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We present molecular dynamics (MD) simulations results for dense fluids of ultrasoft, fully penetra-
ble particles. These are a binary mixture and a polydisperse system of particles interacting via the
generalized exponential model, which is known to yield cluster crystal phases for the corresponding
monodisperse systems. Because of the dispersity in the particle size, the systems investigated in this
work do not crystallize and form disordered cluster phases. The clustering transition appears as a
smooth crossover to a regime in which particles are mostly located in clusters, isolated particles be-
ing infrequent. The analysis of the internal cluster structure reveals microsegregation of the big and
small particles, with a strong homo-coordination in the binary mixture. Upon further lowering the
temperature below the clustering transition, the motion of the clusters’ centers-of-mass slows down
dramatically, giving way to a cluster glass transition. In the cluster glass, the diffusivities remain
finite and display an activated temperature dependence, indicating that relaxation in the cluster glass
occurs via particle hopping in a nearly arrested matrix of clusters. Finally we discuss the influence
of the microscopic dynamics on the transport properties by comparing the MD results with Monte
Carlo simulations. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4765704]

I. INTRODUCTION

A common strategy to facilitate the study of the phys-
ical properties of complex macromolecular aggregates is
to coarse-grain the intramolecular degrees of freedom.1, 2

By using standard statistical mechanical tools, it is pos-
sible to represent each macromolecule as a single point
particle and to obtain an effective pair potential account-
ing for the free energy of interaction between two such
macromolecules. For several macromolecular architectures,
including linear chains,3, 4 rings,5, 6 stars,7–9 dendrimers,10–12

or microgels,13, 14 the so-derived effective potentials are
“ultrasoft,” i.e., the centers of mass of the macromolecules
can coincide at a modest energetic cost (of order kBT )
without violating excluded volume interactions between
monomers.

Ultrasoft particles exhibit a more complex phase behav-
ior than that of hard ones. This originates from the inter-
play between entropy, which governs the structural properties
of hard-sphere solutions, and energetic contributions arising
from the fully penetrable character of the ultrasoft particles.
The topology of the phase diagram in the temperature-density
plane can be classified in two classes: reentrant or mono-
tonic behavior. The behavior of the Fourier components of
the ultrasoft bounded potential provides a necessary and suffi-
cient condition for observing one or the other class.15, 16 Thus,
if all the Fourier components are positive the crystallization
lines are reentrant. A complex cascade of crystalline phases
is found on increasing the density and these depend on the

a)E-mail: daniele.coslovich@univ-montp2.fr.

specific ultrasoft potential.17–20 On the contrary, if the Fourier
transform of the potential shows negative values the crystal-
lization lines are monotonic in the temperature-density plane.
The corresponding crystalline phases of this class are non-
conventional: the ultrasoft particles form a cluster crystal.21

This crystal consists of clusters of particles located in the
nodes of the lattice. Another particular feature of this phase
is that the lattice constant is density independent. A direct
consequence of this property is that the cluster population is
directly proportional to the density of the fluid.16

The generalized exponential model (GEM)21 is a well-
known example of ultrasoft bounded potential leading to the
two former scenarios, depending on the specific parameters
of the model (see Sec. II). The cluster crystal scenario of
the GEM has been confirmed in a series of computational
investigations.16, 21–25 Detailed investigations of the phase
behavior have revealed an extremely complex map of cluster
crystal structures.26 Some of these works22–25 have focused on
the dynamic aspects of cluster crystals, revealing interesting
properties. The stability of the lattice, which has a non-integer
average cluster population, is maintained by incessant hop-
ping of all the particles between the clusters. In contrast to the
usual observation in glass-forming liquids,27, 28 a comparison
between Newtonian, Brownian and Monte Carlo (MC) simu-
lations reveals a significant role of the microscopic dynamics
on the long-time dynamics.25 In particular the hopping
dynamics in Brownian and Monte Carlo simulations is char-
acterized by short-range jumps, and the long-range, highly
directional jumps found in Newtonian dynamics are strongly
suppressed. Recent non-equilibrium simulations of cluster
crystals reveal novel features for their rheological response.29
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It is worth mentioning that potentials of the cluster-
crystal class have been derived for some macromolecules.5, 30

However, though a certain degree of clustering was found in
concentrate solutions of such macromolecules, cluster crystal
formation has not been observed yet.5, 31 The reason is that,
because of increasing many-body effects at high densities, the
obtained effective potentials were no longer valid at the densi-
ties for which crystallization was predicted. Whether one can
design specific macromolecules that can form cluster crystal
phases at high concentrations is still an open issue.

As usual in colloidal systems crystallization may be
avoided in some situations, leading to amorphous states of
ultrasoft particles. This allows to investigate the formation
of glassy states for sufficiently high densities or low tem-
peratures. To the best of our knowledge, all investigations
on this issue have been performed in systems of ultrasoft
particles showing the reentrant scenario for crystallization.
The counterpart of this phenomenon in the amorphous case
is a reentrant glass transition. This feature was predicted by
the Mode Coupling Theory in a coarse-grained model of
star polymers,32 though arrested states could not be investi-
gated because of crystallization. A natural way of prevent-
ing crystallization is to introduce dispersity in the particle
size. This allowed to investigate glassy states of Hertzian
spheres,33 confirming the presence of a reentrant glass tran-
sition. Interestingly, it has been recently shown that Gaussian
spheres can form glasses at high density even in the absence
of size dispersity34 and that these have a strong mean-field
character.35

In this work we aim to get further insight in the dynamics
of ultrasoft particles by investigating the glassy behavior for
the class of cluster crystal-forming systems. We present ex-
tensive computer simulations of a binary mixture and a poly-
disperse system of ultrasoft particles interacting through the
generalized exponential potential. We investigate structural
and dynamic properties around and below the clustering tran-
sition. The introduced size dispersity is sufficient to prevent
crystallization and to produce a disordered arrangement of
the clusters’ centers-of-mass. We observe the signatures of
an incoming glass transition, leading to a state that we denote
as “cluster glass,” akin to the dynamically arrested states ob-
served in colloidal systems with competing interactions.36–38

Note, however, that the GEM potential is purely repulsive and
has no minima, i.e., for the system investigated in this work
clustering is found in the absence of attractive interactions. A
detailed analysis of the dynamics reveals a progressive arrest
of the clusters’ centers-of-mass on decreasing temperature,
with the relaxation of the particles taking place by hopping
between the nearly arrested clusters. Finally we provide indi-
cations that the role of the microscopic dynamics (Newtonian
or stochastic) on the long-time dynamics may be less impor-
tant in cluster glasses than in cluster crystals.

