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Abstract

We derive a one dimensional formulation of the Planck-Nernst-Poisson equation to describe the

dynamics of of a symmetric binary electrolyte in channels whose section is of nanometric section

and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion

equation and leads to a system of coupled equations for the partial densities which depends on

the charge sitting at the walls in a non trivial fashion. We consider two kinds of non uniformities,

those due to the spatial variation of charge distribution and those due to the shape variation of

the pore and report one and three-dimensional solutions of the electrokinetic equations.
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I. INTRODUCTION

The study of electric transport properties of ions in pores of nanometric transverse section

is a problem of capital importance in many different areas of Biology, Chemistry, Engineer-

ing, Physics and has important technological applications. At the nanoscale, the Debye

screening length becomes in the case of dilute electrolytic solutions larger than the typ-

ical channel width so that any clear distinction between surface-like and bulk-like region

disappears and the properties of the channel are mainly controlled by the surface charge.

If the channel width is of the order of magnitude of the Debye length, the double layers

generated by the presence of surface charge at the walls overlap and the solution inside is

prevalently formed by counter-ions. Thus, it is possible to use the surface charge to control

the concentration of ions inside the channel [1–3] with applications to devices.

The time evolution of the concentrations and electric field are reasonably well described

by the Planck-Nernst-Poisson (PNP) model, which represents the workhorse of studies in

this important field. It combines the Fick diffusion law with the migration effect induced

by the electric field produced by the charges either fixed at the boundaries of the system

or moving through the solvent. One also assumes that the electric field corresponds to the

one produced by a continuous charge distribution obtained by thermally averaging over the

instantaneous charge configurations. Numerical solutions of the stationary three dimensional

(3d) PNP problem are discussed in the vast literature on the subject, but it is often desirable

to have an even simpler description in terms a reduced number of coordinates. In some cases,

using the symmetry of the problem and the fact that gradients are negligible in some specific

directions it is possible to obtain a one dimensional effective representation thus reducing

the computational effort. In fact, in many system of interest, such as long tiny channels

the motion basically occurs in a single direction and one may seek a method to reduce the

three dimensional PNP equations to a one dimensional effective description [4, 5]. In the

case of a channel of uniform section such a reduction is simpler than in the case of channels

of varying section, whereby the procedure requires a series of additional approximations.

Such a program was originally carried out by Jacobs [6] and continued by several authors

[7–10] in the case of standard diffusion problems. The methods used by these authors

are basically homogenization techniques, by which one eliminates the dependence of some

observables on some coordinates, using their slow variation in space. However, the purpose
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of the present paper is somehow different from the one which motivated the previous authors

who were interested in investigating the transient diffusion process in non uniform channels.

Our scope is to analyze how the steady state properties are influenced by the geometry. A

second important difference consists in the fact that we apply the homogenization technique

to the PNP electrokinetic equations describing the flow of electrolyte solutions in narrow

channels of variable width.

The present paper is organized as follows: in section II we derive the PNP equations from

a free energy approach, and perform the reduction of the equations from three dimensional

space to one dimensional space for a axisymmetric system. In section III we solve the full set

of one dimensional equations by numerical methods and compare these results with those

obtained by solving the three dimensional Lattice Boltzmann equation for a ternary charged

mixture composed of two ionic species and a solvent species. Finally, in section IV we discuss

the results and present some conclusions.

