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Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical
approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated
fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description
used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion
or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In
this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and
how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space
distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with
the freeze-out problem, while the discussion of transition between different stages of the collision is applicable
to other transitions also. More recently, hadronization and molecular dynamics models have been matched to
the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description
can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out
hypersurface). This work presents a generalized description of how to match the stages of the description of a
reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily
applicable in its simplest version for most applications.
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I. INTRODUCTION

Relativistic heavy-ion reactions exhibit dominant collective
flow behavior, especially at higher energies where the number
of involved particles, including quarks and gluons, increases
dramatically. At intermediate stages approximate local
equilibrium is reached, while the initial and final stages may
be far out of local equilibrium. Also, different stages may
have different forms or phases of matter, especially when
quark-gluon plasma (QGP) is formed.

The need to describe and match different stages of
a reaction was realized by the development of the final
freeze-out (FO) description in Landau’s fluid dynamical (FD)
model [1]. Then it was improved by Milekhin [2], and a
covariant simple model was given by Cooper and Frye [3].
In all these models the FO happened when the fluid crossed
a hypersurface in the space-time.

At early relativistic heavy-ion collisions, the initial com-
pression and thermal excitation was described by a compres-
sion shock in nuclear matter. This was already pointed out
by the first publications of W. Greiner and E. Teller and
their colleagues [4,5], and the shock took place crossing a
space-time hypersurface (e.g., a relatively thin layer resulting
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in a Mach cone). When sudden large changes happen across
a space-time front, the conservation laws and the requirement
of increasing entropy should be satisfied,

[Nµdσµ] = 0; (1)

[T µνdσµ] = 0; (2)

[Sµdσµ] � 0, (3)

where Nµ = nuµ is the baryon current, Sµ = suµ is the
entropy current, and T µν is the energy momentum tensor,
which, for a perfect fluid, is given by

T µν = (e + P )uµuν − Pgµν, (4)

where e is the energy density, P is the pressure, s is the
entropy density, and n is the baryon density of matter. These
are invariant scalars. The dσµ is the normal vector of the
transition hypersurface, uµ is the particle four velocity uµ =
γ (1, vx, vy, vz) = γ (1, �v), normalized to +1. The square
bracket means [a] = a1 − a0, the difference of quantity a over
the two sides of the hypersurface. The metric tensor is defined
as gµν = (1,−1,−1,−1). We will also use the following
notations: w = e + P , j = Nµdσµ is the invariant scalar
baryon current across the front, X = (e + P )/n2 = w/n2 is
the generalized specific volume, v2 = �v 2 = v2

x + v2
y + v2

z , and
µ, ν · · · = 0, 1, 2, 3, i, j · · · = 1, 2, 3 = x, y, z.
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For a perfect fluid, local equilibrium is assumed, thus the
fluid can be characterized by an equation of state (EoS), P =
P (e, n). Equations (1) and (2) and the EoS are six equations
and can determine the six parameters of the final state, e, n,
P , and �v.

Later Csernai [6,7] pointed out the importance of satis-
fying energy, momentum, and particle-charge-conservation
laws across such hypersurfaces and generalized the earlier
description of Taub [8] to spacelike and timelike hypersurfaces
(with spacelike and timelike normals, respectively). In this
situation the matter both before and after the shock was near
thermal equilibrium, and thus the conservation laws led to
scalar equations connecting thermodynamical parameters of
the two stages of the matter: the generalized Rayleigh line and
Taub adiabat [6,7],

j 2 = [P ](dσµdσµ)/[X], [P ] = [(e + P )X]/(X1 + X0).

(5)

At much higher energies, at the first stages of the collision,
the matter becomes “transparent” and the initial state is very
far from thermal equilibrium. For this stage other models
were needed to handle the initial development (e.g., Ref. [9]).
The initial nonequilibrium state in this situation cannot be
characterized by thermodynamical parameters or an EoS,
so the previous approach, with the generalized Rayleigh
line and Taub adiabat is not applicable. Nevertheless, the
intermediate (FD) stage is in equilibrium and has an EoS,
while the initial state has a well-defined energy momentum
tensor. In this work we demonstrate that the final invariant
scalar, thermodynamical parameters can be determined in this
situation also from the conservation laws.

