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Statistical properties of binary complex networks are well understood and recently many attempts have been
made to extend this knowledge to weighted ones. There are, however, subtle yet important considerations to
be made regarding the nature of the weights used in this generalization. Weights can be either continuous or
discrete magnitudes, and in the latter case, they can additionally have undistinguishable or distinguishable nature.
This fact has not been addressed in the literature insofar and has deep implications on the network statistics.
In this work we face this problem introducing multiedge networks as graphs where multiple (distinguishable)
connections between nodes are considered. We develop a statistical mechanics framework where it is possible
to get information about the most relevant observables given a large spectrum of linear and nonlinear constraints
including those depending both on the number of multiedges per link and their binary projection. The latter case
is particularly interesting as we show that binary projections can be understood from multiedge processes. The
implications of these results are important as many real-agent-based problems mapped onto graphs require this

treatment for a proper characterization of their collective behavior.
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I. INTRODUCTION

The increasing and unprecedented quality and quantity of
available data coming from very different areas is boosting the
field of complex networks. Interdisciplinary science demands
new efforts and new tools, addressed not only to develop more
efficient computational strategies to analyze incoming data
but also to span a theoretical framework where both more
accurate and more tractable models can provide predictions
closer to the reality one wants to face. In this context, a standard
approach consists of representing in a graph the complex
structure of interactions among the elements of a given system.
Statistical mechanics is an extraordinary framework where
such a complex structure can be appropriately modeled and
with this aim a large amount of studies has appeared in recent
years [1-3].

The simplest representation of a network assumes the
existence of nodes and edges. The edges do not need to be
necessarily symmetric and they can provide information about
the relative influence (interaction) of a node onto another, i.e.,
they can be directed and have a certain intensity. However, the
early studies in the field were essentially focused on a binary
projection of the network on a graph where only the existence
of an edge and its distribution were required to determine some
of its properties, without considering the effect of weights. In
this way one could compute the probability for two arbitrary
sites (nodes) to be connected through an edge. It is well known
that such probability keeps certain analogies with occupation
numbers in quantum statistics, in particular, with fermionic
systems [4]. Further developments have extended these results
to richer and more complex structures such as directed and
weighted graphs finding analogy with bosonic systems [5].

A successful and complete description of any system
amenable to be represented as a complex network through
statistical mechanics requires an appropriate characterization
regarding the detailed features of the microscopic components
forming the network. Up to now, the actions represented by an
edge have always been considered as indistinguishable events,
but in some cases, the data represented by edges and their
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weights can be generated by independent, identifiable actions.
This circumstance needs to be taken into account whenever
using any statistical technique applied to complex networks. Its
impact being important as can be seen in analogy to statistical
mechanics where the distinguishability of particles leads to
different descriptions in terms of Fermi-Dirac, Bose-Einstein
or Maxwell-Boltzmann statistics.

Processes generated by single agents represent single
events, for instance, a trip between two locations, a call
between two cities [6] or communications at a given time.
A particularly clear example where this distinguishability
of weight units is crucial are transportation networks [7-9],
where human flows between different locations are used
to build the so-called Origin Destination matrices which
collect global information about their mobility or allocation.
A naive approach based on a standard weighted description
of a network is not satisfactory for this problem as it was
already pointed out by Wilson [10] who mapped transport
systems to statistical physics using an entropy maximization
approach. Hence, modern complex networks theory calls for
the introduction of new general models taking into account the
possible distinguishability of the edges forming the considered
network.

The present work addresses this issue by presenting a
general statistical mechanics approach to networks created
from distinguishable single-unit events that can be grouped
in edges, in analogy to the allocation of particles in discrete
energy levels of classical statistical mechanics systems. In such
networks, the edge weights encode information about inde-
pendent processes performed by different agents at (possibly)
different times, and hence those are necessarily represented
by integer numbers and constitute quantized, distinguishable
entities. The difference between this representation, which
leads to what we call multiedge networks, and the already
considered weighted ones is clear as schematically shown in
Fig. 1. Multiedge networks assume the existence of a minimal
weight of unit value (and hence a quantization) representing
an indissociable event. In some cases, groups of these events
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FIG. 1. (Color online) The distinguishability issue: Out of a set
of three distinguishable nodes and three distinguishable (directed)
events, one can see that the number of configurations (described in
terms of edge names) compatible with a given occupation number
sequence is degenerate, since all permutations of events generate
different microstates.

connect the same pair of nodes, hence forming an edge with
multiple connections, which has a different nature from a
weighted one where no quantization is imposed. If one aims
to apply the well-known ensemble theory used in statistical
physics to networks [11,12], one needs to take into account
this subtle yet important difference, which has profound
implications on the associated statistics. The choice of one
or the other representation will thus depend on the problem at
hand and makes a big difference in terms of collective behavior
of the whole network as will be shown along this paper.
This study fills the existing gap in the field by introducing
a complete and necessary discussion on distinguishability
that is to be added to the already existing models and thus
complements the complex networks body of theory.

Many examples of systems studied using network theory
can be understood as multiedge networks. All those networks
composed by the actions of independent agents (mobility
networks [13], call networks [14]) and in general those whose
edges are formed by the sum of independent actions developed
during a certain time fall within this category [15]. The
present work deals with the challenge of introducing null
models that provide exact analytical expectations for the main
network observables under some given fixed constraints. This,
in turn, allows one to assess whether any observed network
characteristic from real data is due to the imposed constraints
[16] or to the contrary, to some unexpected phenomena worth
exploring.

The paper is structured as follows: Sec. II introduces the
concept of multiedge networks together with some basic
nomenclature and definitions used. Sections III-V introduce
the general derivation of the considered ensembles using differ-
ent sets of constraints (mainly linear constraints on occupation
numbers, binary-projection constraints, and both). In each
section, some important examples are explicitly derived and
formulas for the state statistics and the ensemble entropies
are obtained. Finally some concluding remarks are given
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discussing the work done. The Appendices contain details,
additional discussion, and some mathematical developments
on mentioned examples in the text.

II. ENSEMBLE APPROACH TO MULTIEDGE NETWORKS:
NOMENCLATURE AND DEFINITIONS

A multiedge network is a collection of nodes that may be
connected by none, one or more than one element (event)
taken from a set of independent, distinguishable entities. Such
an object admits a coarse-grained representation in terms of a
multiedge matrix T. The matrix entries #;; are bounded integer
stochastic variables #;; < ti(;nax) = T denoting the number of
events joining nodes i and j and T = > ; 1ij represents the
total number of events. In the context of statistical mechanics
they play an analog role to occupation numbers. The matrix T
need not necessarily be symmetric sot;; # ¢;; in general. Let N
be the number of nodes of the network which generate' N(N —
1) possible states where individual events can be allocated.
E=Y; £ O(t;;) represents the number of occupied states
(regardless of their occupation number as long as f;; > 0) in
the network, representing ®(x) the Heaviside step function,

L x>1 (x e N).

