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Summary 

 The main difficulty in the successful treatment of metastatic melanoma is that this type of cancer is 

known to be resistant to chemotherapy. Chemotherapy remains the treatment of choice and dacarbazine (DTIC) 

is the best standard treatment. The DM-1 compound is a curcumin analog that possesses several curcumin 

characteristics, such as antiproliferative, antitumor and antimetastatic properties. The objective of this study was 

to evaluate the signaling pathways involved in melanoma cell death after treatment with DM-1 compared to the 

standard agent for melanoma treatment, DTIC. 

 Cell death was evaluated by flow cytometry for annexin V and iodide propide (PI), cleaved caspase 8 

and TNF-R1 expression. Hoechst 33342 staining was evaluated by fluorescent microscopy; lipid peroxidation 

(LPO) and cell viability (MTT) were evaluated by colorimetric assays. The antiproliferative effects of the drugs 

were evaluated by flow cytometry for cyclin D1 and Ki67 expression. Mice-bearing B16F10 melanoma were 

treated with DTIC, DM-1 or both therapies. 

  DM-1 induced significant apoptosis as indicated by the presence of cleaved caspase 8 and an increase 

in TNF-R1 expression in melanoma cells. Furthermore, DM-1 had antiproliferative effects in this same cell line. 

DTIC caused cell death primarily by necrosis, and a smaller melanoma cell population underwent apoptosis. 

DTIC induced oxidative stress and several physiological changes in normal melanocytes, whereas DM-1 did not 
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significantly affect the normal cells. DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 

monotherapy or in combination with DTIC, besides survival rate increase. 

 Altogether, these data confirm DM-1 as a chemotherapeutic agent with effective tumor control 

properties and a lower incidence of side effects in normal cells compared to DTIC. 
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Introduction 

 

 Metastatic melanoma is characterized by a high mortality rate [1]. This type of skin cancer has 

traditionally been difficult to treat because of its known universal resistance to standard chemotherapy [2]. Early 

stage disease can often be cured by surgery; however, unresectable cancer must be treated with systemic therapy. 

Although a greater percentage of patients are diagnosed with early stage disease compared to previous years, the 

death rate from unresectable melanoma continues to rise [3].  

 Dacarbazine (DTIC) is still considered the standard first-line treatment despite the lack of any evidence 

of this drug improving overall survival [4]. This is because no other single agent or combination of agents have 

demonstrated superiority to DTIC in terms of survival prolongation, even drugs associated with higher response 

rates [5]. Some oncoprotein-targeted drugs are promising as future cancer treatments; however, complete clinical 

responses to these drugs are rare [6].  

 In recent years, some pharmacological approaches have led to new therapy options including immune 

modulators like anti-CTLA4 or BRAF inhibitors like vemurafenib, which showed increased overall survival [7-

8]. On the other hand, these new agents have some limitations and for this reason, classical chemotherapeutic 

drugs still remain in the therapy, especially as combinations of different treatment options aiming have to be 

focused on in order to find better responses in the melanoma treatment. This unsatisfactory treatment outcome 

encourages additional studies on novel therapeutic molecules, delivery systems and combination therapies for 

melanoma [9].  

 Curcumin has long been known as a chemo-preventive and chemotherapeutic agent, and in vivo studies 

with curcumin have demonstrated decreased tumorigenesis in many organs [10], including antiproliferative 

effects in melanoma [11]. Because of its lack of toxicity, there has been increasing interest in further studies with 

curcumin [12,13]. Unfortunately, its poor absorption undermine its clinical potential [14]. 

 DM-1 is a curcumin analog and has previously been studied in animal models, such as melanoma and 

Ehrlich ascites tumor in mice. This compound is a powerful antitumor agent with both antimetastatic and 

antiproliferative activities [15,16]. Its pharmacological activity is restricted primarily to tumor tissue, with 

minimal side effects on the normal surrounding tissue.  

 The objective of this study is to compare the effectiveness of the chemotherapeutic compounds, DTIC 

and DM-1 in melanoma cells, their effects on cell death pathways and their side effects on normal cells. 