Then, Bugaev [10,11] observed that FO across hypersur-
faces with spacelike normals, has problems with negative
contributions in the Cooper-Frye evaluation [3] of particle
spectra; thus, the FO must yield an anisotropic distribution,
which he could approximate with a cut-Jüttner distribution
[10,11]. This is not surprising as in the rest frame of the front
(RFF) all post-FO particles must move “outward”; that is,
pµdσµ > 0 is required. This condition is not satisfied by any
noninteracting thermal equilibrium distribution, which extend
to infinity in all directions, even if they are boosted in the RFF.1

Subsequently, another analytic form was proposed by
Csernai and Tamosiunas, the canceling-Jüttner distribution
[12], which replaced the sharp cutoff by a continuous cutoff,
based on kinetic model results.

Parallel to this development, the FO process was analyzed in
kinetic, transport approaches [13–17], where the FO happened
in an outer layer of the space-time, or in principle it could be
extended to the whole fluid (although, at early moments of
a collision or explosion, from the center of the reaction few
particles can escape). These transport studies also indicated
that the post-FO distributions may become anisotropic [14–16]
even for FO hypersurfaces with timelike normal (in short,

1In the following discussion we use the term anisotropic distribution
for momentum distributions in their own local rest (LR) frame.
Thermal distributions are spherical in their LR frame, although they
become anisotropic in another frame of reference [7].

timelike surface) if the normal, dσ̂ µ, and the velocity four
vector, uµ, are (very) different.

These studies led to another FO description, where the
initial stages of the collision with strongly interacting matter
were described by fluid dynamics, while the final, outer
space-time domain (or later times) was described by weakly
interacting particle (and string) transport models, where the
final FO was inherently included, as each particle was tracked,
until its last interaction. It is important to mention that in these
approaches the transition from the FD stage to the molecular
dynamics (MD) or cascade stage happens when the matter
crosses a space-time hypersurface; thus, the conservations
laws [6,7] have to be satisfied and the post-FO particle phase
space distributions [10,12] have to be used when the post-FO
distributions become anisotropic.

In this work, for the first time we present a simple covariant
solution for the transition problem and conservation laws for
the situations when the matter after the front is in thermal
equilibrium (i.e., it has isotropic phase space distribution) and
has an EoS, but the matter before the front must not be in an
equilibrium state.

Then we discuss the situation where microscopic models
are appended to the FD model, which are in or close to thermal
equilibrium, but the EoS is not necessarily known.

Subsequently, we present the way to generalize the problem
to anisotropic matter in final state, which is necessary for FO
across spacelike surfaces and also for timelike surfaces if the
flow velocity is large in the RFF. This problem was solved in
kinetic approach for the Bugaev cut-Jüttner approach [11,13]
and the Csernai-Tamosiunas canceling-Jüttner approach [12],
by calculating the energy momentum tensors explicitly from
the anisotropic phase space distributions, but no general
solution is given for post-FO matter with anisotropic pressure
tensor.

II. NUMERICAL EXTRACTION OF A FREEZE-OUT
HYPERSURFACE

The transition hypersurface between two stages of a dynam-
ical development are most frequently postulated, governed by
the requirement of simplicity. Thus, such a hypersurface is
frequently chosen as a fixed coordinate time in a Descartian
frame t or at a fixed proper time τ from a space-time point,
although in a general (3 + 1)-dimensional system the choice
of such a point is not uniquely defined. It is important that
the transition hypersurface should be continuous (without
holes where conserved particles or energy or momentum could
escape through without being accounted for). To secure that
one quantity (e.g., baryon charge) does not escape through
the holes of a hypersurface is not sufficient, because other
quantities may (e.g., momentum in case if PdV is different on
the two sides of a hole). Again, to construct such a continuous
hypersurface in a general (3 + 1)-dimensional system is a
rather complex task, although, in 1 + 1 or 2 + 1 dimensions it
seems to be easy.

Both the initial-state models and the intermediate-stage, FD
models may be such that the calculation could be continued
beyond the point where a transition takes place. Then space-
time location of the transition to the next stage can or should be
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FIG. 1. (a) A gray-level image representing the temperature
evolution in space-time of a 1D relativistic fluid (see text) which
is superimposed with contravariant FO contour vectors (black)
and with corresponding covariant normal vectors dσµ(xµ) (white).
(b) Covariant and contravariant normal vectors, dσµ(xµ) and dσµ(xµ)
(gray), respectively, which originate at the contravariant center xµ

(gray) of a single contravariant FO contour vector (black). (c) As in
(a), but with contravariant normal vectors dσµ(xµ) (white) instead of
covariant ones.

decided, based on a physical condition or requirement, which
may be external to the development itself. As a consequence,
in some cases the determination of transition surface may be
an iterative process.

Numerically, the extraction of a FO hypersurface is by
no means trivial. One of us (B.R.S.) has recently provided
a proper numerical treatment regarding the extraction of
FO hypersurfaces in two (2D), three (3D), and four (4D)
dimensions [18–21].

