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A scheme to generate long-range spin-spin interactions between three-level ions in a chain is presented,

providing a feasible experimental route to the rich physics of well-known SUð3Þ models. In particular, we

demonstrate different signatures of quantum chaos which can be controlled and observed in experiments

with trapped ions.
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One of the current trends in quantum physics is the quest
for controllable quantummany-body systems which can be
used as quantum simulators [1,2]. In particular, there is a
growing interest in simulating spin and quantum magne-
tism. In recent years, the focus is moving from SU(2) spins
towards SUðNÞ [3,4], which can be realized in earth
alkalines, or mixed spin spaces [5]. Here, we show an
implementation of SU(3) physics with trapped ions which
are known to provide a large degree of control from the
experimental point of view.

An important feature of quantum simulators based on
ions is the possibility of studying long-range interactions,
which are notoriously difficult to simulate classically [6,7].
The implementation is based on spin-dependent forces on
the ions [8], which have been experimentally achieved
recently [9–12]. These interactions lead to new phases,
such as exotic forms of superfluidity [13], supersolids
[14], quantum crystals, and devil’s staircase [15,16].

We concentrate on an important aspect present in SU(3)
models: quantum chaos [17,18]. Quantum chaos, as
opposed to classical chaos, which can be defined by an
exponentially fast growing distance of phase space trajec-
tories, was strongly driven by the understanding of the
spectral properties of quantum many-body systems [19].
The large degree of control offered by experiments with
ultracold atomic gases has triggered a vast number of
experiments to look for different signatures of chaos
[20]. Prominent examples are the observation of dynamical
tunneling phenomena [21,22], and more recently, the
implementation of the kicked-top Hamiltonian on a single
atom experiment [23]. Recent proposals look for signatures
of chaotic behavior in spin-orbit-coupled condensates [24]
or in kicked Bose-Hubbard dimers [25].

In this Letter, we demonstrate that the extremely long-
range character of interactions between ions can be used to
mimic shell models which are paradigmatic of quantum
chaos [17,18,26]. We calculate experimentally controllable
signatures of chaos and estimate the fidelity of the pro-
posed simulation in the Supplemental Material [27].

Spin-spin interactions of ions.—The main ingredient
required to achieve a strong and controllable spin-spin
interaction between trapped ions is the implementation of
a state-dependent force on the ions. In an early proposal
by Mintert and Wunderlich [28], such force is induced by
a magnetic field gradient. More flexible proposals provide a
force by aRaman coupling of two spin states,which can give
rise to phonon excitations.While the proposal by Porras and
Cirac [8] uses standing waves in all spatial directions and
thereby allows for up to three independent spin-spin inter-
actions, experimental implementations have provided Ising-
type spin-spin interactions using a Raman coupling due to a
pair of propagating waves with a wave vector difference
transverse to the ion alignment [9,10]. By choosing the
frequency difference between the two lasers close to a vibra-
tional sideband transition, one can enhance and control the
phonon excitations and thus the Ising coupling constants.
In particular, single vibrational modes can be selected.
Here, we generalize this scheme to three couplings in

a system of three-level ions, which allows for an imple-
mentation of SU(3) spin models. All spin states, for
instance, those represented by three hyperfine states
j1i � jF ¼ 0; m ¼ 0i, j2i�jF¼1;m¼�1i, and
j3i� jF¼1;m¼1i in the S1=2 manifold of Ybþ, are

coupled as depicted in Fig. 1(a), via off-resonant

FIG. 1 (color online). (a) Level structure of the ions: Three
levels are pairwise coupled by far-detuned Raman lasers, with a
beat note �� providing a spin-dependent force (see the text).
(b) Arrangement of the Raman lasers, with polarizations given in
(a) and wave vector difference �k� along the axes.
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transitions to an excited state jei � jF ¼ 0i in the P1=2

manifold. The lasers are arranged as shown in Fig. 1(b),
such that each Raman pair has a wave vector difference
�k� along a different spatial direction � ¼ x, y, z.
Interference between different couplings can be avoided
by choosing different detunings �� from jei.