Ok) =

Such a function ensures that E accounts for the number
of existing connections regardless of the number of events
contained in each entry of the matrix, therefore creating a
binary projection of the network.

Our goal is to construct an ensemble framework that
allows one to treat multiedge networks with any given set
of constraints C = C ({t;j}) defined in terms of the variables
of the system. The constraints define a macrostate and restrict
the available phase space to all the possible graphs compatible
with such constraints. In this context, we assume two main
starting hypotheses. First, all the configurations (microstates)
compatible with the observed constraints have the same a
priori probability of appearance. Secondly, we assume that
T,N > 1 being N given (this means that the topological
structure of the network, the number of available states, does
not change) which allows a statistical treatment of the problem.
We further assume that the distribution of occupation numbers
is stationary and defines in turn a probability that fixes our
thermodynamic limit. This probability p(#;) indicates the
asymptotic (relative) distribution of occupation numbers:

« lij
P = <Ztij> — p(t;;) as T — oo, (1)

where (- - - ) denotes an average performed over the ensemble
considered. Under these considerations it is possible to

!Please note that the framework we present permits self-edges if one
desires; it is just a matter of extending the sums over available states
over all values of i, j or excluding the term i # j. It also is valid for
both directed and undirected networks: One needs to perform such
sums only over states for which j < i in such cases.
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establish a complete mapping between the problem at hand
and a classical statistical mechanics problem. The events
correspond to distinguishable particles occupying any of the
N(N — 1) available energy states [the methodology is laid for
directed graphs, but can be easily adapted to undirected ones,
yielding N(N — 1)/2 available states]. The main difference
between the proposed system and the ones studied by classical
statistical equilibrium mechanics regards the constraints used:
They will not be in general of extensive, global nature but
local at the level of nodes. The standard procedure, already
used by different authors, consists of finding an expression
for the probability of obtaining a macrostate defined by its
multiedge adjacency matrix T,

P(T) = P({t;; ),

and then maximizing its associated entropy,

Ssu=—Y_ P(T)InP(T), (2)
r

where the sum runs over all possible configurations of events
(microstates) on the accessible phase space I' of the given
ensemble. Since distinguishability plays an important role in
our work, it is important to note that if one wishes to compute
the sum over possible values of the occupation numbers {#;;}
(our canonical variables) rather than over configurations, a
degeneracy term needs to be added to expression (2) (see
Fig. 1),

(Zij fij)!

Hij tij! .

In the remainder of the paper, we shall work on the occupation-
number space €2 (which is a coarsened representation of the
I" configurational space), including the degeneracy term and
hence considering an expression for the entropy of the form,

D({t;;}) = 3)

SsH

— Y P H In P,
r

= D~ Dt )PH In (D HP({1)

Q{1;}

— > P({ty)In P({t;}), 4
Q{11

where we changed the notation P — P to denote the counting
over occupation numbers in the (coarse-grained) €2 space
rather than event configurations in I" space.

A final comment deserves the seminal work by Wilson on
transport theory [17]. He followed a similar scheme and found
expressions for the expected number of events connecting
two arbitrary nodes according to some considered constraints.
However, in the present paper we go further; we present
a modern methodology able to handle more complicated
constraints as compared to those analyzed by Wilson and
also consider constraints which affect simultaneously the
distribution of occupation numbers and its binary projection on
the graph, for instance, those affecting the strength (weighted
degree [18]) of a node and its degree.

PHYSICAL REVIEW E 88, 062806 (2013)

III. MULTIEDGE NETWORK WITH GIVEN LINEAR
CONSTRAINTS ON THE OCCUPATION NUMBERS ¢;

In this work we proceed following a microcanonical
scenario. In this ensemble, all the configurations are equally
probable and the constraints are considered “hard,” i.e., the
phase space accessible always fulfils strictly the constraints.
Thus, we must only maximize the expression In ({z;;}) with
respect to ¢;; which allows one to find the most probable value
of some relevant observables, i.e., their statistically expected
value in the ensemble of the maximally random graph which
strictly fulfills the constraints:

max{Q' ({t; DIC({#;;}) = C} = max{Q({s; D). (5)

We follow the same methodology developed in seminal works
by Bianconi [19] and write down the volume of the €2 space
introducing auxiliary fields #;;,

Q
Q=) eXunit [T8(C, — Cy(tt;))
{c} q

[¢]
-y / eZuntsts T] DL6yle 0 =Co ()
{c} q

where {c} denotes a sum over microscopic configurations
(I" space), Q is the total number of constraints, and 6, are
the related Lagrange multipliers. Note also that an integral
representation of the Kronecker delta has been used. The
introduction of auxiliary fields 4;; allows one to recover all
the central moments of the distribution of #;. In fact, one
can see that (6) is closely related to the cumulant generating
function of #;; and hence all its cumulants can be recovered by
differentiation. In particular,

(t;j) = On, In Q({tij})|h’_f=0w7j»

ol = ag”_ In sz({t,-j})|h’_l_=0\ﬁ’j, (7)

tij

2 _ a2
Orl‘ij,tkl - ahijhkz In Q({[ij })ih,,-:OVi,j'

If we wish to perform the sum over occupation numbers (2
space) rather than over configurations of the system, we need
to take into account the degeneration given in (3),

| , /
Q= Z/ HYi.t(v’eZ’j hijt}; 1_[ D[Qq]e_e‘fc‘fea‘icfl({’ii}), (8)
{t);} q

ij e

For this ensemble and for linear constraints on occupation
numbers, one can write

Cotih =Y iy, ©)

ij
being cE; D a quantity that usually depends on a “property” of
the edge between nodes i and j (a distance, for instance) or
be a real number (cfj’ ) = d; 4 for outgoing strength sequence
constraints, for example, as we shall see). In such a situation,
the sumover {#;;} sequences suchthat )  7;; = T canbe exactly
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performed inside the integral in (8) yielding

Q= / <H D[Qq]> =24 04Cq T In 355 explhij+3, 0ycq"}
q

/(HD 9 ]) f(9 Cq h‘/}) (10)

The occupation number statistics can be shown to have
multinomial nature (see Appendix A),
(tij) = Tpij; —Tpijpu.
(1)

This fact assures that the relative fluctuations of occupation
numbers vanish in the thermodynamic limit (T — 00) since

2 — .. J— .. 2 —
Utij = Tplj(l plj)1 Gfif,tu =

Gfij _ 1 - Dij

= T — oo.
(tij) pijT

— 0, as

We identified p;; as the probability for an individual event to
be assigned to state i j. Explicitly,

eZq C:Ij 0y
pij = :
N Zij Dij
Concerning the entropy of the graphs in this ensemble, the

integral in (10) can be approximated to first order by using the
steepest descent methods,

SBG =In Q|hi_/'vi,j:0 x>~ —f*

=Y TS 3)
q

12)

where 6, are the solutions of the saddle point equations’ given
by
80, f |1 vy = 0= Co = Coty) =T Y cPpyy. (14)
i,j
Merging (11)—(14) one obtains the event-specific entropy
of a given graph in this ensemble:

SB?G 29 ZC(U)

@j)
—In Z e2q%acq
.. )
S D22 SIS St
ij q ij

S
=—Y pilnp;= %, (15)

which has a final Shannon entropy form, equivalent to the
Boltzmann-Gibbs entropy.

