/_\ I P I The Journal of /
Chemical Physics | '
Frorh caging to Rouse dynamics in polymer melts with intramolecular baiers: A |

critical test of the mode coupling theory
Marco Bernabei, Angel J. Moreno, Emanuela Zaccarelli, Francesco Sciortino, and Juan Colmenero

Citation: The Journal of Chemical Physics 134, 024523 (2011); doi: 10.1063/1.3525147
View online: http://dx.doi.org/10.1063/1.3525147

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/134/2?ver=pdfcov
Published by the AIP Publishing

AIP - Re-register for Table of Content Alerts

Publishing

/7

Create a profile. Sign up today!



http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Marco+Bernabei&option1=author
http://scitation.aip.org/search?value1=Angel+J.+Moreno&option1=author
http://scitation.aip.org/search?value1=Emanuela+Zaccarelli&option1=author
http://scitation.aip.org/search?value1=Francesco+Sciortino&option1=author
http://scitation.aip.org/search?value1=Juan+Colmenero&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.3525147
http://scitation.aip.org/content/aip/journal/jcp/134/2?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov

THE JOURNAL OF CHEMICAL PHYSICS 134, 024523 (2011)

From caging to Rouse dynamics in polymer melts with intramolecular
barriers: A critical test of the mode coupling theory

Marco Bernabei,! Angel J. Moreno,?? Emanuela Zaccarelli,® Francesco Sciortino,® and

Juan Colmenero'24

'Donostia International Physics Center, Paseo Manuel de Lardizabal 4, E-20018 San Sebastidn, Spain
2Centro de Fisica de Materiales (CSIC, UPV/EHU) and Materials Physics Center MPC, Paseo Manuel de
Lardizabal 5, E-20018 San Sebastidn, Spain

3Dipartimento di Fisica and CNR-ISC, Universita di Roma La Sapienza, Piazzale Aldo Moro 2,

1-00185 Roma, Italy

4Deparlamenlo de Fisica de Materiales, Universidad del Pais Vasco (UPV/EHU), Apartado 1072,
E-20080 San Sebastidn, Spain

(Received 4 October 2010; accepted 17 November 2010; published online 13 January 2011)

By means of computer simulations and solution of the equations of the mode coupling theory (MCT),
we investigate the role of the intramolecular barriers on several dynamic aspects of nonentangled
polymers. The investigated dynamic range extends from the caging regime characteristic of glass-
formers to the relaxation of the chain Rouse modes. We review our recent work on this question,
provide new results, and critically discuss the limitations of the theory. Solutions of the MCT for
the structural relaxation reproduce qualitative trends of simulations for weak and moderate barriers.
However, a progressive discrepancy is revealed as the limit of stiff chains is approached. This dis-
agreement does not seem related with dynamic heterogeneities, which indeed are not enhanced by
increasing barrier strength. It is not connected either with the breakdown of the convolution approx-
imation for three-point static correlations, which retains its validity for stiff chains. These findings
suggest the need of an improvement of the MCT equations for polymer melts. Concerning the re-
laxation of the chain degrees of freedom, MCT provides a microscopic basis for time scales from
chain reorientation down to the caging regime. It rationalizes, from first principles, the observed de-
viations from the Rouse model on increasing the barrier strength. These include anomalous scaling
of relaxation times, long-time plateaux, and nonmonotonous wavelength dependence of the mode

correlators. © 2011 American Institute of Physics. [doi:10.1063/1.3525147]

. INTRODUCTION

The different dynamic processes present in amorphous
polymers cover a extremely broad range of characteristic time
scales, spanning from about 100 fs up to years. There are two
main reasons for this. First, polymers are usually good glass-
formers, which inherently exhibit a dramatic increase of the
viscosity and structural («-) relaxation times on approaching
the glass transition temperature 7,. As in nonpolymeric glass-
formers, localized dynamic processes are also present below
Tg.l Second, their macromolecular character introduces relax-
ation processes related to the dynamics of the internal chain
degrees of freedom. In the case of low-molecular weight,
nonentangled, polymer chains a sublinear increase (Rouse-
like) arises in the mean squared displacement prior to the lin-
ear diffusive regime. In the case of high-molecular weight,
strongly entangled, chains further sublinear regimes are found
between the Rouse and linear regimes, which are usually in-
terpreted in terms of reptation dynamics.>* Such processes
are inherent to chain connectivity and extend over more time
decades on increasing chain length. This broad time window
for chain dynamics is observed even for temperatures far
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above T,, when the structural relaxation extends over just a
few picoseconds.

Another particular ingredient of polymer systems is that,
apart from fast librations or methyl group rotations,> every
motion involves jumps over carbon—carbon rotational barri-
ers and/or chain conformational changes. The corresponding
map of relaxation processes is largely influenced by the bar-
rier strength. Intramolecular barriers play a decisive role in,
e.g., crystallization,®” adsorption onto surfaces,®° viscoelas-
tic properties,'? or phase behavior of block copolymers.'!
Models for semiflexible and stiff polymers are of great in-
terest in biophysics, since they can be applied to many impor-
tant biopolymers as nucleic (DNA), rodlike viruses, or actin
filaments.'>”'* Thus, an understandig of the role of the in-
tramolecular barriers on structural and dynamic properties of
polymer systems is of practical as well as of fundamental in-
terest in many fields of research.

A possible theoretical approach to this problem is pro-
vided by the mode coupling theory (MCT).!> MCT intro-
duces a closed set of coupled Mori—Zwanzig equations for
the time dependence of density correlators. Static correlations
enter the memory kernel as external input. Since the for-
mer can be related to the interaction potential through lig-
uid state theories, MCT constitutes a first-principle theory
for slow dynamics in complex systems. MCT has been

© 2011 American Institute of Physics
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developed over the last years to include systems with in-
tramolecular structure (see, e.g., Refs. 16—18). This includes
the approach of Chong and co-workers for simple polymer
melts,'”?" based on the polymer reference interaction site
model?>! (PRISM) for the static correlations. This approach
was applied to the specific case of fully flexible chains,!®?°
i.e., without intramolecular barriers. A major success was
the derivation, from first-principles, of the scaling laws
predicted by the phenomenological Rouse model® for chain
dynamics in nonentangled polymer melts. Likewise, it pro-
vided a unified microscopic description of both chain dy-
namics and the structural relaxation associated to the glass
transition.'*-20

Some of us have recently performed a systematic com-
putational investigation of the role of intramolecular barriers
on the glass transition in polymer systems.?>?? Starting from
fully flexible bead-spring chains, we introduced stiffness by
implementing intramolecular barriers with tunable bending
and torsion terms. In Ref. 23 we discussed the glass tran-
sition within the framework of the MCT for polymer melts,
comparing simulations with numerical solutions of the MCT
equations, in the long-time limit, for a broad range of barrier
strength. This was possible since the quality of the PRISM
approximations observed for fully flexible chains’* was not
affected at all by the introduction of internal barriers in all the
investigated range.>*> Numerical solutions reproduced trends
in the nonergodicity parameters and MCT critical tempera-
tures for weak and moderate barriers. However, strong dis-
crepancies were observed on approaching the limit of stiff
chains.??

