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We present molecular dynamics simulations of a simple model for polymer melts with intramolecular

barriers. We investigate structural relaxation as a function of the barrier strength. Dynamic correlators can

be consistently analyzed within the framework of the mode coupling theory of the glass transition. Control

parameters are tuned in order to induce a competition between general packing effects and polymer-

specific intramolecular barriers as mechanisms for dynamic arrest. This competition yields unusually

large values of the so-called mode coupling theory exponent parameter and rationalizes qualitatively

different observations for simple bead-spring and realistic polymers. The systematic study of the effect of

intramolecular barriers presented here also establishes a fundamental difference between the nature of the

glass transition in polymers and in simple glass formers.
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Since they do not easily crystallize, polymers are proba-
bly the most extensively studied systems in relation with
the glass transition phenomenon. Having said this, their
macromolecular character, and, in particular, chain con-
nectivity, must not be forgotten. Its most evident effect is
the sublinear increase of the mean squared displacement
(Rouse-like) arising after the decaging process, in contrast
to the linear regime found in nonpolymeric glass formers.
Another particular ingredient of polymers is that, apart
from fast librations or methyl group rotations, every mo-
tion, as local as it be, involves jumps over carbon-carbon
rotational barriers and/or chain conformational changes.

In this Letter we investigate, by means of simulations,
the decisive role of intramolecular barriers on the glass
transition of polymer melts, by systematically tuning bar-
rier strength in a simple bead-spring model. We discuss the
obtained results within the framework of the mode cou-
pling theory (MCT) of the glass transition [1]. Initially
derived for monoatomic hard-sphere systems, the theory
has been further developed for more complex systems,
including fully flexible bead-spring chains as simple mod-
els for polymer melts [2]. MCT asymptotic laws have been
tested in different polymeric systems [3–5]. The values of
the associated dynamic exponents exhibit significant dif-
ferences between the limits of fully flexible bead-spring
chains [3] and fully atomistic polymers [5]. In particular,
the so-called exponent parameter takes standard values
�� 0:7 for the former case and values approaching the
upper limit � ¼ 1 for chemically realistic polymers [5].
While the former � values are characteristic of systems
dominated by packing effects, as the archetype hard-sphere
fluid, the limit � ¼ 1 arises at higher-order MCT transi-
tions [6,7]. The latter, or more generally transitions with
� & 1, arise in systems with different competing mecha-
nisms for dynamic arrest. These systems include short-
ranged attractive colloids [8,9] (competition between

short-range attraction and hard-sphere repulsion) or binary
mixtures with strong dynamic asymmetry [10,11] (bulklike
caging and confinement).
Motivated by these analogies, we argue that values � &

1 for real polymers also arise from the competition be-
tween two distinct mechanisms for dynamic arrest: usual
packing effects and polymer-specific intramolecular bar-
riers. Such barriers are not present in fully flexible bead-
spring chains, which exhibit standard � values [3]. In order
to shed light on this question, we perform a systematic
investigation of the interplay between packing and intra-
molecular barriers. The role of the latter has been discussed
in the literature [4]. This Letter goes beyond previous
investigations and provides the systematic study and the
MCT picture mentioned above as novel results of deep
consequences. Starting from fully flexible bead-spring
chains, stiffness is introduced by implementing intramo-
lecular bending and torsion terms. The barrier strength is
systematically tuned in order to induce competition be-
tween the former two mechanisms. We restrict to stiffness
for which no orientational order is present, and provide a
complete dynamic picture of the isotropic phase as a
function of the barrier strength. An extensive test of
MCT asymptotic laws is performed. Simulation results
are described with consistent sets of MCT exponents. A
progressive increase of � is induced by strengthening the
competition between packing and intramolecular barriers,
confirming the proposed scenario.
We simulate bead-spring chains of N ¼ 10 identical

monomers of mass m ¼ 1. Monomer-monomer interac-
tions are given by a corrected soft-sphere potential: VðrÞ ¼
4�½ð�=rÞ12 � C0 þ C2ðr=�Þ2�, where � ¼ 1 and � ¼ 1.
VðrÞ is set to zero for r � c�, with c ¼ 1:15. The values
C0 ¼ 7c�12 and C2 ¼ 6c�14 guarantee continuity of po-
tential and forces at r ¼ c�. VðrÞ is purely repulsive and
has no local minima. Thus, it drives dynamic arrest only
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through packing effects. Chain connectivity is introduced
through a finitely extensible nonlinear elastic (FENE) po-
tential [3], VFENEðrÞ ¼ ��KFR