For instance, in 2D the history, that is, the temporal
evolution, of a temperature field of a one-dimensional (1D)
relativistic fluid can be represented by a gray-level image
(cf. Fig. 1). In the figure, we use the time t and the radius r

for the temporal and the spatial dimensions, respectively. Let
bright pixels (i.e., picture elements) refer to high temperatures
and dark ones to low temperatures of the fluid. In this example,
a 2D FO hypersurface is an isotherm.

In Fig. 1(a), we also depict the corresponding covariant
normal vectors dσµ(xµ). In 2D, the length of each normal
vector is equal to the length of each supporting isocontour
vector. Each normal vector has its origin at the contravariant
center, xµ, of a given contravariant isocontour vector and
points to the exterior of the enclosed space-time region. The
latter is also indicated in Fig. 1(b), where we show that
a contravariant normal vector dσµ(xµ) can be obtained by
reflection of the covariant normal vector dσµ(xµ) at the time
axis (dashed line).

Finally, in Fig. 1(c) we show the contravariant FO contour
vectors with their corresponding contravariant normal vectors
dσµ(xµ). Not all of these contravariant normal vectors point
to the exterior of the enclosed space-time region.

Note that the sign conventions of the normals of the
transition hypersurface are important and must be discussed,
especially if both timelike and spacelike surfaces are studied.
In fact, only the timelike contravariant normal vectors point
outward, whereas the spacelike contravariant normal vectors
point inward.2

2Note that we actually use for hypersurface construction in (1 +
1)-, (2 + 1)-, and (3 + 1)-dimensional numerical simulations the
corresponding computer codes, that is, DICONEX, VESTA, and STEVE,

If we know the FO hypersurface and the local momentum
distribution after the transition the total, measurable
momentum distribution can be evaluated by the Cooper-Frye
formula [3].

III. EQUATIONS FOR PARAMETERS OF FINAL MATTER
IN EQUILIBRIUM

Let us define the contravariant and covariant surface normal
four vectors as

dσµ = (σt , σx, σy, σz) = (σt , �σ ),

dσµ = (σt ,−σx,−σy,−σz) = (σt ,−�σ ),

where in general dσµdσµ = ±D2, as the surface element
can be either spacelike (−) or timelike (+). We can also
introduce a unit normal to the surface as dσ̂ µ ≡ dσµ/D so
that dσ̂ µdσ̂µ = ±1. Furthermore, dσ̂ µ = γσ (1, sx, sy, sz) =
γσ (1, �s), where for timelike surfaces γ 2

σ = 1/(1 − �s2) and for
spacelike surfaces γ 2

σ = 1/(�s2 − 1). For the frequently used
timelike 1D case dσ̂ µ = γσ (1, �s) = γσ (1, 0, 0, dt/dz).

In the general case, the conserved energy-momentum
current crossing the surface element is

Aµ = T µνdσν = wuµuνdσν − Pgµνdσν. (6)

Aµ must be continuous across the FO surface, as must the
baryon current Nµdσµ,

j = Nµdσµ = nuµdσµ = nγ [σt − (�v · �σ )], (7)

where j is the invariant scalar baryon charge current.
We assume that the initial state, “0,” and its energy

momentum tensor and baryon current before the front is
known. We aim for the characteristics of the final state. In total,
there are six unknowns in the equilibrated final state; these are
three-vector �v, e, P , and n (here we drop the index “1” for
the final state for shorter notation); however, the pressure P , a
function of e and n, is given by the EoS, P = P (e, n). Knowing
n and e, the EoS and the particular form of the corresponding
equilibrated distribution function, the parameters T and µ, can
also be obtained.

Thus, we have to solve five equations:

j0 = nγ [σt − (�v · �σ )], (8)

A0t = wγ 2[σt − (�v · �σ )] − Pσt , (9)

A0x = wγ 2[σt − (�v · �σ )]vx − Pσx, (10)

respectively. Reference [18] explains in great detail the extraction of
an oriented FO contour, which is represented by a set of contravariant
(so-called “DICONEX isocontour”) vectors. In 2D, the simplices or
simplexes which represent a hypersurface best are line segments,
whereas in 3D and 4D they are triangles [19,21] and tetrahedrons
[20], respectively. In particular, the contravariant 2D FO contour
vectors are oriented counterclockwise around the enclosed space-time
regions. The covariant normals of the contravariant simplices are
obtained from calculating the mathematical duals of these simplices
with respect to a geometric product (cf., e.g., Ref. [22]) within the
N -dimensional multilinear space under consideration. Note that the
covariant normal vectors do not depend on any given metric tensor,
whereas the contravariant normal vectors do [21].
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A0y = wγ 2[σt − (�v · �σ )]vy − Pσy, (11)