The article is organized as follows. In Sec. II we describe
the investigated model and give simulation details. In Sec. III
we present the simulation results and discuss structural and
thermodynamic properties (III A), as well as dynamic proper-
ties (III B). We discuss the dependence of our results on ther-
mal history and microscopic dynamics in Subsection III C.
Conclusions are give in Sec. IV.

II. METHODS

We investigate the dynamics of ultrasoft fully penetra-
ble particles by means of extensive computer simulations of a
generalized exponential model of index n (GEM-n).21 In this
model the interactions between the two particles are given by
the bounded potential

�ij (r) = εij exp[−(rij /σij )n]. (1)

For exponents n > 2 the Fourier transform of the potential
has negative components, and hence the monodisperse system
can form cluster crystal phases. In this work we focus on two
different values of the exponent n in Eq. (1): a binary mixture
with n = 4 and a polydisperse model with n = 8.

Binary mixture—The system is composed of a mixture
of two species {1, 2} of particles interacting via a GEM-4
potential. The potential is cut and quadratically shifted at a
distance rc = 2σαβ where α, β ∈ {1, 2}. The ratio between the
particles’ diameters is σ 22/σ 11 = 1.3 and the cross-diameter
σ 12 = (σ 11 + σ 22)/2 = σ = 1 is set as the unit of length. In
this work we focus on the case of an equimolar mixture, i.e.,
with the same number of particles for both species 1 and 2.

Polydisperse model— The system is composed of N poly-
disperse particles of diameter σ i. Polydispersity is introduced
by means of a flat distribution of the variable σ i. The dis-
tribution is centered at σ = 1 and the minimum and maxi-
mum values are σmin = 0.826 and σmax = 1.164, respectively.
Particles interact through the pair potential in Eq. (1) with
n = 8. The interaction is cut off at a distance rc = 1.5σ ij,
where σ ij = (σ i + σ j)/2, σmin ≤ σij ≤ σmax, and i, j
∈ {1, . . . , N}. In order to discriminate between particles of
different sizes, we introduce three subpopulations of particles
labelled by α = 1, 2, and 3. If we sort the particles by increas-
ing value of the diameter σ i, we say that the particle i belongs
to the species α if i ∈ [1 + (α − 1)�, α�], with � = N/3.
Thus α increases with increasing average size of the particles.

In both the mixture and the polydisperse system we use
a common energy scale εαβ = 1 and particle mass m = 1.
The particles are placed in a cubic box with periodic boundary
conditions. The static and dynamic properties of these models
were investigated by means of molecular dynamics (MD) and
MC simulations, performed over a wide range of temperatures
T and of densities ρ = N/V , with N the number of particles
and V the volume of the simulation box. Namely we used
N = 4000 in the binary mixture and investigated the densities
ρ = 2.0, 3.0, and 4.0. For the polydisperse systems we used
N = 4394, 4151, 4003, and 2870 for the densities ρ = 2.0,
3.0, 5.0, and 7.0, respectively.

Production MD runs were performed in the microcanoni-
cal ensemble (Newtonian MD). Newton’s equations of motion
were integrated by means of the velocity Verlet algorithm.39

For the polydisperse model the time step δt ranged from 10−3

at high temperature to 10−2 at low temperature. For the binary
mixture the time step δt was 0.02 independent of temperature
and density. These values of δt allowed to keep the degree
of energy conservation, determined from the ratio between
the root mean square deviations of the total and potential en-
ergy, to less than 2% at all the investigated state points. Ther-
malization in the equilibration runs was achieved by periodic
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velocity rescaling in the polydisperse model and by means of
the Berendsen thermostat40 using a time constant tT = δt/0.1
in the binary mixture.

For comparison with the MD results we also performed
Monte Carlo (MC) simulations in the canonical ensemble.
Propagation of the particles was implemented according to
the standard Metropolis algorithm.39 The trial moves per-
formed during the MC simulations involved random particle
displacements, generated over a cube of side 0.1. We observed
that the acceptance ratio varied between a 80% (high T) and a
50% (low T).

To test the reliability of our results different thermaliza-
tion criteria were adopted and compared. The key quantity to
assess equilibration was the root mean squared displacement
(RMSD)

R(t) =
√√√√ 1

N

N∑
i=1

|�ri(t) − �ri(0)|2 ,

evaluated at the end of the simulation. In the case of the bi-
nary mixture, the duration teq of the equilibration run at any
temperature was such that R(teq) > 8. The duration of cor-
responding production runs, tprod, was typically four times
longer than teq, so that R(tprod) ≈ 2R(teq). At the end of the
production run, the system was cooled to a lower temperature,
and the procedure was reiterated. To ensure that all the single-
particle degrees of freedom, i.e., those corresponding to both
small and large particles, were equilibrated, we also imple-
mented an analogous equilibration criterion based on the
partial RMSD

Rα(t) =
√√√√ 1

Nα

Nα∑
i=1

|�ri(t) − �ri(0)|2 ,

where the sum is restricted to particles of species α. A small,
systematic dependence on the target value Rα(teq) was ob-
served at the lowest temperatures and will be discussed in
Sec. III C.

In the case of the polydisperse model, equilibration and
production runs were such that R(teq) and R(tprod) typically
exceeded three interparticle diameters. In the runs at the low-
est investigated temperatures, which covered about 108 time
steps, the target RMSD reached values of about one interparti-
cle diameter. Even in these runs at very low temperature, how-
ever, no drift in the time dependence of the potential energy
and pressure during the production runs could be observed.
In addition to the same gradual cooling protocol used for the
binary mixture, we also implemented an infinite-quench rate
protocol, whereby the initial configuration was always pre-
pared by placing the particles randomly in the simulation box
and then performing an infinite-rate quench to the target tem-
perature T, which was subsequently equilibrated by monitor-
ing the value of the potential energy and pressure as a function
of time. We made sure that no drift was observed during the
production runs. We found that the static and dynamic prop-
erties of the polydisperse model did not depend appreciably
on the quenching protocol employed.