Each coupling can be equipped with beat notes
!� ���, where �� describes the detuning from the
atomic transition frequency !�, given by the hyperfine
splitting and/or the Zeeman splitting. After adiabatic elimi-
nation of the excited state jei and a rotating wave approxi-
mation, the Hamiltonian of each coupling reads [10]

h�ðtÞ ¼ @
X

i

�ðiÞ
� sinð��tÞ�k� � xðiÞ�ðiÞ� : (1)

Here, �ðiÞ
� is the two-photon Rabi frequency of the

Raman transition � at the position of ion i. The spin-flip
operators are defined as �x � j1ih2j þ H:c:, �y � j1ih3j þ
H:c:, and �z � j2ih3j þ H:c: Next, we rewrite the position

operator in terms of normal coordinates �k� � xðiÞ �P
m�

ðiÞ
m�ðam�e

�i!m�t þ aym�ei!m�tÞ, where vibrational
modes m along direction � are summed, with !m�, am�,

and aym� the corresponding frequency, annihilation, and
creation operators. We have introduced the Lamb-Dicke

parameter �ðiÞ
m� characterizing the strength of the spin-

phonon coupling. For the validity of Hamiltonian (1), it

is necessary to have �ðiÞ
m� � 1. It is explicitly given by

�ðiÞ
m� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@=2M!m�

p
M�

m;i. The N � N matrix M�
m;i are

the normal modes in the � direction, found byP
m0M�

m;iK
�
mm0M�

m0;i0 ¼ !2
m��i;i0 . The kernelK contains

the Coulomb repulsion and the external trapping of fre-
quency !� along each direction. Assuming linearly
arranged and equidistant equilibrium positions, it reads

K�
m;m0 ¼

8
><
>:

!2
� � c�

P
m00ð�mÞ

1
jm�m00j3 m ¼ m0

þc�
1

jm�m0j3 m � m0;
(2)

where cx;y ¼ 1 and cz ¼ �2. We have chosen ‘‘ionic’’

units, in which besides the electric constant 1=ð4��0Þ,
also the ion mass M, the ion charge q, and the equilibrium
distance d of neighboring ions in the chain are set
to unity. Frequencies are then given in units of
!0 � q=ðd ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4��0dM
p Þ.

It has been shown in Ref. [10] that the time evolution
under the Hamiltonian of Eq. (1) is (to second order in the
exponent) given by

U�ðt; 0Þ ¼ exp

�X

i

’ðiÞ
� ðtÞ�ðiÞ� �X

ij

�ði;jÞ
� ðtÞ�ðiÞ� �ðjÞ�

�
; (3)

where ’ðiÞ
� ¼ P

m½cðiÞm�ðtÞaym� � H:c:� contains a residual
spin-phonon coupling, while the second term describes

a spin-spin coupling. Both functions cðiÞm�ðtÞ and �ði;jÞ
� ðtÞ con-

sist of oscillatory terms (with frequencies ��, �� �!m�),

which are suppressed by at least one power of

�ðiÞ
m��

ðiÞ
� =j�� �!m�j � 1 for sufficiently large detuning

from the sideband. In this limit, the dominant contribution

to the time evolution stems from a single term in �ði;jÞ
� ðtÞ

which is linear in t, and thus increases constantly. Thus, we

can set cðiÞm� � 0 and �ði;jÞ
� ðtÞ � iJ�ijt, with

Jði;jÞ� ¼ �ðiÞ
� �ðjÞ

�

X

m

�ðiÞ
m��

ðjÞ
m�!m�

�2
� �!2

m�

: (4)

The time evolution is thus identical to the one of a spinmodel

with spin-spin coupling Jði;jÞ� .
In the presence of more than one coupling, since

½h�; h	� � 0, the time evolution is not simply the product

of all U� but consists of additional terms. Up to second
order in the Magnus expansion [29], it is equal to

U ’ ðQ�U�ÞðQ��	U�	Þ with U�	 ¼ expfPij

ði;jÞ
�	 ðtÞ�

½�ðiÞ� ; �ðjÞ	 �g. The functions 
ði;jÞ
�	 are given by the integral


ði;jÞ
�	 ¼ X

m;n

Z t

0
dt1

Z t1

0
dt2 sin��t1 sin�	t2

� ðam�e
i!m�t1 þ H:c:Þðam	e

i!m	t2 þ H:c:Þ: (5)