 

Materials and methods 

 

Cell lines and culture conditions 
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 The murine melanoma cell line, B16F10, and the human melanoma cell line, A375, were purchased 

from the American Type Culture Collection (Manassas, VA). These cells were grown in 75 cm2 flasks with 

DMEM (Cultilab, SP, Brazil) supplemented with 10% heat-inactivated fetal bovine serum (Cultilab), 2 mM L-

glutamine (Sigma Chemical Company, USA) and 0.1 g/mL streptomycin (FontouraWyeth AS, USA). Primary 

cultures of skin cells (melanocytes) were obtained from the foreskins of University Hospital (Hospital 

Universitário – HU-USP) patients. This project has undergone review and approval by the Ethics Committee of 

HU (HU no. CEP Case 943/09). The melanocytes were maintained in 254CF media (SKU # M-500-254CF; 

Cascade Biologics, USA) supplemented with human melanocyte growth supplement (HMGS – SKU # S-002-5; 

Cascade Biologics) as previously described [17]. The cells were grown at 37 ºC in a 5% CO2 atmosphere.  

 

DM-1: Sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate 

 Dried sodium ethanolate (0.01 mol) was mixed with 1,5-bis(4-hydroxy-3-methoxyphenyl)-1,4-

pentadien-3-one [18] (0.01 mol; 3.26 g) at a 1:1 molar ratio and stirred at room temperature under anhydrous 

reaction conditions followed by solvent rotoevaporation until solidification. The compound C19H17O5Na, has a 

molecular weight of 348 g. Results of the structural characterization of the isolated compound were consistent 

with those described previously by our group [19,20]. 

 

Cell treatment for MTT and LPO assays 

B16F10 melanoma cells, A375 melanoma cells and melanocytes were seeded in 96-well plates at a 

density of 105 cells/mL and allowed to grow for 24 h. They were then treated with different concentrations of 

DTIC (Evolabis, Brazil) or DM-1 diluted in 0.9% NaCl at concentrations ranging from 2560 to 5 µM. As a 

control, the cells were treated with the diluent only. 

 

Cell viability assay (MTT assay) 

After 24 h of treatment with DTIC or DM-1, 10 µM MTT (Sigma Chemical Company, USA) [21] was 

added to each well for an additional 4 h. The blue MTT formazan precipitate was dissolved in 100 µL DMSO. 

The absorbance at 540 nm was measured with a multi-well plate reader. The cell viability was expressed as a 

percentage of the control cells, and the data are shown as the mean value ± s.d. (standard deviation) of three 

independent experiments.  

 

Lipid Peroxidation (LPO) 

The oxidative stress on unsaturated lipids in the cell membranes was evaluated by determining the amount 

of malondialdehyde (MDA), which is the final product of fatty-acid peroxidation. MDA reacts with 

thiobarbituric acid (TBA) to form a colored complex. The thiobarbituric acid reactive substances (TBARS) were 

quantified by spectrophotometric determination (LPO method) [22]. The supernatants from the samples were 

obtained after drug treatment under the same conditions of MTT assay.   

 

Cell treatment for flow cytometry analysis 
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B16F10 cells and melanocytes were seeded in 24-well plates at a density of 105 cells/mL and allowed to 

grow for 24 h. Each cell line was treated with the Inhibitory Concentration 50% (IC50) for each compound for 6 

h.  

 

Mitochondrial membrane electric potential (∆ψm) assessment by flow cytometry 

Rhodamine 123 is a fluorescent cationic dye that binds to polarized mitochondrial membranes and 

accumulates as aggregates in the mitochondria of normal cells [23]. This agent binds only to metabolically active 

mitochondria, resulting in fluorescence emission.  

After treatment, cells in the supernatant and the adherent cells were pelleted by centrifugation at 1800 rpm 

for 10 min and resuspended in 5 µL Rhodamine 123 (5 mg/mL) for 30 min at 37°C. The cells were then washed 

with phosphate-buffered saline (PBS) and resuspended in FACS buffer (FACSCalibur-Becton Dickinson, USA). 

The samples were analyzed for fluorescence using a FL-1H detector on a Becton Dickinson FACScan flow 

cytometer using the CellQuest software. Flow cytometry histograms were recorded, and the relative intensity of 

fluorescence was calculated as the mean of active mitochondria (viable cells) or inactive mitochondria (inviable 

cells) of the control and treated samples. 