Temperature T, time t, distance r, wave vector q, and
density ρ are given respectively in units of ε/kB (with kB the

Boltzmann constant), σ (m/ε)1/2, σ , σ−1, and σ−3. Unless oth-
erwise specified, in the following the presented results will
correspond to the Newtonian MD simulations. The compari-
son between MD and MC results will be discussed at the end
of Sec. III.

III. RESULTS AND DISCUSSION

Unless specified otherwise, in the following we will
present simulation results for two selected densities: ρ = 4.0
for the binary mixture and ρ = 5.0 for the polydisperse model.
As we will show below, the dynamic properties of the models
investigated here exhibit, at sufficiently low temperatures, the
ρ/T-scaling found in the cluster crystal phase of the monodis-
perse system.22, 23 The scaling becomes effective for ρ ≥ 3.0
in the binary mixture and for ρ ≥ 5.0 in the polydisperse
model (see below). The selected isochores are therefore rep-
resentative of the behavior in the high-density scaling regime.

A. Structure and thermodynamics

We start our discussion by analyzing the static pair corre-
lations. Figures 1 and 2 show the temperature variation of the
partial radial distribution functions gαβ(r) for the binary mix-
ture and the polydisperse model, respectively. Both models
follow a very similar structural evolution along the selected
isochores: a prominent peak located around r ≈ 0 builds up as
the temperature decreases, indicating an increased interpene-
tration of the particles. At the same time, the first minimum
in gαβ (r) becomes deeper, suggesting the formation of well-
defined clusters of typical maximum size ≈0.7. This value
can be read off from the positions of the first minima of the
radial distribution functions. The ability of the particles to in-
terpenetrate stems of course from the ultrasoft and bounded
character of the interaction potential, Eq. (1), but formation of
clusters in purely repulsive models is a non-trivial collective
phenomenon, that arises only at sufficiently high density.16

A close inspection of the gαβ (r) in the binary mixture shows
that the peaks around r ≈ 0 are significantly higher for like
correlations. This suggests that in this latter model clusters
are mostly populated by particles of the same species—a phe-
nomenon that can be described as “chemical segregation.”
The data for the polydisperse model indicate a similar ten-
dency towards homo-coordination, although the effect is sig-
nificantly weaker than in the binary mixture.

To characterize these effects more precisely, we per-
formed a simple cluster analysis. A particle belongs to a given
cluster if its distance to at least one of the other particles of
that cluster is smaller than a preselected cut off rcut. When
using a fixed value of rcut, it is sometimes difficult to unam-
biguously identify the cluster to which a particle belongs, due
to the continuous flow of particles from cluster to cluster,25 in
particular at high temperature. In practice, however, we do not
observe any major artifacts for the systems at hand. In partic-
ular, our data indicate that merging of neighboring clusters25

is not a serious issue in our models at sufficiently low tem-
perature (see Fig. 4). In view of the typical widths of the first
peaks of gαβ(r) at low temperature, a reasonable choice of
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FIG. 1. Radial distribution functions of the binary mixture along the isochore
ρ = 4.0 for selected temperatures (see legend). (a) g11(r), (b) g12(r), and
(c) g22(r).

the cut-off distance is rcut ≈ 0.4 for the binary mixture and
rcut ≈ 0.35 for the polydisperse model. Small changes of this
parameter (±30%) did not affect qualitatively our analysis.

Let us first analyze the distribution P (ncl) of cluster pop-
ulation numbers ncl. The temperature variation of P (ncl) is
shown in Fig. 3 for the two models. At high temperature
the distribution consists of a sharp peak around ncl = 1 (iso-
lated particles), and a featureless background of more popu-
lated clusters. Thus in the high-temperature fluid phase the
system is mostly “dissociated,” though particles may tem-
porarily overlap due to collisions. An analysis of the clus-
ter lifetimes (not shown) confirms this picture. Moreover, at
such high temperatures large values of ncl, leading to the ob-
served background in P (ncl), may result from the fluid struc-
ture being spatially more homogeneous, making the definition
of clusters meaningless. As the temperature is lowered, the
height of the peak at ncl = 1 decreases, larger clusters become
more frequent and P (ncl) approaches a well-defined ultimate
profile. In the polydisperse model at ρ = 5.0, a clear peak
is visible around ncl ≈ 8. In the binary mixture at ρ = 4.0
the distribution is clearly bimodal, indicating the formation of
two distinct types of clusters with average populations of ncl

≈ 6 and 10, respectively. We have performed a similar analy-
sis (not shown) at the other simulated densities. As expected,
we find that the “preferred” values of ncl are density depen-
dent, namely they tend to increase with increasing ρ.

A closer inspection of the chemical composition of the
clusters reveals that the double peak structure of P (ncl) in
the binary mixture reflects the same chemical segregation
indicated by the radial distribution functions: “small” clusters
(ncl ≈ 6) are mostly formed by small particles (species 1),
whereas “big” clusters (ncl = 10) are mostly formed by
big particles (species 2). This effect is nicely illustrated
in Fig. 4. The population number of each cluster is first
decomposed as ncl = n

(1)
cl + n

(2)
cl , where n

(1)
cl and n

(2)
cl indicate
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FIG. 2. Radial distribution functions of the polydisperse model along the
isochore ρ = 5.0 for selected temperatures (see legend). (a) g11(r), (b) g13(r),
and (c) g33(r). Correlation functions involving particles of intermediate size
(α = 2) are not shown.

the number of particles of species 1 and 2 composing the
cluster, respectively. Then, the two-dimensional map of the
distribution of clusters with “chemical composition”
(n(1)

cl , n
(2)
cl ) is constructed. The distributions shown in the

figure correspond to thermodynamic states located in the
temperature regime where strong clustering is observed.
For the polydisperse model, the analysis is performed using
(n(1)

cl , n
(3)
cl ) and averaging over all possible values of n

(2)
cl . In

the binary mixture, the tendency towards chemical segrega-
tion is rather evident. It is worth mentioning that at these low
temperatures “merged clusters” are extremely rare. Cluster
merging in the binary mixture would lead to the appearance
of chemical compositions such as (n(1)

cl , n
(2)
cl ) = (12, 0) or

(0, 20) (i.e., union of preferred clusters composed of small
and big particles, respectively), or (6, 10) (i.e., union of two
different preferred clusters). However, the distribution shown
in Fig. 4(a) has no contributions around (n(1)

cl , n
(2)
cl ) = (6, 10)

and (0,20). Only a few instances of (12,0) and (12,1) clusters
are visible, the latter arising from two (6,0)-clusters merged