For �� ¼ �	 and !m� ¼ !n	, this function is similar to

�ði;jÞ
� ðtÞwith small oscillating terms, and one dominant term

linear in t. However, if couplings� and	 have different beat
notes and/or themode frequencies are different (for instance,
by anisotropic transverse trapping), the linear term disap-
pears, and this contribution can be neglected.
In addition to the spin-spin coupling, a magnetic field

term can be generated by a resonant carrier transition
[9,30], leading to the effective spin Hamiltonian

Hspin ¼
X

�

�XN

i¼1

BðiÞ
� �ðiÞ

z þXN

i	j

Jði;jÞ� �ðiÞ� �ðjÞ�

�
; (6)

with �ðiÞ
z � j1ih1jðiÞ � j3ih3jðiÞ. The couplings Jði;jÞ� given

by Eq. (4) can be tuned by the beat notes ��. In particular,
by choosing �� sufficiently close to the center-of-mass

(c.m.) mode in each direction, Jði;jÞ� will have only weak
dependence on the ion positions i and j. Most generally, we

assume an inhomogeneous magnetic field BðiÞ
� .

Effective SU(3) shell model.—In the limit where Jði;jÞ� ¼
J� ¼ const< 0, it is convenient to define spin-flip opera-

tors S��0 ¼ PN
l¼1 j�ih�0jðlÞ, acting equally on all spins.

Since we have S11 þ S22 þ S33 ¼ N, the S��0 provide
eight independent operators spanning the SU(3) algebra.
For simplicity, we set J� ¼ J and the magnetic field
homogeneous. Defining a symmetrized spin operator
~S��0 � ðS��0 þ S�0�Þ=

ffiffiffi
2

p
, we may rewrite the spin

Hamiltonian of Eq. (6) as an ideal model Hamiltonian in
terms of these SU(3) operators:
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Hideal ¼ Bffiffiffi
2

p ð~S11 � ~S33Þ þ J
X

�<�0
~S��0 ~S��0 : (7)

Besides the replacement S��0 ! ~S��0 , this Hamiltonian is
identical to the three-level Lipkin-Meshkov-Glick (LMG)
Hamiltonian [31], a model where particles can occupy
three different shells with single-particle energies �B, 0,
and B. Two-body interactions of particles in the same shell
lead to pair tunneling into the other shells. The LMG
Hamiltonian has applications in nuclear physics, and
its three-level version is particularly appealing as a not
fully integrable spin model in the context of quantum
chaos [18,32].

Our Hamiltonian (7) differs from the LMG Hamitonian
only by an additional interaction

P
���0S��0S�0�. Because

of its SU(3) symmetry and the fact that this additional term
is a Casimir operator of SU(3) [18], the Hamiltonian (7)
and the LMG Hamiltonian are fully equivalent: Having a
block-diagonal structure with respect to different represen-
tations of SU(3), in each block, the additional interaction
simply reduces to a constant.

Apart from particle exchange symmetry, the LMG
model has a second symmetry [32]: As particles can
change the spin state only pairwise, the occupation num-
bers of each spin state hS11i, hS22i, and hS33i can only
change by two and thus are fixed to either even (e) or
odd (o) values. This gives rise to four signature classes eee,
oeo, ooe, and eoo for N even, or ooo, eeo, eoe, and oee
for N odd. This signature class symmetry is also present
in Eq. (6), that is, in the model with a space-dependent

coupling Jði;jÞ� given by Eq. (4). On the other hand, the spin
exchange symmetry is lost. Still, there is invariance under

parity, as Jði;jÞ ¼ JðN�iÞðN�jÞ, due to the parity invariance
ofK. For a numerical diagonalization of this Hamiltonian,
it is convenient to construct the eigenbasis of parity and
signature class. While the Fock states are already signature
eigenstates, a combination of at most two Fock states also
yields a parity eigenstate.