A0z = wγ 2[σt − (�v · �σ )]vz − Pσz. (12)

The left-hand sides represent quantities of the initial state of
matter and the corresponding conserved quantities are known.
Equations (9) and (10) can be solved for γ 2 in the calculational
frame

γ 2 = A0t + Pσt

w[σt − (�v · �σ )]
, γ 2 = A0x + Pσx

wvx[σt − (�v · �σ )]
. (13)

Using now Eqs. (10)–(12), one obtains vx and in a similar
fashion vy and vz:

vx = A0x + Pσx

A0t + Pσt

, vy = A0y + Pσy

A0t + Pσt

, vz = A0z + Pσz

A0t + Pσt

.

(14)

This results for γ 2 = 1/(1 − �v2), in

γ 2 = (A0t + Pσt )2

(
A

µ

0 + Pdσµ
)2 , (15)

where (Aµ

0 + Pdσµ)2 = (A0t + Pσt )2 − (A0x + Pσx)2 −
(A0y + Pσy)2 − (A0z + Pσz)2 is an invariant scalar, and
γ transforms as the 0th component of the four-vector
A

µ

0 + P dσµ. Notice that Eq. (8) was not used up to this
point; thus, we can use there results both for the baryon-free
and the baryon-rich cases.

We can have an elegant direct solution for the proper energy
density, e, and pressure, P , as both of these quantities are
invariant scalars, and we can express these by the covariant,
four-vector Eq. (6). From this four-vector equation we can get
two invariant scalar equations by (i) taking its norm, A

µ

0 A0µ,
and (ii) taking its projection to the normal direction, A

µ

0 dσµ:

A
µ

0 A0µ = w2(uµdσµ)2 + P 2(dσµdσµ)

− 2Pw(uµdσµ)uµgµνdσν

= w(e − P )(uµdσµ)2 + P 2(dσµdσµ), (16)

A
µ

0 dσµ = w(uµdσµ)2 − P (dσµdσµ). (17)

Now expressing w(uµdσµ)2 from Eq. (17) and inserting it to
Eq. (16), we obtain our final equation,

A
µ

0 A0µ = (e − P )Aµ

0 dσµ + eP (dσµdσµ), (18)

which can be solved straightforwardly if the EoS, P = P (n, e),
is known. The other three elements of the equation, A

µ

0 A0µ,
A

µ

0 dσµ, and dσµdσµ, are known from the normal to the
surface and from energy-momentum current from the
pretransition side.

Then, Eqs. (13)–(15) can be used to determine the final flow
velocity. At the end, after all conservation law equations are
solved, we have to check the nondecreasing entropy condition
(3) to see whether the solution is physically possible. If the
overall entropy is decreasing after transition, that would mean
that the hypersurface is chosen incorrectly. One will need to
choose more realistic condition for the transition and repeat
the calculations.

This result can be used both if the initial state is in
equilibrium and if it is not.

A. Final matter with zero Baryon charge

In case of an ideal gas of massless particles after the front,
with an EoS of P = e/3, Eq. (18) leads to a quadratic equation

dσ̂ µdσ̂µe2 + 2aµdσ̂µe − 3aµaµ = 0,

where aµ ≡ A
µ

0 /D is the energy momentum transfer four
vector across a unit hypersurface element.

If the flow velocity is normal to the FO hypersurface,
uµ = dσ̂ µ, then for an initial perfect fluid in the LR frame
the preceding covariant equation takes a simple form,

e2 + 2e0e − 3e2
0 = 0.

This has two real roots, e = e0 (energy density is conserved)
and e = −3e0, which does not correspond to a physical
solution, as the energy density should not be negative.

B. Final matter with finite Baryon charge

If the EoS depends on the conserved baryon charge density
also, then we must exploit in addition Eq. (7)

j0 ≡ j = n(uµdσµ),

and inserting uµdσµ = j/n from here to Eq. (17) yields

j 2 w

n2
= A

µ

0 dσµ + P (dσµdσµ),

where w/n2 = X is the generalized specific volume, well
known from relativistic shock and detonation theory [7]. This
equation provides another equation for e + P as

e + P

n2
= 1

j 2

[
A

µ

0 dσµ + P (dσµdσµ)
]
, (19)

which, together with Eq. (18) and the EoS, P = P (e, n),
provide three equations to be solved for e, P , and n.