 0
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FIG. 3. Distribution of cluster population numbers ncl for various tempera-
tures (see legend) in (a) the binary mixture and (b) the polydisperse model.
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FIG. 4. Distribution of chemical compositions of the clusters (a) for the bi-
nary mixture in the (n(1)

cl , n
(2)
cl ) plane and (b) for the polydisperse model in the

(n(1)
cl , n

(3)
cl ) plane. The radii of the circles are proportional to the probability

of finding clusters with a given chemical composition. The state points are
(a) T = 0.35 for the binary mixture and (b) T = 0.45 for the polydisperse
model.

by one big particle, but their fraction is negligible (<10−5).
Thus, we conclude that the binary mixture of GEM-4
particles self-assemble at low temperatures into a binary
mixture of clusters. The results for the polydisperse model
indicate an anti-correlation between subpopulations of small
and large particles, but the effect of chemical segregation is
much weaker than in the binary mixture (see Fig. 4(b)). Thus,
the clusters in the polydisperse model remain intrinsically
polydisperse in character.

In the following, the crossover from the dissociated fluid
phase at high temperature to the cluster-dominated regime at
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FIG. 5. Thermodynamic and cluster properties of the binary mixture (black
and white symbols) as a function of T : (a) total potential energy U(T),
(b) specific heat CV (T ), and (c) fraction P (ncl) of selected cluster popula-
tions ncl. The vertical dotted line in (b) marks the position of the peak of
the specific heat. In (a) data for the monodisperse GEM-4 model at a density
ρ = 4.097 are included for comparison (red symbols).

low temperature will be identified, without too much rigor,
as a “clustering transition.” Though we have no evidence of
the possible thermodynamic nature of this phenomenon, in-
spection of the excess specific heat CV (T ) = 1

N
dU
dT

indicates
a clear operational definition of the transition. The total poten-
tial energy per particle, U(T), and CV (T ) are shown in Figs. 5
and 6 for the binary mixture and polydisperse system, respec-
tively. Both systems display a smooth decay in U(T) on de-
creasing T, and a broad peak in CV (T ). The maximum of this
peak, at temperature T ∗, marks the clustering transition. T ∗

takes value 0.52 and 1.3 for the binary mixture and polydis-
perse model, respectively. An analogous definition of the clus-
tering transition has been used in the study of the microphase
separation of a model with short-range attraction and long-
range repulsion.41, 42 For comparison, we have included in
Figs. 5(a) and 6(a) the respective results for the monodisperse
systems (GEM-4 and GEM-8, respectively). These systems
were prepared in their equilibrium cluster crystal phases and
subsequently heated up to high temperatures. The density was
ρ = 5.0 and ρ = 4.097 for the GEM-8 and GEM-4 models,
respectively. The latter value of the density was chosen so as
to match precisely the effective packing of the binary mix-
ture within an “effective one-component” description.43 This
adjustment was necessary to achieve the expected full col-
lapse of the potential energies of the two GEM-4 models at
high temperatures. The abrupt change in the potential energy
of the monodisperse systems indicates the transition from the
fluid to the cluster crystal phase, which is a true thermody-
namic transition. In the following we will denote the corre-
sponding melting temperature as Tm. Interestingly, T ∗ of the
polydisperse system is very close to the corresponding Tm of
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FIG. 6. Black and white symbols: as Fig. 5 for the polydisperse model. Red
symbols in (a) are data for the monodisperse GEM-8 model at a density
ρ = 5.0.
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FIG. 7. Snapshots of the particles’ positions, above and below the cluster-
ing temperature T ∗ of the binary mixture: (a) T = 0.75 and (b) T = 0.35.
Particles of species 1 and 2 are depicted as small white spheres and big red
spheres, respectively. For clarity, only particles contained within a vertical
slab of thickness 4 are shown.

the monodisperse model, whereas the difference is more pro-
nounced for the binary mixture.

To correlate the variation of the former thermodynamic
quantities to the formation of clusters in the binary mixture
and polydisperse system, we show in Figs. 5(c) and 6(c) the
T-dependence of the fraction P(ncl) of clusters with selected
values of ncl. The fraction of isolated particles (ncl = 1) de-
creases rapidly around T ∗. Concomitantly, the fractions of
the preferred clusters increase, but in a rather smooth fash-

FIG. 8. Same as Fig. 7 but for the polydisperse model: (a) T = 2.44 and
(b) T = 0.64. Particles of species 1, 2, and 3 are depicted as small white
spheres, intermediate blue spheres, and big red spheres, respectively. For clar-
ity, only particles contained within a vertical slab of thickness 4 are shown.

ion. Therefore, although a clear signature of the clustering
transition can be found in the thermodynamic properties, one
should bear in mind that it may well represent a crossover
and not a sharp, thermodynamic transition. Around T ∗, clus-
ters and isolated particles are indeed in continuous and dy-
namic exchange—a sort of “chemical equilibrium” picture.
Figs. 7 and 8 show typical snapshots of the binary mixture
and polydisperse system above and below the clustering tran-
sition T ∗. The densities (ρ = 4.0 and 5.0 for the mixture and
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polydisperse system, respectively) are the same for which
structural and thermodynamic observables have been pre-
sented in previous figures. The snapshots confirm visually the
general structural features discussed above.