2
0 ln½1� ðR0�Þ�2r2�, be-

tween consecutive monomers, with KF ¼ 15 and
R0 ¼ 1:5. We implement intramolecular barriers by means
of the bending, VB, and torsion potential, VT , proposed in
Ref. [12] (see discussion there), which are defined for each
i momomer (1 � i � N) as VBð�iÞ ¼ ð�KB=2Þ�
ðcos�i � cos�0Þ2, and VTð�i; �iþ1; �i;iþ1Þ ¼
�KTsin

3�isin
3�iþ1

P
3
n¼0 ancos

n�i;iþ1. Chain stiffness is

tuned by varying KB and KT . �0 ¼ 109:5� and �i is the
bending angle (for 2 � i � N � 1) between consecutive
monomers i� 1, i, and iþ 1. The dihedral angle �i;iþ1 is

defined for the consecutive monomers i� 1, i, iþ 1, and
iþ 2 (2 � i � N � 2), as the angle between the two
planes defined by the sets (i� 1, i, iþ 1) and (i, iþ 1, iþ
2). The values of the coefficients an are [12] a0 ¼ 3:00,
a1 ¼ �5:90, a2 ¼ 2:06, and a3 ¼ 10:95.

Temperature T, time t, wave vector q, and monomer
density � are given, respectively, in units of �=kB (with kB
the Boltzmann constant), �ðm=�Þ1=2, ��1, and ��3. We
investigate, at fixed � ¼ 1, the T dependence of the dy-
namics for different values of the bending and torsion
strength, ðKB;KTÞ ¼ ð0; 0Þ, ð15; 0:5Þ, ð25; 1Þ, ð25; 4Þ, and
ð35; 4Þ. The case ðKB;KTÞ ¼ ð35; 4Þ is also studied for � ¼
0:93. The total number of chains is Nc ¼ 300. Periodic
boundary conditions are implemented. Equations of mo-
tion are integrated in the velocity Verlet scheme [13]. The
system is prepared by placing the chains randomly in the
simulation box, with a constraint avoiding monomer core
overlap. The initial monomer density is � ¼ 0:375.
Equilibration consists of a first run where the box is re-
scaled periodically by a factor 0:99< f < 1 until the target
density � is reached, and a second isochoric run at that �.
Thermalization at the target T is achieved by periodic
velocity rescaling. Once the system is equilibrated, a mi-
crocanonical run is performed for production of configu-
rations, from which observables are computed. For each
state point, the latter are averaged over typically 40 inde-
pendent samples.

Orientational ordering (induced by chain stiffness) is
discarded for all the analyzed cases by measuring the
quantity P2ð�Þ ¼ ð3hcos2�i � 1Þ=2, where � is the angle
between the end-to-end vectors of two chains, and the
average is performed over all pairs of distinct chains. In
all cases we obtain negligible values jP2ð�Þj< 10�2.

We compute density-density correlators, defined as
Fðq; tÞ ¼ h�ðq; tÞ�ð�q; 0Þi=h�ðq; 0Þ�ð�q; 0Þi where
�ðq;tÞ¼�jexp½iq �rjðtÞ�, the sum extending over the po-

sitions rj of all the monomers in the system. Density self-

correlators are defined as Fsðq; tÞ ¼ ðNNcÞ�1�j expfiq �
½rjðtÞ � rjð0Þ�g. Results for the former quantities are shown

in Fig. 1, at several q values, for two state points with
nonzero barriers, at T close to the critical MCT tempera-
ture (see below). As usual, a plateau is observed in the

interval corresponding to the caging regime, i.e., the tem-
porary trapping of a particle by its neighbors. This interval
is known as the � regime within the framework of MCT.
The second decay, corresponding to full relaxation of
density fluctuations of wave vector q, is known as the �
regime, and is often described by an empirical Kohlrausch-
Williams-Watts (KWW) function, Aq exp½�ðt=	KWW

