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First-passage and escape problems in the Feller process
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The Feller process is an one-dimensional diffusion process with linear drift and state-dependent diffusion
coefficient vanishing at the origin. The process is positive definite and it is this property along with its linear
character that have made Feller process a convenient candidate for the modeling of a number of phenomena
ranging from single-neuron firing to volatility of financial assets. While general properties of the process have
long been well known, less known are properties related to level crossing such as the first-passage and the escape
problems. In this work we thoroughly address these questions.
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I. INTRODUCTION

Diffusion processes are Markovian random processes with
continuous sample paths. From a mathematical point of view
they are characterized, in one dimension, by two functions:
the drift, f (y,t), and a positive defined diffusion coefficient
D(y,t) � 0. The sample paths of any diffusion process can
thus be pictured as the continuous trajectory resulting from
the superposition of a deterministic evolution, governed by
f (y,t), and fluctuations around it, the latter determined by
D(y,t). Denoting the process by Y (t), the diffusion picture
becomes apparent by the fact that the time evolution of Y (t) is
ruled by the stochastic differential equation

dY (t) = f (Y (t),t)dt +
√

D(Y (t),t)dW (t),

where W (t) is the Wiener process, that is, a Gaussian
process with zero mean, unit variance, and correlation function
〈W (t1)W (t2)〉 = min(t1,t2). In what follows all stochastic
differentials are interpreted in the sense of Ito.

The Feller process is a special kind of diffusion process with
linear drift and linear diffusion coefficient vanishing at the ori-
gin [1]. The time evolution of the process is thus governed by

dY (t) = [−αY (t) + β]dt + k
√

Y (t)dW (t), (1)

where α > 0, β and k > 0 are constant parameters.
Both Feller and Ornstein-Uhlenbeck processes (diffusion

processes also with linear drift but constant diffusion coeffi-
cient) have been widely used, with a marked prominence of
the latter, in the modeling of countless physical phenomena.
Both share a linear drift, f (Y ) = −αY + β, which for α > 0
results in a restoring force that, in the absence of noise, makes
both processes decay toward the value β.

However, and contrary to the Ornstein-Uhlenbek process
where diffusion is constant, the Feller process has a state-
dependent diffusion coefficient, D(Y ) = k2Y , which for large
values of Y enhances the effects of noise while as Y goes to
zero the effect of noise vanishes. Hence, when the process
reaches the origin, the drift drags it toward the value β. If
β > 0 the process, starting at some positive value, cannot reach
the negative region which, in turn, renders the process always
nonnegative [otherwise the noise term in Eq. (1) would become
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imaginary]. Therefore, for the Feller process the origin is a
singular boundary that the process cannot cross.

A related question is whether or not the origin is accessible,
in other words, whether the value Y = 0 can or cannot be
attained by the process. This is a crucial question in many
practical situations and, as we will prove later, the answer
depends on the particular value taken by a parameter which
balances the values of β and k2. The problem of classifying the
different types of boundaries appearing in diffusion processes
was thoroughly studied by Feller himself during the 1950s
and we refer the reader to the literature for a more complete
account on the subject [2–4].

Possessing linear drift and state-dependent diffusion and,
most importantly, the fact that the process never attains
negative values have made Feller process an ideal candidate
for modeling a number of phenomena in natural and social sci-
ences. Theoretical biology was one of the first places where the
process was, during 1970s, seriously considered [5]. Perhaps
the most prominent place is within the context of neurobiology
in order to model the firing of single neurons [6–9]. The Feller
neuronal model is one of the so-called stochastic integrate-
and-fire models which are simple representations aiming to
reproduce the membrane potential fluctuations. Experimental
progress has led to the possibility of fitting real data to the
Feller neuronal model among others models [10–14].

In a different context Capocelli and Ricciardi [15] con-
sidered the possibility of representing biological populations
with the Feller process in order to include environmental
randomness to the classic Malthusian growth rate [16]. The
approach [15,17,18] represents in fact an alternative to the
Lotka-Volterra models in ecosystems and the interest in this
sort of problem is mostly focused on extinction (that is, on the
possibility of attaining the singular boundary Y = 0) as well
as on unrestricted growth [17,18].