 

Apoptosis analysis by flow cytometry 

Annexin V staining detects the translocation of phosphatidylserine from the inner to the outer cell 

membrane during early apoptosis, and propidium iodide (PI) can enter the cell during late-stage apoptosis and 

also stains dead cells [23]. 

After treatment, the cells in the supernatant and the adherent cells were washed with PBS and binding 

buffer (10 mM HEPES pH 7.5 containing 140 mM NaCl and 2.5 mM CaCl2) and stained with 1 µg annexin V-

FITC (Santa Cruz Biotechnology, USA) and 18 µg/mL of propidium iodide (Sigma-Aldrich Corp.). Each sample 

was analyzed by flow cytometry using the FL-1 and FL-2 channels to distinguish the apoptotic, necrotic, and 

viable cell populations. The analysis was performed on a FACSCalibur flow cytometer using the CellQuest 

software (FACSCalibur; Becton Dickinson). 

 

Protein analysis by flow cytometry 

After treatment, the cells in the supernatant and the adherent cells were pelleted by centrifugation at 1800 

rpm for 10 min and incubated with 1 µg of specific anti-cyclin D1 (Santa Cruz, USA), anti-Ki67 (Dako, USA), 

anti-caspase 8 or anti-TNF-R1 receptor antibodies (tumor necrosis factor-α receptor) (Santa Cruz, USA) and 10 

µL 0.1% Triton X-100 for 1 h at 4°C. Then, the samples received addition of 2 µL anti rabbit IgG-Alexafluor-

488 (Invitrogen, USA) in untagged primary antibody coupled cells and incubated further in dark for 30–35 min. 

Excess fluorescence was then washed off with PBS. Subsequently, the cells were resuspended in FACS buffer. 

The samples were analyzed for fluorescence (FL-1 channel) on a Becton Dickinson FACScan flow cytometer 

using the Cell Quest software. 

 

Hoechst staining 

 Cell nuclear morphology was evaluated by fluorescence microscopy following Hoechst 33342 DNA 

staining (Sigma–Aldrich Corp). A375 human melanoma cells were seeded in 24-well plates at a density of 105 
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cells/mL and were grown for 24 h. This cell line was treated with the IC50 for either DTIC or DM-1 alone or a 

combination of 5 µM DTIC + 5 µM DM-1 for 24 h. These concentrations were chosen in order to verify if the 

addition of DM-1 compound would allow the DTIC concentration decrease down to 10% of IC50 with the same 

efficacy in this cell type. The cells were washed with phosphate buffer saline (PBS), resuspended in 2 µg/mL 

Hoechst 33342 and incubated for 30 min at 37ºC in the dark. Then, cells were then washed with PBS and 

examined under a Nikon fluorescent microscope. 

 

Inoculation of B16 melanoma cells in mice 

The murine B16F10 was cultivated in RPMI-1640 medium supplemented with 10 % fetal bovine serum 

(FBS), 2 mM-Lglutamine, 1 mM sodium pyruvate and 100 IU/ml of penicillin and 100 µg/ml of streptomycin 

(Invitrogen Inc, Carlsbad, USA). Cell suspensions were detached from plates with trypsin. After trypsin 

inactivation with 10% FBS, viable cells were counted by trypan blue dye exclusion. For tumor inoculation, 

5×104 cells were suspended in 100 µl of PBS and injected subcutaneously into the flank regions of C57BL/6J 

mice. Ten to fourteen days after inoculation the tumors became macroscopically apparent. 

 

In vivo antitumor activity 

 Mice were inoculated with B16F10 melanoma cells as described above and were randomly allocated to 

four groups of 5 animals. The DM-1 compound and DTIC were administered by intraperitoneal way. The DM-1 

compound was administered daily and its concentration was 83 µM in 100 µL of saline solution. This 

concentration was calculated considering the IC50 value determined in the in vitro assay. 