This evaluation of the post-FO configuration is in agreement
with the theory of relativistic shocks and detonations [6,8],
allowing for both spacelike and timelike FO hypersurfaces
(see also [7]). This method of evaluation observables is
frequently used at the end of FD model calculations (see, e.g.,
[23–25]).

IV. TRANSITION TO MOLECULAR DYNAMICS BEFORE
FREEZE-OUT

Recently, a frequently practiced method of describing the
final stages of a reaction is to switch the FD model over to a
MD description at a transition hypersurface. This is frequently
a fixed time, t , or fixed proper time, τ , hypersurface. The
generation of the initial state of such an MD model is a task
that depends on the constituents of the matter described by the
MD model. Nevertheless, same principles must be satisfied,
like the conservation laws [Eqs. (1) and (2)].

A. Equilibrium and EoS known before and after the transition

Let us assume, although not required by physical laws, that
we have thermal equilibrium on both sides of the transition
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and we know explicitly the corresponding final momentum
distribution of particles. Then, the fundamental equation for
constructing the post-transition microscopic state, in addition
to the conservation laws, is the Cooper-Frye formula,

E
dNi

d3p
=

∫
σ

fi(x, p) pµdσµ, (20)

assuming that the local phase space distribution, fi(x, p), is
known for all initial components of the MD model. If fi(x, p)
are local equilibrium distributions, then (in principle) we know
the intensive and extensive thermodynamical parameters and
the EoS of the matter when the MD model simulation starts.
These must not be the same as the ones before the transition
hypersurface.

In the usual transition from FD to MD models, where the
initial state of MD is in equilibrium, the EoSs are known on
both sides of the transition hypersurface,3 and thus, both the
equations of Rayleigh-line and Taub-adiabat [Eqs. (5)], as well
as the invariant scalar equations derived here, Eqs. (16)–(19)
can be used to determine all parameters of the matter starting
the MD simulation. These then determine the phase space
distributions, fi(x, p) of all components of the MD simulation.
Subsequently, Eq. (20) can be used to generate randomly the
initial constituents of the MD simulation.

As Eq. (20) is a covariant equation applicable in any
frame of reference, the most straightforward is to perform the
generation of particles in the calculational frame of the MD
model. This transition is by now performed in many hybrid
models combining fluid dynamics with microscopic transport
models [26]. These models at present are the most effective for
describing experimental data and make the need for a modified
Boltzmann transport equation [16] less problematic.

In some cases, the first step of the transition, the deter-
mination of the parameters of the final state from the exact
conservation laws, is dropped with the argument that both
before and after the transition the matter has the same con-
stituents and the same EoS; thus, the all extensive and intensive
thermodynamical parameters as well as the flow velocity
must remain the same. Then, using the intensive parameters,
the final particle distributions in the Cooper-Frye formula
[Eq. (20)] can be directly evaluated in a straightforward
way. This procedure is correct, but only if all features of
the two states of the matter and their EoSs are identical. In
some cases the pretransition EoS assumes effective hadron
masses depending on the matter density, while the final
EoS is that of a hadron ideal gas mixture, but with fixed
vacuum masses. This leads to a difference in the EoS; thus,
the preceding procedure is approximate. In such cases, the
method can be used, but the accurate conservation laws can
be enforced by a final adjustment step described in the next
section.

The situation is similar if the constituents and the EoSs
are almost identical before and after the transition, but before

3One should pay attention that the choice of the hypersurface should
be continuous and should not have holes. In 3+1D this is a nontrivial
problem, which is solved by the methods DICONEX, VESTA and STEVE,
mentioned previously.

the transition a weak or weakening mean-field potential or
compression energy is taken into account.

B. Enforcing conservation laws with approximate generation
of the final state

In addition to the aforementioned approximate methods,
even for really identical EoSs across the transition or with
generating the final EoS parameter based on conservation
laws for the final EoS, inaccuracies may arise owing to other
reasons: During the random generation of the initial constituent
particles of the MD simulation, the exact conservation laws
may be violated, owing to finite-number effects. However, the
energy and particle-number conservations are usually enforced
during the random generation of particles, even if the preceding
procedure for solving the conservation laws beforehand is not
fully followed. This is usually the consequence of the fact that
the EoS of the MD model is not necessarily known if the model
has complex constituents and laws of motion.

In any case, to remedy this random error and make the
conservation laws exactly satisfied, a final correction step
is advisable, and it is not always performed. If the energy
and particle-number conservations are enforced then, the
last variable to balance is the momentum conservation. This
regulates the flow velocity of the matter after the transition
initiating the MD simulation.

