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Abstract 26 

The performance of high resolution accurate mass spectrometry (HRMS) operating in 27 

full scan MS mode was investigated for the quantitative determination of amoxicillin 28 

(AMX) as well as qualitative analysis of metabolomic profiles in tissues of medicated 29 

chickens. The metabolomic approach was exploited to compile analytical information 30 

on changes in the metabolome of muscle, kidney and liver from chickens subjected to a 31 

pharmacological program with AMX. Data consisting of m/z features taken throughout 32 

the entire chromatogram were extracted and filtered to be treated by Principal 33 

Component Analysis. As a result, it was found that medicated and non-treated animals 34 

were clearly clustered in distinct groups. Besides, the multivariate analysis revealed 35 

some relevant mass features contributing to this separation. In this context, recognizing 36 

those potential markers of each chicken class was a priority research for both metabolite 37 

identification and, obviously, evaluation of food quality and health effects associated to 38 

food consumption. 39 

 40 

Key Words: Amoxicillin, Linear Trap Quadrupole-Orbitrap mass spectrometry, 41 
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1. Introduction 44 

Poultry are one of the most consumed foods by humans and their intakes have been 45 

positively associated with some healthy effects because of their dietary relevance. Prior 46 

to commercialization, comprehensive quality controls of poultry products are necessary 47 

to ensure a high level of protection of human health. For this purpose, regulation 48 

concerning the control of food from animal origin is enshrined in the Annex I of 49 

Commission Regulation 37/2010 (Commission Regulation (EU) No 37/2010, 2010). In 50 

the cited text, legislated MRLs of antibiotics allowed for veterinary use are given, 51 

including those of β-lactamic drugs.  52 

Nowadays, there is an increasing interest in monitoring regulated compounds and their 53 

metabolites. However, beyond the quantification of exogenous components, researchers 54 

have been pointed out the need of studying the influence of such xenobiotics on the 55 

endogenous metabolism from the evaluation of changes in metabolite levels (e.g., up- 56 

and down-regulations). As a result, metabolic modifications generated “in vivo” might 57 

be of great interest in the research of new potentially toxic or healthy compounds and 58 

conclusions extracted can be applied to further studies on food regulations (García-59 

Reyes, Hernando, Molina-Díaz, & Fernández-Alba, 2007). At this point, considering 60 

the scarce information about metabolomic alteration caused to the use of antibiotics in 61 

veterinary and human medicine, thorough studies to assess possible biomarkers of the 62 

pharmaceutical treatments are increasingly demanded. 63 

In this work, the metabolic profile of amoxicillin (AMX) has been studied. AMX is a 64 

penicillin drug sometimes administered to farm animals due to its high antimicrobial 65 

activity. As a result, AMX might be detected in biological fluids and tissues of animals 66 

subjected to therapeutic treatment (De Baere, Cherlet, Baert, & De Backer, 2002; 67 
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Reyns, De Boever, Schauvliege, Gasthuys, Meissonnier, Oswald, De Backer, & 68 

Croubels, 2009). 69 

High-resolution mass spectrometry (HR-MS) has become the current approach of 70 

choice to face some challenges raised in metabolomic studies. In particular, mass 71 

spectrometry time-of-flight (MS-TOF), and more recently, linear ion trap quadrupole-72 

Orbitrap MS (LQT- Orbitrap MS), both coupled to liquid chromatography, have proved 73 

their excellent performances for metabolomic research (Berendsen, Gerritsen, Wegh, 74 

Lameris, Van Sebille, Stolker, & Nielen, 2013; Bousova, Senyuva, & Mittendorf, 2013; 75 

Hurtaud-Pessel, Jagadeshwar-Reddy, & Verdon, 2011; Szultka, Krzeminski, Szeliga, 76 

Jackowski, & Buszewski, 2013; Zubarev, & Makarov, 2013). Qualitative analysis 77 

corresponding to exact mass measurements and elemental composition assignment are 78 

fundamental for a more feasible characterization of small pharmacologically active 79 

substances (Hermo, Gómez-Rodríguez, Barbosa, & Barrón, 2013; Pérez-Parada, 80 

Agüera, Gómez-Ramos, García-Reyes, Heinzen, & Fernández-Alba, 2011). In parallel, 81 

MSn experiments have been exploited successfully to confirm fragmentation routes and 82 

to elucidate of structures of target and unknown compounds (Nägele, & Moritz, 2005). 83 

However, the assessment of metabolic changes in biological matrices is a complex task, 84 

and full scan chromatograms may result in an excellent source of high quality data to 85 

evaluate variations in the chemical composition in a comprehensive manner without 86 

losing statistically significant information. Nowadays, the most used strategy for data 87 

treatment relies on Principal Component Analysis (PCA), Partial Least Squares 88 

Discriminant Analysis (PLS-DA) and related methods (Marquez, Albertí, Salvà, 89 

Saurina, & Sentellas, 2012). Such chemometric methods allow noise filtering and the 90 

concentration of information into a reduced number of latent variables. Raw data from 91 

HPLC-MS measurement of samples is taken to construct a data matrix focused on the 92 
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differentiation of positive and blank samples. As a result, PCA-based methods have 93 

demonstrated to be highly efficient to extract and visualize the useful information using, 94 

for instance, scatter plots of samples (scores plot) and variables (loadings plot) on the 95 

principal components (PCs) (Serrano-Lourido, Saurina, Hernández-Cassou, & Checa, 96 