Quantum chaos in the LMG model.—In the classical
limit of the three-level LMG model, its phase space can
be divided into regions of chaotic and regular motion [32].
Accordingly, the quantum model also shows signatures
of both chaotic and regular behaviors. While in chaotic
quantum systems the spectrum features level repulsion,
regular behavior is related to level clustering. These fea-
tures are nicely displayed by the unfolded distribution [17]
of the level spacings s in the spectrum. A Poisson
distribution PðsÞ ¼ e�s indicates level clustering, while
chaotic Hamiltonians with time-reversal invariance follow
a Wigner distribution PðsÞ ¼ ð�=2Þs exp½��s2=4�. In
Ref. [32], it has been shown for the LMG model that one
part of the spectrum is spaced according to the Poisson
distribution, while another part follows a Wigner spacing.

This results in a level spacing distribution as shown in

Fig. 2(a) for N ¼ 10 and a magnetic field B ¼ hJði;jÞ� i=2.

We have used the realistic Hamiltonian (6), with a trap
frequency !� ¼ 0:1!0=�� at a relative detuning from the
c.m. mode �� ¼ ð!c:m:� ���Þ=!c:m:� > 0. As is shown
in the Supplemental Material [27], this Hamiltonian repro-
duces with high fidelity the physics of the ideal model; see
Eq. (7). We have unfolded the spectrum separately in each
symmetry block of the Hamiltonian (that is, for fixed parity
and signature class). The level spacing distribution is found
to be broader than the Wigner distribution and has its
maximum shifted towards smaller spacings. This suggests
to consider the Brody distribution PqðsÞ which interpolates
between the Wigner (q ¼ 1) and the Poisson distribution
(q ¼ 0) [33,34]:

PqðsÞ ¼ �ðqþ 1Þsq exp½��sqþ1�; (8)

with � ¼ f�½ðqþ 2Þ=ðqþ 1Þ�gqþ1. The value of q pro-
vides a measure of the degree of chaoticity in the system.
As shown in Fig. 2(a), our distribution is well represented
by q ¼ 0:7.
The behavior expressed by these statistics can be illus-

trated by representing the evolution of a few energy levels
when one parameter of the Hamiltonian is changed, e.g., the
magnetic field strength B. In each symmetry block, we find
both level crossings and avoided level crossings, as already
expected from the level spacing distribution. In Fig. 2(b),
we illustrate, for N ¼ 4, a part of the spectrum where all
level crossings belonging to states of the same symmetry
(parity) are avoided. Of course, the crossings between states
of different parity are not avoided. In Fig. 2(c), we then
show the same part of the spectrum in the presence of an
additional small magnetic field gradient �B ¼ 0:2, that is,
for an inhomogeneous magnetic field BinhomðxÞ¼Bþ�Bx.
This contribution breaks the parity symmetry, turning the
previously symmetry allowed level crossings [Fig. 2(b)]
into avoided ones.
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FIG. 2 (color online). (a) Level spacing distribution for N¼10
after unfolding the spectrum separately in each symmetry block
of the Hamiltonian. (b) Avoided crossing of energy levels with
equal parity symmetry, exemplified for N ¼ 4 in the eoe
signature class upon tuning the magnetic field strength B.
(c) The same as in (b) but in the presence of a small additional
magnetic field gradient �B ¼ 0:2 breaking the parity symmetry.
This leads to avoided crossings of all energy levels.
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Experimental detection of quantum chaos.—The signa-
tures of quantum chaos discussed so far are hard to mea-
sure in a system of trapped ions. More easily, quantum
chaos can be detected by preparing the system initially in a
coherent quantum state and then observing the subsequent
time evolution of this state [21–23]. Unitarity of quantum
evolution prevents a definition of quantum chaos mirroring
the usual one in classical systems: exponential sensitivity
to initial conditions. Instead, for quantum-chaotic motion,
it is argued that a relevant signature is provided by high
sensitivity of the time evolution onto slight changes in the
Hamiltonian parameters [17].