q Þ�q�,
where Aq, the KWW time 	KWW

q , and the exponent �q are

q dependent.
Next we summarize the basic predictions of MCT and

test them in the present system. In its ideal version, MCT
predicts a sharp transition [1] from an ergodic liquid to an
arrested state (glass) at a given value of the relevant control
parameters—here x ¼ ðT; �; KB;KTÞ. When crossing the
transition point x ¼ xc the long-time limit of Fðq; tÞ and
Fsðq; tÞ jumps from zero to a nonzero value, denoted as the
critical nonergodicity parameter (fcq and f

cs
q , respectively).

MCT predicts asymptotic laws for dynamic observables.
Such laws are characterized by dynamic exponents that are
q- and state-point independent. They are directly deter-
mined by the static correlations at x ¼ xc [1]. Moreover,
all the dynamic exponents are directly related to a single
one, the exponent parameter � (see below), which is the
basic one controlling all MCT asymptotic laws. Now we
summarize the main ones.
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FIG. 1 (color online). Symbols: simulations results, at � ¼ 1,
for density correlators. Panel (a) Fðq; tÞ for KB ¼ 15, KT ¼ 0:5,
at T ¼ 0:81. Panel (b) Fsðq; tÞ for KB ¼ 35, KT ¼ 4, at T ¼
1:33. Identical symbols in both panels correspond to identical
wave vectors q [values are given in panel (a)]. Lines are fits to
Eq. (1).
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For ergodic states close to xc, the initial part of the �
process (i.e., the von Schweidler regime) is given by a
power law expansion [1]:

Fðq; tÞ 	 fcq � hqðt=	�Þb þ hð2Þq ðt=	�Þ2b (1)

(and analogously for self-correlators), with 0< b � 1. The

nonergodicity parameters and the prefactors hq and hð2Þq

only depend on q and are different for each correlator. The
�-relaxation time 	� only depends on the separation pa-
rameter jx� xcj. MCT predicts a divergence [14] accord-
ing to the power law 	� / jx� xcj�
. In practice 	� can
be defined as the time 	z where Fðqmax; tÞ decays to some
small value z far below the plateau, with qmax the q value at
the maximum of the static structure factor SðqÞ ¼
ðNNcÞ�1h�ðq; 0Þ�ð�q; 0Þi. Here we will use 	0:2. The ex-
ponent 
 is given by [1,15]


 ¼ ð1=2aÞ þ ð1=2bÞ: (2)

As mentioned above, the full� decay can be described by a
KWW function. In the limit of large q MCT predicts [16]

for the KWW times a power law 	KWW
q / q�1=b. The

exponents a, b, and 
 are directly related to the exponent
parameter � � 1 through [1]

� ¼ �2ð1þ bÞ=�ð1þ 2bÞ ¼ �2ð1� aÞ=�ð1� 2aÞ; (3)

with � the Euler’s gamma function.
When numerical solutions of the MCT equations are not

available, the former nonergodicity parameters, prefactors,
and exponents are obtained as fit parameters from simula-
tion or experimental data. Consistency of the analysis
requires that dynamic correlators and relaxation times are
described by a common set of exponents, directly related
through Eqs. (2) and (3). This consistent test has been done
for all the systems here investigated, with different
strengths of the intramolecular barriers. Figures 1–3 dis-
play some representative examples. Figure 1 shows, at
fixed � ¼ 1 and for a broad q range, fits to Eq. (1) of
density correlators for the state points KB ¼ 15, KT ¼ 0:5,
T ¼ 0:81 (S1) and KB ¼ 35, KT ¼ 4, T ¼ 1:33 (S2). A
good description is achieved, for all the q values and over
several time decades, with a fixed b exponent (b ¼ 0:50
and 0.37 for, respectively, S1 and S2). Figure 2 displays, for
the former barrier strength, the q dependence of the critical
nonergodicity parameters. The fully flexible case KB ¼
KT ¼ 0 is also included. As deduced from the stronger
decay of fcq and fcsq for stronger barriers, chain stiffness

induces a weaker localization at fixed density. By making
an approximate fit of fcsq to Gaussian behavior,

expð�q2l2c=6Þ, we estimate, at fixed � ¼ 1, a localization
length lc ¼ 0:19, 0.21, and 0.23 for, respectively,
ðKB;KTÞ ¼ ð0; 0Þ, ð15; 0:5Þ, and ð34; 4Þ.