2012). The most discriminat MS features, characterized by their retention time and m/z 97 

values, may result in chemical markers to define the different categories or classes of 98 

samples.  99 

One of the aims of this study was to improve the AMX detection in different biological 100 

tissues using LTQ-Orbitrap mass spectrometry, to quantify the active compound in 101 

several positive chicken muscle, liver and kidney samples from animals medicated with 102 

AMX. Besides, multivariate analysis with PCA was exploited to study the distribution 103 

of samples and variables, to associate veterinary treatments with m/z, and to find 104 

reliable indicators, drug related compounds and up- and down-regulated endogenous 105 

metabolites in the biological tissues. 106 

 107 

2. Experimental 108 

2.1. Reagents and materials 109 

Unless specified, all reagents were of analytical grade. Amoxicillin (AMX) was 110 

supplied by Sigma-Aldrich (St. Louis, MO, USA) and piperacillin (PIP), used as 111 

internal standard (IS) was supplied by Fluka (Buchs, Switzerland). Acetonitrile (MeCN, 112 

MS grade), ammonium acetate, ammonia, formic acid, potassium dihydrogenphosphate, 113 

methanol (MeOH) and sodium hydroxide were from Merck (Darmstadt, Germany). 114 

Ultrapure water was generated by the MilliQ system of Millipore (Billerica, MA, USA). 115 
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The SPE cartridges used in this study were ENV+ Isolute (3 cm3/ 200 mg) purchased 116 

from Biotage AB (Uppsala, Sweden). 117 

Nylon microcon centrifugal filter membranes of 45 µm pore size (Millipore) were used 118 

to filter the extracts before the injection into the chromatographic system. 119 

 120 

2.2. Preparation of standard solutions 121 

Individual stock solutions of AMX and PIP (IS) were prepared at a concentration of 100 122 

µg ml-1 by dissolving the exactly weighed quantity of each compound in MilliQ water. 123 

The working solutions used to spike the chicken tissue samples were prepared from the 124 

individual stock solutions by appropriate dilution to obtain concentrations of 10, 5, 1 125 

and 0.5 µg ml-1 AMX. For the extraction procedures, 50 mM dihidrogenphosphate 126 

solution (adjusted to pH 5 with sodium hydroxide 0.1 M) and hydroorganic solutions 127 

consisting of MeCN:H2O (91:9, v:v) and MeCN:MeOH (50:50, v:v) were also prepared. 128 

 129 

2.3. Instrumentation 130 

The LC-ESI-LTQ-Orbitrap MS method was carried out using an Accela HPLC system 131 

from Thermo Fisher Scientific (Hemel Hempstead, UK) equipped with an autosampler 132 

injector, a thermostatically controlled column compartment and a linear ion trap 133 

quadrupole-Orbitrap-mass spectrometer LTQ-Orbitrap-MS from Thermo Fisher 134 

Scientific (Hemel Hempstead, UK). The analytical column was a reversed-phase Pursuit 135 

UPS 2.4 µm (50 x 2.0 mm) C18 column from Agilent Technologies (Waldbronn, 136 

Germany). 137 
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Auxiliary equipment was as follows: A CRISON 2002 potentiometer (± 0.1 mV) from 138 

Crison S.A. (Barcelona, Spain) using a CRISON 5203 combination pH electrode was 139 

used to measure the pH of the buffers. A centrifuge 460R of Hettich Zentrifugen 140 

(Tuttlingen, Germany) was used to perform the extractions and obtain the final extracts. 141 

SPE was carried out on a SUPELCO vacuum manifold for 24 cartridges connected to a 142 

SUPELCO vacuum tank (Bellefone, PA, USA). TurboVap LV system with nitrogen 143 

stream was used for the evaporation of the extracts from Caliper LifeSciences 144 

(Hopkinton, MA, USA).  145 

 146 

2.4. Procedures 147 

2.4.1. Sample preparation procedures 148 

Blank and positive samples 149 

An amount of 4 g (± 0.1 mg) of minced chicken muscle (blank or positive) or 2 g (± 0.1 150 

mg) of minced chicken kidney and liver was introduced into a 50 ml centrifuge tube 151 

(Macarov, Tong, Martínez-Huélamo, Hermo, Chirila, Wang, Barrón, & Barbosa, 2012). 152 

The I.S., PIP, was added at a concentration of 300 µg kg-1. Analytes were extracted 153 

from the muscle tissue with 2 ml water (1 ml for kidney and liver tissues) by shaking for 154 

1 min. Then, 20 ml MeCN were added to muscle (10 ml to kidney and liver) in order to 155 

precipitate the proteins. Extracts were shaken for 1 min and the resulting mixtures were 156 

centrifuged at 3500 rpm for 5 min at 20 ºC. Subsequently the organic solvent (MeCN) 157 

was eliminated by evaporation under nitrogen current at 35ºC. To improve the retention 158 

of penicillins on the SPE cartridge, 25 ml of 50 mM dihydrogenphosphate at pH 5.0 159 

solution were added to the final muscle extracts (12.5 ml to liver and kidney). 160 