The energy momentum tensor and baryon current for the
generated random set of particle species, i, for each fluid cell
(or group of cells if the multiplicity in a single cell is too low)
can be calculated from the kinetic definition

T µν(x) =
∑

i

∫
d3pi

p0
i

p
µ

i pν
i fi(x, pi),

Nµ(x) =
∑

i

∫
d3pi

p0
i

p
µ

i fi(x, pi),

which yield the resulting momentum and flow velocity of the
matter. This can be used to adjust the flow velocity to achieve
exact conservation of momentum and modify the velocity of
generated particles by the required Lorentz boost. The other
conserved quantities may then be affected also, but an iterative
procedure for eliminating the error completely is not crucial
because the error can be given quantitatively.

If the randomly generated state is not following a thermal
equilibrium phase space distribution, fi(x, pi), and thus does
not have an EoS, the previously described scalar equations
cannot be used to generate the initial configuration of the MD
model. Nevertheless, the second step to checking the con-
servation laws with the kinetic definition and then correcting
the parameters of the generated particles can be done. For a
required level of accuracy in this case an iterative procedure
may be necessary.

Another, easier way to remedy this problem is to choose the
transition hypersurface earlier so that the subsequent matter is
still in thermal equilibrium. This can always be done if the
requirement of entropy increase is satisfied.
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FIG. 2. (Color online) (a) Illustrative contour plot of momentum distributions of particles after FO to an anisotropic final state. Here the
p‖ axis points in the direction of the spacelike normal of the FO hypersurface, while p⊥ is the orthogonal direction to p‖. Line 1 indicates
the uncut Jüttner distribution (dotted-line), line 2 indicates the cut-Jüttner distribution (dashed-line), and line 3 indicates the canceling-Jüttner
distribution (dashed-dotted line). R is the center of the spherical uncut Jüttner distribution moving with velocity, u

µ

RFG, and L is the center of
the cut- and canceling-Jüttner distributions, which move to the right along the parallel momentum direction with velocity, u

µ

LR, corresponding
to their LR frame. If u

µ

RFG and u
µ

LR have a nonvanishing ⊥ component, the resulting distribution can be obtained by an additional Lorentz boost
in that direction. (b) Space-time reference frames for anisotropic final state distributions. The time axis, t , and the spatial axis, x‖, represent
the rest frame of front (RFF), which is the defining front for the cut-Jüttner and canceling-Jüttner distributions. L indicates the local rest frame
(LR) of the post-FO cut- or canceling-Jüttner distribution. R indicates the rest frame of gas (RFG) corresponding to the isotropic, uncut Jüttner
distribution. Thus, the velocities u

µ

RFF, u
µ

RFG, and u
µ

LR point in the directions of the time axes of the corresponding reference frames, indicated
by t , t

′
, t

′′
, respectively. dσµ is the normal vector of the front; it has the same direction as the spatial axis, x‖. The spatial axes of the frames

RFG (R) and LR (L) are shown in the same line style (color) as the corresponding distributions. The LR frames for cases 2 and 3 are the same.

V. FINAL STATE OUT OF THERMAL EQUILIBRIUM

We have mentioned that the assumption for having thermal
equilibrium in the final state is neither excluded nor required
from transport theoretical considerations. However, thermal
equilibrium distribution is not possible if we have to describe
FO across a spacelike hypersurface (see the discussion in
Sec. I).

In the MD model description the final post-FO momentum
distributions develop a local anisotropy if the FO has locally
a preferred direction. Unless the unit normal of the FO
hypersurface is equal to the local flow velocity of the pre-FO
matter, there is always a selected spatial direction which is the
dominant direction of FO. This situation is discussed in several
theoretical works, and some general features can be extracted
from these studies.

A. Approximate kinetic models for freeze-out

In explicit transport models this situation is handled
[10–13]: Starting from an equilibrium Jüttner distribution and
considering a momentum dependent escape probability in the
collision term—which reflected the direction of the FO front
and the distance from the front—an anisotropic distribution
was obtained (i.e., a distribution, which was anisotropic even
in its own LR frame).

This anisotropic distribution could be approximated with
analytic distribution functions [10,11]: The starting point is
the uncut, isotropic, Jüttner distribution in the rest frame of
the gas (RFG), which is centered around the four-velocity
vector, uµ

RFG. This distribution is then cut or cut and smoothed.
The resulting distribution has a different new flow velocity,

u
µ

LR , which is nonzero in RFG, and is pointing in space in the
direction of the normal of the FO hypersurface, �σ , labeled with
‖. This u

µ

LR defines the LR frame of the post FO matter.
The spatial direction of �σ is not affected by the Lorentz

transformation from RFF to RFG and then to LR, as �σ is the
direction of the Lorentz transformation from RFG to LR.4 In
the general case the boost in the �vRFG,⊥ direction leads to a
change of the distribution function in the �p⊥ direction, but does
not affect the distribution in the �p‖ direction or the procedure
of cutting or canceling the distribution in the ‖ direction.
[The illustration in Fig. 2(a) shows the spatial momentum
distribution where the boost in the orthogonal direction �vRFG,⊥
is already performed.