II. A SIMPLE DERIVATION OF THE PNP SYSTEM AND ONE DIMENSIONAL

REDUCTION

We first derive the PNP equations in the framework of Dynamic Density Functional

Theory (DDFT) [11]. We assume the following free energy functional describing two oppo-

sitely charged species of charges ±ze in the presence of a quiescent, structureless solvent of

dielectric constant ε and of a fixed charge distribution eqe(r):

F [n+, n−, φ] =

ˆ
dr
[
(kBT

∑
α=±

n±(r)[ln(n±(r)Λ3
±)−1]+e[z(n+(r)−n−(r))+qe(r)]φ(r)− ε

2
(∇φ(r))2

]
(1)

where we have introduced the electric potential φ in order to have a local formulation of the

theory [12] and Λ± represents the thermal de Broglie wavelength of the two ionic species. The

free energy, F , contains only ideal gas entropic contributions and the Coulomb interaction

term. Within the DDFT one describes the relaxation of the ionic densities and the electric

potential by the following set of governing equations

∂n±(r, t)

∂t
=

1

γ±
∇ ·

(
n±(r, t)∇δF [n+, n−]

δn±(r, t)

)
(2)
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which can be regarded as a continuity equation for the individual species, with partial

currents given by

J±(r, t) = − 1

γ±

(
n±(r, t)∇δF [n+, n−]

δn±(r, t)

)
(3)

Here γ± are coefficients characterizing the friction of the ions with the solvent, so that the

diffusion coefficients D± follow from the Einstein relation D± = kBT
γ±

. Upon differentiating

the free energy 1 at fixed electric potential we obtain the explicit expression

δF [n+, n−]

δn±(r, t)
= kBT lnn±(r, t)± zeφ(r, t) (4)

and after substituting in eq. 2 we arrive at the following driven diffusion equation:

∂n±(r, t)

∂t
= D±∇ ·

(
∇n±(r, t)∓ zen±(r, t)

kBT
E(r, t)

)
(5)

For later reference we shall specify the Debye length

λD =

√
εkBT

2z2e2nb

where nb is the bulk value of the densities of the two ionic species. The governing equation

for the electric field E = −∇φ is obtained by functionally differentiating 1 with respect to

φ at constant densities

∇ · E(r, t) =
ze

ε
(n+(r, t)− n−(r, t). (6)

The Poisson equation 6 must be supplemented by the boundary condition E · n(x) = Σ(x)
ε

.

Eqs. 5 and 6 constitute the Poisson-Nernst-Planck model. Here we are interested in

those cases where the dynamics occurs mainly along a single direction, say the x-direction.

Convenient observables depending only on x are the sectionally averaged densities, for which

one can derive simple evolution equations. The reduction in dimensionality from 3d to 1d is

based on the assumption, reasonable for narrow channels, that all motions perpendicular to

the axis reach equilibrium more rapidly than those along it. The method can be generalized

to the case of non uniform confining geometries where the resulting evolution equations

contain extra terms, interpreted as entropic forces [7], due to tendency of the particles to

fill uniformly the space. In fact, narrower sections contain a number of particles per unit

length smaller than wider ones.

Let us consider a 3d system with axial symmetry along the x direction bounded by a

surface described by the shape function R = R(x) and assume that the particles can move
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only in the inner space, so that n(x, r) = 0, if r > R(x). We define the sectional average of

a generic field a(x, r) as :

〈a(x)〉 =
2

R2(x)

ˆ R(x)

0

drra(x, r) (7)

where r is the distance from the x axis. By applying the averaging operator 〈·〉, to the

equation for the current J±(x), one obtains the following expression for its x-component:

〈J±x (x)〉 = −D±
( d
dx
〈n±(x) > +

2R′(x)

R(x)
(〈n±(x)〉 − n±(x,R))

)
±µ±〈Ex(x)〉〈n±(x)〉 (8)

where in the last term we have approximated the average of the forcing term in eq. 5 by the

product of averages. If we further assume that the density profile in the transverse direction

varies slowly, so that its local value at the wall, r = R, can be approximated by its sectional

average, the coefficient of the derivative of R(x) vanishes. Assuming the confining walls

to be impenetrable, the component of the current parallel to the normal n , must vanish

lateral boundaries J±(x,R) · n = 0 . Under stationary conditions the currents are subject

to the zero divergence conditions ∇ · J±(r) = 0, so that for a channel of variable section the

quantity I± = 〈J±
x (x)〉
D± πR2(x) must be constant. In order to integrate eq. 8 we define a new

concentration variable

c±(x) ≡ πR2(x)〈n±(x)〉 (9)

and write the 1d-PNP equation as:

dc±(x)

dx
− 2

R′(x)