Spiked samples 161 
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An amount of 4 g (± 0.1 mg) of minced blank chicken muscle or 2 g (± 0.1 mg) of 162 

chicken kidney and liver was introduced into a 50 ml centrifuge tube (Macarov, Tong, 163 

Martínez-Huélamo, Hermo, Chirila, Wang, Barrón, & Barbosa, 2012). Samples were 164 

directly spiked with suitable volumes of AMX working solutions to provide the desired 165 

concentrations. PIP was also added at a concentration of 300 µg kg-1. The samples were 166 

allowed to stand in the dark for 20 min at room temperature to promote the interaction 167 

between the antibiotics and chicken matrix. The recovery of AMX and its metabolites 168 

was as detailed above for blank and positive samples. 169 

 170 

2.4.2. Solid phase extraction (SPE) 171 

ENV+ Isolute cartridges were activated with 2 ml of MeOH, 2 ml of MilliQ water and 2 172 

ml of 50 mM dihydrogenphosphate (pH 5) solution. Sample extracts, as prepared in 173 

2.4.1, were passed through the SPE system. Cartridges were then cleaned with 3 ml of 174 

dihydrogenphosphate and 1 ml of MilliQ water. The analytes were eluted with 4 ml of 175 

MeCN:MeOH (50:50; v:v). The samples were evaporated to dryness at 35oC under 176 

current of nitrogen. 200 µl of MilliQ water were added to muscle (100 µl to kidney and 177 

liver) in order to redissolve the residue. The samples were stored in a freezer at -80 ºC 178 

until analysis. Prior to injection into the chromatographic system, samples were thawed 179 

and filtered with microcon filter. 180 

 181 

2.4.3. Liquid chromatography-mass spectrometry (LC-ESI-LTQ-Orbitrap MS) 182 

LC-MS conditions were established by multiple injection of individual standard of 183 

AMX using a Pursuit UPS C18 column. The separation was carried out under the 184 

elution gradient given in Table 1 using 5 mM ammonium acetate adjusted at pH 2.5 185 
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with formic acid and MeCN as the eluents. The flow rate the mobile phase was 186 

maintained at 0.3 ml min-1 and the injection volume was 10 µl. 187 

The ESI-LTQ-Orbitrap MS conditions were optimized by automatic gain control (AGC) 188 

by direct infusion of 100 µg ml-1 AMX at 10 µl min-1 which mixed with a stream of 5 189 

mM ammonium acetate (pH 2.5) and MeCN (92:2, v:v) flowing at 0.3 ml min-1. The 190 

ESI source was used in positive mode to acquire mass spectra in profile mode with a 191 

setting of 30000 resolution at m/z 400. To ensure the accurate mass measurements, the 192 

instrument was calibrated every two days (external calibration) by direct infusion of 5 193 

µl min-1 of PGG calibration solution (formulation: caffeine (2 µg ml-1), MRFA (1 µg 194 

ml-1), Ultramark 1621 (0.001%) and n-butylamine (0.0005%) in aqueous solution of 195 

MeCN (50%), MeOH (25%) and HAc (1%)) in the scan range of m/z 100-2000. 196 

Operational parameters were as follows: source voltage, 5 kV; sheath gas, 50 (arbitrary 197 

units); auxiliary gas, 20 (arbitrary units); sweep gas, 0.01 (arbitrary units); and capillary 198 

temperature, 300ºC. Default values were used for other acquisition parameters (Fourier 199 

transform (FT) AGC target 5·10-5 for MS mode and 5·10-4 for MSn mode). Operating in 200 

MSn mode, the Orbitrap resolution set at 15000 at m/z 400. The C-trap capacity was set 201 

at normalized collision energy of 35% and an activation time of 10 ms. All extracted ion 202 

chromatograms (XICs) were based on a 5 ppm mass window. Chromatographic data 203 

acquisition, peak integration, and quantification were performed using Xcalibur 2.1.0 204 

QualBrowser and QuanBrowser (using Genesis peak detection algorithm) software 205 

(Thermo Fisher Scientific). 206 

 207 

2.4.4. Quality parameters 208 
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Quality parameters established to AMX in the different biological tissues were as 209 

follows: limit of detection (LOD), limit of quantification (LOQ) and calibration curve in 210 

order to determine the drug concentration in the three tissues. The LOD, defined as the 211 

lowest concentration that the analytical method can reliably differentiate from 212 

background level, was estimated for a signal-to-noise ratio of 3 from the chromatograms 213 

of spiked chicken tissue samples at the lowest analyte concentration tested. Similarly, 214 

the LOQ was determined for a S/N of 10 (Commission Regulation (EU) No 657/2010, 215 

2010). 216 

Calibration curves were constructed using analyte/IS peak area ratios versus analyte/IS 217 

concentration ratios, at 300 µg kg-1 IS.  218 

Matrix effects in chicken muscle, liver and kidney were evaluated by comparison of 219 

slopes on two sets of samples, namely: (i) calibration curve with analyte standard 220 

solutions in water and (ii) calibration curves corresponding to the different biological 221 

tissues (both series were subjected to the sample treatment procedure as explained in 222 

sections 2.4.1 and 2.4.2). 223 

 224 

2.5. Application to real samples  225 

Blank chicken tissue samples were purchased from retail markets in Barcelona (Spain). 226 