In order to relate our study of the quantum dynamics to
its classical limit, the initial states will be SU(3) coherent
spin states defined as jz1; z2i � N exp½z1S31 þ z2S21�j0i,
where j0i denotes a Fock state which is fully spin polarized
in the lower spin component j0i � j11 � � � 1i, and N
normalizes the state. The complex parameters z1 and z2
define the classical state in terms of four canonical varia-
bles q1, q2, p1, and p2. The classical Hamiltonian is then
given by [32]

Hclassðq1; q2; p1; p2Þ ¼ lim
N!1hz1; z2jHideal=Njz1; z2i: (9)

We have performed the classical time evolution using
a Runge-Kutta method. The coherent states with small
average energy are mostly found to have regular behavior,
while states of intermediate energy behave rather
chaotically.

We will now search for signatures of chaos in the quan-
tum time evolution, driven by the Hamiltonian Hspin. We

again choose !� ¼ 0:1!0=�� and consider two initial
states: one in a classical regular region and the second
one in a classical chaotic region. As shown in Fig. 3(a), a
minimal change of 1% in the parameter B has little effect
on the quantum time evolution of the regular state com-
pared to its effect on the evolution of the chaotic state. This
indicates that even for a system of eight ions, far from the
classical limit, we observe clear signatures of quantum-
chaotic behavior in correspondence with the expected
behavior in the classical limit. For comparison, the figure
also shows the time evolution of the same initial states for
a Hamiltonian where by choosing Jx ¼ Jy ¼ 0, one spin

state has been dynamically frozen. In this way, the model
reduces to an SU(2) LMG model [31], which is integrable,
and accordingly shows no trace of quantum chaos.

While the overlaps shown in Fig. 3(a) are not directly
accessible in experiments, signatures of chaotic behavior
can also be found in the evolution of a spin component
of the state. In our scheme, the occupation of the level
jm ¼ 0i can be measured with high precision by resonantly
exciting ions from this level and observing the subsequent
fluorescence. For a system prepared in the regular state,
a regular pattern is expected, while an erratic pattern is a
signature of chaotic motion [17]. We exemplify this in
Figs. 3(b) and 3(c), showing the time evolution of hS11i

for the regular and the chaotic states given above, evolved
with B ¼ 0:5 in the full SU(3) Hamiltonian and in the
reduced SU(2) Hamiltonian. The curves for SU(2) clearly
show a regular pattern, while in the SU(3) case, the differ-
ences between the chaotic and the regular states are less
obvious. We therefore perform a Fourier analysis of these
curves after subtracting its average and normalizing the
amplitude of the oscillation. In the Fourier spectrum,
shown in Fig. 3(d), the regular evolution is dominated
by only a few peaks, while the spectrum of the chaotic
evolution is much more diversified.
Summary.—We have presented a scheme to realize

SU(3) spin models with trapped ions. The spin-spin inter-
action parameter is tunable, allowing the simulation of spin
models with long-range interactions. In this Letter, we
have focused on the situation where interactions are almost
constant with respect to the position of the ions. Then, the
systems describe a three-level LMG model which interpo-
lates between quasi-integrable and chaotic dynamics.
Chaos on the quantum level is usually characterized
in terms of the spectral statistics, which demands
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FIG. 3 (color online). (a) We evolve one chaotic state z1 ¼
�0:10þ 0:61i and z2 ¼ �0:83þ 0:26i and one regular state
z1 ¼ �1:06þ 0:26i and z2 ¼ �1:04þ 0:33i, with N ¼ 8 par-
ticles in the Hamiltonian HspinðB; Jx; Jy; JzÞ (6) for B ¼ 0:5 and

B ¼ 0:505. For each initial state, we plot the overlap between the
evolved states for the two B’s as a function of time. The curves
labeled with SU(3) are obtained by choosing all interactions J�
to be transmitted by equally strong forces K�, while the SU(2)
curves are obtained for Jx ¼ Jy ¼ 0. (b), (c) For the same states

as in (a) and with B ¼ 0:5, we plot the occupation number hS11i
as a function of time. (d) The Fourier transform of the SU(3)
curves in (b) and (c).
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high-precision measurements of many energy levels,
hardly possible in the settings similar to the one discussed
in our Letter. Instead, we propose a feasible scheme to
detect quantum chaos in the dynamics of the model.
Our proposal thus provides a powerful experimental tool
to study the onset and signatures of chaos in quantum
systems, based on state-of-the-art techniques.
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