R(x)
c±(x)∓ ze〈Ex(x)〉

kBT
c±(x) = −I± . (10)

The r.h.s. of eq. 10 has the simple interpretation of (minus) the current generated by a

gradient of concentration c(x) , by the entropic force associated with the area variation of

each section plus a force due to the electric field . If 〈Ex〉 = 0, the current, I±, vanishes

when c±(x)/πR2(x) = 〈n±(x)〉 = const.

By applying the averaging operation to the Poisson equation we obtain:

2

R2(x)

ˆ R(x)

0

drr
∂Ex
∂x

=
ze

ε
〈(n+ − n−〉 − 2

R(x)
Er(x,R) (11)

and using the identity

2

R2(x)

ˆ R(x)

0

drr
∂Ex
∂x

=
d〈Ex(x)〉

dx
+

2R′(x)

R(x)
(〈Ex〉 − Ex(x,R)) (12)
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we can write

d〈Ex(x)〉
dx

+
2R′(x)

R(x)
〈Ex〉 =

ze

ε
〈(n+ − n−〉 − 2

R(x)
(Er(x,R)−R′(x)Ex(x,R)) (13)

Finally, we consider the relation between the radial, Er, and the longitudinal components

Ex, of the electric field at the boundary and the surface charge:

E · n(x) = −[Er(x,R)− Ex(x,R)R′(x)]
1√

1 + (R′(x))2
=

Σ(x)

ε
(14)

to conclude the sectional averaging of the Poisson equation 6 yields the following result:

d〈Ex(x)〉
dx

+2
R′(x)

R(x)
〈Ex(x)〉 =

1

επR2(x)

(
ze(c+(x)−c−(x))+2πR(x)Σ(x)

√
1 + (R′(x))2

)
(15)

where the term Σ(x)
√

1 + (R′(x))2 represents the product of the surface area charge density

with the line length of the boundary. Such a correction due to the line length has usually

been neglected on account of the small effect in the case of nearly flat interfaces. The

presence of the second term in the left hand side of eq. 15 due to the sectional averaging

and has the form predicted by Eisenberg and coworkers [13, 14]. Formula 15 reflects the

fact that in the absence of free charges the quantity 〈Ex(x)〉πR2(x) is constant throughout

the system. Let us remark that the equation for the electric field is one-dimensional and the

surface charge appears now directly in the 1d Poisson equation as a source term as a result

of the homogenization procedure.

Notice that we can also define a one dimensional electric potential ψ̄(x) such that

〈Ex(x)〉 = −dψ̄(x)
dx

which however, is not the sectional average 〈φ〉 of the true potential

φ(x, r).

III. PERFORMANCE OF THE ONE DIMENSIONAL PNP REDUCED MODEL

The purpose of the present section is to assess the validity of the 1d-PNP equations 10

and 15 by comparing the numerical solutions with those obtained by solving the full three-

dimensional problem. For the latter, the electrokinetic equations will be solved numerically

in the framework of the Lattice Boltzmann (LB) method. The 3d system used in the LB

comparison is composed by a ternary mixture of positively and negatively charged point
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particles immersed in a solvent of neutral particles. The three types of particles move in a

continuum dielectric medium of uniform permeability ε.

The system evolves according the following kinetic equations for the one-particle phase

space distributions fα(r,v, t) of each species α:

∂

∂t
fα(r,v, t)+v·∇rf

α(r,v, t)−ez
α∇rψ(r, t)

mα
· ∂
∂v

fα(r,v, t) = −ω[fα(r,v, t)−nα(r,v, t)φM(r,v, t)]

(16)

where

φM(r,v, t) = [
m

2πkBT
]3/2 exp

[
−m(v − u(r, t))2

2kBT

]
(17)

is the Maxwell-Boltzmann distribution peaked around the common fluid velocity, u (see Ref.