 On fourteen day counted from the initial inoculation day, four experimentation groups were used: 

Control: five mice-bearing B16F10 melanoma were treated with 100 µL of saline solution 0.9%; 

DTIC: five mice-bearing B16F10 melanoma were treated with 4.5 mg/kg/body mass of DTIC [24] diluted in 

saline solution 0.9% every two days for a total of seven doses; 

DM-1: five mice-bearing B16F10 melanoma were treated daily with DM-1 compound diluted in saline solution 

0.9%; 

DTIC+DM-1: five mice-bearing B16F10 melanoma were treated daily with DM-1 compound diluted in saline 

solution 0.9% plus 4.5 mg/kg/body mass of DTIC every two days for a total of seven doses; 

 Tumor sizes were measured daily using a calipers-like instrument. The size measurement was converted 

to tumor volume by the equation: tumor area= ΠR2, where Π was (length tumor + width tumor)/4 [25]. 

Necropsies were performed after 14 days of tumor inoculation. All animal experiments were carried out 

according to the regulations of the Ethical Committee for Animal Research at the Butantan Institute (479/09). 

 

Statistical analysis 

 The values are expressed as the mean ± s.d. The data were analyzed using a one-way analysis of 

variance (ANOVA). Significant differences in the means were determined using multiple comparisons with the 

Tukey-Kramer test at a significance level of p<0.05. Any significant differences between the control and treated 

groups are indicated as ***p<0.001, **p<0.01, and *p<0.05.  

 

Results 
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DM-1 decreases cell viability in melanoma cells 

 To evaluate the cytotoxic effects of DM-1 and DTIC, B16F10 murine melanoma cells, A375 human 

melanoma cells and normal melanocytes were treated with different drug concentrations for 24 h and cell 

viability was determined by MTT assay. 

 Consistent with the results of Henmi and co-workers [26], the chemotherapeutic agent DTIC, had high 

IC50 values in the A375 human melanoma cell line. For the B16F10 murine melanoma cells, this value was even 

higher. DM-1 had greater cytotoxic effects that were approximately 46- and 8-fold higher in the murine and 

human melanoma cell lines, respectively, compared to DTIC. Treatment of the normal melanocytes showed no 

significant differences between the IC50 values of the two compounds (Table 1). Altogether, these results 

indicate that DM-1 has a higher potency and selectivity for cancer cells, whereas DTIC acts similarly in both 

cancer and normal cells. 

 

Please insert Table 1 here. 

 

DM-1 induces cell death by apoptosis in melanoma cells 

   

 As observed above, DTIC and DM-1 treatment of B16F10 cells induced a significant decrease in cell 

viability. To discriminate the type of cell death triggered by these drugs, annexin V flow cytometry analysis was 

performed. Four different populations of cells were easily identified: unlabeled viable cells, annexin V positive 

cells (early apoptotic), PI positive cells (necrotic) and annexin V and PI positive cells (late apoptotic).  

 In our experiments, DTIC treatment increased the percentage of necrotic B16F10 cells by 

approximately 75%. Conversely, DM-1 significantly increased the percentage of cells undergoing late apoptosis, 

to approximately 90% after 6 h of treatment (Fig. 1 A-D). In normal melanocytes, these two types of cell death 

were not significantly changed with either treatment (Fig. 1 E-H). 

 

Please insert Figure 1 here. 

 

Mitochondrial membrane potential (∆ψm) changes are an additional indication of apoptosis because ∆ψm 

contributes to the process that facilitates the exit of many apoptogenic factors to the cytosol. As shown in fig. 2 

(A-C), the electric mitochondrial membrane potential of B16F10 melanoma cells was decreased after 6 h of 

treatment with DTIC and DM-1. Both treatments induced a significant reduction in ∆ψm; however, DM-1 

caused a 65% decrease in viable cells and/or active mitochondria, whereas DTIC induced only a 12% decrease in 

viable cells and/or active mitochondria compared to the untreated cells. 

 Melanocytes treated with DTIC showed a moderate decrease in mitochondrial electric potential. In 

addition, DM-1 treatment did not change this potential in normal cells (Fig. 2 D-F), demonstrating DM-1 

specificity for cancer cells. 

 

Please insert Figure 2 here. 
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 Finally, nuclear morphological changes were examined because they are another classical feature of 

apoptosis. The cells were examined under fluorescence microscopy after Hoechst 33342 staining to confirm 

apoptotic cell death. The apoptotic nuclei were distinctively marginated and fragmented when observed under 

the fluorescent microscope. 