Meat was minced, homogenized and stored at -20oC until sample treatment. 227 

The live chickens were medicated according to the pharmacological administration 228 

protocol fit for human consumption. The veterinary protocol was applied to broilers in 229 

the chicken producer farm “Pondex S.A.”. Animals were treated with AMX dissolved in 230 

water at dose of 19 mg kg-1 on 4 consecutive days. Blank, 2-day treated, 4-day treated 231 

and post-treatment (recovery) samples were defined in four classes as follows:  232 
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Class A, blank prior to AMX administration: 2 broiler chickens randomly selected 233 

(specimens 1 and 2), which had not ever been treated with antibiotics, were sacrificed. 234 

Class B corresponded to 3 broiler chickens (specimens 3, 4 and 5) slaughtered the 235 

second day during the pharmacological treatment (48 h treatment). 236 

Class C corresponded to 3 broiler chickens (specimen 6, 7 and 8) sacrificed the fourth 237 

day during the pharmacological treatment (96 h treatment).  238 

Class D corresponded to 2 broilers chickens (specimen 9 and 10) animals sacrificed 4 239 

days after suspending the veterinary treatment (e.g., 96 h treatment + 96 h wait).  240 

All animals were handle and sacrificed according to the ethical protocols of the chicken 241 

producer farm. In any case, biological tissues to be studied (muscle, liver and kidney) 242 

were taken and the resulting samples were refrigerated at -80ºC until performing sample 243 

treatment as specified in section 2.4. For each type of tissue (muscle, liver and kidney), 244 

three independent extraction replicates of the 10 specimens were analyzed. Each extract 245 

was injected twice. 246 

 247 

2.6. Data analysis  248 

Raw LC-MS data consisted of MS spectra taken throughout the entire chromatographic 249 

domain for each type of matrix (muscle, liver and kidney). Such data was exported to 250 

Matlab (Mathworks) to be further analyzed by Principal Component Analysis (PCA) 251 

and related tools using PLS_Toolbox 3.5 (Eigenvector Research, Inc., Manson, WA 252 

98831) for Matlab.  253 

The overall procedure for extracting LC-MS data, providing compatible file formats, 254 

applying data pretreatments and removing irrelevant variables according to a statistic 255 

criterion was as follows: (1) The raw files containing mass spectra was first converted 256 
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into a mzXML file using Xtract program from Xcalibur software. (2) Free code 257 

software packages mzMine (Katajamaa, & Oresic, 2005) and XCMS (Smith, Want, 258 

O'Maille, Abagyan, & Siuzdak, 2006) were used to process mzXML files to obtain 259 

suitable data matrices to be analyzed by PCA under MATLAB environment. Apart from 260 

format transformation, typical preprocessing tools in both time (chromatographic) and 261 

m/z (spectral) domains were applied to improve the data quality. Peak alignment on the 262 

time domain was very important to correct the small, or sometimes moderate, variations 263 

in the retention time of analytes among runs (otherwise, a given analyte could be seen 264 

erroneously as two or more contributions). For this chromatographic method, the 265 

shifting tolerance was 15 s and peak width variations between 15 and 45 s were 266 

allowed. Due to the high accuracy and resolution in the m/z domain, mass tolerances of 267 

5 ppm were considered. A preliminary discrimination between significant and irrelevant 268 

peak features relied on establishing threshold values (tunable as a function of given 269 

experimental conditions such as instrument performance and complexity of the sample 270 

matrix). In the present case, the minimum signal-to-noise ratio for taking or rejecting 271 

peaks was set to 15 and the intensity threshold for accepting m/z peaks was 1000 counts. 272 

After this step, data was reintegrated and peaks of common features among the different 273 

samples were grouped taking into account the tolerance values defined above. As a 274 

result, a table or data matrix of intensity (counts) areas was obtained in which each row 275 

corresponded to a given sample and each column corresponded to a feature (defined by 276 

retention time and m/z). 6 LC-MS runs (i.e., 3 independent extracts × 2 replicate 277 

injections) were available for each specimen and each type of tissue. As a result, 278 

dimensions of the corresponding data matrices of muscle, liver or kidney were s × f, 279 

being s the number of runs (60 of blanks and positive samples + some standards) and f 280 

the number of features (typically ranging from 2000 to 5000, depending on the data set).  281 
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Prior to PCA analysis, some additional filters were applied to reduce the data 282 

dimensions, discarding noisy and irrelevant chromatographic and spectral ranges. In the 283 

chromatographic domain, time windows containing disturbing peaks of the death 284 

volume (tR < 0.20 min), cleaning and conditioning periods (tR > 8 min) as well as those 285 

regions containing mainly blank contributions were cleared. Analogously, in the MS 286 

dimension, spectral ranges with poor analytical information were also suppressed from 287 

the data set (m/z < 100). Once the working chromatographic and spectral ranges were 288 

delimited, the number remaining features (characterized by retention time and m/z) was 289 

dramatically reduced using a statistic criterion based on searching for the most  290 

abundant ions in positive samples in comparison with blanks (and vice versa). Hence, at 291 

a significance level of 0.01, features occurring at significantly higher concentrations in 292 

one class with respect to the other (e.g., blanks versus positive samples) were taken as 293 

potential discriminate features to be used in PCA analysis. Conversely, 294 

compounds/features occurring at similar levels in blank and positive samples were 295 

discarded for analysis. 296 

 297 

3. Results and discussion 298 

3.1. Optimization of MS conditions 299 

The most significant advantage of the Orbitrap mass spectrometry instrumentation versus 300 

others high resolution technologies is the higher resolving power of the instrument 301 