In this article we briefly summarize the main points of
Refs. 22 and 23 and present extensive new results. Thus, we
solve the time-dependent MCT equations for density corre-
lators and compare simulation and theoretical trends in «-
relaxation times. We critically discuss the limitations of the
theory by analyzing the accuracy of the assumed approxima-
tions. We find that dynamic heterogenities, static three-point
correlations, and chain packing effects not accounted by MCT
do not play a major role on increasing the barrier strength. In-
deed their effects seem to be weaker that in the case of fully
flexible chains. The reason for the observed discrepancies be-
tween simulation and theory for very stiff chains remains to
be understood.

We also present here a systematic investigation on the
effect of intramolecular barriers on the internal chain dynam-
ics of nonentangled polymers. We analyze correlators for the
chain normal modes (Rouse modes) and for bond reorienta-
tion. The simulations reveal strong deviations from the Rouse
model on increasing chain stiffness. These include anoma-
lous scaling of relaxation times,” long-time plateaux, and
nonmonotonous wavelength dependence of the mode cor-
relators. We show that these anomalous dynamic features
are reproduced by the corresponding MCT equations for the
Rouse modes. This generalizes the analysis of Ref. 20, which
was limited to fully flexible chains, to polymers with in-
tramolecular barriers of arbitrary strength. Thus, beyond usual
phenomenological models for chain dynamics, MCT provides
a unified microscopic picture down to time scales around and
before the a-process.?®
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The article is organized as follows. In Sec. I we describe
the model and give simulation details. In Sec. III we compare
simulation results with MCT solutions for several dynamic
correlators probing structural relaxation and chain dynamics.
In Sec. IV we discuss the possible origin of the observed
deviations from MCT predictions. Conclusions are given in
Sec. V.

Il. MODEL AND SIMULATION DETAILS

We have performed molecular dynamics (MD) simula-
tions of a bead-spring model with tunable intramolecular bar-
riers. All chains consist of N,=10 identical monomers of
mass m=1. Nonbonded interactions between monomers are
given by a corrected soft-sphere potential

V(r)=de[(o/r)"*—Co+Ca(r/o)], (1)

where €=1 and o=1. The potential V(r) 1is set
to zero for r>co, with c¢=1.15. The values Cy
=7¢7'? and C,=6¢"'* guarantee continuity of potential
and forces at the cutoff distance r = co. The potential V (r)
is purely repulsive. It does not show local minima within the
interaction range » < co. Thus, it drives dynamic arrest only
through packing effects. Chain connectivity is introduced
by means of a finitely-extensible nonlinear elastic (FENE)
potential®’-?® between consecutive monomers:

Vipng(r)=—€ K RZ In[1—(Roo)~*r?], 2)

where Kr=15 and Ry=1.5. The superposition of potentials
(1) and (2) yields an effective bond potential for consecutive
monomers with a sharp minimum at r~0.985, which makes
bond crossing impossible.

Intramolecular barriers are implemented by means of
the combined bending and torsional potentials proposed by
Bulacu and van der Giessen in Refs. 29 and 30. The bending
potential Vp acts on three consecutive monomers along the
chain and is defined as

Va(0;)=(¢ K /2)(cos 6;— cos 6p)?, 3)

where 6; is the bending angle between consecutive
monomers i—1, i, and i+1 (with 2<i<N,,—1). We use 6,
=109.5° for the equilibrium bending angle. The torsional po-
tential Vr constrains the dihedral angle ¢; ;1. The latter is
defined for the consecutive monomers i—1, i, i+1, and i+2
(with 2<i<N\,—2), as the angle between the two planes de-
fined by the sets (i —1, i, i41) and (i, i+1, i42). The form of
the torsional potential is

Vi(6:, 01, ¢iir1) =€ K sin® 6; sin® 6,

3
X Y ay cos" ¢iii. )

n=0

The values of the coefficients a, are ag=3.00, a;=—5.90,
a,=2.06, and a3=10.95.2>3" The torsional potential depends
both on the dihedral angle ¢; ;+ and on the bending angles 6;
and 6; 1. As noted in Refs. 29 and 30 the functional form (4)
avoids numerical instabilities arising when two consecutive
bonds align, without the need of imposing rigid constraints
on the bending angles.
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FIG. 1. Main panel: self-density correlator f*(gmax, ), for several values
of the barrier strength at fixed temperature 7=1.5. Inset: T-dependence of
the relaxation times 792 of f*(gmax, t), for the former values of the barrier
strength.

In the following, temperature 7', time ¢, distance, wave
vector ¢, and monomer density p are given respectively in
units of €/kp (with kg the Boltzmann constant), o (m/ €)\/2,
o,0° !, and o073, We investigate, at fixed monomer density
p=1.0, the temperature dependence of the dynamics for dif-
ferent values of the bending and torsion strength, (Kg, Kt)
=(0,0), (4,0.1), (8,0.2), (15,0.5), (25,1), (25,4), and (35.4),
covering a broad dynamic range from the caging character-
istic time to the relaxation time of the slowest Rouse mode.
We investigate typically 8—10 different temperatures for each
set of values (Kg,K7). Additional numerical details can be
found in Refs. 22 and 23.

The investigated range of barrier strength corresponds to
a strong variation of the chain stiffness. This can be quanti-
fied by the average end-to-end radii, R.., of the chains. Thus,
for the representative values (Kg, K1)=(0, 0), (8,0.2), (25,1),
and (35,4), which cover the range from fully flexible chains
to the stiffest investigated chains, we find R..=3.6, 4.7, 5.5,
and 6.5 at the respective lowest investigated temperature. Fi-
nally, we want to stress that the investigated state points corre-
spond to isotropic phases. This is deduced from the negligible
values displayed by static correlators probing relative orienta-
tions between pairs of chains.?!