[15]).

From the distribution functions fα, also called populations, we extract the local densities

nα(r, t) =
´
dvfα(r,v, t) and the currents are obtained as Jα(r, t) =

´
dvvfα(r,v, t), and

thus the common velocity is given by u =
∑
α J

α(r, t)/
∑
α n

α. We determine the electric

field E by solving numerically the 3d Poisson equation 6 by means of a SOR (Successive

over-relaxation) algorithm [16]. In addition, we fix the diffusion coefficients to be the same

for each species and equal to Dα = kBT/ωm
α = 1, where ω is the relaxation frequency

featuring in eq. 17. The discretized version of eq. 16, which is the essence of the LB method,

is not reported here. The interested reader can find the details of the numerical scheme in

Refs. [17–20]. In the following we use lattice units to express the density and the electric

potential. Given the lattice spacing ∆x, the dimensionless Debye length and number density

are defined λD = λ̃D∆x and n = ñ∆x3, where λ̃D and ñ are the dimensional counterparts.

Similarly, Σ = Σ̃∆x2/e, φ = eφ̃/kBT and ∆V = e∆̃V /kBT are the dimensionless surface

charge, electric potential and applied tension, respectively.

The studied systems are depicted in Fig. 1 and consist of two reservoirs connected by

a straight channel with the three compartments having cylindrical symmetry with radius

R(x). System A contains a straight cylindrical channel with a sharp discontinuity in the

radius profile R(x) at the channel openings, it is therefore quite challenging to reproduce

the 3d charge distribution and currents within the 1d-PNP framework. System B, instead,

contains two ramps at the channel openings that could ameliorate in principle the quality

of the 1d-PNP solution, by reducinwg the discontinuities in R(x). The inner surface of

the channels has a surface charge density Σ(x) that is uniform for both systemsinside the
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channel for both systems and equal to −2× 10−4 , a value corresponding to a SiN channel.

In the simulations, a potential difference is applied across the system at the left and right

extremes of the system, hereafter named inlet and outlet respectively. At these extremes,

xI and xO, we fix the electrostatic potential, φI and φO, as

φ(xI , y, z) = φI φ(xO, y, z) = φO (18)

and we assume all species to have the density fixed by their bulk values at the electrodes

n±(xI , y, z) = n±(xO, y, z) = n±b (19)

In terms of the 3d-LB numerical scheme, in order to impose the densities at the elec-

trodes, we choose appropriately the populations such as to recover the corresponding zeroth

moments. At the same time, the first moments (the currents) should be left untouched by

the boundary method. At the extremal regions, this problem consists of completing the

populations with contributions stemming from the incoming (at the inlet) and outgoing (at

the outlet) missing information. To this end, we apply the completion scheme of ref. [21],

which imposes the non-equilibrium part of the populations for the contributions directed

along +x and −x to be equal.

The contour plots of the 3d-LB densities are reported in Fig. 2 for pores of different

diameters and undergoing the action of an external tension. For the same systems, in

Fig. 3 we compare the sectionally averaged, longitudinal profiles of the densities and the

electrostatic potential. From the data, 3d-LB and 1d-PNP obey similar general trends,

with a build-up of counter-ions with a characteristic bell-shape inside the channel, whereas

concentration polarization develops in the reservoir regions. The latter is a manifestation

of the electrostatic attraction of counter-ions towards the charged channel, contrasted by

the external walls of the reservoir. The most relevant difference between 3d-LB and 1d-

PNP is the amount of counter-ion build-up and co-ion depletion in the channel region.

In particular, the 3d-LB data show a discontinuity of the charge profiles at the channel

openings, apparently due to the strong confining forces acting on the electrolytes.