(Zubarev, & Makarov, 2013). This capability combined with high mass accuracies permits 302 

narrower mass windows to be defined and, thus, higher selectivities and sensitivities are 303 

accomplished (Kaufmann, & Butcher, 2006). 304 
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To ensure appropriate sensitivity for AMX and its metabolites, the main parameters of 305 

the LTQ-Orbitrap mass spectrometer were optimized. For this purpose, 10 µl 306 

(maximum injection capacity) of 10 mg l-1 AMX standard solution were injected into 307 

the LC-MS system. Resolution was the most important parameter of HRMS to be 308 

optimized in order to achieve appropriate compound discrimination through the MS 309 

domain. It is important to notice that resolution has significant effects on the method 310 

performance, affecting figures like selectivity or reproducibility (because the number of 311 

data scans throughout chromatographic peaks strongly depends on resolution). Here, 312 

two typical resolution values (60000 and 30000 FWHM) were tested using the single-313 

stage FT-MS and FT-MS/MS. The selection of resolution values depends on the mass 314 

accuracy obtained, that it is often deteriorated in complex matrices due to the 315 

occurrence unresolved interferences (Zubarev, & Makarov, 2013). For example, for a 316 

biological matrix with AMX at a level of 75 µg kg-1, the number of points for the peak 317 

changed from 185 to 320 maintaining the S/N when the resolution decreased from 318 

60000 to 30000. In order to avoid losing peaks of compounds present at low 319 

concentrations, near LODs and LOQs, we choose resolution values of 30000 to 320 

continue the studies in biological samples. 321 

In the MSn mode, the optimum resolution and collision-induced dissociation (CID) 322 

values to fragment the precursors by high-energy C-trap dissociation with normalized 323 

collision energy were 15000 and 30%, respectively. 324 

 325 

3.2. Qualitative and quantitative assessment  326 

3.2.1 Sensitivity 327 
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The presence of AMX in the samples was tested by FTMS and MSn experiments 328 

monitoring the molecular ion and the neutral loss of NH3, respectively, along with other 329 

complementary characteristics such as retention time, accurate mass, molecular formula, 330 

mDa of error between the mass found and the accurate mass. 331 

To establish the LOD and LOQ of AMX in biological samples using HR Orbitrap MS, 332 

chicken muscle, liver and kidney samples spiked with drug at different levels were treated 333 

as explained in section 2.4 (Commission Regulation (EU) No 657/2010, 2010). LOD in 334 

muscle and kidney tissues were < 10 and 10 µg kg-1 and LOQ were 15 and 25 µg kg-1 335 

respectively. These values are lower than the MRL established by the Council Regulation 336 

37/2010. In contrast, for liver samples, the sensibility was lower so that LOD and LOQ 337 

values were 75 and 100 µg kg-1 respectively, thus, giving higher values compared with the 338 

MRL established in the European normative (Commission Regulation (EU) No 37/2010, 339 

2010). These poorer limits were attributed to the higher complexity of the liver samples 340 

leading to a severe matrix effect on AMX signals (see below). 341 

 342 

3.2.3 Matrix effect 343 

The influence of tissue matrices on the sensitivity was evaluated by comparison of slopes 344 

of standard calibration curve in each biological matrix after sample preparation with that 345 

established in water as is reported by Macarov et al. (2012). As shown in Table 2, signal 346 

suppression in the three tissues was noticeable. A F tests concluded that differences in the 347 

calibration curves by LC-MS between in chicken matrices and water were statistically 348 

significant (Fcal(16.45) > Ftab(7.70)) so matrix effects were significant. Differences among 349 

slopes between the three tissues (muscle, kidney and liver), were also found. These 350 

differences were attributed to variations in efficacy of the sample treatment to remove 351 
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matrix interferences such as proteins, lipids and other endogenous components as is 352 

described by Stolker & Th. Brinkman (2005). Differences in the final extract compositions 353 

were responsible for a significant matrix effect in the electrospray source mass 354 

spectrometry. 355 

3.2.4 Recovery 356 

Recoveries, established by comparing the analytical results of sample extracts spiked with 357 

AMX after the extraction procedure, were around 45% for AMX in the three tissues. 358 

3.2.5 Quantification of AMX in treated biological samples 359 

The method was applied to determine AMX concentrations in tissues of 10 broiler 360 

chickens under the after therapeutic protocol defined in section 2.5. AMX was quantified 361 

form calibration curves establish for each chicken matrix spiked with different AMX 362 

concentration levels in the range LOQ - 200 µg kg-1 (each concentration level was 363 

prepared and assayed by duplicate). For the analysis of chicken samples, two independent 364 

replicate extractions were prepared and injected into the LC-MS system. The mean tissue 365 

concentration-time curves of AMX for each sample class (blank, treated and recovery 366 

samples) are presented in Figure 1. Detailed pharmacokinetic data for all animals enrolled 367 

in the pharmaceutical program shows that the absorption (time and amount) of AMX is 368 

significantly different depending on the tissue analyzed. The drug concentrations in muscle 369 

were lower than in liver or kidney, according to studies by Reyns, De Boever, De Baere, 370 