 The control cells were highly confluent and displayed regular nuclear structure (Fig. 3 A). After DTIC 

treatment (IC50), a few of the A375 human melanoma cells showed ‘bean-shaped’ nuclei (Fig. 3 B). DM-1 

treatment (IC50) induced the formation of apoptotic bodies and nuclear condensation (Fig. 3 C). 

 The combination of DTIC and DM-1, each at lower concentrations (5 µM), induced the formation of 

apoptotic bodies, 'bean-shaped’ nuclei, highly condensed chromatin and nuclei with irregular clumps of dense 

chromatin (Fig. 3 D). These results suggest a synergistic effect between DTIC and DM-1. 

 

Please insert Figure 3 here. 

 

Extrinsic apoptotic pathway activation 

Apoptosis can be induced by the extrinsic and/or the intrinsic (mitochondrial) pathway. Caspases represent a 

family of cysteine proteases that are common downstream effectors of apoptosis. The cleavage of caspase 8 

indicates cell death initiated by the extrinsic apoptotic pathway [27]. The expression levels of several markers of 

this pathway, such as cleaved caspase 8 and TNF-R1, were evaluated after 6 h of DTIC or DM-1 treatment. Both 

treatments caused an increase of cleaved caspase 8 in the B16F10 melanoma cells; however, only DM-1 

increased TNF-R1 levels (Fig 4 A and C). Notably, there was a moderate decrease in the level of cleaved caspase 

8 in the melanocytes, but changes in the TNF-R1 were not observed. This indicates that the extrinsic apoptotic 

pathway is not activated in the normal melanocytes (Fig. 4 B and D). 

 

Please insert Figure 4 here. 

 

Free radical production 

 Oxidative stress causes cellular damage, which can lead to apoptosis. To evaluate whether DTIC and 

DM-1 induce oxidative stress in melanoma cells, free radical production was assessed by the evaluation of 

malondialdehyde production in the cytoplasmic membranes of B16F10 melanoma cells and melanocytes after 

drug treatment. 

 DTIC induced an approximately 10-fold increase in the amount of malondialdehyde in the B16F10 

cells. Significant effects were observed until a concentration of 160 µM (Fig. 5 A). By contrast, DTIC caused a 

doubling of malondialdehyde synthesis in normal melanocytes and a significant damage was observed with the 

majority of concentrations tested, up to 80 µM (Fig. 5 B).  

 DM-1 treatment increased the malondialdehyde concentration by 130-fold in the B16F10 melanoma 

cell line and induced damage at all the concentrations tested (Fig. 5 C). Furthermore, DM-1 caused less damage 

than DTIC at the same concentrations in normal melanocytes. A moderate increase of malondialdehyde 

production was observed only for the two highest concentrations tested (Fig. 5 D). 

 

Please insert Figure 5 here. 
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DM-1 and DTIC have antiproliferative effects on melanoma cells, but not normal cells 

 The antiproliferative effects of the drugs on the melanoma cells were evaluated by cyclin D1 and Ki67 

protein expression. Type D cyclins, together with their CDK partners, form a key regulatory unit of the G1/S 

transition that is frequently impaired in neoplasia [28]. The Ki67 nuclear protein is expressed in proliferating 

cells and may be necessary to maintain cell proliferation. Ki67 has been used as a marker of cell proliferation in 

solid tumors [29].  

 Cyclin D1 levels were significantly decreased after DTIC (p<0.01) and DM-1 (p<0.001) treatment in 

B16F10 melanoma cells (Fig. 6 A). Conversely, this reduction was not observed in the normal melanocytes. In 

fact, these cells presented a slight increase in the expression of cyclin D1 after treatment (Fig. 6 B).  

 By contrast, Ki67 expression was significantly decreased after treatment of the melanoma cells with 

DTIC or DM-1, (Fig. 6 C). DM-1 did not modify expression of Ki67 in normal melanocytes; however, a 

moderate increase in expression of this marker was observed after DTIC treatment (Fig. 6 D).  

 

Please insert Figure 6 here. 