From Figs. 2 and 3 it is worth noting the increase of counter-ion build-up and co-ion

depletion as the channel diameter is reduced. The narrower is the channel, the larger is the

difference in profiles between the PNP and LB solutions. At the same time, it is evident

the long range, hemispherical modulation of the charge distributions in the reservoirs. Such
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long-range modulation is the effect of the strong confinement of the electric field lines as they

squeeze in the channel region, usually referred to as entrance/exit effects since any particle

approaching/exiting the channel will feel a substantial modulation in the potential already

at long distance from the channel opening. The same type of distribution is observed in Fig.

5 where the channel is taken to be longer than the Debye length (l = 40, λD = 20).

Due to the long-ranged effect of concentration polarization, we considered a system with

more extended reservoirs to avoid spurious finite size effects. The contour plots of the 3d LB

densities and the comparison of the longitudinal profiles are reported in Fig. 4. Once more,

3d-LB and 1d-PNP obey similar general trends, with a bell-shaped build-up of counter-ion

in the pore region. Now, concentration polarization has a minor effect nonetheless, the same

type of charge discontinuity is observed in the 3d simulation, ruling out the possibility that

the gap between 3d-LB and 1d-PNP is induced by the reservoir regions.

The differences in the solution obtained with 1d-PNP and 3d-LB at the pore mouths can

have different causes and further inspection is required. The neglect of charge polarization

in the transverse direction at PNP level, can be at the origin of such differences. However,

another cause of the differences can be the sharp discontinuities in the entropic forces, via

the profile R(x), at the channel openings. It is possible that the homogenized solution fails in

capturing such strong axial modulation. To explore this possibility, in Fig. 6 we report the

profiles of the counter-ions density and electrostatic potential obtained with system A and

system B. The two geometries have the same extension of the reservoirs and pore geometry,

and the same surface charge. From the plot, it is apparent that the differences between

1d-PNP and 3d-LB in the electrostatic potential are still marked, however, the 1d-PNP

solution for system B shows a clear trend to increase the charge build-up in the channel

region. Therefore, the 1d-PNP and 3d-LB solutions are more similar for system B than for

system A.

Quantitative predictions of the potential and density profiles induced by sharp changes

of the wall profile R(x) is a delicate matter since, as reported by different authors, homoge-

nization procedures work well only for smooth variations of the wall profiles [8, 9]. The one

dimensional PNP predictions against exact three dimensional LB solutions in the case of

free diffusion in channels of variable section and was found to work well for slow variations

of the channel profile.

Finally, the validation of the 1d-PNP effective equations requires studying the attitude
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to ionic transport as compared to the 3d-LB solution. A simplified theory that can quanti-

tatively predict ionic conductance, G = I/∆V where I is the electric current and ∆V the

potential difference between the two extremes, is highly desirable. For this reason we have

computed both the charge distribution of electrolytes and the ionic conductance at different

values of the Debye length. The effectiveness of screening is a critical parameter in the

channel region as it modulates the amount and spatial extension of the double layer induced

by the surface charge. Due to the homogenization procedure, the radial charge polarization

is neglected by the PNP equation, therefore any contribution stemming from electro-osmosis

is absent at this level of the theory.

Fig. 7 reports the counter-ion density profiles for the different systems and various Debye

lengths and associated conductances. As apparent, the quality of the PNP theory degrades

with the increase of the Debye length, as expected. This degradation is visible both inside the

channel region and in the reservoirs, where concentration polarization also depends on the

screening attitude. At λD = 10, the maximum of counter-ions differs from the corresponding

LB value by ' 5%, and at λD = 30 the relative difference is ' 10%.