The increase of the barrier strength at fixed � also
induces a higher critical temperature Tc and a longer
relaxation time for fixed � and T. This is demonstrated

in Fig. 3, which also shows a test of the predictions 	� /
ðT � TcÞ�
 and 	KWW

q / q�1=b (for large q) for the former

values of the barrier strength. A good description is ob-
tained with the same b exponents used for the
von Schweidler fits of Fig. 1, and with the 
 exponents
derived from them through Eqs. (2) and (3). This demon-
strates the consistency of the data analysis. For compari-
son, Fig. 3 also includes results for the fully flexible case
KB ¼ KT ¼ 0.
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Table I displays the results of the MCT analysis (dy-
namic exponents and Tc) for all the investigated cases. It
also includes the mean chain end-to-end radius at Tc, R

c
ee,

as computed from the simulations. Rc
ee provides a qualita-

tive characterization of chain stiffness. From numerical
values in Table I a clear correlation between the exponent
parameter � and chain stiffness is unambiguously demon-
strated. The competition between packing effects and in-
tramolecular barriers induces a progressive increase of �
from the value � ¼ 0:76 for fully flexible chains to � ¼
0:89 for the stiffest investigated chains.

This observation rationalizes the large difference ob-
served between MCT exponents for fully flexible bead-
spring chains and chemically realistic polymers. Table II
shows a representative compilation of exponents for glass
formers of very different natures. Exponents for fully
flexible bead-spring chains are similar to those of non-
polymeric glass formers, including the hard-sphere fluid,
i.e., the archetype glass former dominated by packing
effects. Chemically realistic polymers of increasing com-
plexity exhibit instead values approaching the limit � ¼ 1
characteristic of higher-order MCT transitions. The sys-
tematic study presented in this Letter strongly suggests a
competition between general packing effects and polymer-
specific intramolecular barriers as the origin of this differ-
ence. It also suggests a fundamental difference in the
nature of the glass transition in real polymers—driven by
the former competing mechanisms—as compared to sim-
ple glass formers [17]. Real polymers are thus classified in
the family of complex systems as short-ranged attractive

colloids [8,9] or binary mixtures with strong dynamic
asymmetry [10,11], which are characterized by an under-
lying higher-order MCT transition—or at least by unusu-
ally large values of �—arising from a competition between
distinct mechanisms for dynamic arrest. Finally, results
reported here provide fundamental information for micro-
scopic theories (and, in particular, for MCT) of the glass
transition in polymers, which need to account for the
decisive role of intramolecular barriers.
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TABLE II. MCT exponents for different glass formers (see [5]
and references therein). UA and FA denote, respectively, coarse-
grained united atom and fully atomistic models.

System a b 
 �

Hard spheres 0.31 0.58 2.5 0.74

Orthoterphenyl 0.30 0.54 2.6 0.76

Polyethylene (UA) 0.27 0.46 2.9 0.81

1,4-Polybutadiene (UA) 0.21 0.30 4.1 0.90

1,4-Polybutadiene (FA) 0.18 0.24 4.9 0.93

Poly(vinyl ethylene) (FA) 0.18 0.24 4.9 0.93

TABLE I. Values of the MCT exponents and critical tempera-
ture Tc for different �’s and barrier strengths. Also included are
the mean chain end-to-end radius Rc

ee at Tc.

� KB KT Rc
ee Tc a b 
 �

1 0 0 3.6 0.48 0.30 0.54 2.6 0.76

1 15 0.5 5.2 0.75 0.29 0.50 2.7 0.79

1 25 1 5.5 0.92 0.26 0.43 3.1 0.83

1 25 4 6.4 1.02 0.25 0.40 3.2 0.84

1 35 4 6.5 1.23 0.24 0.37 3.4 0.86

0.93 35 4 6.9 1.02 0.22 0.33 3.8 0.89
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