lll. RESULTS: SIMULATIONS VERSUS THEORY
A. Structural relaxation

Now we characterize dynamic features associated to
the caging regime and the structural «-relaxation. The main
panel of Fig. 1 shows the self-density correlator f*(q, t) at
fixed T=1.5 and for several values of the barrier strength.
The former is defined as f*(g, t)=N""! <27:1 expliq - (r;(t)
—r;(0))]). The sum is done over the coordinates r; of all
the N monomers in the system. In all the cases the corre-
lator is evaluated at the maximum, guma~7,> of the static
structure factor S(g)=N"' <Z§\fk:l expliq - (r;j(0)—rr(0)]).
We observe that increasing the strenght of the internal bar-
riers at fixed p and T leads to slower dynamics. In the fully
flexible case f*(g, t) decays to zero in a single step. On in-
creasing the strength of the internal barriers f*(q, t) exhibits
the standard behavior in the proximity of a glass transition.
After the initial transient regime, f*(q, t) shows a first decay
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to a plateau, which is associated to the caging regime, i.e., the
temporary trapping of each particle by its neighbors. At long
times, a second decay is observed from the plateau to zero.
This corresponds to the structural o-relaxation. Similar trends
are displayed by the density—density correlator (not shown),
defined an(q, t)=<p(qv l)p(_q’ O))/<p(q’ O)P(_(L 0))7 with
p(a, =31, expliq - 1;(0)].

Let us define 79, as the time for which f*(gmax, 70.2)
=0.2, and tX as that obtained from fitting the a-
decay to a Kohlrausch—Williams—Watts (KWW) function,
Agexpl—(t/7;)P] (with A,, B < 1). Both times correspond
to a significant decay from the plateau and therefore can
be used as operational definitions of the «-relaxation time
7,. The inset of Fig. 1 shows tp, as a funcion of T, for
different values of the bending and torsional constants (re-
sults for rqK are analogous). As observed in the analysis of
the self-correlators, increasing the chain stiffness slows down
the dynamics. At fixed temperature, the relaxation time for the
stiffest investigated chains increases by several decades with
respect to the fully flexible case.

The dynamic trends displayed in Fig. 1 demonstrate that
intramolecular barriers constitute an additional mechanism
for dynamic arrest, coexisting with the general packing effects
induced by density and temperature. Now we discuss this sce-
nario within the framework of the (ideal) MCT. We briefly
summarize the basic concepts and predictions of the theory.
Extensive reviews can be found, e.g., in Refs. 15 and 32-36.
On approaching a glass transition from the ergodic phase,
density fluctuations decay in a slower fashion, remaining
frozen in amorphous configurations when the glass transition
occurs. MCT describes this phenomenon as a feedback mech-
anism driven by the slow density fluctuations. By starting
from the fundamental Liouville equation of motion and us-
ing the Mori—Zwanzig projection operator formalism, an in-
tegrodifferential equation is obtained for the density —density
correlator:

qszT

mS(q)

+q2k3T
mS(q) Jo

flg.n+ flg.1)

dt'm(q,t —t") f(q,t)=0. 5)

The memory kernel m(g,t —t') x (Rfl(O)R(fl(t — 1)), is ex-
pressed in terms of the associated fluctuating forces R(fl.35 In
order to provide a closed solvable form of Eq. (5), MCT intro-
duces several approximations for the memory kernel. These
approximations are:

(i) The fluctuating force can be splitted in two terms: the
regular (fast) contribution, linear in density fluctuations, and
a second term which can be expressed as a linear combina-
tion of “mode pairs,” pipq—k. The latter provides the slow
contribution relevant for the structural relaxation, while the
first one is responsible for the transient dynamics. Thus, the
first MCT approximation consists of reducing the regular part
of the kernel to a g-independent friction term (for Brownian
dynamics), or dropping it (for Newtonian dynamics, as in the
present case). This introduces an undertermined constant fac-
tor in the absolute time scale of the equations.
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(ii)) Convolution approximation: three-point static cor-
relations are approximated as products of static structure
factors,

(P-q(0)k(0)pq-k(0))~N S(q)S(k)S(|q — K|). (6)

(iii) Kawasaki approximation: dynamic four-point corre-
lations are factorized in terms of products of dynamic two-
point correlations (see, e.g., Ref. 35 for details). Nowadays
there is plenty of evidence that this approximation worsens
on decreasing temperature, specially around the time scale of
the a-relaxation. The breakdown of the former approximation
is usually assigned to the emergence of strong dynamic het-
erogeneities in the proximity of the glass transition.’’*!

After applying the former approximations, the memory
kernel m(q, t) becomes bilinear in f(q, t):

4’k

ng.0= [ S Vaa-0fkDfa-K. )
@)

The vertex V(q, q — k) is given by

Vg, q - k)= 2%;4S<q>s<k)s<|q —K|)

x[q - ke(h)+q - (@ — Ke(lqg — kDI, ®)

where c(q) is the direct correlation function.*’ Equation (5)
constitutes a closed set of coupled equations which can be
solved self-consistently, provided S(g) and c(q) are known.
The latter are external inputs in the MCT equations. Since
static correlators contained in the vertex vary with the control
parameters (e.g., density, temperature, or barrier strength), the
MCT equations (7) establish a direct connection between stat-
ics and dynamics. Moreover, the former static correlators can
be related to the interaction potential through closure relations
from liquid state theories.*?> With this, MCT provides a first-
principle approach for the slow relaxation of density correla-
tors.

Recently, Chong and co-workers have derived MCT
equations for simple models of polymer melts.!*? By
exploiting the PRISM,?! the MCT equations are considerable
simplified. This is achieved by replacing site-specific inter-
molecular surroundings of a monomer by an averaged one
(equivalent site approximation), whereas the full intramolec-
ular dependence is retained in the MCT equations.'®°
The so-obtained scalar MCT equations of motion, memory
kernel, and vertex for polymer chains are formally identical
to Egs. (5), (7), and (8). The polymer character of the system
only enters implicitly through the PRISM relation’! pc(q)
=1/w(qg)—1/S(q), which differs from the Ornstein—
Zernike equation,** pc(q)=1—S5"'(g), for monoatomic sys-
tems. The quantity w(g) is the chain form factor, defined as

1 Ne  Nn
o= 3D (ewlia: (O-HO)).  ©)

I=1 a,b=1

where r! are the coordinates of the ath monomer in the
Ith chain. N, is the total number of chains. The use of the
former MCT equations is a priori justified for polymers of
variable stiffness. Indeed, it has been shown that the PRISM
approximations retain their validity not only in the fully
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flexible limit,>* but also when strong intramolecular barriers
are present.”

For the case of the self-density correlators f*(q, t), the
MCT equations are different from the monoatomic case. The
former are obtained by summation of the diagonal terms of
the self site—site density correlators. The latter are given by

Ne

1
Faa, =7 _(exp[ia- (50-1;0)]) (10)

¢ =1

with indices defined as in Eq. (9). The correlators F;,(q, t) are
determined by solving the corresponding MCT matrix equa-
tions (see Ref. 20).