If one is able to exactly solve the saddle point equations
obtained from the steepest descent approximation, the full
distribution of occupation numbers is recovered. Despite
being in a microcanonical framework, one could consider

2In the remainder of the paper, the * signs will be omitted to simplify
notation.
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a canonical ensemble where the constraints are fulfilled on
average, hence C,({t;;)) = (C,(%;)). Having proven that the
partition function (10) has a multinomial-cumulant form over
the occupation numbers and considering only linear soft
constraints, the requirement that those constraints need to
be fulfilled only on average in the sampling over the phase
space is automatically satisfied. Moreover, the constraints have
vanishing relative fluctuations in the thermodynamic limit,

(C({ty}) = ch;%,» =T cpi;.
— -~

2 @) (kl) 2
oc, = E Cq O T,
i,j.k,l
2

oc
I > — >0 as
(Cy)? T

T — o0,

where we have used the properties of the multinomial distri-
bution presented in (11). Although the theoretical basis for the
generation of graphs in different ensembles is introduced in
this paper (see Appendix B), the challenges for the exact and
efficient generation of such ensembles will be shortly tackled
and presented in future work.

In the following, we shall consider some explicit cases of
linear constraints on #;;.

A. No constraints

This is the simplest case where we have a single hard
constraint (apart from the number of nodes N) T =)
Therefore (8) reads

ij lij-

T

o= ¥

2 6=T

T!
ey = | Y e
e - (2

In this case it is straightforward to determine the average value
of the occupation numbers (in this case 7 denotes an average
over a single graph realization):

T

(tij) = ———5 =

NN -D) =ft=Tp Vi,j. (16)

Therefore, all the occupation numbers have constant probabil-
ity pij = p V1, of being chosen per event sorted. The result is
according to what intuition would tell us: Under no constraints
events are equally distributed among levels which reminds the
high-temperature regime in classical systems where there is an
arbitrary large (but finite) number of energy levels. It is also
possible to compute the covariances on occupation numbers,

2 ..
o2 —Tp ij #kI
v Tp(1 = p)

ij =k~

Other typical network magnitudes of interest such as the
strengths (both incoming s(m) >". 4;; and outgoing 5" =
Z t;;), which will be extenswely used in this paper, can
also be computed. They are random integer variables with
fixed mean (s;) =§ = (N — 1)pT = p,T and variance 032 =
Tps(1 — ps) Vi € [1,N] which are on average equal for each
node and have also a multinomial character.
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Concerning the Boltzmann-Gibbs entropy of the ensemble,
Sgg =T In(N(N — 1)) = —TIn p = Ssu. a7
Which recovers a Shannon form over events as expected,

Ssu = _Zjiplnp'

B. Fixed average event cost ¢ = C/T

If additionally to the number of events 7', we consider a cost
matrix (Symmetric, dense, and positive definite) D = {d;;} and
fix the total cost Cr = ) d;;jt;;, we trivially get

Q= / D[6]exp { —0Cr+T aneh"J‘*"""f}

=fD[9]exp{c(@,{hij},{lij})},

which leads to the saddle point equation,

Cr _
dgClpy=ovij =0= — =¢ = Z

and finally,
eGdij
<tij> = TW = Tp(eadlj)v

oy, = Tp@Odi)(1 = p(0.d;))).

And this leads to a weighted version of the Waxman graph [20].
This reasoning can be extended to study the interesting case
where the distribution of costs is also fixed,® which is of
particular interest in the field of O-D matrices used to analyze
mobility, where the mobility of users using certain types of
transports is assumed to follow particular statistical forms
([21,22]). This case is analyzed in detail and solved in
Appendix D.

For any of the cases involving cost matrices, especially
those related with distances, it is very important to remark
that the allocation of occupation numbers is not independent
in each state and hence it is not true that the probability
W(t;;,d;;,0) of having a state occupied by #;; events at distance
dij is W(t;,d;;) = Kf(0,d;;). Rather W(z;;) represents a
conditional probability of observing #;; events (¢rips in this
scenario) at distance d;; given the distance matrix D and
the rest of the constraints (included in K). This means in
particular that if a deference function f(d;;) is proposed to
explain observed flows between locations, as usually done in
O-D matrix studies under a maximum entropy assumption, its
predictive results need to be statistically tested against the full
expected distribution of #;;, and not only against the (biased)
statistic of observed or existing occupation numbers.

C. Fixed relative strength sequence 5 = {(s*",s™);},T

We consider now the case in which the only given constraint
is the strength sequence 5. In this case, the constraints read

Cilty) =Y iy =5 Cilty) =) 1 =s (I8)
i J

3 As done in [37] for the binary case.

PHYSICAL REVIEW E 88, 062806 (2013)

and Eq. (6) becomes
/N
Q= /e_ T o™ e 3 By (1‘[ D[a,-]D[,B,»]>
% Z T! l_[(eoti+[3,'+h,-j)t,-,'

t;;!
Y 4=T [Tr; ij

ij
N .
-/ (HD[ai]D[ﬁi]e‘““vf’me_w) D ettt
i ij

- / Dl{a; Bi}lexp [ =Y s = pysh
i J

+Tln Z e%ithithis
i#]j

- / Do B} lexp f (e} (B ). his).

Now we need to solve the 2N saddle point equations,

. e%itBi
aa,f|h,-j=0w,j =0=s"= TZ W’
JF# (19)
in eai+ﬂj
aﬁff|hij=0Vij =0= 5j = r Z Zea,ﬂsj'
i#j
And we apply again (7) to get
() = T—21— = Tp,;, (20)

Zij XiYj

where we have identified x; = e*,y; = efi and p; ; has the
same multinomial structure and properties as in previous
examples except for the fact that these probabilities are state
dependent. In fact, the average number of multiedges between
two nodes factorizes in an uncorrelated form.