In the final LR frame, the matter is characterized by a
rather complex energy momentum tensor, inheriting some
parameters from the original uncut distribution in RFG, like
the temperature and chemical potential, but as the resulting
distribution is not a thermal equilibrium distribution, these
parameters are not playing any thermodynamical role. One
has to determine all parameters numerically from conservation
laws [Eqs. (1) and (2)], as done in Refs. [11,12].

Interestingly, a simplified numerical kinetic FO model [13]
led to a FO distribution satisfying the condition pµdσµ > 0
for spacelike FO with a smooth distribution function, which
is anisotropic (also in its own LR frame) and has a symmetry
axis pointing in the dominant FO direction. This distribution

4In general, the spatial components of the FO surface, �σ , must not be
parallel to �vRFG or �vLR, but these latter velocities can be decomposed
to ‖ and ⊥ components with respect to �σ . Owing to the construction
[10–12] of the cut- or canceling-Jüttner distributions (�vLR − �vRFG) ‖
�σ or �vLR,⊥ = �vRFG,⊥.
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was then approximated with an analytic, “cancelling-Jüttner”
distribution [12], which can also be used to solve the FO
problem.

After FO, the symmetry properties of the energy momentum
tensor are the same for the cut-Jüttner and canceling-Jüttner
cases [10–12]. The FO leads to an anisotropic momentum
distribution and therefore to an anisotropic pressure tensor. The
energy momentum tensor is not diagonal in the RFG frame;
there is a nonvanishing transport term, T 0i [11,12], in the 2D
plane spanned by the four vectors, u

µ

RFG and dσ̂µ. One can,
however, diagonalize the energy momentum tensor by making
a Lorentz boost into the LR frame using Landau’s definition
for the four velocity, u

µ

LR. In this frame then the energy
momentum tensor becomes diagonal, but the pressure terms
are not identical, owing to the anisotropy of the distribution:

T µν = diag(e, P‖, P⊥, P⊥)|LR. (21)

Here the energy density, e, of course must not be the same as in
the case of an isotropic, thermal equilibrium post-FO momen-
tum distribution. This can be seen from the kinetic definition
of the energy momentum tensor, as shown in Refs. [11,12].

We need the complete post-FO momentum distribution
and the corresponding energy momentum tensor to determine
final observables. This depends on the transport processes at
FO and cannot be given in general; however, owing to the
symmetries of the collision integral, the symmetries of the
energy momentum tensor are the same irrespective of
the ansatz used (e.g., cut-Jüttner, canceling-Jüttner, or some
other distribution).

In kinetic transport approaches, the microscopic escape
probability [15] is peaking in the direction of dσ̂µ, which
yields a distribution peaking in this direction, that is, yielding
the same symmetry properties as the previously mentioned
analytic ansatzes. The energy momentum tensor in general
takes the form

T µν = e u
µ

LRuν
LR − P⊥�

µν

LR + (P‖ − P⊥)F̂ µF̂ ν, (22)

where �
µν

LR is the orthogonal projector to u
µ

LR and F̂µ is the unit
four-vector projection of dσµ in the direction orthogonal to
u

µ

LR; that is, F̂ µ = C�
µν

LRdσν , where C ensures normalization
to −1. In the Landau LR frame, this returns expression (21).
The four velocity, u

µ

LR, and the other parameters of the
post-FO state of matter should be determined from the
conservation laws [Eqs. (1) and (2)]. The schematic diagram
of the asymmetric distributions and the different reference
frames can be seen in Fig. 2.

The FO problem was solved for these configurations and
ansatzes by satisfying the conservation laws explicitly for
the full energy momentum tensor. We do not have a general
EoS(s) that would characterize the connection among e, P‖,
and P⊥; furthermore, the relation connecting these quantities
depends on the four vectors dσ̂ µ and u

µ

LR. In addition, this
connection depends on the details or assumptions of the
transport model. The simple models [11,12] provide examples
for such a dependence. If dσ̂ µ is known, then for baryon-free
matter we can determine four unknowns: uµ

LR and an additional
parameter of the post-FO distribution from Eq. (2). (Owing to
normalization, only three components of u

µ

LR are unknowns.)