De Backer & Croubels (2008). Besides, as shown in the Figure 1, the AMX behavior in 371 

the two organs was quite different. AMX absorption was faster in liver than in kidney. 372 

Considering the AMX levels established in the Commission Regulation 37/2010 373 

(Commission Regulation (EU) No 37/2010, 2010) in the three tissues studied, kidney and 374 
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liver samples were no-compliant, giving AMX concentrations above the MLR (except for 375 

specimen 8 in liver matrix). 376 

In the analysis of Class D samples (specimens 9 and 10), corresponding to animals 377 

sacrificed 4 days after the drug treatment finished, no residues of the active substance and 378 

the main metabolites were detected by LC-MS. In this case, the waiting period applied was 379 

enough to excrete and eliminate the drug by urinary tract. Although no 380 

antibiotic/metabolite residues were found in these specimens, differences in metabolomic 381 

behavior compared to specimens 1 and 2 were encountered (see section 3.3 for more 382 

details). 383 

Regarding to the main AMX metabolites, amoxicilloic acid (AMA) was not detected in 384 

any case. Amoxicillin diketopiperazine-2’,5’-dione (DIKETO), in contrast, was found in 385 

chicken kidney samples of classes B and C as can be observed in the chromatograms 386 

(Figure 2) where the extracted ions corresponding to AMX and DIKETO (with the same 387 

theoretical m/z 366.1118) for 48h (Figure 2A) and 96 h (Figure 2B) of the pharmacological 388 

treatment are shown. In addition, the MS2 spectrum of AMX and DIKETO is also shown 389 

(Figure 2C and 2D respectively). In Figure 2D, peaks characteristic of 207.0767, 160.0430 390 

and 114.0377 indicated a common fragments corresponding to loss of thiazolidinic ring 391 

(C6H10O2NS, m/z 160.0430) giving an m/z 207.0767, and loss of carboxyl group combined 392 

with loss of H2O observing the m/z 114.0377. Although it was clearly evidenced that the 393 

tissue amounts of DIKETO increased with the intake of antibiotic, concentrations could 394 

not be calculated experimentally since DIKETO standards were not available 395 

commercially (Hermo, Gómez-Rodríguez, Barbosa & Barrón, 2013). 396 

 397 

3.3 Effect of pharmaceutical treatment on the metabolome 398 
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To our knowledge, only Sun et al. (2013) have reported a study to evaluate the effects of 399 

pharmacological treatment with Penicillin V on the metabolome analyzing rat urine and 400 

plasma samples. These authors have made samples classification by PLS-DA to 401 

evaluate metabolome differences between control and medicated samples. Based on the 402 

reviewed literature, we have not found similar studies with administration of antibiotics, 403 

in general, or AMX, in particular, in food of animal origin. 404 

Data obtained as explained in section 2.6 was analyzed by PCA. Gross data matrices 405 

created for the three tissues contained all extracted features under the following 406 

conditions: chromatographic peak width, from 15 to 60 s; signal-to-noise threshold, 50; 407 

count threshold in m/z peaks, 1000 counts; mass accuracy tolerance, 5 ppm; time peak 408 

shifting tolerance, 15 s; m/z peak shifting tolerance, 0.01. Under these circumstances, 409 

gross matrices contained about 4000 – 4500 count intensity values of peak features, 410 

defined by their m/z and tR. Extracted data features were further sorted according to 411 

their ability to discriminate among the predefined classes, here blank or non-treated 412 

(class A,) and treated (classes B to D) chicken specimens. A probability value p < 0.01 413 

was chosen as the threshold to separate features considered as potentially discriminant 414 

(e.g., present in one of the classes and absent in the other or present at higher levels in 415 

one of the classes with respect to the other) from those occurring at similar 416 

concentrations in blank and treated classes. After statistic filtering, about 1200 features 417 

were kept for further PCA treatment while the rest (approx. ~ 4000 variables) were 418 

excluded as they were common to the two groups. 419 

The analysis of both gross and reduced data matrices led to analogous results in the 420 

sample maps, thus indicating that even exploratory studies without assuming any 421 

sample category were sufficient to obtain well organized distributions of samples as a 422 

function of the drug treatment. Anyway, from the point of view of simplicity, models 423 
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resulting from statistically reduced data sets were more easily interpreted and the 424 

underlying meaningful variance concerning relevant variables was more efficiently 425 

recovered. 426 

The study of data sets from the three chicken matrices (muscle, liver and kidney) was 427 

carried out following the same approach. Here, the case of liver samples is resolved in 428 

details as an example of the overall procedure based on the interpretation of 429 

chemometric results. Data was first pretreated by autoscaling to minimize the 430 

contribution of high intensity m/z peaks with respect to minor signals. Figure 3 shows 431 

the results corresponding to the study of liver samples by PCA. 3 PCs were able to 432 

retain 60% of variance so that plots of scores (Figure 3A) and loading (Figure 3B) on 433 