As temperature decreases well below the clustering tem-
perature T ∗, the fraction of isolated particles becomes neg-
ligible (�10%) and the system enters in a “cluster phase,”
i.e., a regime where almost all particles form tightly bounded
clusters and only rare jumps allow particles to be transferred
from one cluster to another. What is the structure of the clus-
ters of such a cluster phase? To address this point, we analyze
the radial distribution functions gCM

αβ (r) of the clusters’ cen-
ters of mass (CM). The index α indicates here the “chemical
composition” of the clusters. Namely, α-clusters are defined
as those composed by a majority of particles of the species α.
Isolated particles are excluded from this analysis. In Figs. 9
and 10 we show, for temperatures below the clustering tran-
sition, the functions gCM

αβ (r) of the binary mixture and poly-
disperse model, respectively. We find that the cluster struc-
ture changes only slightly upon cooling, without any major
transformation. In particular, the cluster structure of the poly-
disperse model is rather insensitive to temperature variation
and clearly amorphous. The temperature dependence of the
radial distribution functions of the binary mixture is some-
what stronger than that of the polydisperse model. Moreover
these functions exhibit a more marked splitting of the second
peak, especially for 2-2 correlations. The typical distances be-
tween neighboring clusters can be read off from the location
of the first peaks and reflect the different “chemical” compo-
sition: clusters composed of big particles tend to have larger
distances to their first neighbors. In Figs. 11 and 12 we in-
clude the corresponding data for the static structure factors of
the clusters’ CMs, SCM

αβ (k). The maxima of the different struc-
ture factors take moderate values, SCM

αα (k) ∼ 2 for correlations
between same species and SCM

αβ (k) ∼ 1 for distinct species.
No signature of Bragg peaks, which would be present in clus-
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FIG. 9. Radial distribution function of the clusters’ centers of mass in
the binary mixture at some selected temperatures (see legend): (a) gCM

11 (r),
(b) gCM

12 (r), and (c) gCM
22 (r).

ter crystals, is found, confirming the amorphous character of
the arrangement of the clusters’ CMs. The significant anti-
correlation, SCM

αβ (k) ∼ −0.5, of distinct species in the low-k
regime suggests a certain segregation between clusters of big
and small particles.

In summary, from the former analysis we conclude that
the structure of the clusters’ CMs below the clustering tran-
sition is essentially amorphous, at least down to the lowest
simulated temperature, but differences are visible between
the two investigated models (binary mixture and polydisperse
system). We will study the dynamic character of these amor-
phous cluster phases (whether they consist of fluids or glasses
of clusters) in Subsection III B.

B. Dynamics

We now turn our attention to the dynamics of the two
investigated models. In doing so, we will better characterize
the nature of the cluster phases identified in Sec. III A, and
we will highlight the differences and similarities with respect
to the dynamics of ultrasoft particles in cluster crystals.22, 25

Let us start with the analysis of the temperature depen-
dences of the diffusion coefficients. These have been extracted
from the long time limit of 〈R2

α(t)〉/6t , where the partial mean
square displacements are defined as

〈
R2

α(t)
〉 =

〈
1

Nα

Nα∑
i=1

|�ri(t) − �ri(0)|2
〉

.

The index i runs over all particles of species α. In Fig. 13
we show the species-dependent diffusion coefficients Dα of
the binary mixture (ρ = 4.0, panel (a)) and the total diffu-
sion coefficient D of the polydisperse model (ρ = 5.0, panel
(b)). The very high temperature regime is omitted for clarity
and will be shown in Fig. 23. An Arrhenius representation is
used to highlight the development of slow dynamics upon de-
creasing the temperature. A first portion of the data, covering
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FIG. 11. Static structure factors of the clusters’ centers of mass in the binary
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temperatures for which the diffusion coefficients are between
≈1 and ≈10−2, can be reasonably well described by a Vogel-
Fulcher-Tammann (VFT) law

Dα(T ) ∼ exp
[− A(α)/

(
T − T

(α)
0

)]
.

The fitted values of the strength parameters A(α) depend on
both species and models under consideration. We observe that
the clustering temperature T ∗ lies within this first portion of
data. Thus no dynamic signature of the thermodynamically
defined clustering transition can be evidenced from this rep-
resentation of the data (see also Fig. 23). At lower tempera-
tures the diffusion coefficients undergo a crossover to a milder
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FIG. 12. Static structure factors of the clusters’ centers of mass in the poly-
disperse system at some selected temperatures (see legend): (a) SCM
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13 (k), and (c) SCM
33 (k).
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temperature dependence, which can be well described by an
Arrhenius law

Dα(T ) ∼ exp
[− E

(α)
act

/
T

]
.

The activation energies are species-dependent and tend to be
higher the bigger the particles. We interpret this “fragile-to-
strong” crossover (i.e., from VFT to Arrhenius temperature
dependence) as a signature of a change in the microscopic
transport mechanisms, from the high-T collective dynamics
to activated, single-particle hopping taking place in a nearly
frozen cluster structure. We remark that this crossover takes
place below T ∗, in a regime where clustering is nearly com-
plete and the fraction of isolated particles P1 is typically lower
than 15%–20%.

Figure 14 shows the diffusivities of the polydisperse sys-
tem versus the variable ρ/T at the different investigated densi-
ties. At low temperatures, data for ρ ≥ 5.0 collapse to a com-
mon Arrhenius law, i.e., with an activation energy Eact ∝ ρ.
Low-T data for ρ = 3.0 do not collapse though still are close
and parallel to the data for ρ ≥ 5.0. This scaling behavior of
the diffusivities in the cluster phase of polydisperse GEM-8
particles is analogous to that observed in the fcc cluster crys-
tal phase of the monodisperse counterpart. The data of the fcc
cluster crystal (taken from Ref. 22) are included in Fig. 14 for
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system of this work. The thick dashed lines indicate Arrhenius-like behavior
in the cluster crystal and cluster glass of the monodisperse and polydisperse
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comparison. In analogy with the observation for the cluster
crystals (see discussion in Ref. 22), the Arrhenius tempera-
ture dependence suggests that the particles perform hopping
dynamics on the sites of an almost frozen matrix of clusters.
Though the same qualitative ρ/T-scaling is found, quantitative
differences are observed. In particular the activation free en-
ergy in amorphous cluster phases is lower than in the cluster
crystal. This can be tentatively assigned to structural disorder
leading to a larger number of available pathways (“entropic”
contribution) or to a smoother energy landscape probed by in-
dividual particles in the amorphous cluster phase, in contrast
to the ordered structure of local minima separated by high
barriers in the cluster crystal.23

The ρ/T-scaling of the polydisperse system breaks down
at sufficiently high temperatures, i.e., above the fragile-to-
strong crossover. This suggests a more complex, cooperative
transport mechanism above this crossover, in analogy with
the mildly supercooled regime of glass-forming liquids. We
will show below that indeed the systems investigated here ex-
hibit, in this regime, characteristic dynamic features of that
scenario. Finally, it is worth mentioning that the data for the
polydisperse system and its monodisperse counterpart show a
perfect overlap in the high-temperature fluid phase, i.e., above
the crystallization and clustering transition for the monodis-
perse and polydisperse system, respectively. Thus, the effects
of the size dispersity have no relevance for the dynamics at
such high temperatures. Consistently with the observations
for the potential energy and specific heat (Figs. 5 and 6) the
diffusivities of the polydisperse system display a smooth vari-
ation around T ∗, in contrast to those of the monodisperse sys-
tem around Tm. All the previous qualitative observations are

also found for the ρ/T-scaling (obeyed for ρ ≥ 3.0) of the
diffusivities in the binary mixture (not shown).