In terms of conductance, the PNP solution provides fluxes larger by ' 30% as compared

to the LB data, and for 10 ≤ λD ≤ 30, this relative difference does not depend on the

Debye length. The mechanism for charge transport at PNP level can be ascribed to the

Ohmic mechanism in this level of description, that is, in bulk conditions the conductance is

linearly related to the number of (positive and negative) free charge carriers. On the other

hand, in the full three-dimensional system the effect of the transverse charge polarization

is to bind the charge carriers more strongly to the walls and modulated by the geometrical

inhomogeneities in the longitudinal axis, thereby reducing effectively the passage of charges

across the device as compared to a simple Ohmic mechanism. In principle, convection

and the attendant electro-osmosis phenomenon could increase the level of ionic conduction,

thereby having a lower conductivity in the PNP solution. Convection is taken into account in

the LB description but is missing in the PNP theory. From the numerical data, it is apparent

that at the chosen values of surface charge and Debye length, convection is a minor actor.

Overall, our finding provide a simple scaling value of 30% to consider the PNP prediction

on a semi-quantitative basis. More involved geometries, and difference values of the surface

charges and Debye length, however, may require a more accurate comparison between the

1d and the 3-d solutions.
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IV. CONCLUSIONS

The set of effective one-dimensional equations established in this paper represents a con-

venient route to the solution of full three-dimensional problems, which often require a de-

manding numerical effort. Entropic forces are not present in a simplistic one-dimensional

version PNP equations, but they can be accounted for by a proper homogenization of the

three-dimensional equations. The end result is a non-trivial dynamics where the modula-

tion of surface charge and degree of confinement can be considered in effective terms. The

1d-PNP equation derived here is an extension of the Fick-Jacobs dynamics for diffusive

processes to charged fluids [7].

The method of homogenization finds applications in the analysis of charge transport in

confined geometries and is a viable and efficient substitute of more detailed descriptions.

It can be particularly useful in the study of transport of biological ion channels. In spite

of the approximations involved, the method turns out to be useful because it offers a valid

opportunity to deduce the main physical characteristics of ion transport in channels in a

simple way.

The 1d-PNP description, however, can be used in a semi-quantitative way because as

compared to the 3d solution it provides smaller counter-ion accumulations and co-ion de-

pletion in the charged regions, by ∼ 10%. This mismatch increases with the degree of

confinement and the Debye length. In terms of ionic conductance, the mismatch between 1d

and 3d solutions can be as large as 30%, so that the PNP solution can be used for qualitative

purposes only.

In conclusion, the homogeneization procedure works well when the transversal density

profile varies slowly, so that we can balance a boundary term with the average of the function

over the section. The agreement between 3d-LB and 1d-PNP solutions improves for a channel

entrance varying smoothly along the longitudinal direction. The reported phenomenology is

particularly sensitive to the geometry of the pore mouth where the electric field generates an

inhomogeneous charge distribution and polarization along the pore which can be relatively

long ranged along the channel axis. Important consequences can arise in different contexts,

such as in the study of supercapacitors as widely studies in recent years [22].
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A

B
FIG. 1: Geometries used in the numerical tests, with the set-ups denoted as A (upper) and B

(lower). The dashed lines indicate the location of the surface charge. The potential tension

is applied between the inlet and outlet regions. Throughout the text, the labels D, d, L, l

and a are expressed in lattice units.
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(a) Wide channel (d = 40, D = 60, l = 20 and L = 40)

(b) Medium channel (d = 20, D = 60, l = 20 and L = 40)

(c) Small channel (d = 10, D = 60, l = 20 and L = 40)

FIG. 2: Normalized density of counter-ions (left) and co-ions (right plot) for system A for

wide, medium and small channels, with ∆V = 10−2.
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(b) Medium channel
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(c) Small channel

FIG. 3: Comparison of 1d-PNP and 3d-LB longitudinal profiles of the density (upper panels)

and the potential (lower panels). The geometries and parameters are as in Fig. 2.
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(a) Density of counter-ions

(b) Density of co-ions
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(c) Longitudinal profiles

FIG. 4: Density of electrolytes normalized by the maximum value (figures (a) and (b)).