For large N we are led to

o _ Zj Vi _7T WIS &

i - 1 . . - X _ . X ’
Zi# X Zj Yj Xi 1)

X = Zx,-; Y = Zyj; s o X s}“ x y;,
i J
and we recover the weighted configuration model [23],
siouts}n

(tij) = — (22)

This result recovers the expression in [24] and is in accordance

with a maximum likelihood principle [16] (contrary to the case
of weighted networks as explained in [25]).

Let us notice that these results allow a straightforward

extension to the canonical ensemble. By identifying from (21),

A

P =5 Py =y

one can work with a strength sequence which is no longer fixed

but a collection of fluctuating integer random values with a

, (23)
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multinomial structure, since the partial grouping of multino-
mial random variables #;; preserve their multinomial character
and by construction Y jpsh = D psew = 1. Therefore,

) = Toge, (s3] =

Ogon = Tps;)ul(l — ps;ml)’

TpS}"v
Cfs;n = Tpv}n(l - py}") (24)

Concerning the entropy in this canonical ensemble scenario,
making use of (24) we further obtain a closed expression in
terms of the constraints of the problem,

Out 1H
SBgz—Z °“‘1n Z lnln +T1nZ T2
i#]
=T (D pylnpp+) pyplapy]. (25
i j
SBG SSH
T = - Z ps,"“‘ In psf”‘ - Z st“ In ps}“ = T
i j

Let us remind that in this context p,, = j Dij represents the
probability of a certain node i to accumulate (s;) (incoming or
outgoing) events on average. We therefore recover a Shannon
form for the entropy in both microcanonical and canonical
ensembles, which scales with the total number of events T
and is node (but also state) specific [from Eq. (15)].

Further additional constraints can be added leading to
different models. An example would be to merge the last two
examples of a network living in a metric space (or any network
where we can give a cost to the edges) with fixed “accessibility”
of each node (distance-weighted strength). We could also
fix the average cost per trip ¢ (global constraint) and the
strength of each node (node local constraint). In this case one
would obtain the popular doubly constrained gravity model in
several forms [26], also Stouffers’ intervening opportunities
model and even the newly proposed radiation model [13] (by
choosing an appropriate form for the cost function; see [10]
for extended discussion).

The case of the gravity law models deserves a closer look
since an entropy maximization approach yields a form (t;;) =
x;yj f(y,d;;) which is not equivalent (in general) to (#;;) =
s9sP f(y.d; ;) because the values of the multipliers depend on

e(b,’j-l—zq/ }\,q

/(/
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the particular spatial distribution of the considered nodes and
their relative strengths. Hence, despite the success attained by
these kinds of models to reproduce empirical data [6,8,27] an
entropy maximization approach could unify the different sets
of exponents observed in each study (see [7]).

IV. MULTIEDGE NETWORK WITH GIVEN NONLINEAR
CONSTRAINTS ON THE BINARY PROJECTION
OF THE OCCUPATION NUMBERS O(t;;)

Let us consider now more complex situations such as the
case of nonlinear constraints on #;;. One of the most relevant
objects to look at when dealing with complex networks is
the degree distribution. It concerns only the existence of links
between arbitrary nodes of the graph regardless the number of
multiedges between them. In the framework presented in this
paper it can be worked out as a function of the binary projection
of the occupation numbers on the graph so, in general, such
constraints can be expressed as

Cp =Y &lew).
ij

The main technical difficulty in dealing with these types
of constraints is that they do not allow the summation in
a multinomial form of the terms in {#;} inside the integral
of the partition function for exactly fixed 7. A workaround
to perform the summation can be found, however: Instead
of making the multinomial sum at once, we proceed in two
steps. We first introduce a Kronecker delta in integral form
inside the integral of the partition function (6) with associated
Lagrange multiplier 6 which fixes the total number of events.
We secondly allow the sum inside the integral to cover all
the available values of the phase space ({f;; € [0,T]Vi,j}.
Finally, since the grouping of terms in the sum not fulfilling
the constraints (including the constraint on the total expected
number of events) will be penalized by the Kronecker deltas
introduced earlier, we relax the limit on the sum over
individual occupation number configurations from 7 — oo
what reminds the standard approach to the grandcanonical
ensemble (in Appendix C the calculation with finite T is also
given).

Proceeding as explained we obtain a new version of Eq. (6):

(26)

A])
)O(i;) ehij+0)t;

Q:/D[e]e—”e*zﬂq'@ [1e0a1| T[]
¢ (i)

— /D[Q]e—OTe—Zq/ )\qréq/

=/D[9]e—”e—zq *Cy

ij

where we have introduced auxiliary fields b;; for the binary
projections of the occupation numbers. Both the complete

T
[] D, 1| 1| 2 xq/@<'/>)z
/!

q’ t =1

HD[)V ] T'exp Zln b'7+z )L/C(/( hij+

l[j!

(h,,+9)t 1

()V

h[/ X kgl ))®(tij)(ehij+9 i

2

>otij=T— t

tij!

27

o)

set of cumulants of the occupation numbers and their binary
projections can now be recovered by differentiation. For the
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occupation numbers using (7) and in the case of the binary
projection,

(O(t;)) = 9, In Q({t:; Dln;;=b;,=0vi.j s
0(.2)(,”.) = 02 In Q({ti; Dlny=p;,=0vi.j» (28)
081000 = Obygbu 10 A lny=b,=0vi
From expression (27) one can compute explicitly those
values yielding

Ali])
A o2d Ry (efg _ 1)
(O;)) = pij =

s

Ajj
0
(t;j) = eoe—eeﬁij = 11 7ij,
e —1

0(,2)(,[/) = pij(1 — pij); O’,i. = (t;))(L+ e’ —(t;)), (29)
Uzi-,tk, = U(%)(t,'j),@(tk/) =0 if ij#kl,

A= ez‘l’ }”“'6'(1[’” (eeﬁ — 1) + 1.
For ease in notation, we perform the change p = ¢’ and

we identify (©(z;;)) with the probability p;; of connection of
nodes i and j [28] and 7, with the graph-average occupation
of existing links. In Appendix A we prove that the resulting
partition function is equal to the cumulant generating function
of the outcome of N(N — 1) independent zero-inflated Poisson
processes (ZIP [29]) with individual associated probability,

A~ £\ O@)
LP) CG0)

P(t]p.p) = (1 — p)l—0® P
tp.p)=(1=p) pramiey

which in turn, regarding only the binary projection, corre-
sponds to the outcome of independent Bernoulli processes
with probabilities p,

PO®)|p) = p®(1 — p)' . (31)

From (29) one sees that in this case the multiedge structure
is completely determined by the binary constrained topology.
Our coarse-grained description in terms of independent oc-
cupation numbers implies that for each state, two outcomes
can be considered: Either the edge does not exist (obviously
with 0 occupation) or it does exist, in which case the resulting
(conditioned) statistics being Poisson with mean value (f|t >
1) =pz.