To characterize the dynamics in more detail, we study the
temperature evolution of both incoherent and coherent inter-
mediate scattering functions (Figs. 15 and 16). In the case of
the binary mixture, we report separately the scattering func-
tions for small and large particles, whereas an average over
all particles is performed for the polydisperse model. The se-
lected wave vectors reflect the positions of the respective first
peaks in the static structure factors. For the binary mixture
the values are k ∗ = 6.0 (for α = 1) and k ∗ = 5.0 (for α = 2),
whereas for the polydisperse model k ∗ = 5.8.

We first discuss the incoherent scattering functions
Fs(k, t). These are calculated as

Fα
s (k, t) =

〈
1

Nα

Nα∑
j=1

exp[i�k · (�rj (t) − �rj (0))]

〉
, (2)

where the sum is performed over the positions, �rj , of the Nα

particles of the species α. At high temperature the correla-
tion functions decay rapidly to zero in a simple exponential
fashion. Around and below T ∗, marked oscillations appear at
short times t ∼ 1, which can be attributed to the vibrations of
individual particles within the clusters. Similar features have
been observed in the cluster crystal phases of similar ultrasoft
particles25 and are known to be associated to single-particle
vibrational modes.44 As the temperature is further decreased,
the damping of these oscillations becomes weaker and the
amplitude gets larger, consistently with an increased stability
of the clusters. The oscillations are also visible in the polydis-
perse model (see Fig. 16(a)), though they are less pronounced
due to the average over all particles’ sizes.

The appearance of oscillations in Fs(k, t) is accompanied
by evident signatures of glassy dynamics. A plateau in Fs(k, t)
develops at intermediate times and apparently grows in a con-
tinuous fashion from zero to finite values. Such an increase
of the plateau height indicates a dynamical slowing down of
the continuous type. Interestingly, this feature resembles the
type-A transition scenario predicted by the Mode Coupling
Theory for certain classes of glassy systems.45, 46 It should
be noted that the emergence of the plateau occurs clearly
above T ∗, i.e., the onset of slow dynamics already takes place
prior to the thermodynamically defined clustering transition,
both for the binary mixture and for the polydisperse system.
This is consistent with the smoothness of the transition (see
Figs. 5 and 6). Concomitant with the observed decrease of
the diffusivities observed in Fig. 13, the plateau extends over
longer time scales and is followed by a slow decay with in-
creasing relaxation time as temperature decreases.

The coherent scattering functions are calculated as

Fαβ(k, t) = 〈ρα(k, t)ρβ(−k, 0)〉
〈ρα(k, 0)ρβ(−k, 0)〉 , (3)

where ρα(k, t) = ∑Nα

j=1 exp [i�k · �rj (t)]. Inspection of the co-
herent functions F(k ∗, t) of the binary mixture (Figs. 15(c)
and 15(d)) and the polydisperse model (Fig. 16(b)) reveals
similar features of glassy dynamics. Since coherent functions
probe collective correlations, the data of Figs. 15(c), 15(d),
and 16(b) reflect a progressive dynamic arrest of the cluster
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= 5.8, t).

structure. At very low temperature, F(k ∗, t) does not relax to
zero within our observation times and the cluster structure is
effectively frozen. The highest temperature at which F(k ∗, t)
does not completely relax to zero over the available time scale
defines the cluster glass transition and will be denoted as Tg.
We find Tg ≈ 0.48 and Tg ≈ 1.02 for the binary mixture and
the polydisperse model, respectively.47

The slowing down of F(k ∗, t) above Tg follows the two-
step scenario typically observed in supercooled liquids. This
allows one to define, as usual, the corresponding structural re-
laxation times τ from the condition F(k ∗, τ ) = 1/e. Figure 17
shows the temperature variation of the species-dependent re-
laxation times τ 1 and τ 2 for the binary mixture and the total
relaxation time τ for the polydisperse model. The data have
been tentatively fitted using the VFT function, yielding val-
ues of T0 in the range 0.42–0.45 for the binary mixture and
0.65–0.7 for the polydisperse model. These temperatures can
be taken as lower bounds for the cluster glass transition, cor-
responding to infinitely slow cooling rates. Furthermore, the
separation between T ∗ and T0 is very pronounced in the poly-
disperse model, which indicates that the cluster glass formed
by the latter is “stronger,” in the Angell’s terminology,48 than
the one formed by the binary mixture. All this clearly shows
that the clustering and cluster glass transitions are distinct and
different in nature: the former is an equilibrium crossover, the
latter an ergodicity breaking transition that would occur at dif-
ferent temperatures depending on observation times.

Let us summarize the scenario emerging from our sim-
ulations. Consistent with the structural features discussed in
Subsection III A, the clustering transition is associated to a
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crossover from a fluid of mostly dissociated particles to a
fluid of clusters. The dispersity of the clusters evidenced in
Sec. III A frustrates crystallization of the clusters CMs and al-
lows quenching the fluid to lower temperatures. In the temper-
ature range Tg � T � T ∗ the underlying transport processes
are rather complex: by visual inspection of animated parti-
cles’ trajectories, we observed diffusive motion of clusters as
a whole, branching of clusters as well as random walks of
isolated particles. This results in non-Arrhenius temperature
dependence of the transport coefficients and a non-trivial be-
havior of the intermediate scattering functions. Below Tg the
structure of the clusters’ centers-of-mass becomes practically
arrested on the time scale of our simulation (see below) and
the system enters in the cluster glass regime. Having noted
this, the incoherent scattering functions still decay to zero in
the time scale of the simulation at some temperatures T < Tg