 

In vivo DM-1 antitumor effect 

 The DM-1 compound also showed in vivo antitumor activity. The cytotoxic effects were obtained with 

DM-1 compound administration alone or in combination with chemotherapeutic DTIC. The B16F10 melanoma-

bearing mice without treatment (control group) showed a significant tumor area increase. The group receiving 

DTIC chemotherapy alone showed a 43% tumor burden decrease in comparison to the control group. The group 

treated with DM-1 compound alone and the group treated with both therapies showed 57% and 63% tumor 

burden reduction, respectively, compared to control group (Figure 7A). Both groups treated with DM-1 

compound showed better antitumor effects than DTIC monotherapy. 

 After 28 days of B16F10 melanoma cell inoculation, there were no live animals in the control group. In 

this same period, there were 40% of live mice treated with DTIC in monotherapy. The mice survival rate of both 

DM-1 groups (monotherapy or in combination with DTIC) was significantly increased in comparison to the 

control group or DTIC monotherapy, because in the end of 14 treatment days with DM-1, all mice remained 

alive (Figure 7B). 

 

Please insert Figure 7 here. 

 

Discussion 

  

 The incidence of melanoma continues to rise, and an estimated increase of 27% in new diagnoses was 

made in 2012. This is significantly greater than only 5 years ago [3]. This increase in incidence is due both to 

improved awareness leading to additional diagnoses and to life style changes that have resulted in an increase in 

sun exposure over the past decades. Moreover, melanoma has a known resistance to chemotherapy and this is 

related, in part, to defects in proapoptotic signaling [30]. 

 The DM-1 compound showed IC50 values considerably lower than the currently used chemotherapeutic, 

DTIC. In addition, it induced injury to tumor cells at lower concentrations, and also caused oxidative damage in 
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the B16F10 melanoma cell line at all concentrations tested (2560-5 µM). DTIC showed similar levels of damage 

in only half the concentrations tested, and had less cytotoxic potential than DM-1. Furthermore, DTIC caused 

oxidative damage in the normal melanocytes at the same concentrations used for treating the melanoma cells. 

DM-1 caused oxidative damage only in the melanocytes treated with the two highest concentrations of drug. 

Pretreatment with different concentrations of another curcumin analog caused a significant decrease in the levels 

of TBARS and DNA damage in normal hepatocytes [31]. 

 Reactive oxygen species (ROS) interact with biological molecules to produce toxic free radicals 

resulting in lipid peroxidation (LPO) and DNA damage [32]. Furthermore, LPO products, such as 

malondialdehyde, form adducts with cellular DNA. LPO can be defined as a cascade of biochemical events 

resulting from the action of free radicals on the unsaturated lipids of cell membranes. This generates primarily 

alkyl, peroxyl and alkoxyl radicals, leading to destruction of their structure, the failure of mechanisms that 

exchange metabolites and cell death. Therefore, LPO can be used as an indicator of cellular oxidative stress [33]. 

 In non-apoptotic cells, most phosphatidylserine molecules are localized to the inner layer of the plasma 

membrane. However, in the annexin V assay, the translocation of phosphatidylserine residues from the internal 

layer to the outer face of the plasma membrane prior to the loss of membrane integrity is an indicator of 

apoptotic induction [23]. After DM-1 treatment, the majority of the B16F10 melanoma cells showed cell death 

by apoptosis, whereas cells treated with DTIC presented necrosis as the main type of cell death. In melanocytes, 

these effects were not observed.  

 Disruption of the ∆ψm is an early event associated with apoptosis and has been suggested to be one of 

several factors responsible for cytochrome c release [34]. Melanoma cells showed a significant decrease in the 

∆ψm for both treatments. However, DTIC also caused this effect in normal melanocytes, thereby inducing 

changes in cell polarity and causing cell death.  

 Extrinsic and intrinsic apoptotic pathways have both been described [35]. The extrinsic pathway is 

initiated by binding of TNF-R1, CD95L/FasL or TRAIL to death receptors, the formation of death-inducing 

signaling complexes (DISC) and activation of the initiator caspases 8 and 10 [36]. By contrast, the intrinsic 

pathway is initiated by cellular and DNA damage and utilizes mitochondria particularly. Key events that occur 

when the intrinsic apoptotic pathway is activated are the depolarization of ∆ψm and mitochondrial outer 

membrane permeabilization (MOMP). This results in the release of mitochondrial factors, such as cytochrome c, 

AIF (apoptosis-inducing factor) and SMAC (second mitochondria derived activator of caspases) [37]. The 

initiator caspases 8, 9 and 10 activate the downstream effector caspases 3, 6 and 7, which cleave a large number 

of death substrates to initiate apoptosis [38]. 