Ideal MCT predicts a sharp transition from an ergodic
liquid to an arrested state (glass), at a given value of the rel-
evant control parameter (temperature in the present case). At
the transition (or “critical”’) temperature 7T =T, the nonergod-
icity parameter, defined as f,=lim;,_, f(g, ), jumps from
zero to a nonzero value f,;". The latter is called the critical
nonergodicity parameter. By taking the limit 1 — oo in the
MCT equations, one finds the relation

fi _/ &Pk -
=5 (2n)3v(q’q K) fiq—k f- (11)

Equation (11) always has the trivial solution { f,}=0. Glassy
states take place when solutions f, > 0 also exist. The tem-
perature at which the jump from zero to nonzero solutions
occurs defines 7¢. The corresponding solutions define the crit-
ical nonergodicity parameters.

The separation parameter, ey =(7 —17.)/ T, measures the
distance to the critical temperature. We are interested in the
behavior of f(q, t) in the ergodic fluid, i.e., for €7 > 0. For
small values of e7, MCT predicts several asymptotic laws for
dynamic observables,*> which are characterized by different
dynamic exponents. The exponents of these asymptotic laws
are related to the so-called exponent parameter A, which is the
only independent one (see, e.g., Refs. 23 and 44).

We solved Egs. (5) and (11) by combining simulation
results of w(g) with the PRISM equation pc(g)=1/w(q)
—1/S(g) and the Percus—Yevick closure relation.*? Details of
the numerical procedure for solving Eq. (11) can be found
in Ref. 23. Numerical integration of the density correlators
was performed following the method of Ref. 45. It often hap-
pens in the analysis of experiments or simulations that nu-
merical solutions of the MCT equations are not available. In
such cases, a phenomenological analysis can be performed,
and the values of 7. and the associated dynamic exponents
(see above) can be obtained as fit parameters from the ex-
perimental or simulation data. Consistency of the analysis re-
quires that the obtained exponents are related to the same A-
parameter, as predicted by the theory. This consistency test
was done in the analysis of our simulation data (see Refs. 22
and 23 for a detailed explanation), providing different values
of T, and A for each barrier strength. These values obtained
from simulations can be compared with the values provided
by solution of the MCT equations.

This comparison is shown for 7, in Fig. 2. Super-
scripts, “MD” and “MCT” are used, respectively, for simu-
lation and theoretical values. The data are represented as a
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FIG. 2. Critical temperature 7. as a function of the end-to-end radius Rg,
(measured at TMP). The theoretical values TMCT are compared with the sim-
ulation values TcMD (see text). The respective values of the bending and tor-
sional strength (K, KT) are indicated on top of each symbol.

function of the end-to-end radius, which quantifies chain stiff-
ness. A clear correlation between the barrier strength and
the values of TMP is demonstrated. We note that from the
fully flexible limit (Kg, K1)=(0, 0) to barriers with (Kg, KT)
=(15,0.5), the data sets for TMP and TMCT roughly dis-
play the same slope. As usual, there is a shift factor between
simulation and theoretical temperatures (here TMP/TMCT
~1.25), which may originate from the mean-field char-
acter of MCT."> The range of barrier strength for which
TMCT and TMP are roughly parallel is significant. Indeed,
for (Kg, K1)=(8,0.2) the end-to-end radius R¢. is a 30%
larger than for fully flexible chains. However, a strong dis-
crepancy between simulation and theory becomes evident
on increasing the barrier strength from (Kg, K1)=(15, 0.5).
While beyond this point TCMCT seems to approach an asymp-
totic limit, TcMD increases up to 1.23 for the stiffest inves-
tigated chains. Similar discrepancies are observed for the
A-exponent (see Ref. 23). Thus AMP shows a monotonic
increase from 0.76 to 0.86 over the investigated range of
barrier strength, while the theoretical value remains esentially
constant, AMCT~(0.72.

These discrepancies in the case of strong intramolecular
barriers are also reflected in the g-dependence of density cor-
relators computed from simulations and from solution of the
MCT equations. In both cases we fitted the corresponding «-
decay to a KWW function (see above). Figure 3 compares the
g-dependence, at fixed T, of the KWW time 1:;( for the self-
correlators f%(q, t), as obtained from simulations and from
theory. Results are presented for the fully flexible case and
for the stiffest investigated chains.

Before discussing such results, some points must be clar-
ified. As mentioned above, the mean-field character of MCT
usually yields a temperature shift between simulation and the-
ory (see Fig. 2). Moreover, MCT times are affected by an
undetermined constant factor due to neglection of the regu-
lar part of the kernel (see above). Thus, a proper compari-
son between theory and simulation for time-dependent cor-
relators can be done by rescaling ¢ by some characteristic
relaxation time, and using a common separation parameter
er.?0 This is the case for the data of Fig. 3. Thus, each data
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spectively, to simulation results and MCT solutions at selected temperatures
(see legend).

set is rescaled by the respective KWW time 7, correspond-
ing to f*(gmax, ). Temperatures of both panels correspond
to e7~0.04 and 0.08, for, respectively, fully flexible and stiff
chains. In the rest of the article we will present several com-
parisons between simulation data and MCT solutions. It will
be understood that the times and temperatures of the com-
pared data obey the former criteria.

A clear disagreement between simulation and theoret-
ical trends becomes evident in Fig. 3. The two sets of
KWW times obtained from simulation show a rather differ-
ent g-dependence, which is more pronounced for the stiff
chains. On the contrary, after rescaling by 7, , the theoret-
ical sets become esentially identical. Figure 4 shows a similar
comparison between simulation and theory for the rescaled
KWW times of the density—density correlators, f(g, t). For g
>gmax the theory reproduces qualitatively the shape of the re-
laxation times, which are modulated by the respective static
structure factor S(g) (not shown). However, MCT fails at
reproducing the broad peak at intermediate gc~*4 which is
present in the simulation data. This failure was already noted
for fully flexible chains in Ref. 20, and is confirmed here
for the general case with intramolecular barriers. Apparently
(note the error bars), the peak does not shift significantly
and decreases its intensity as chains become stiffer, leading
to a shoulder. In previous works*® on similar fully flexible
bead-spring chains of Nj,=10, the value of gc has been
identified with 2m/R,;, where R, is the chain radius
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of gyration. Data of Fig. 4(a) do not seem compati-
ble with this assignment. Appart from results for fully
flexible and stiffest investigated chains of N,=10, we
include data for (Kg, K1)=(15,0.5) of additional simu-
lations with Ny,=21. With this, the data sets of Fig.
4(a) cover a significant variation in R,. Namely, for
(KB, K1)=(0,0), (35,4), and (15,0.5) we respectively,
find 27/R,=4.2, 2.8, and 2.0. Thus, the observation gc
~2m / R, for fully flexible chains is apparently fortuitous. The
associated length scale 27 /gc*1.60 rather seems to be a
characteristic feature which does not depend significantly on
the barrier strength. We will come back to these points in
Sec. IV C.