PC1, PC2 and PC3 resulted in great system to find out the behavior of samples and 434 

variables and their relationships with the predefined chicken classes.  435 

The first revision of the scatter plots of scores showed a great reproducibility of 436 

replicates (Figure 3A). It was found that extraction replicates of the same specimen 437 

appeared in very close positions, thus indicating that the analytical procedure was 438 

highly reproducible in terms of extraction and LC-MS analysis. It was also observed 439 

that inter-class differences (i.e., among individuals of different classes) were much more 440 

marked than within a class. This was consistent to the fact that specimens belonging to 441 

the same class displayed highly similar scores on PC1 and PC2 so they appeared in the 442 

same area. Hence, quite compact class clusters were observed. The evolution of the 443 

metabolomic behavior was clearly visualized from the position of class groups on the 444 

plot of scores (Figure 3A). Sample clusters appeared from right to left as follows: class 445 

A, blanks ⇒ class B, AMX treatment (2 days) ⇒ class C, AMX treatment (4 days) ⇒ 446 

class D, AMX treatment finished (4 days). PC3 and further significant PCs described 447 

subtle changes such as variability among chicken samples belonging to the same class.   448 
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The map of variables resulting from the scatter plot of loadings was studied in a similar 449 

way. The distribution of features on PC1 vs PC2 vs PC3 may reveal the most 450 

characteristics variables dealing with each class. Anyway, the number of variables 451 

included in the data matrix was enormous (~ 1200 data points) so, certainly, not all of 452 

them were attributable to relevant chemical markers. Indeed, it should be mentioned that 453 

even after suppressing the non-discriminat variables from the gross matrix (see above) a 454 

lot of the remaining features were chemically meaningless. This is a quite frequent 455 

drawback of the metabolomic approach since random signal contributions, just 456 

generated by chance, may appear when dealing with large series of samples. As a result, 457 

discriminating among actual sample descriptors (i.e., those associated to chemical 458 

components) and random features is a very complex and time-consuming task. 459 

In order to try to identify other AMX related compounds from clouds of close features, 460 

probable and equivocal phase I and phase II metabolites were estimated for AMX, 461 

AMX penicilloic acid, AMX penilloic acid and DIKETO using METEOR software 462 

(Lhasa Ltd., https://www.lhasalimited.org/). More than 100 chemical candidates from 463 

diverse biotransformation processes were proposed from the parent drug plus the 464 

mentioned metabolites. The exact molecular masses of the corresponding protonated 465 

molecular ions [M+H]+ were compared with the experimental m/z values of the retained 466 

features to try to confirm (or discard)  the identity of such compounds. In case of 467 

doubts, additional criteria were considered including, logP, count intensity, MS spectra, 468 

chromatographic peak shape, etc. However, none of the tentative drug related 469 

metabolites could be assigned. As a result, it was concluded that the extracted features 470 

might be mainly associated to endogenous chemical components rather than AMX 471 

species. According to the MS data, it was also noticed that the overall chemical 472 

behavior of each sample class was very different. Hence, despite AMX and metabolite 473 
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levels were undetectable in some samples the tracks in metabolome modifications were 474 

certainly dramatic. Even in the case of class D, corresponding to chicken slaughtered 4 475 

days after stopping the veterinary treatment, sets of m/z features were completely 476 

different to those corresponding to non-treated chickens. This finding suggested that a 477 

waiting period of 4 days was not sufficient to remove any sign of metabolic alterations 478 

as a consequence of the AMX administration. Thus, even when the drug was not 479 

detected analytically, endogenous compounds underwent changes from normal levels of 480 

as a consequence of the drug treatment by up- and down regulations. 481 

The behavior described here for the specific case of liver samples was similar to that 482 

found for the other biological matrices. For muscle and kidney tissues, samples were 483 

clearly grouped according to the predefined classes. The evolution in the metabolism 484 

from blank, 2-day treated, 4-day treated and post-treatment animals was evidenced in 485 

the corresponding plots of scores. The structures of the loading representations were 486 

complex because the huge amount of features retained. The m/z biomarkers which are 487 

mostly changed due to pharmacological treatment and used to characterize the clusters 488 

are shown in the Table 3. When data corresponding to kidney were studied, only the m/z 489 

366.1117 found in chicken kidney, class B and C, has been unequivocal identification 490 

as the main metabolite of AMX (diketopiperazin-2,5-dione). This finding was 491 

consistent with the simultaneous interpretation of score and loading plots, the so-called 492 

bi-plot analysis, as treated samples (class C) were also located in the equivalent relative 493 

position (i.e., centre/left of the plot of scores). Reasonably, other data points appearing 494 

in the same area should correspond to contributions displaying more intensity in treated 495 

samples than in blanks. Tentative identification of the markers in the METLIN 496 

database, assigning positive charge [M+H]+ and an experimental error lower than 497 

±5ppm, proposes the best probably elemental composition and the associate error in 498 
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these assignations, following the methodology describe by Cajka, Danhelova, 499 