 DM-1 treatment induced an increase in TNF-R1 expression, in addition to significant activation of 

caspase 8. DTIC also induced moderate caspase 8 cleavage; however, there was no increase in TNF-R1 

expression. Bill and coworkers also showed that a curcumin analog induced apoptosis through caspase 8 

cleavage after 24 h of treatment. This compound also resulted in the loss of mitochondrial membrane potential in 

the melanoma cells [39].  

 Additionally, the morphological changes in the A375 human melanoma cells treated with DM-1 

included the formation of apoptotic bodies and condensed chromatin, whereas the cells treated with DTIC 

presented with ‘bean-shaped’ nuclei when analyzed by Hoechst 33342 staining. However, the combination of 

both treatments, at appreciably lower concentrations, induced all of the above cited characteristics. It is known 
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that the effects of DTIC can be improved by combination with other chemotherapeutic agents or new compounds 

[40]. Together with the annexin V data, it can be concluded that only a small population of cells treated with 

DTIC undergo apoptosis, whereas the majority die by necrosis. However, the results obtained with DM-1 

indicate that DM-1 induces apoptosis in melanoma cells.  

 Cell cycle dysregulation is a fundamental process in tumor progression, and unregulated cell 

proliferation is a feature of malignant tumors. Cell proliferation and the cell cycle are regulated by the formation, 

activation, and degradation of a series of cyclins and cyclin-dependent kinase complexes. Cyclin D1, a G1 cell-

cycle protein, phosphorylates and inactivates the tumor-suppressor protein, retinoblastoma, and promotes the 

progression from G1 to S phase [41]. Increased proliferative activity of tumor cells is also associated with 

malignancy and is an important prognostic marker in many human cancers. Markers that are widely used to 

assess cell proliferation are the proliferating cell nuclear antigen and the Ki67 protein. The latter is a nuclear 

antigen synthesized throughout most of the cell cycle, except during the G0 and early G1 phases [42]. 

 Cyclin D1 expression in melanoma cells was reduced after treatment with both DTIC and DM-1. This 

effect was the opposite of what was observed in the normal melanocytes. This could be explained as a 

proliferative response to injury caused by the treatments. These effects were partially observed for Ki67 

expression. The melanoma cells had reduced expression of Ki67, whereas the melanocytes treated with DTIC 

showed a moderate increase in Ki67 expression. There were no significant changes in Ki67 expression in 

melanocytes treated with DM-1. Curcumin and some of its analogs also induce a decrease in cyclin D1 

expression [43]. This way, the analogs, including DM-1, can be effective in regulating the cell cycle progression 

of tumor cells. 

 As action mechanism, the DM-1 compound induces cell cycle arrest by cyclin D1 and Ki67 decrease 

and apoptosis by free radicals production, TNF-R1 and cleaved caspase-8 increase, as well mitochondrial 

electrical potential decrease. Furthermore, apoptosis was also confirmed by apoptotic bodies in human 

melanoma cell line. That is, the extrinsic and intrinsic apoptosis pathways were enabled by DM-1. DM-1 

compound also induces Bcl-2 and Mcl-1 decrease, besides caspase 3, 9 and Parp cleavage (data not shown). 

DM-1 antitumor therapy in vivo showed tumor burden decrease with DM-1 monotherapy or in combination with 

DTIC, besides survival rate increase. Aggarwal and coworkers showed a decrease of approximately 30% in 

tumor burden after treatment with curcumin analogs, while our study found an approximately 60% of reduction 

[44]. Tumor burden decrease and survival rate increase were also found in mice-bearing breast cancer after DM-

1 treatment in combination with paclitaxel chemotherapeutic [15].  