B. Chain dynamics

In this subsection we compare simulation and theo-
retical results for the dynamics of the Rouse modes. First,
we briefly summarize the assumptions and main predic-
tions of the Rouse model. The starting point is a tagged
gaussian chain of N, monomers connected by harmonic
springs of constant 3kBT/b2, with b the bond length.
The effective interaction experienced by the monomers
is given by a friction coefficient ¢ and a set of stochastic
forces f;. Excluded volume interactions are neglected. The
chain motion is mapped onto a set of N, normal modes
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FIG. 5. Static intrachain correlations computed from simulations. For each
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investigated 7. Panels (a) and (b): off-diagonal terms of W, (0) (see text) vs
the combined variable 9(p — 1)4-¢. Data in (a) and (b), respectively, corre-
spond to fully flexible chains and to the stiffest investigated chains. Panel (c):
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of (Kg, KT) and T (see legend). For clarity, each set has been rescaled by a
factor o in order to get «C11(0)=1 in all cases. Dashed lines indicate approx-
imate power-law behavior ~ p~. From top to bottom, x=2.2, 2.7, 3.1, and
3.8.

(Rouse modes) labelled by p=0,1,2,..., N, — 1, of
wavelength N/p, and defined as>*’ X, (t)= Z;le Pj,r(1),

with Pjp=1/(2 = 8,0)/Nmcos[(j—1/2) prr/Np]. The
chain center-of-mass coincides with Xg(t)/+/Nn. The
mode correlators are defined as Cpq (1) = [(X,(0) - X, (?))
=30, pxq (Xp(0) - X4(0))1/3Ny. For p,qg > 0 we define the
matrix C’pq(O) = Cpy(0). In the Rouse model the stochas-
tic forces are fully spatial and time uncorrelated, i.e.,
(£;(t) - £i(¢'))=6CkgT8;;6(t — t'). These properties of the
random forces lead to orthogonality and exponentiality
of the Rouse modes.?2 Thus, the mode correlators obey
Cpy(1)=Cpg(0)expl—t/7,], with C,y(0)=8,,(b*/24N2)
sin ?[p7/2Nm]  and  T,=(¢b*/12kT)sin~*[p/2Np].
Accordingly, for p< Ny, the quantities C »p(0) and 7, scale
as ~ p’z.

In the following we show how the former scaling proper-
ties are strongly altered by the introduction of intramolecular
barriers. This is demonstrated in Fig. 5 for the case of intra-
chain static correlations. We show the off-diagonal terms of
v,,(0) = (X,(00) - X;(0)/(X,(0)X,(0))) (the diagonal terms
are trivially W,,(0)=1). Data for fully flexible chains ex-
hibit small deviations from orthogonality, indeed |W¥,,(0)|
< 0.05 for all p#gq, independently of 7. Instead,



024523-7 Test of mode coupling theory in polymer melts
0 F " " " T i ]
10 fk"k MD ]
N SK,K)=00 T=055 |]
£ Ve (K K)=(802) T=070
- NSNS [ sKgK)=(251) T=1.06
X '\\{\...\\
CRNTIYS
1 BN N e
10 F NN o N E
£ LNONLTLN ]
F RSN
e S e N
CNN T e
Dx\'\_\\ o, \’\
4'.\\.".0\.\ ° o
MCT ..‘D.\‘Q.\Q\\Q."D..\OQ
1072 F O(KBVKT):(Oyo) T=042 *'45\ : N g?
F oKy K)=(802) T=058 a ®ow
oK K)=(251) T=062 o8,
1 n n n n n n n n
1 2 3 5 p 9

FIG. 6. Simulation results (filled symbols) and MCT solutions (empty sym-
bols), for the p-dependence of the relaxation times 7, of the mode correlators.
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orthogonality is clearly violated for strong intramolecular bar-
riers. Off-diagonal terms can take values of even a 60% of the
diagonal ones. Moreover, deviations are enhanced by decreas-
ing temperature. Figure 5(c) shows results for the unnormal-
ized diagonal terms ¢ »p(0) (see above). In the low p-range
the data can be described by an effective power law C,,(0)
~p~—*. For fully flexible chains we find approximate Gaus-
sian behavior, C,,(0) ~ p~>2.2% However, the introduction
of internal barriers leads to strong non-Gaussian behav-
ior. On increasing the barrier strength, the effective expo-
nent x increases up to a value of 3.8 for the stiffest case,
(Kg, K1)=(35,4), at the lowest T. The most local effects
of the intramolecular barriers are manifested by flattening of
C’pp(O) at large p.

The trends observed for intrachain static correlations
have their dynamic counterparts. Figure 6 shows the relax-
ation times t,, of the normalized mode correlators ®,,(t)
=C,,(1)/C,,(0), as a function of the mode index p. We dis-
play data for several values of the bending and torsion con-
stants (Kp, K7) and temperatures 7. The relaxation times
have been operationally defined as & ,,(z,)=0.3. Data can be
again described at low- p by an effective power-law 7, ~ p™*.
The observed trends are analogous to those found for the static
correlations [Fig. 5(c)]. Rouse behavior (x=2) is observed
only in the fully flexible limit. Again, as for the static am-
plitudes ¢ »p(0), x is weakly dependent on 7 (Ref. 48) but
strongly dependent on the barrier strength, taking higher val-
ues for stiffer chains. The x-values for C‘pp(O) and 7, at the
same (Kp, K1) and T are similar. This suggests that the struc-
tural origin of the observed dynamic anomalies is mainly con-
trolled by intrachain static correlations.

Figure 7(a) shows simulation results for the
normalized mode correlators  ®,,(z), for (Kg, Kt)
=(35,4), at T=1.48. Times are rescaled by the relax-
ation time of the first mode, t;. Several salient features are
revealed. First, the unambiguous presence of a long-time
plateau for the modes p=3 and p=5, followed by an ultimate
slow decay. It must be stressed that this feature is not related
to the structural «-relaxation. Indeed, the plateau arises at
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numerical solutions at 7=0.63. In both panels, the absolute time is rescaled
by the relaxation time 7; of the p = 1 mode.

times far beyond the «-time scale (7, ~ 5% 10~37, for the
considered T). This feature is instead intimately connected
to the relaxation of the internal torsional degrees of freedom
of the chain. Indeed we observe (not shown) that for fixed
bending constant Kg, the long-time plateau tends to vanish
as the value of the torsional constant Kt is decreased.