(see Figs. 15(a) and 15(b), and 16(a)). In other words, the self-
dynamics is still effectively ergodic in the cluster glass and is
driven by hopping between the effectively arrested clusters.
This hopping dynamics is manifested by the Arrhenius-like
behavior observed in the diffusivities (see Fig. 13). Therefore,
as in cluster crystals,22 self- and collective dynamics in the
cluster glass are strongly decoupled. Representative particles’
displacements illustrating the difference in transport below
and above Tg are depicted in Figs. 18(a) and 18(b), and 18(c)
and 18(d), respectively. Panels (a) and (b) show typical single-
particle hopping processes at low T, involving jumps over a
few neighbor distances. Note that, during the jumps, the mo-
tion of the particle is nearly ballistic, as in cluster crystals,25

and may involve passing through different clusters. Panels (c)
and (d) illustrate the more complex motions occurring above
Tg, which involve both slow diffusion of particles residing
within clusters (panel (c)) and diffusion of isolated particles
(panel (d)).

To conclude this section, we provide now explicit evi-
dence that the cluster glass transition corresponds to the loss
of ergodicity in the degrees of freedom associated to the clus-
ters’ centers of mass. At each time t we identify the positions
�Rj (t) of the clusters’ centers of mass, where 1 ≤ j ≤ Ncl(t)

and Ncl(t) is the total number of clusters in the system at time
t. We then calculate the coherent scattering functions of the
clusters’ CMs as

F CM
αβ (k, t) =

〈
ρCM

α (k, t)ρCM
β (−k, 0)

〉
〈
ρCM

α (k, 0)ρCM
β (−k, 0)

〉 , (4)

where ρCM
α (k, t) = ∑Nα

cl (t)
j=1 exp [i�k · �Rα

j (t)] and the sum is
done over the Nα

cl(t) clusters of the species α. The chemi-
cal species α of a given cluster is again defined as the ma-
jority species in the cluster (see above). Single clusters (i.e.,

0

2

4

6

 20  30  40  50  60  70  80  90

D
is

pl
ac

em
en

t

0 2 4 6 8  10  12

Preferred cluster of big particles
Preferred cluster of small particles

Cluster population
at time t T=0.3843   (a)

0

2

4

6

 20  30  40  50  60  70  80  90

B
al

lis
tic

   (b)

0

2

4

0 5  10  15  20  25  30  35  40

Diffusion

within cluster

T=0.4983   (c)

0

4

8

 12

0 5  10  15  20  25  30  35  40
t

Diffusion

   iso
lated particle

   (d)

FIG. 18. Typical displacements |�ri (t) − �ri (t0)| of selected small particles in the binary mixture at T = 0.3843 (panels (a) and (b)) and T = 0.4983 (panels
(c) and (d)). As indicated in the legend, the color of the line indicates the population of the cluster to which the particle belongs at time t. Portions of the
trajectory during which the particle is isolated are highlighted with a thick red line.
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FIG. 19. (Symbols) Coherent scattering functions F CM
αβ (k∗, t) evaluated for the clusters’ centers of mass in the binary mixture. The respective data for the

coherent scattering functions Fαβ (k, t), calculated on a particle basis, are included as solid lines. Panels (a) and (b) show data at different temperatures (see
legend) and fixed wave vector. The selected wave vectors are k ∗ = 6 for 1-1 correlations (a) and k ∗ = 5 for 2-2 correlations (b). Panels (c) and (d) show data at
fixed temperature T = Tg = 0.48 and different wave vectors (see legend) for 1-1 correlations (c) and 2-2 correlations (d).

isolated particles) are excluded from this analysis. It is worth
mentioning that the averages in Eq. (4) are performed in a
grand canonical ensemble, since the number of clusters in the
sample fluctuates in time. A comparison between Fαβ(k, t)
and F CM

αβ (k, t) of the binary mixture is shown in Figs. 19(a)
and 19(b), for wave vectors at the first peak in the correspond-
ing static structure factors, and at different temperatures. Both
data sets follow closely each other. When looking at the for-
mer scattering functions at some fixed, low temperature, but
changing the wave vector (Figs. 19(c) and 19(d)) the agree-
ment remains overall good, especially between big particles
and big clusters (2-2 correlations). With this, we conclude that
the collective slowing down of the fluid is indeed driven by the
progressive arrest of the clusters’ structure.

C. Dependence on thermal history
and microscopic dynamics

To corroborate our interpretation of Tg as a glass transi-
tion occurring at the clusters’ level, we now study how the
clusters’ structure and dynamics depend on the quench his-
tory obtained from three different thermal histories for the bi-
nary mixture. The difference between the data sets considered
in this section lies in the time teq allowed for equilibration:
the equilibration runs are such that the partial RMSD Rα(teq),
evaluated at the end of the run, is always larger than one, two,
and three, respectively. Note that this equilibration criterion
is slightly different from the one employed in the rest of the
work (indicated in Fig. 20 for comparison), which is based on
the total RMSD of particles. Production runs are typically 4
times longer than the corresponding equilibration runs.49 In

Fig. 20 we analyze the influence of the different quench rates
on the T-dependence of the diffusion coefficients. We remark
that, since the equilibration times are adjusted at each ther-
modynamic state to obtain the target RMSD, a measure of
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symbols) targeted during the equilibration run (see legend). Inset: Equilibra-
tion time teq as a function of T for the different equilibration criteria.
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FIG. 21. Dependence of the coherent intermediate scattering functions
(a) F1(k = 6, t) and (b) F2(k = 6, t) on the equilibration criterion in the
binary mixture at T = Tg = 0.48. Colors are the same as in Fig. 20.

the average quench rate is not appropriate. In fact, as shown
in the insets of Fig. 20, the equilibration times increase ex-
ponentially with decreasing T. Within statistics the three data
sets of Fig. 20 show a perfect overlap for T > Tg. However,
small but discernible differences are visible below Tg (error
bars are of the order of the symbol size). Thus, longer equi-
libration runs lead to slightly lower diffusion coefficients. A
similar and more pronounced effect is visible in the relaxation
of the coherent intermediate scattering functions, which are
shown in Fig. 21 at T = 0.48 = Tg for two different quench
rates. Not only τ increases with increasing Rα(teq) but also
the extent to which Fα(k, t) has relaxed during the simulation
increases with increasing Rα(teq), hence with the total length
of the production run. This, in turn, shifts the cluster glass
transition to lower temperatures.