 In conclusion, the molecular and cellular mechanisms related to tumor cell death after DM-1 treatment 

compared to the currently used chemotherapeutic agent, DTIC, have been presented. Here, we confirm the high 

toxicity and nonspecificity of DTIC when used for tumor treatment. Moreover, these results show that DM-1 

induces tumor cell apoptosis through both the extrinsic and intrinsic pathways, and DM-1 treatment also causes 

cell cycle arrest. In vivo antitumor therapy showed high synergism between DTIC and DM-1 may help side 

effects decrease during melanoma treatment. These data confirm DM-1 as a powerful chemotherapeutic agent 

with effective tumor control properties and a lower incidence of side effects in normal cells compared to DTIC. 
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Legends 

 

Figure 1 – Representative histograms of B16F10 melanoma cells (A) control, (B) DTIC, (C) DM-1 and 

melanocytes (E) control, (F) DTIC, (G) DM-1 stained with annexin-V (FL-1H axis X) and propidium iodide 

(FL-2H axis Y) for cell death quantification. The distribution (mean±s.d.) is the number of viable, necrotic and 

apoptotic (D) B16F10 melanoma cells and (G) melanocytes.  

ns: not significant compared to the control. 

*p<0.05 and ***p<0.001 compared to control. 

 

Figure 2 – Representative overlaps of fluorescence intensity from melanoma cells and normal melanocytes 

stained with Rhodamine 123 and analyzed by flow cytometry. The overlaps represent the B16F10 melanoma 

cells treated with (A) DTIC and (B) DM-1 and the melanocytes treated with (D) DTIC and (E) DM-1. The 



 16

distribution (mean±s.d.) is the number of (C) B16F10 melanoma cells and (F) melanocytes with active 

mitochondria (viable cells) or inactive mitochondria (inviable cells).  

ns: not significant compared to the control. 

*p<0.05 and ***p<0.001 compared to the control. 

 

Figure 3 – Detection of apoptotic cells by Hoechst 33342 staining. A375 human melanoma cells (A) control and 

treated for 24 h with (B) DTIC (IC50 – 548 µM), (C) DM-1 (IC50 – 65 µM) or (D) a combination of DTIC (5 

µM) + DM-1 (5 µM) (400x magnification). The inset represents the cell confluence (100x magnification). 

 

Figure 4 - Expression of apoptotic markers in melanoma cells and normal melanocytes (normalized values of the 

mean ± s.d.) by flow cytometry. Cleaved caspase 8 expression after DTIC and DM-1 treatment compared to the 

control in (A) B16F10 melanoma cells and (B) melanocytes. TNF-R1 expression after DTIC and DM-1 

treatment compared to the control in (C) B16F10 melanoma cells and (D) melanocytes.  

ns: not significant compared to the control. 

*p<0.05, **p<0.01, and ***p<0.001 compared to the control. 
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Figure 5 - Malondialdehyde production after DTIC (A) and DM-1 (B) treatment in B16F10 melanoma cells, and 

(C) DTIC and (D) DM-1 treatment in melanocytes at different concentrations compared to the control.  

ns: not significant compared to the control. 

**p<0.01 and ***p<0.001 compared to the control. 

 

Figure 6 - Expression of cell cycle regulator markers in melanoma cells and normal melanocytes (normalized 

values of the mean ± s.d.) by flow cytometry. Cyclin D1 expression after DTIC and DM-1 treatment compared 

to the control in (A) B16F10 melanoma cells and (B) melanocytes. Ki67 expression after DTIC and DM-1 

treatment compared to the control in (C) B16F10 melanoma cells and (D) melanocytes. 

ns: not significant compared to the control. 

**p<0.01, and ***p<0.001 compared to the control. 
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Figure 7 - Tumor growth of mice bearing B16F10 melanoma after DTIC, DM-1 or DTIC+DM-1 treatment in 

comparison to control group. (A) Tumor area measurements were obtained subsequent to the 14th day of tumor 

inoculation during 14 treatment days. The tumor burden is represented next to each respective treatment line. 

The values are expressed as mean ± s.d.; (B) Survival rate of mice bearing B16F10 melanoma subsequent to the 

14th day of tumor inoculation during 14 treatment days.  Significance is indicated by: ***p<0.001 compared to 

control; &p<0.05 to compare DTIC+DM-1 and DM-1 groups; ###p<0.001 to compare DTIC+DM-1 and DTIC 

groups. 