The constant relation of proportionality (#;;) o« p;; rapidly
allows one to identify the graph-average occupation of the
expected existing links (E) = ), i Dijs

T L _ P 0 (32)
=—= >1; p>0,
TTUE) T e —1 P
which can be inverted leading to
p=We i)+, (33)

where W(x) is the Lambert W function [30]. Figure 2 shows a
plot of Eq. (33) stressing the rapid asymptotical convergence
p — I, ast; — oo (in fact, the approximation is clearly good
as soon as f; >~ 5).

With (29) and (33) we can compute the relative fluctu-
ations of both occupation numbers and binary links in the
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FIG. 2. (Color online) The result of Eq. (33) is shown together
with the equality line p = 7. One can see the rapid convergence: For
f+ = 2.31 we obtain % = 0.9 and for7, = 4.615 one finds % =0.99.

thermodynamic limit,

2 . .
%0@,) I —py) A —=pij)
T—oo (O(t;;))2  T—oo Py pij
2 — A — ~
. 9% (M +p—tipy) 1+ —piy)
lim = lim —— = —— ,
T—oo (t;j)?  T—oo Iy Dij 14 Dij
2 2
Utij U(')(tij) ~ — ~
as p;; fixed, t, =T/ pii — o0.
(6> " (O K " 2

ij

(34)

These expressions reflect the bimodal structure of the state
statistics and explains the nonvanishing nature of the relative

fluctuations: The variance of the occupation numbers has a

. ~ —1 .
maximum for pjjlmax = %(1 4+t ) —> %, vanishes for the

absence (p — 0) of an edge and converges to Poisson statistics
for edges that always exist (p — 1). The existence of an edge is
a binary event, hence the maximum variability corresponds to
the draw situation (50% chance). In such a case, approximately
half of the times a graph is created the considered edge will
have (on average) occupation 7y and the other half occupation
0, generating vast fluctuations on the overall statistics which
are caused by the constrained binary structure of the graph.
Concerning the entropy, performing the steepest descent
approximation on (27) to first order as in (13) we have

Seo = —Thnp—Y piy Y rels? +I(TH+ > InAy.
ij q

i

. > gD pij
sin "% (P — 1) = L
Using ¢ @ =D=7

Eq. (29), one is lead to

Seo = — 1 Y (pijIn pij + (1 = pip)In(l — p;))
ij
—{Tlnp—InT!—In(e” — 1){(E)},
SBG = Sbin + Sdist- (35)
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This expression has two clear contributions: The first term
Sbin 1S the entropy corresponding to the binary constrained
topology [11,19,31] while the second one Sgisr corresponds
to the additional multiedge distinguishable structure. In other
words, Spin counts all the possible ways to select E states out
of a total number N(N — 1) while Sgis refers to the possible
ways to allocate the T events on these E surviving states.

The second term in (35) can be explicitly evaluated in
two limiting cases: The dense case which corresponds to the
thermodynamic limit and the sparse for which the binary and
weighted structure are equal 7y = T/E — 1 (hence (E) = E
is fixed).

Considering the sparse case, one has from (33) 7, — 1 so
o — 0 and hence,

lim Sdist =In E', (36)
p—0,T—(E)

which corresponds to the microcanonical counting of config-
urations coming from valid permutations of distinguishable
multiedges over the fixed binary structure of E surviving
occupied states.

The dense case corresponds to 7 — oo, which implies
from(33) p > 1, =T/{(E)andIn(T!) ~TInT — T,

S .
lim "2 — In(E), (37)

T—ooo T

which has a Shannon form if we consider p = (E)~! which
would be the probability associated with a multinomial process
of sorting T events over the surviving (E) binary links
with identical probability p. In this limit, the difference
between sorting (E) independent Poisson processes with
mean 7 /(E) and sorting (E) Poisson processes excluding the
zero-occupation events is negligible.

In the following, we present some examples to clarify the
usage of this new methodology.

A. Fixed E,T

We start by considering the most simple case where we only
fix the total number of events 7 = ;. #;; and the total number
of existing binary links £ = )", ; O(t;;) on the network, in
analogy to the paradigmatic model of the Erdos-Renyi graph
in binary networks [32].

In this case we introduce two Lagrange multipliers (X,6)
to fix (E,T). Proceeding from Eq. (27), we readily obtain the
saddle point equations,

x(e” —1)

NN - 1)———,
x(er —1)+1

E =Y (0@)) =

i

_ Ny, X
T_,z,:<t”) N(N 1)( 5T

(38)

where we identify x = e*,p = ¢’. We see that the average oc-
cupation numbers and edge existence probability are constant
and their average values proportional as expected. Using (29)
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we compute the relevant magnitudes,

(@(l‘,j)) = ﬁ = N(NE— 1) = Cnt

=L pemp=Lp=— T 39
VS AP TP T EPT NN D)
, T . T . I A
0,=Ep<1+p—fp) o5 =p—p).

We recover the binary structure of the well-known Erdos-
Renyi graph [32] as a result of the binary projection of a
nontrivial multiedge structure, which on average values fulfills
(ty=%p="1.p.

Despite the average occupation numbers over the ensemble
being equal to the cases in Sec. III A, the underlying statistic
is not. All the nodes (and states) in this case are statistically
equivalent and their associated strengths and degrees (incom-
ing and outgoing) are proportional on average (since they are
fluctuating quantities not being fixed by the constraints):

T T_ TE T,
“EN N

~
/ G" p i (40)
\/ \/ D) p(l -»  [o
— _— as
t+k

:S‘:

T — oo.

(k)?
The entropy is readily computed from (35) yielding,

SeG = SE—r + Sdist,
—N(N = 1)(plnp+ (1 — p)In(l — p)),
Saist = In(T!) — T In (75 + W(—7re ™))

+ Eln (VT ),

SE—r

Expression (41) can also be computed using combinatorial
arguments: Consider a process in which one selects E states
out of N(N — 1) and then populates each state with a single
event chosen out of a set of 7' distinguishable entities, finally,
the restof the T — E events are sorted in the E surviving states
chosen in the first place. The counting of microstates reads

ET-E (42)

<N(N - 1)) T!
I'(E,T,N) =

E (T — E)!

and hence the microcanonical entropy is Sgg = InT'(E,T,N).
Here again one recovers the equivalence with (41) in both the
sparse and dense limits considered earlier.

B. Fixed degree sequence k= (K, k™)), T

The next important case to consider is the one where
the node binary connectivity of the graph is fixed. Such a
situation is specially interesting as our framework permits one
to understand binary networks as the projection (for instance,
due to partial information or limited resolution) of a process
generated by independent agents.
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In this case the constraints read
Cittij) =Y _ O =k™, Ci(ty) = O(t;) = k.
i J
(43)

So we introduce two sets of Lagrange multipliers ({A;,5;}) and
for expression (27) we have

sz:/D[{ai,ﬁj}]eXP =Y kMt =gk
i J

x expd —0T +InT!