Figures (c) compares the 1d-PNP and 3d-LB longitudinal profiles of the density (plot (c),

upper) and the potential (plot (c), lower) for system A (d = 20, D = 60, l = 20 and

L = 140), with ∆V = 10−1.
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(a) Density of counter-ions (b) Density of coions

(c) Electrostatic potential profiles

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

n+ ,n
-

PNP n+

PNP n-

LB n+

LN n-

0 50 100
X

-0.5

-0.4

-0.3

-0.2

-0.1

0

Ψ

PNP
LB

(d) Longitudinal profiles

FIG. 5: Normalized density of electrolytes, electrostatic potential and longitudinal profiles

for system A (d = 20, D = 60, l = 40 and L = 40), with ∆V = 0.

17



0 20 40 60 80 100
X

2e-05

3e-05

n+

PNP - model A
LB - model A
PNP - model B
LB - model B
PNP - model B*
LB - model B*

(a) Counter-ion profiles

0 20 40 60 80 100
X

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

ψ

PNP - model A
LB - model A
PNP - model B
LB - model B
PNP - model B*
LB - model B*

(b) Electrostatic potential profiles
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FIG. 6: Longitudinal profiles for system A (d = 20, D = 60, l = 40 and L = 40), system

B with (d = 20, D = 60, l = 40, a = 10 and L = 40), and a smoother version labelled B∗

(d = 20, D = 60, l = 40, a = 30 and L = 0). Data refer to ∆V = 0. Plot (a) reports the

counterion density, plot (b) the electrostatic potential and plot (c) the relative difference

between the 3d-LB and 1d-PNP profiles. The latter plot includes the case of a channel with

homogeneous radius (d = 20, D = 20, l = 40, L = 40).
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FIG. 7: Normalized profile of counter-ions and conductance at different Debye lengths as

obtained with the 1d-PNP and 3d-LB methods for system A (d = 20, D = 60, l = 40 and

L = 40) and ∆V = 10−2. The conductance is normalized by the value Go = e2D/l2kBT .
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[5] K. Kontturi, L. Murtomäki, and J. A. Manzanares, Ionic transport processes: in electrochem-

istry and membrane science (OUP Oxford, 2008).

[6] M. Jacobs, Diffusion processes (Springer-Verlag New York, 1967).

[7] R. Zwanzig, The Journal of Physical Chemistry 96, 3926 (1992).

[8] P. Kalinay and J. Percus, Physical Review. E, Statistical, nonlinear, and soft matter Physics

74, 041203 (2006).

[9] A. Berezhkovskii, M. Pustovoit, and S. Bezrukov, The Journal of Chemical Physics 126,

134706 (2007).

[10] D. Reguera and J. Rubi, Physical Review E 64, 061106 (2001).

[11] U. Marini Bettolo Marconi and S. Melchionna, The Journal of Chemical Physics 126, 184109

(2007).

[12] A. Maggs, EPL (EuroPhysics Letters) 98, 16012 (2012).

[13] C. L. Gardner, W. Nonner, and R. S. Eisenberg, Journal of Computational Electronics 3, 25

(2004).

[14] D. Gillespie, W. Nonner, and R. S. Eisenberg, Journal of Physics: Condensed Matter 14,

12129 (2002).

[15] S. Melchionna and U. Marini Bettolo Marconi, EPL (EuroPhysics Letters) 95, 44002 (2011).

[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in

FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific

Computing, vol. 1 (Cambridge university press, 1992).

[17] S. Melchionna and U. Marini Bettolo Marconi, EPL (Europhysics Letters) 81, 34001 (2008).

[18] U. Marini Bettolo Marconi and S. Melchionna, The Journal of Chemical Physics 131, 014105

(2009).

[19] U. Marini Bettolo Marconi and S. Melchionna, The Journal of Chemical Physics 134, 064118

(2011).

20



[20] U. Marini Bettolo Marconi and S. Melchionna, The Journal of Chemical Physics 135, 044104

(2011).

[21] Q. Zou and X. He, Physics of Fluids 9, 1591 (1997).
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