The observed long-time plateau constitutes a clear break-
down of the Rouse model, which predicts single, purely ex-
ponential decays of the mode correlators (see above). Its
origin can be temptatively understood as follows. The relax-
ation of the pth-mode is equivalent to the relaxation of a har-
monic oscillation of wavelength N/p . In the case of strong
torsional barriers, the wavelengths of some particular modes
probe characteristic lengths over which chain deformation in-
volves a strong energetic penalty (due to the presence of the
barriers). Thus, at the time scales for which the barrier am-
plitudes are probed, the relaxation of such modes becomes
strongly hindered, leading to the observed long-time plateau
regime and ultimate slow relaxation. Another intriguing fea-
ture of Fig. 7(a), also inconsistent with the Rouse model, is
the nonmonotonous p-dependence of the mode correlators at
intermediate times prior to the long-time plateau (see data for
p>4).

Now we demonstrate that all the former dynamic fea-
tures can be rationalized in terms of the PRISM-based MCT
approach of Chong et al. As exposed in Refs. 19 and 20,
the MCT equations for the unnormalized Rouse correlators
Cpy(t) are derived as the g— 0 limit of the equations for the
self site-site density correlators Ffj(q, t). The equations for
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C (1) read!™?
Np—1
k T m
pq(t)+ 80p60q Z Epkckq(t)
k=0

kBT Z / dt'mp(t — )Cpy(t') = 0, (12)

with CA‘;;(O) the inverse matrix of C pg(0), and E,, = (1

— 80.pxq)C g (0)/ Nin.

The memory kernel is given by mpq(t):(p/6712)
fdkk4S(k)c2(k) Z,N}" | Pip Fii(k, D) Pjg f (K, 1). 4951 Thus,
prior to solve Eq. (12) we obtalned the density—density
correlators f(k,7) and self site—site density correlators

F? F}(k, 1) from their respective MCT equations (see Ref. 20).

The static quantities ¢ pg(0) and C (O) which also enter
Eq. (12) as external inputs, were dlrectly computed from the
simulations at the respective lowest investigated temperature.

Figure 7 shows a comparison, at ey=(0.2, of the MCT
solutions for the normalized mode correlators ®,,(¢) [panel
(b)] of the stiffest investigated chains, with the respective sim-
ulation results previously discussed [panel (a)]. A full cor-
respondence between MCT solutions and simulation trends
is obtained. These include the long-time plateaux for p =3
and p =5, as well as the sequence in the complex, non-
monotonous p-dependence for p > 4 at intermediate times.
As previously done for the simulation data, we can obtain
the theoretical relaxation times 7, from the condition ® ,,(7,)
=0.3 in the theoretical correlators. The p-dependence of the
simulation and theoretical times are compared in Fig. 6, at
common €7~0.2, for several values of (Kg, K1). Again, MCT
solutions are in semiquantitative agreement with the anoma-
lous trends of simulations, with similar exponents for the ef-
fective power-laws.

As we observed in Fig. 5 for W,,(0), there are off-
diagonal terms of the intrachain static correlations which are
nonorthogonal. This nonorthogonality persists over long time
scales, as can be seen in Fig. 8. The latter shows simulation
and theoretical results for normalized Rouse cross-correlators
®,,(t), with p=3and g =1, 3,5,7,9. Data correspond to
the same temperatures and barrier strength (the stiffest inves-
tigated case) of the diagonal correlators of Fig. 7. Again, MCT
qualitatively reproduces simulations trends for the case of the
off-diagonal terms.

Finally, it is worth noting that the good agreement be-
tween simulations and MCT for the Rouse correlators is sim-
ilar for other observables probing chain dynamics The rea-
son is that, through the transformation X , (r)= Y oy Pipr (1)
(see above), such observables can be expressed in terms of the
Rouse diagonal and cross-correlators.> An example is given
by the orientational bond correlator.>’

IV. DISCUSSION

In Sec. III we have shown that, concerning the critical
temperature 7., MCT reproduces qualitative simulation trends
for low and moderate barriers. However, a strong disagree-
ment is found on approaching the limit of stiff chains. A clear

J. Chem. Phys. 134, 024523 (2011)

1.0 \é‘g\g:gw:??wofbo\oooooOOOOOoo |
DDDDDDD:..::¢ Ooo
Oo o * o
DD .. OO
08 - et 0 8
= oy o
L= . °
o 1] o
S nle
0.6 - e °0 i
MD o
04 - op=3 g=1 D; .. o i
Dp:3 q:3 ] ° .e o
.p=3 g=5 Pttt e, o
02 - .p:3 q:7 D:]Du *.*: o |
p:3 q:9 ”DDDDD ‘-.O
a
0.0 m(\ ) M | M | M | L \\\\\H‘ai
10 10° 107 10t 10°

04 |°P=3 a=]
Dp:3 q:3
.p=3 q:S
02 L *p=3 q=7
p=3 g=9
(b)
0.0 bl — v
10" 10°

FIG. 8. Normalized cross-correlators @, (¢) (for fixed p = 3) of stiff chains
with (Kg, K1)=(35, 4). Panel (a): simulation results at T=1.48. Panel (b):
MCT numerical solutions at 7=0.63. In both panels, the absolute time is
rescaled by the relaxation time 7; of the p = 1 mode.

discrepancy is also found in the trends of the i-exponent,
with a nearly constant value from theory and strongly barrier-
dependent values from simulations. In this section we discuss
possible origins of these discrepancies.

A. Three-point static correlations

In Ref. 23 we showed that the failure of the MCT pre-
dictions for strong intramolecular barriers was not appar-
ently related with the breakdown of the PRISM approxi-
mations, which are invoked in the derivation of the MCT
equations for polymers. Indeed the quality of such approx-
imations appeared to be the same for all the range of bar-
rier strength here investigated by simulation and MCT. De-
spite the mentioned discrepancies between theory and sim-
ulation, the phenomenological analysis of simulation results
in terms of a huge set of general asymptotic laws of MCT
was consistent.””?3 This means that the dynamic exponents
involved in the different tested laws could be, in each case, re-
lated to a same AMP. As we discussed in Ref. 23, such scaling
laws are a mathematical consequence of the bilinear depen-
dence of the memory kernel on the density correlators [see
Eq. (7)]. The specific numerical values of A (and by trans-
formation, of the other dynamic exponents) are determined
by the static quantities entering the vertex (8).2>** Given the
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consistency of the phenomenological analysis we speculated
that, by retaining the bilinear form of the MCT memory ker-
nel, there may be missing static contributions in the vertex
which are not significant for low barriers, but become in-
creasingly important as the limit of stiff chains is approached.
Including them and solving the MCT equations accordingly,
might raise the theoretical values of T, and A, leading to a
better agreement with the simulation trends.