+ Z In [e""‘*ﬁf’”’? (e"h”w —1)+ 1]

ij
= [ Dttes.pexp stlar. s b)),
And we solve the saddle point equations,

xiyje’p
9g|h,'f=b,-f=0\7’lj ZZJ: xiyi(er — 1)+ 1

xiyj(e” = 1)
O, L =0= k" = — (44
’g|hi./=bi./=0‘7’u ! XJ: xiyj(e? =1 +1 “44)
in xiyj(e? —1)
g, =0k = _—
ﬁ/g|hij:bij:0‘v’1] j :Z xiyj(er — 1)+ 1
where we have identified x; = €%, y; = ePi, and p=é.
The occupation numbers and binary occupation probability,
respectively, read

_oxyie” —=1)
Pij = xiyje? —1+1
(45)

xiyje’p .

lij) = ———————
Vi) xiyj (e —1)+1

As expected we recover the proportionality of strengths
and degrees [33] for each node under this particular set of
constraints.

e’p _ T
tii)=pii—— D) =thk; = —k;. 46
(1)) = pij oy = ) - (46)

Considering only the binary projection of the graph, one

gets

R MK h
Dij =

= —) 47
i+ 1 “7)

where we have identified k; = x;, A; = yj, and u = (e” — 1).

The previous expression corresponds exactly with the
expression for the so-called canonical ensemble of the random
graph with any given degree distribution [28,34], where for
fixed N, the u parameter controls the edge density [35]. And
since x; is a quantity related with node i (hence related with k;),
we obtain again the structural correlations of the configuration
graph model [36].
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V. MULTIEDGE NETWORK WITH GIVEN LINEAR
CONSTRAINTS DEPENDING ON BOTH THE
OCCUPATION NUMBERS ¢;; AND THEIR BINARY
PROJECTION O(¢;)

We analyze for the sake of completeness the most general
case where both types of considered constraints are fixed, (9)
and (26).

We introduce two sets of Lagrangian multipliers for the
multiedge constraints {6,} and the binary ones {A,}, plus
an additional 6 corresponding to the constraint on the total
number of events. The procedure then is analogous to the one
in the previous section yielding finally from (27),

Q :/D[Q]e—”e—zq')‘q’éq'e—zq("ch (H D[Gq])
q
x HD[)W] T!exp Zln
q ij

- D) hrosy g el
X {eb'/+2q/)“q’cqr (ee"! g 0qcq

—1)+1}t. @8

Using (7) and (28) we obtain the statistic for the occupation
numbers and their projections,

(1)) = %624 hey) exp (60+Zq 94051”))694'211 94“5”7
ij
oy, = (1) (1 + "2 “wei” —(17)),
pij = Alijez"/ Aty (eewzqﬁqcyj)), (49)
oow;) = Pij(1 — pij),
Aij — ezqr )»q’ffli}” (eeo+2q%1g” o 1) + 1

Assuming that the saddle point equations can be solved,
which means that the imposed combination of binary and
multiedge constraints is graphical, i.e., s; > k; Vi € [1,N] for
the case of fixed strength and degree sequence, for instance,
then the probability to obtain a graph can still be written in
terms of the Lagrange multipliers as a sum of independent ZIP
processes with different parameters,

etii — 1 l‘,‘j!

R Mtu- O(t;)
A e Pii H
P(T|{pij.puish) = [ J(1 = pip)' =" {—’—’} :
i
(50)

(@ij
where p;; = e s g quantity related to the average
value of the occupation number of the given link, conditioned
that this link exists,

oo A P
2 imi tij PUijl ki), Pijtij > 0) et
o0 A - L
> o1 P(tijliz, pij tij > 0) el —1
The relative fluctuations on occupation numbers do not vanish

in the thermodynamic limit due to the strong constraints
imposed by the binary structure. One can still express j; j(<t;))

= (). (51)
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using (33),

(T
i (55) = (1) + W(=(t5)e™ ). (52)
In the thermodynamic limit (7 — oo which implies (t;) —
00), expression (51) converges to p;; > <t,+)
Regarding the relation between expected occupation num-
bers and their binary projections, one has (t;;) = ( +) pij and

the constant relation of proportionality is broken # Cnt.
This extends the well-known result that it is 1rnp0551ble to
generate uncorrelated networks both at the level of strengths
and degrees for multiedge networks or weighted networks
[5,24].

Concerning the entropy, approximating (27) by saddle point
methods using (49) we obtain the general expression that
includes all the previous cases considered,

SBG = Sdist + Sbins
Saist = InT! + Zﬁlj In(eti — 1) — Z(tif> Inp;, (53)

ij ij

where Sy, is still the binary contribution to the entropy [with
the same form as in (35)].
The two limiting cases early considered can again be

evaluated. The sparse case implies that 1} = £ — 1Vi,j
which means p;; — 0 and (#;;) — p;; obtaining
lim Sgise = In E!, 54)
T—E

which is identical to the previous one (since it is equivalent to
dropping the strength constraints).
For the thermodynamic limit (dense case), we have et —

1 — eti — ¢ 1) and then,

. SdlSl tl_] ( tl] tl])
lim =— AL A
T—oo T Z T Z Tplj

(55)

for which the previous expressions encountered are limiting
cases. On one hand, if we relax the constraints on the occu-
pation numbers, then (t;?) =1, = T/EVi,j and we recover
expression (37). On the other hand, not fixing any binary
related quantity implies thatas 7 — oo, p;j = 1 — e~ i) — 1
(fully connected topology) and we are lead to (15). Finally, not
fixing any constraints, (¢ ]) = (t;j) = t, we recover (17).

For simplicity, the only example we report in this section
corresponds to the very relevant case in which both strength
and degree sequences are fixed, the rest of the cases being
easily derivable from the general theory exposed.