For baryon-rich matter we can determine one more unknown
parameter, because we have one additional equation, the
conservation of baryon charge from Eq. (1).

B. Exploiting general symmetries of anisotropic final states

The first step of solution can be done similarly to the
isotropic case. Then in Eq. (6) the enthalpy will change as
w → e + P⊥ ≡ w⊥ and P → P⊥; plus an additive term will
appear, (P‖ − P⊥) F̂ µF̂ ν dσν . Furthermore, Eqs. (9)–(12)
remain of the same form, with w⊥ and P⊥; plus the additive
term (P‖ − P⊥) F̂ µF̂ ν dσν will appear in the right-hand side
of Eqs. (9)–(12). This additive term will also appear in the
expression of vx after Eq. (13) and in the denominator of
Eq. (15) also.

The additional term, (P‖ − P⊥) F̂ µF̂ ν dσν , in Eq. (6) is
orthogonal to uµ (by definition of F̂ µ), so when we calculate
the scalar product (16) their cross term vanishes, so

A
µ

0 A0µ = w⊥(e − P⊥)(uµdσµ)2 + (P⊥)2(dσµdσµ)

− (P‖ − P⊥)(P‖ + P⊥)(F̂ ν dσν)2, (23)

A
µ

0 dσµ = w⊥(uµdσµ)2 − P⊥(dσµdσµ)

+ (P‖ − P⊥)(F̂ ν dσν)2. (24)

Now one can express w⊥(uµdσµ)2 from Eq. (24), and inserting
it to Eq. (23) we obtain that

A
µ

0 A0µ = (e − P⊥)Aµ

0 dσµ + eP⊥ (dσµdσµ)

− (e + P‖)(P‖ − P⊥)(F̂ ν dσν)2, (25)

where this equation is not a scalar equation because it depends
on F̂ µ = C�

µν

LRdσν , where the projector is dependent on uµ.
These equations are similar to the ones obtained for the
isotropic case; however, to solve this last equation we need
a more complex relation among e, P‖, and P⊥. As these
arise from the collision integral in the BTE approach, the
needed relation may depend on u

µ

0 and dσµ. However, the
escape probability may be simple, or may be approximated in
a way that yields an ansatz for this relation with adjustable
parameters, and then the problem is solvable. This was the
case in Refs. [15,16].

The recent covariant formulation of the kinetic FO de-
scription [15] indicates that the relation among the different
parameters of the anisotropic energy momentum tensor should
be possible to express in terms of invariant scalars, which may
facilitate the solution of the anisotropic FO problem.

When the adjustable parameters of the post-FO matter are
determined in this way from the conservation laws, we still
need the underlying anisotropic momentum distribution of the
emitted particles to evaluate the final particle spectra using
the Cooper-Frye formula with this anisotropic distribution
function. Once again, when all conservation law equations
are solved we have to check the nondecreasing entropy
condition to see whether the selected FO hypersurface is
realistic.

In case of an anisotropic final state, owing to the increased
number of parameters and their more involved relations,
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the covariant treatment of the problem may not provide a
simplification, compared to the direct solution of conservation
laws for each component of the energy momentum tensor
(e.g., [11,12]).

C. Anisotropic initial and final states

Recent viscous FD calculations evaluate the anisotropy of
the momentum distribution is in the pre-FO viscous flow (see,
e.g., [27].) This anisotropy is governed by the space-time
direction of the viscous transport. The pre- and post-FO matter
may still be different; for example, the pre-FO state may be
viscous QGP with current quarks and perturbative vacuum,
while post-FO we may have a hadron gas or constituent quark
gas. The final state will also be anisotropic, not only because of
the initial anisotropy but also owing to FO. The two physical
processes leading to anisotropy are independent, so their
dominant directions are in general different. In this case, the

general symmetries are uncorrelated and cannot be exploited to
simplify the description of the transition. Owing to the change
of the matter properties, the conservation laws [Eqs. (1)–(3)]
are needed to determine the parameters of the post-FO matter
before the Cooper-Frye formula with nonequilibrium post-FO
distribution is applied to evaluate observables.

VI. SUMMARY

In this work a new simple covariant treatment is presented
for solving the conservation laws across a transition hypersur-
face. This leads to a significant simplification of the calculation
if both the initial and the final states are in thermal equilibrium.
The same method can also be used for the more complicated
anisotropic final state; however, this method is only advanta-
geous if the more involved relations among the parameters of
the post-FO distribution and the distribution itself is given in
covariant form, preferably through invariant scalars.
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