Thus, we suggested that intrachain three-point static cor-
relations should be explicitly included in the MCT vertex.
Chain stiffness induces a strong directionality in the intra-
chain static correlations, at least at near-neighbor distances.
It has been shown that directionality in static correlations can
break the static convolution approximation of MCT, Eq. (6).
A well-known example is given by silica, a network-forming
system. For the latter the inclusion of three-point static cor-
relations in the MCT vertex significantly improves the com-
parison between theory and simulation, with respect to the
solutions obtained under the convolution approximation.

The calculation of the three-point static correlations in-
volved in Eq. (6) is very demanding. This is because most of
the computational time is consumed by the interchain three-
point correlations. For intrachain three-point correlations the
computation is not demanding. Fortunately, in the present
case only the latter is necessary, since the directionality of
correlations is only relevant along the chain. Thus, the con-
volution approximation is retained for interchain correlations,
and it is modified only to include the intrachain three-point
correlations. With this, the new MCT vertex reads®

W%q—m=ﬁ%ﬂWﬂbﬂm—qukdm
+q - (q—k)c(lq — k|)
+ pg’c3(q, —K)1%, (13)

where c3(q, q — K) is the three-point intramolecular direct

correlation function, given by

. o(q.q-K)
w(@)wE)w(lq — k)’

and ws(q, q — K) is the three-point intramolecular structure
factor

p’c3(q, q—k) = 1 (14)

Ne  Nm

&

1
NcNm

w3(q, q—K)=

~

=1 a,b,c=1
x exp {i[—q-ri+k-r)+(q—k) - r]}.
(15)

Indices in Eq. (15) are defined as in Eq. (9). The convolution
approximation for intrachain correlations assumes ws(q, q
—Kk)=w(q)w(k)w(lq — K|), or equivalently c3(q, q — k)=0,
reducing the vertex (13) to the original Eq. (8).

Figures 9 and 10 show representative tests of the convolu-
tion approximation for respectively fully flexible and stiffest
investigated chains. Following the scheme proposed in Ref.
20, the vectors ¢, k and p = q — k define the sides of a
triangle, the first two enclosing an angle ¢ given by cos ¢
= (¢*+k?> — p?)/2qk. Panels (a) and (b) in Fig. 9 show a
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test of the corresponding expression for an equilateral trian-
gle, wi(q,q, q)=w3(q). Panels (a) and (b) in Fig. 10 show
a similar test for equal moduli k=g and all the relative
orientations (given by cos ¢) of q and k. In other words,
we test the approximation ws(q,q, p=q+/2(1 — cos ¢))
=w?*(q)w(p). Data in Fig. 10 are represented as a function
of cos ¢ for two characteristic wave vectors, corresponding
to the first minimum and second maximum of the respective
w3(q, g4, q) (see Fig. 9).

As already noted in Ref. 24, the convolution approxima-
tion for intrachain static correlations provides a good descrip-
tion of wj in the fully flexible limit. As expected, the quality
of the approximation decreases by introducing intramolecular
barriers. Still it constitutes a good approximation for all the in-
vestigated barrier strength. In the case of wave vectors around
the first peak of S(gq), gmax~7, the quality is almost unaffected
by the barrier strength, i.e., the terms ¢3(qmax, max — K) Will
be small even for the stiffest investigated chains. It must be
noted that the MCT kernel is usually dominated by the contri-
butions around gn.x. Thus, the former observations suggest
that the inclusion of the three-point static correlations will
modify weakly the MCT solutions obtained under the con-
volution approximation. We confirm this by obtaining numer-
ical solutions with the vertex (13), for which we compute the
input quantities involved in Egs. (14) and (15) directly from
the simulations. The so-obtained values of the critical tem-
perature 7, and A-exponents raise by ~1% as much, even for
the stiffest chains, with respect to the previous values (Sec.
IIT A) found under the assumption c3=0. With all this, we
conclude that the observed discrepancies between simulation
and theoretical trends of 7 and A are not related to the break-
down of the convolution approximation for static three-point
correlations. The latter indeed retains its validity for all the
investigated range of barrier strength.

B. Dynamic heterogeneities

It is well-known that the quality of the Kawasaki approx-
imation for dynamic correlations (see above) breaks on de-
creasing temperature. This feature is specially critical around
the a-time scale,’”*! leading to the complete failure of the
MCT predictions associated to it, as the power law behav-
ior D!, t, ~ (T — T,)™", or the time-temperature superpo-
sition of density correlators. This breakdown is usually as-
signed to the emergence of strong dynamic heterogeneities
on approaching the glass transition.’’*! Having noted this
we may speculate that, for some reason to be understood, in-
creasing the barrier strength strongly enhances dynamic het-
erogeneities. This might result in a lower quality of the MCT
and might be the reason for the observed discrepancies be-
tween theory and simulation trends for 7.

Now we show that this is not actually the case, and that
there is no correlation between barrier strength and enhanced
dynamic heterogeneity. Non-Gaussian parameters provide a
simple way of quantifying the strength of the dynamic hetero-
geneity. They display large positive values at the time scales
for which the respective van Hove function strongly devi-
ates from the Gaussian limit. This occurs when a significant
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chains with (Kp, K1) = (25, 1) (squares). Empty and filled symbols corre-
spond respectively to the fast [ (¢)] and slow [y2(¢)] parameters.

fraction of particles has performed displacements very differ-
ent from the average. Here we discuss the two most popular
non-Gaussian parameters. The standard or “fast” parameter
is given by ax(t) = %((Ar(t))4)/((Ar(t))2)2—1. The “slow”
parameter introduced by Flenner and Szamel>* is defined as
(1) = F(ArO)(1/(Ar0)) =1

By construction o;(¢) and y»(¢) are identically zero for
a Gaussian form of the van Hove self-correlation function.
However, as noted in, Ref. 54 large positive values of these
parameters have a very different microscopic origin, reflect-
ing distinct aspects of dynamic heterogeneity. In the case of
the fast parameter o,(¢), large values originate from a sig-
nificant population of particles which have performed much
larger displacements than the average. This effect is generally
maximum at the time scale * around the end of the caging
regime. Thus, a;(f) increases from zero at =0 up to a maxi-
mum at t* and decays to zero at longer times. The increase
of the maximum «,(#*) on decreasing temperature reflects
a progressive enhancement of dynamic heterogeneity, at the
decaging process, on approaching the glass transition.