A. Fixed relative strength sequence and fixed degree sequence
= {(s*", ™)), k = (K™, k™);)

We analyze here a situation where the constraints imposed
are the strength and degree sequence [(18) and (43)]. The
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calculations are analogous to the previous section obtaining

89h|h

1 0
=0=T= E —x; ;e el ziw;,
ij=bij=0Vij A lyj LiWj

ij Y

1
aa'h|h1—bj—0\fzj =0= k?ut = Z A—xiyj(eszfeg — 1)7

i

i 1 w,
algzh|hij=bij_0\fij =0=kj = Z R (e = 1),

i Y

1 0
_ out __ v . pliwje” 0
a}’rh|hij=bij=0\7’ij =0=s5" = E :Aisz)bzlee €,
J

. 1 0
— in _ e xiviziweliWi€ oo
affh|h,-,-=b,-,-=0vtj =0=ys= 2 : A iYitiwge e,
. 17)
— 0
A,‘j =x,-yj{exp(e Z[Wj)—l}+l,
. . (kout) (kin)
where we have identified x;=eh" |y = Mz =
(sout) (sin) . .
e w j =€’ corresponding to the 4N Lagrange multi-

pliers introduced. We hence obtain the saddle point equations,

1 0 J

<tij) = rx,-yj eXp(e Ziwj)Ziwje ,
ij

oy, = (i) ziwse? + 1 — (1)), (56)
1

Dij = —xiyj (ez’wjeg —1), oow) = pij(1 — pij).

Note that the expressions found in the previous cases
are particular examples of this general problem and can be
readily recovered by removing the appropriate constraints, i.e.,
making the Lagrange multipliers equal to zero, which in this
case is equivalent to setting x; = y; =1Vi,j or z; = w; =
1Vi,j or both.

We can revisit the case where only the strength sequence
is fixed. Now, although the resulting statistics are Poisson and
not multinomial, it can be proved that in the thermodynamic
limit both descriptions are equivalent (see Appendix B).
Additionally, in such a case one can obtain the statistics of the
binary projection of the occupation numbers p;; = 1 — e~ (i),

Unfortunately, the explicit form of the Lagrange multipliers
for the degrees or the strengths cannot be solved, since the
uncorrelated approximation is no longer valid,

0w bz w;:
xiyj (€T — 1) x e T Mixy;,
: : (57)
it Xy L 1= pij > xye .

In this last expression the factorization of the connection
probability in two node-dependent magnitudes is impossible,
despite the approximation assumed. Hence one sees again that
there is no way of generating uncorrelated networks at the
level of degrees under the strict set of constraints considered.

VI. CONCLUSIONS

The present work deals with the statistical framework of
multiedge networks, which in contrast to weighted networks,
are entities formed by distinguishable events that can be
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grouped in edges weighted by integer numbers. It introduces
flexible analytical null models that provide expectations for
the main variables of a system represented in terms of a
complex network (the entries of its adjacency matrix) thus
complementing the existing studies on weighted networks.
The decision upon which model to take depends on the kind
of (physical) process generating the network at study.

We have started by properly defining the differences
between weighted and multiedge networks based on the
distinguishability or not of the elements forming a network. We
have then properly set up a framework of multiedge networks
in a statistical mechanics approach by defining ensembles of
networks fulfilling some given sets of general constraints. Such
a framework has been used to obtain analytical expressions
considering cases with general constraints depending linearly
on the number of events allocated to each edge as well
as their binary projections, considering only the existence
or not of a given edge. Some common interesting cases
have been explicitly developed as examples such as fixed
strength sequence, degree sequence, cost, strength sequence
plus cost, total number of binary edges, and both strength
and degree fixed sequences. Previous results found in the
literature have been recovered, specifically the correlations of
the configurational model (for binary constraints on the degree
sequence) and the absence of correlation between occupation
numbers and degree once the degree sequence is fixed among
others. Our treatment uncovers explicit relations between the
binary occupation probability of an edge and its expected
occupation number, which allows one to fully characterize
binary networks as projections of multiedge graph instances.
These results permit an extensive treatment of the finite size
effects present in this kind of network, since they are fully
valid both in a dense scenario and intermediate cases.

Furthermore, we have explicitly derived general forms
for the probability of obtaining a given graph with given
constraints in terms of its adjacency matrix elements statistics,
which can be understood as the canonical and grand-canonical
description of the considered ensembles. Such expressions
permit explicit entropy measures, useful for the analysis of
similar systems for data inference [37]. Additionally, the
analytical character of the presented methodology allows
for the explicit calculation of some network metrics using
probabilistic examples such a clustering [38] and strength-
degree correlations, for instance. As a complement we have
also introduced the main ideas which can lead to the efficient
generation of multiedge graphs though its details are left for
development in future work.

The applications of the theory developed here can be used
in a wide variety of fields, mainly all those network studies
applied to data generated by agent-based systems and in
particular in the very active transportation research area, where
networks are the result of complex, time-dependent, mobility
patterns [7]. It also opens the door to extensions of this kind
of network to multiple layer scenarios [39,40].
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APPENDIX A: CUMULANT GENERATING FUNCTIONS

In this section we present the cumulant generating functions
for the different models proposed (Bernoulli, multinomial,
Poisson, and zero-inflated Poisson) and show that their close
relationship to the expressions developed in the main text.

The cumulant generating function of the probability distri-
bution P(h) of a variable 4 is defined as K (h,x) = In M (h,x),
being M(h,x) = (¢"*) its moment generating function and x
and auxiliary field. Once K (h,x) is known, all central cumu-
lants k can be obtained by derivation, uniquely determining
the distribution.

ki = kK (h,x)|,— - (AD)

Note that if we consider the joint distribution of two (or more)
independent variables h,h;, being it a product of the indi-
vidual distributions P(h,), P(h;), then M[vz(hl,hz,xl,)@) =
Mi(hy,x1)M>(hy,x;) and finally its joint cumulant gener-
ating function factorizes in the sum Kip(hy,hs,x1,x2) =
Ki(hy,x1) + Ka(ha,x2).

Having introduced that, if we start at the microcanonical
level [Eq. (6)] and identify

P({t;) = Q7' ] 8(C, — Co({tis})
q

-1

0
=1 T8¢, — Co(teihy
{c} g
x []8(C, — €, )

q
= c'[]s(C, — C ().
q

In Q({hi;}) = In1C Y~ P({ti; e’ § = InC + K({tij}. (i),
{c}
(A2)

we clearly see that
On;; In ({15}, {hi P = O, K ({15}, (i D),

and the relation between both objects is apparent.

Starting at the level where only the number of events T
is fixed (where all the distributions reduce to a multinomial
form with associated probabilities {p;;}), we take Eq. (10) and
perform the saddle point approximation to obtain

(A3)

InQ~ Tanexp (h,»,» + Zech'-f)) + F({6,),1C,H
ij q

= H({hij}) + F({0,}.{C, ).

Despite having additional terms, with regards to differen-
tiation with respect to 4;; (needed to recover the moments of
the distribution of #;;), the form obtained is always of the type
H({h;;}) =Ty m;; eli (since F is a function not depending

(A4)
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on the auxiliary fields {/;;}) and hence the underlying statistic
is multinomial because ) _;; 7;; = 1.

