ0 = 6.1, hence the system takes advan-
tage of the x-dependent free energy gradient induced by the
intrinsic ratchet mechanism. The dependence of μ on V1 and
Q is quite similar to the one observed in symmetric channels
(Fig. 2): larger values of the mobility are registered for small
and moderate values of V1 and mild and large values of Q,
while for larger values of V1 μ drops. On the contrary, μ/μ0

increases monotonously with V1 irrespectively of Q, while the
dependence on Q at fixed V is more involved as shown in
Fig. 6(d).

Two state model: Figure 7(a) displays the net velocity as
a function of the dephasing between the geometric confine-
ment and the underlying ratchet potential. Cooperative rectifi-
cation now shows a strong dependence on the phase shift, φ0,
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FIG. 7. Rectification of a processive (circles), non-processive (triangles)
Brownian motor moving due to the two state model in symmetric channel.
(a) Particle velocity, in units of v0 as a function of the phase shift φ0 for dif-
ferent values of the parameter �S = 1.73, 2.19, 2.94 (the larger the symbol
size, the larger �S), for �V1 = 0.2 and ω21/ω12 = 0.01. (b) Processive (cir-
cles), non-processive (triangles) Brownian motor velocity, in units of D0/L, as
a function of �S and particle radius R (solid lines, with h0 = 1.25, h1 = 0.2),
h0 (solid points, with R = 1, h1 = 0.2) or h1 (open points, with R = 1, h0
= 1.25) for φ0 = 0.1, 0.9 (the larger the symbol size, the larger φ0) for
V1 = 1 and ω21/ω12 = 0.01. Green open circles (triangles) represent the av-
erage velocity of processive (non-processive) motors obtained by a uniform
distribution of φ0 as a function of �S. (c) Processive (circles), non-processive
(triangles) Brownian motor velocity as a function of the ratchet potential am-
plitude V1 for �S = 0.4, 2, 7.6 (the larger the symbol size, the larger �S) with
ω21/ω12 = 0.01. (d) Processive (circles), non-processive (triangles) Brown-
ian motor velocity as a function of ω12/ω21 for φ0 = 0.1, 0.3, open (solid)
points and �S = 0.4, 7.6 (the larger the symbol size, the larger �S) for
V1 = 10.

leading to large velocity amplification and also to flux rever-
sal, a feature that was not possible for symmetric channels. In
fact, both processive and non-processive motors show veloc-
ity enhancement and reversal when varying the channel cor-
rugation, �S, as shown in Fig. 7(b). Hence, even symmet-
ric channels offer the possibility to control molecular motor
motion according to their size, allowing for segregation and
particle trapping. Interestingly, for asymmetric ratchets the
entropic barrier �S captures even better the dynamics, as
compared to the case of symmetric ratchets, and only at
smaller �S the different behavior upon variation of h0, h1,
and R becomes appreciable. Looking at the velocity depen-
dence as a function of V1, shown in Fig. 7(c), we find a be-
havior similar to the one obtained for the symmetric ratchet.
On the contrary, the velocity dependence upon variation of
ω21/ω12, shown in Fig. 7(d), is very mild for smaller �S while
for larger �S velocity inversion happens for smaller values of
ω21/ω12.

VII. FULLY ASYMMETRIC CASE

When both the ratchet as well the channel left-right sym-
metry are broken, λ �= 0 and h2 �= 0, all the features we have
discussed previously are now present. Rather than attempt-
ing a systematic analysis of the performance of CBR in this
regime, that is very rich, we will point out the basic differ-
ences with the previous cases.
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FIG. 8. Rectification of a Brownian motor moving according to an asymmet-
ric flashing ratchet in an asymmetric channel. (a) Particle velocity, in units of
the velocity, v0, provided by the ratchet for �S = 0, as a function of the phase
shift φ0 for different values of the parameter �S = 0.84, 2.19, 2.94 (the larger
the symbol size, the larger �S), for V1 = 0.2, h2/h1 = 0.25 and Q = 2. (In-
set) μ, in units of the dimensionless mobility μ0 as a function of φ0 for the
same parameters. (b) Particle velocity as a function of �S and h1 (with R = 1,
h0 = 0.25) for φ0 = 0.1, 0.4, h2/h1 = 0.25 and V1 = 0.2,Q = 2 (the larger
the symbol size, the larger φ0). Cyan open circles represent the average ve-
locity obtained by a uniform distribution of φ0 as a function of �S. (Inset)
μ/μ0 as a function of φ0 for the same parameters.

Flashing ratchet: As shown in Fig. 8(a), the asymme-
try in both channel shape and ratchet potential lead to non-
intuitive velocity variations with φ0; one can identify velocity
enhancement/reduction as well as velocity inversion as a func-
tion of the off-registry angle. Moreover, different values of �S
strongly modulate the velocity dependence on φ0 as shown
in Fig. 8(a). Looking at the dependence of the velocity on
�S, Fig. 8(b), we observe a strong non-monotonic response
where the motor velocity, initially enhanced, is reduced by
increasing �S until it is inverted for larger values of �S. As
in the previous cases, we find a wide range of values of μ

as well as of μ/μ0 underlying that the sensitivity of CBRs in
this scenario as a function of the changes in the geometrical
constraints and ratchet parameters.