The slow parameter y,(¢) exhibits analogous trends for
the temperature and time-dependence. However, the maxi-
mum of y,(¢) takes place at much longer scales than t*,
namely around the «-relaxation time 7. This effect originates
from a significant population of particles which at ¢ ~ 7, have
performed much smaller displacements than the average.’*

Figure 11 compares simulation results of e, (¢) and y,(¢),
for the fully flexible case and for very stiff chains. For a fair
comparison we have selected temperatures at which the re-
spective o-relaxation times are similar. These are 7=0.50
and T'=1.05, for, respectively, fully flexible and stiff chains,
and correspond to a separation parameter €7 ~ 0.04 (see Fig.
2). Let us remind that the o time scale can be estimated,
e.g., as f(¢gmax, 1)=0.2. In Fig. 12 we display f(qmax,?) for
both systems at the former temperatures, showing that the re-
spective a-time scales are roughly the same, 7, ~ 10*. The
decaging times, which can be estimated from the start of
the decay from the plateau in f(gmax, t), are also roughly the
same, t* ~ 500. This equivalence is indeed reflected in the
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FIG. 12. Density—density correlator f(gmax, ¢) for fully flexible (circles) and
stiff chains with (K, K7) = (25, 1) (squares). Data are shown for the same
selected temperatures of Fig. 11.

trends of the non-Gaussian parameters in Fig. 11. Thus, in
both systems a;(?) is peaked at t* ~ 500 and y»(¢) is peaked
att, ~ 10%.

Having noted this equivalence of time scales, data in
Fig. 11 do not reflect any enhancement of dynamic hetero-
geneity on increasing the barrier strength. Actually, the op-
posite effect is suggested by the lower values of o,(¢) and
y»(t) for stiff chains with respect to the fully flexible case.
With this, we discard a major role of dynamic heterogeneities
as the reason for the observed discrepancies between simula-
tions and MCT solutions for very stiff chains.

C. Chain packing

As mentioned in Sec. IIT and shown in Fig. 4, MCT fails
at reproducing the peak around gc ~ 4 for the g-dependence
of the KWW times of density—density correlators. As noted
in Ref. 20 for the fully flexible case, the origin of this peak
may be related to dynamic correlations between centers-of-
mass of the chains. The latter might arise from the effective
packing between the polymer coils, interacting as fully pen-
etrable spheres of size R,. This interpretation is not clear in
view of the results of Fig. 4, since the value of g¢ does not
seem to be related with 27 /R,. Having noted this, Chong
et al. found that the incorporation of the static correlations
between the centers-of-mass in the MCT equations did not
improve the description of the simulation results. As shown
in Ref. 20 this is not unexpected due to the almost feature-
less form of the static structure factor of the centers-of-mass
Scm(q). The inset of Fig. 4(a) shows simulation results of
Scm(q) for the same barrier strength and temperatures of the
KWW times in the main panel. The introduction of chain
stiffness does not induce significant features in Scm(q), ap-
part from a stronger signal at low g. The latter indeed sug-
gests that packing effects between the polymer coils are even
weaker than for the fully flexible case. Within the former in-
terpretation, this would be consistent with the lower intensity
of the mentioned peak of rqK [ Tgma At gc ~ 4. All these results
suggest that discrepancies between simulations and MCT on
increasing chain stiffness are not related to a dynamic cou-
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pling, not accounted for within the theory, to the slow modes
at gc ~ 4. Indeed, this coupling seems to be weaker for stiff
chains.

D. Outlook

In summary, in this section we have discussed possible
origins for the discrepancies, concerning the structural relax-
ation, between simulations and MCT on increasing barrier
strength. We discard a major role, in comparison with the fully
flexible case, of three-point static correlations, dynamic het-
erogeneities, and chain packing. These effects become even
weaker on increasing chain stiffness. We remind that such ef-
fects are indeed neglected in the derivation of the MCT equa-
tions used here (see Sec. III). Results in this section suggest
that this is not less justified for very stiff chains than for fully
flexible ones.

How to improve the theory to account for dynamic trends
in stiff chains is an open question. A way might be the re-
formulation or extension of the MCT equations, retaining the
bilinear form of the kernel, in terms of new dynamic observ-
ables coupled to density fluctuations. Such observables can be
adequate for describing particular dynamic features which are
not captured by the usual observables, i.e., the number density
fluctuations p(q, ¢). Some examples are rototranslational site
fluctuations adapted to the molecular symmetry, as has been
shown, e.g., for dumbbell-like molecules'”->> or for a simple
model of orthoterphenyl.'® The inclusion of density fluctua-
tions of centers-of-mass improve results for rigid molecules'®
concerning a peak in 7,°/7,, at intermediate ¢,” similar to
that observed here at gc ~ 4. As discussed above, this is not
the case for polymer chains. Though there is no characteristic
symmetry in polymer chains, rototranslational density fluctu-
ations can also be defined over sites a, b at some characteris-
tic distance |a — b|, perhaps probing the relevant length scale
21 /qc, which according to the data of Fig. 4 seems to de-
pend weakly on the barrier strength. Whether this procedure
may improve the agreement between MCT and simulations
remains to be solved.

V. CONCLUSIONS

By means of simulations and solution of the equations
of the mode coupling theory, we have studied the role of in-
tramolecular barriers, of arbitrary strength, on several aspects
of polymer dynamics. The investigated dynamic range ex-
tends from the caging regime characteristic of glass-formers
to the relaxation of the chain Rouse modes. Solutions of the
MCT for the structural relaxation reproduce qualitative trends
of simulations for weak and moderate barriers. However, a
progressive discrepancy between MCT and simulations is re-
vealed as the limit of stiff chains is approached. We have
tested the validity of several assumptions inherent to the the-
ory. Deviations from the theoretical predictions do not seem
related with dynamic heterogenities, which indeed are not en-
hanced by increasing the barrier strength. Moreover, the con-
volution approximation for three-point static correlations re-
tains its validity for stiff chains. Even the role of slow modes
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at intermediate length scales, not accounted for by MCT, be-
comes less significant on increasing chain stiffness. At this
point it is not clear how to improve the MCT equations in or-
der to remove the mentioned discrepancies for the case of stiff
chains. We have suggested the possibility of formulating the
MCT equations in terms of rototranslational density fluctua-
tions over specific length scales.

Concerning the relaxation of the chain degrees of free-
dom, MCT provides a microscopic basis for the observed
deviations from the Rouse model on increasing the bar-
rier strength. These include anomalous scaling of relaxation
times, long-time plateaux, and nonmonotonous wavelength
dependence of the mode correlators. Beyond usual phe-
nomenological models for chain dynamics (the Rouse model
being the corresponding one for fully flexible chains), MCT
provides a unified microscopic picture down to time scales
around and before the a-process, which is not accounted for
within the mentioned models.
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