Considering now only the most general case in Eq. (27)
we have again (adding external fields for the binary projection

{bij}),

bii LA /A.(',/') hii+Y, qu([j)q
Ing 2= B Jin e R (e 1) 1)
ij

+F({eq}v{)‘q’}’{Cq}’{cq/})‘ (AS)

Dropping the constraints on the binary projection, i.e., A, =
b,’j =0 Vq,l] ylelds

H({hih) = " i,

iJ

(A6)

where we identified u;; = o’ This expression (up to
derivation with respect to 4;;) has the same form as a sum of
independent Poisson cumulant generating functions (ue’/).

Dropping the constraints on the multilink nature of the
network 6, = h;; =0Vq,ij (except the one on the total
number of multilinks, 6), we have

H({qi;}) = Z{ln(ﬁueb"" + (I = pip)) —In(l — pij)}, (A7)

i

where we identified p;; from Eq. (45). And we see that the
prior expression is closely related to the cumulant generating
function of independent Bernoulli processes (with respect
again to derivation on {g;;} terms).

Finally, the most general case can be mapped to a mixed
zero-inflated Poisson process as we shall prove: Imagine the
outcome of a process in which we sort N(N — 1) independent
Bernoulli processes and from the result of it, if the outcome is
positive, we sort a Poisson process on top of it (discarding the
no-occurrence event). Since the processes are independent,
we shall consider a single one of them and then write the
overall probability of the events as the product of the different
probabilities P(¢). The associated probability of the event just
described is

p Mt o)
Py p(t) = (1 — p)°® (——) .

et —1 ¢!

(A8)

which represents a probability measure over an integer
quantity. We can compute the mean and variance of 7 yielding

P o W et
<t)=0+e“—l t_IIFZPe”—l’

o = (1)1 +p — (1), (A9)

OM) = p; 054 = p(l— p).
The obtained expressions need to be compared with (56),

. . . () R
which allows one to identify u = e/ [] 4 e%<s’ and p = pij.
Moreover, concerning the cumulant generating function, one
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finds

ln(e]”) = IHZ bep(l)eht = 11‘1{1 —-p + Mp l(ep.eh . 1)}
et —
t=0

P )
=In(l+p)+Inyjl+ ————=1, (Al0)
1—p et —1
which is identical to the argument in the sum of Eq. (27)
(except for a linear constant) and captures the more general
case considered.

APPENDIX B: ENSEMBLE EQUIVALENCE AND GRAPH
GENERATION

Throughout this paper we have uncovered the mathematical
expressions allowing one to generate networks under different
ensembles using a probabilistic framework over ;. Explicitly
they can be summarized:

(1) Canonical ensemble (linear constraints on #;;):

T! f
P(TIT {0,}) = ot | |P,~',‘~’- (B1)
ij

i

(2) Grandcanonical ensemble [linear constraints on ©(;;)
and/or on #;;]:

AR
A A N 1—O(: Dij i j
P(T{ i) = [ (1 = pip)' 000 § ————L0 .
i etii — 1 tij!

(B2)

(3) Microcanonical ensemble. This ensemble can be used by
generating sequences of {#;;} using the two above expressions
and discarding those not corresponding exactly with the
imposed constraints.

We have shown already that the relative fluctuations of the
linear constraints on the occupation numbers #; vanish in the
thermodynamic limit and that the binary depending constraints
are nonvanishing in this limit. We finally prove here that the
grand-canonical ensemble considering only linear constraints
on occupation numbers is strictly equivalent to the canonical
and the microcanonical in the thermodynamic limit.

To do so, we make use of the properties of the multinomial
distribution to recover it under the cases where no constraints
or only linear constraints on #; are imposed. In this case
pij =1 — e " (49) and (B2) reduce to the product of Poisson
distributions with different mean parameters w;;.

The outcome of a process in which we sort different
independent Poisson variables of parameters {u;;} can be
equivalently expressed as a product of a multinomial process of
(T) =) w;; multinomial trials with associated probabilities

{pij = é‘T—”)} Hence we have that

P(T) = Mult({p;;}| T)Pois (AT = Z MU) - (B3

And since the resulting occupation numbers statistics derive
to a Poisson distribution, which has vanishing fluctuations
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FIG. 3. (Color online) o = TTEh) for different values of

t, and T, we observe the extreme rapid convergence to unity as T
grows (note that T > 1, = T/E).

on the thermodynamic limit (o7 /uf; = ;' o< T7!, then
the equivalence between the two presented calculations is
completely proved.

APPENDIX C: FINITE T IN EQ. (27)

Let us assume that instead of having T — oo in (27) we
consider T finite. Therefore,

Q= \/\6797"67 Zq/ Ayt Cyr D[G] l_[ D[)\'q/]
q/

- (/’L,‘j+0)t!»
by, oD e ij 1
< T | P by E —+ =,
1! 0!
t.=1 i

i

(e(b,-_,-+zq, ry &S0 )+ +9)tij

x Yy — . (CD
Ytj=T~t; Y
and we now perform the finite sum inside the integral,
r
(T + 1,2)e*
Yot ()
— 1! (T + 1)

PHYSICAL REVIEW E 88, 062806 (2013)

And for the occupation numbers and edge probability obtain

Al 0 To
<tij> = LeZq’ )‘q’C;/)eG eee F(T + 1,6‘ ) . e ,
Ajj (T+1) TT+1D
1 Alij (T 1’ 6
pij = —ezq’ )‘q"i,/” e (T +1,¢%) 1), (€3)
ij (Tr+1

)
Aij = ez", )L‘Irc‘l’] (eeg — 1) + 1,

which converge extremely quickly to the obtained results for
T — oo (see Fig. 3).

APPENDIX D: ADDITIONAL EXAMPLES. FIXED BINNED
DISTRIBUTION OF COSTS {c,,N,,}

We here report an additional example which may be
of interest for studies on transportation origin-destination
matrices, where some forms of trip-cost distribution have been
discussed [21,22].

Starting from Sec. (II B), it is a matter of considering the

additional term,
exp (Z Kk (d,»j)> ,

on the equations, where «,, are additional Lagrange multipliers
satisfying that

N, = ZKngn(dij)tija
)
where N, is the number of trips whose distance is in the interval
[d._1,d,) and &, is the indicator function of such an event. The
size of the bins needs to be chosen in an appropriate manner
as to give consistency to the distribution obtained. Such an
example is particularly important for its importance to assess
whether an observed O-D is caused by a particular tendency
of the agents that create it to move or conversely, the space
where the move shapes the form of the obtained O-D.
The expressions of p;; in this case read

e2n ki)
Zij e2n kn(dip)

And the prior considerations are also valid. Note also that
keeping the multinomial framework, all the quantities consid-
ered are intensive, while the expected strength and average
occupation numbers remain extensive variables. Additionally,
in the thermodynamic limit these quantities have vanishing
relative fluctuations.
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