Whereas at the superficial level these observations resem-
ble the typical aging process in structural glasses, the micro-
scopic origin of the quench rate dependence of the diffusion
coefficients is not trivial. In fact, at least two factors may af-
fect the self-dynamics below the cluster glass transition. First,
the structure of the clusters’ CM relaxes faster upon decreas-
ing equilibration times. The self-dynamics, in turn, is affected
by the relaxation of the cluster structure, since some relax-
ation channels (e.g., diffusion of a cluster as a whole), which
would be suppressed upon longer annealing, remain active
and increase the diffusivity.

One may also speculate that a further contribution to the
single particles’ mobility arises from differences in the topol-
ogy of the cluster glass, which determines in turn the avail-
able pathways for particles’ hopping. To assess whether this
is a possible scenario, we analyze the radial distribution func-
tions gCM

11 (R) of the clusters’ CM in the binary mixture as a
function of the equilibration criterion (see Fig. 22). We see
that the cluster structure of the most slowly annealed sam-
ple differs appreciably from the others. Though the positions
of the peaks are unchanged, their amplitude is increased, in-
dicating a more pronounced ordering. These somewhat large
differences can be explained by the fact that, as evidenced in
the inset of Fig. 20, the average quench rate does not change
linearly with the value of Rα(teq).50 From the comparison of
cluster crystals and cluster glasses (see Fig. 14), we see that
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(b) gCM
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< Tg. Colors are the same as in Fig. 20.

hopping in a more disordered matrix decreases the activation
barrier for diffusion, and hence increases the particles’ mobil-
ity. The actual dependence of D on the quench rate shown in
Fig. 20 suggests therefore that a similar effect might be at play
in this model. More systematic investigations should be per-
formed to assess how the specific structure of the disordered
matrix affects the transport properties at the single particle
level.

Finally, we briefly analyze the role of the microscopic
dynamics on the transport properties. Following Ref. 25 we
compare the diffusion coefficients obtained from Newtonian
and Monte Carlo dynamics for the polydisperse model. The
results of this analysis in the polydisperse system are shown
in Fig. 23. For temperatures above the clustering transition
the diffusion coefficients obtained from the two methods dif-
fer qualitatively above T ∗, in that the MC data saturate at
high temperature, whereas the MD data show a monotonic
increase. Such differences are expected, since at high T the
GEM-n interactions will be negligible (random walk on a
nearly flat energy landscape). Therefore in that limit the MC
dynamics will become purely random and T-independent.
On the contrary, in Newtonian dynamics the onset time of
the crossover from ballistic to diffusive motion in the mean
square displacement increases systematically with increasing
temperature, and so does the diffusivity. Interestingly, in this
regime, the temperature dependence of D is approximately
given by a power law T ν , with ν ≈ 2.2. This value of ν is
higher than the ones expected for both ideal gas (ν = 0.5) and
Brownian motion (ν = 1), and remains to be understood.

Only below Tg (i.e., in the cluster glass) the data sets
obtained from the two dynamics can be collapsed reason-
ably well onto a unique master curve, by appropriately rescal-
ing the time units. With this, the microscopic dynamics does
not seem to play a relevant role in the transport properties
of the cluster glass. This result is rather different from the
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observation in cluster crystal phases.25 In such systems the
Newtonian dynamics leads to long persistent jumps over the
lattice sites. These highly directional motions are suppressed
in the MC dynamics, and the corresponding MD and MC dif-
fusivities in the cluster crystal exhibit a qualitatively different
T-dependence, i.e, they cannot be mutually rescaled by a T-
independent time factor.25 The fact that, instead, scaling of
Newtonian and MC dynamics works reasonably well in the
cluster glass suggests that the disordered structure of the clus-
ters’ centers-of-mass partly suppresses the mentioned long
jumps in Newtonian dynamics. A more systematic analysis is
required to completely settle this issue. Work in this direction
is in progress.

IV. CONCLUSIONS

We have presented a computational investigation of the
structural, thermodynamic and dynamic features of dense flu-
ids of ultrasoft fully penetrable particles. The investigated sys-
tems are a binary mixture and a polydisperse system of par-
ticles interacting via the generalized exponential model, for
which equilibrium cluster crystal phases exist in the monodis-
perse case. Because of the introduced dispersity, the systems
investigated in this work form disordered cluster phases.

We have characterized the structure of the clusters. The
analysis reveals a microsegregation of the big and small
particles, and a strong homo-coordination in the case of the
binary mixture. The analysis of the thermodynamic observ-
ables does not provide yet evidence for a thermodynamic
transition associated to the clustering transition. Instead,
the clustering transition appears as a smooth crossover to a
regime in which most of the particles are located in clusters,
isolated particles being infrequent. The structure of the
clusters’ centers-of-mass mirrors that of the dissociated fluid:
the binary mixture effectively self-assembles into a binary

mixture of clusters, whereas in the polydisperse model the
clusters remain polydisperse in population and size.

The dispersity of the clusters drives a progressive
dynamical arrest at the level of the clusters’ centers-of-mass
on approaching the “cluster glass transition” temperature, Tg.
The latter is operationally defined by inspection of the coher-
ent scattering functions, which exhibit characteristic features
of glass-forming liquids above Tg and do not completely
relax to zero below Tg. The diffusivities exhibit a fragile-to-
strong crossover upon decreasing temperature. The onset of
strong (Arrhenius-like) behavior occurs below the clustering
transition and signals a change in the transport mechanisms.
Relaxation below the cluster glass transition is driven by
particle hopping between the nearly arrested clusters. The
analysis of the dependence of dynamic and structural prop-
erties on the equilibration times confirms the glassy nature of
the systems at low temperatures. Finally, we have investigated
the role of the microscopic dynamics in the transport proper-
ties, by comparing results from Newtonian and Monte Carlo
simulations. At low temperature, the diffusivities obtained
by both methods can be related reasonably well by a single
scaling factor. This suggests that the microscopic dynamics
might play a less significant role for cluster glasses than for
cluster crystals. In view of the recent observation of clus-
tering in fully atomistic models of interpenetrable colloidal
particles,31 we believe disordered cluster phases of ultrasoft
particles deserve deeper and more systematic investigations.
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