Two state model: As for the flashing ratchet case, the
presence of both channel and ratchet asymmetries leads to a
non trivial velocity profile upon variation of φ0. Again we
find here the presence of velocity enhancement, reduction or
even inversion, see Fig. 9(a). Surprisingly, the velocity depen-
dence on �S reminds the one obtained in the case of asym-
metric ratchet in a symmetric channel. The entropic barrier,
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FIG. 9. Rectification of a processive (circles), non-processive (triangles)
Brownian motor moving due to the two state model in an asymmetric chan-
nel. (a) Particle velocity, in units of v0, for �S = 0, as a function of the phase
shift φ0 for different values of the parameter �S = 1.73, 2.19, 2.94 (the larger
the symbol size, the larger �S), for �V1 = 0.2, h2/h1 = 0.25, and ω21/ω12
= 0.01. (b) Processive (circles), non-processive (triangles) Brownian motor
velocity, in units of D0/L, as a function of �S and particle radius R (solid
lines, with h0 = 1.25, h1 = 0.2, H2/h1 = 0.25) or h1 (open points, with
R = 1, h1 = 1.25, h2/h1 = 0.25) for φ0 = 0.1, 0.9 (the larger the symbol
size, the larger φ0) for V1 = 1 and ω21/ω12 = 0.01. Green open circles (tri-
angles) represent the average velocity of processive (non-processive) motors
obtained by a uniform distribution of φ0 as a function of �S.

�S, captures the essential response of the confined molecular
motors, even better than in the cases for which the ratchet
is symmetric. Finally, also the net motors flux in a disor-
dered channel, i.e., with equally distributed φ0, has a be-
havior similar to the one obtained in the case of symmetric
channel.

VIII. CONCLUSIONS

In this paper we have analyzed the motion of Brownian
ratchets in confined media. We have shown that the interplay
between the intrinsic ratchet motion and the geometrically in-
duced rectification gives rise to a variety of dynamical behav-
iors not observed in the absence of the geometrical confine-
ment. A novel effect, named cooperative rectification, arises
as the net result of the overlap between the dynamic induced
by the ratchet and the confinement and it is responsible for
the onset of net currents even when neither the ratchet nor
the geometrical constraint can rectify per se. The dynamics
of the particles can be analyzed by means of the Fick-Jacobs
equation. Such an approach has allowed to identify two pa-
rameters, namely, the entropic barrier �S an the free energy
drop �F, that govern the overall dynamics of CBRs. On one
hand, �F controls the onset of the cooperative rectification
when �F �= 0. Then, cooperative rectification leads to a net
current whose sign is determined by �F. On the other hand,
�S accounts for the relevance of confinement in the overall
dynamics when �S �= 0.

We have discussed when entropic confinement affects the
rectification of a Brownian ratchet by contrasting physically
different ratchet mechanisms. In particular, in the analysis of
Brownian rectification induced by an inhomogeneous temper-
ature profile we have clarified the relevance of the underlying
mechanism breaking detailed balance. For a flashing ratchet
the second moment of the longitudinal velocity of a CBR
differs from the second moment associated to its transverse
velocity while such an intrinsic anisotropy is lacking for the
thermal ratchet. As a result, confined thermal ratchets can rec-
tify only if there is an interplay between the asymmetric en-
thalpic potential and temperature gradients.

Comparing the cases of a flashing ratchet and a two-state
model of a molecular motor we conclude that the novel mech-
anism we describe is qualitatively robust with respect to the
details of the Brownian ratchet. However, the specificity of
the rectification can affect both the quantitative response of
a Brownian ratchet to confinement and, in some cases, even
affect the qualitative behavior observed; e.g., velocity inver-
sion can be observed increasing �S for processive molecu-
lar motors in a symmetric channel while velocity inversion is
never observed for non-processive motors. The Fick-Jacobs
approach has provided insight to understand these qualitative
differences.

We have always assumed that the confining channel and
the ratchet potential have the same period. If both components
have different periodicities, or if one of them show irregulari-
ties (that can emerge, for example, from experimental defects
in the channel build up), one can still account for the mis-
match between the ratchet potential and the channel corruga-
tion by considering that the phase shift φ0, rather than having
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a well defined value, is characterized by a uniform distribu-
tion. The results reported show that, in this situation a net cur-
rent persists except for the fully symmetric geometry.

For asymmetric, intrinsically rectifying ratchets, we have
seen that CBRs are very sensitive to corrugation and that the
geometrical constraints strongly affect their motion. Control-
ling the corrugation of the channel one can enhance signifi-
cantly the net Brownian ratchet velocity or can induce veloc-
ity inversion for all the Brownian ratchet models considered.
Therefore, confinement provides a means to control particle
motion at small scales. Since particles with different sizes
show a differential sensitivity to the geometrical constraints, it
is possible to use channel corrugation to segregate Brownian
ratchets of different sizes, or even trap particles. Therefore,
CBRs offer new venues to particle control at small scales.
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