Zachariasova, Riddellova, Hajslova (2013). Such features could not be associated to 500 

putative metabolites estimated from in-silico programs. Most of the components that 501 

could be characteristic of the different classes might correspond to endogenous 502 

compounds with altered (increased or decreased) concentrations with respect to the 503 

blank class. Besides, as above, blank and post-treatment samples were not coincident 504 

which indicated that differences in the metabolomic profiles still arose. 505 

 506 

507 
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4. Conclusions 508 

A study concerning to metabolomics profile in different tissues from broiler chickens 509 

subject to a pharmacological program with AMX have been successfully classified by 510 

combination of high resolution accuracy mass spectrometry data and PCA. The ability of 511 

the data processing to visualize and to interpret metabolomics data on the base of the 512 

relationships of mass features have allowed to extract valuable information about the food  513 

metabolome quality. In this context, the loadings and scores plot have shown a real 514 

contribution and changes in the chemical behavior depend on the chicken muscle, liver and 515 

kidney. The significant metabolite clusters were characterized by a several mass features as 516 

a consequence the administration of AMX to the animals. These biomarkers corresponding 517 

to the endogenous metabolites, but however, in all biological tissues have also observed 518 

the active compound in the samples corresponding to broiler chickens slaughtered the 519 

second and fourth day during the pharmacological treatment (48 and 96 h), and solely one 520 

of the main metabolite of AMX, DIKETO, formed via exogenous metabolism, only in 521 

chicken kidney from the class B and C samples. The absorption of AMX in liver and 522 

kidney tissues was upper than muscle, giving concentration level of AMX in liver and 523 

kidney above the MRL established by European Commission excepted specimen 8 in 524 

liver. 525 

In addition, data corresponding to the quality parameters and matrix effect studies for all 526 

tissues were included in this research article. The reported results prove the LC-HRMS 527 

method allow the determination of AMX in chicken muscle and kidney under the MRLs 528 

fixed. The poorer sensitivity obtained in chicken liver were attributed to the higher 529 

complexity (matrix effect) of the liver samples and the ineffective samples treatment to 530 

remove the components matrix. Nonetheless, the applied methodology proves an excellent 531 
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way to produce bioinformation to discriminate whether there is pharmacological 532 

adulteration in food analysis. 533 
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FIGURE CAPTIONS 625 

Figure 1. Concentration-time profile of AMX after pharmaceutical administration in 626 

tissues of chicken muscle, liver and kidney. 627 

Figure 2. Extracted Ion Chromatogram of AMX and DIKETO from medicated chicken 628 

kidney samples slaughtered A) 48 h and B) 96 h of pharmacological treatment. High 629 

resolution accurate mass spectra of C) AMX and D) DIKETO. 630 

Figure 3. A) Scores plot and B) loadings plot from the medicated chicken liver samples 631 

under pharmacological treatment. 632 



Table 1. LC-LTQ-Orbitrap MS optimized separation gradient. 
 
Time (min) %H2O

a %MeCN 
0 98 2 
3 98 2 
4 75 25 
5 75 25 

5.5 65 35 
6.5 65 35 
7 20 80 

7.6 20 80 
7.7 98 2 
18 98 2 

a5 mM ammonium acetate adjusted at pH 2.5 with formic acid 
 
 



Table 2. Calibration curves for AMX in chicken muscle, kidney and liver analysing by 
LC-LTQ-Orbitrap MS. 
 

 Standard curve (in water) Calibration curve (in matrix) 

Muscle y = 0.128 C – 0.003 (r = 0.985) y = 0.048 C – 0.003 (r = 0.994) 

Kidney y = 0.099 C – 0.004 (r = 0.963) y = 0.068 C – 0.007 (r = 0.985) 

Liver y = 0.127 C – 0.004 (r = 0.994) y = 0.014 C – 0.005 (r = 0.985) 

y = area AMX/IS radio;  C = concentration of AMX/IS radio. 
 
 
 



Table 3. m/z cluster biomarker after pharmacological treatment with AMX in chicken tissues. 
 

Biological tissue Classes Rt (min) m/z Elemental composition 

Liver Class B 4.09 338.1096 Unknown 
  6.09 255.0618 C10H10N2O6 (2 ppm)a 
     
 Class C 0.73 362.1183 C17H19N3O4S (3 ppm) 
  0.81 489.1436 Unknown 
  5.41 332.1802 C14H25N3O6 (4 ppm) 
  6.97 307.2368 Unknown 
  5.36 245.1851 C12H24N2O3 (3 ppm) 
  1.47 329.1803 C14H24N4O5 (4 ppm) 
  5.33 377.1806 C18H24N4O5 (3 ppm) 
     
 Class D 5.81 391.1598 C18H22N4O6 (3 ppm) 
     
Kidney Class B and C 1.42 252.1224 C13H17NO4 (2 ppm) 
  5.58 366.1117b C16H19N3O5S (0 ppm) 
  6.74 176.0705  
     
 Class D  5.25 584.2914 C27H37N9O6 (4 ppm) 
  7.81 282.1493 Unknown 
  6.74 408.1317 Unknown 
     
Muscle Class B, C and D  2.26 295.1289 C14H18N2O5 (0 ppm) 
  3.40 307.1651 Unknown 

         aError obtained in the assignation of the elemental composition 
       bDiketopiperazine-2,5-dione (C16H19N3O5S) 