Financial markets is another field where the Feller process
is widely used. It was introduced in 1985 to represent the
term structure of interest rates—receiving the name of the
Cox, Ingersoll, and Ross (CIR) model—and it successfully
evaluated bond prices [19,20]. The process is also being
considered to provide a random character to the volatility of a
given stock. Volatility obeying the Feller model jointly with a
log-Brownian stochastic dynamics for the asset price evolution
configure a two-dimensional diffusion market process called
the Heston model [21,22] which is a rather useful model
especially for option pricing [20,21].
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In all of the above mentioned situations susceptible to being
represented by a Feller process, the first-passage time events
related, among others, to level crossing and the triggering of a
given signal are very significant phenomena for a number of
reasons which depend on each context. This is, for instance,
the case of neuronal activity where spike generation is due
to the crossing of a threshold by the membrane potential
signal. Additionally, any sort of population extinction or,
in a completely different context, the volatility bursts in
financial markets are also important phenomena to model
and study. First-passage times constitute, however, a difficult
topic [23–27]. To our knowledge, in the case of the Feller
process this crucial facet has been scantily studied and only
partially solved some years ago in the context of single-neuron
firing [6,8]. It is our main objective to address the first-passage
time properties of process (1).

This paper is organized as follows. In Sec. II, we introduce
the general properties of the unrestricted probability density
of the Feller model. Section III is devoted to the derivation
of the first-passage time and escape probabilities with special
attention to a couple of specific situations. Section IV is mostly
focused on the derivation of the mean first-passage time. We
finally summarize the results obtained in Sec. V.

II. GENERAL PROPERTIES OF THE FELLER MODEL

Before addressing the main issue of this paper, let us briefly
review the main traits of the process and the role of the
boundary at the origin. For the rest of the paper in turns out
to be convenient to scale time and the process itself in the
following way (recall we have assumed α > 0):

t ′ = αt, X = 2α

k2
Y, (2)

so that the Langevin equation (1) reads

dX(t ′) = −[X(t ′) − θ ]dt ′ +
√

2X(t ′)dW (t ′), (3)

where θ is the only free parameter left. Its relation to β and
k is

θ = 2β

k2
> 0. (4)

This parameter is called “saturation level” or “normal level”
and it is the value to which X(t ′) is attracted. As we will shortly
see, θ has a key role in the behavior of the Feller process.

Let p(x,t ′|x0) be the probability density function (pdf) for
process (3) to be in state x at time t ′:

p(x,t ′|x0)dx = Prob{x � X(t ′) < x + dx|X(0) = x0}.
This density satisfies the (forward) Fokker-Planck equation
(FPE) (as long as there is no confusion we will drop the prime
in the time variable)

∂p

∂t
= ∂

∂x
[(x − θ )p] + ∂2

∂x2
(xp), (5)

with initial condition

p(x,0|x0) = δ(x − x0). (6)

Recall that x = 0 is a singular boundary of the process and
no “particle” can either leave or enter through this boundary
(see Sec. I). A sufficient condition for this to happen is that the

probability flux of the process through x = 0 is zero [4]. We
will thus search for solutions of the initial-value problem (5)
and (6) that meet such a condition, that is,

lim
x→0

{
(x − θ )p(x,t |x0) + ∂

∂x
[xp(x,t |x0)]

}
= 0. (7)

The expression for the pdf of the process p(x,t |x0) was first
obtained by Feller himself many years ago using a tortuous
procedure which involved the solution of a rather clumsy
integral equation [1]. In Appendix A we present a simpler
and more direct derivation based on the Laplace transform of
the problem (5) and (6). The final expression reads

p(x,t |x0) = 1

1 − e−t

(
xe−t

x0

)(θ−1)/2

× exp

{
−x + x0e

−t

1 − e−t

}
Iθ−1

(
2
√

xx0e−t

1 − e−t

)
, (8)

where Iθ−1(z) is a modified Bessel function defined as [28]

Iθ−1(z) =
∞∑

n=0

(z/2)2n+θ−1

n!�(n + θ )
. (9)

From Eq. (8) we easily get the stationary pdf of the process
defined as

pst(x) = lim
t→∞ p(x,t |x0).

Indeed, taking into account that [see Eq. (9)]

Iθ−1(z) = 1

�(θ )
(z/2)θ−1[1 + O(z2)], (10)

from Eq. (8) we directly obtain the Gamma distribution:

pst(x) = 1

�(θ )
xθ−1e−x. (11)

Another property that we can easily establish is the behavior
of the probability distribution at the singular boundary located
at x = 0. In effect, using Eq. (10) we see from Eq. (8) that

p(x,t |x0) = e−x0e
−t /(1−e−t )

�(θ )(1 − e−t )θ
xθ−1 [1 + O(x)] ,

from which it follows

p(0,t |x0) =
{∞, θ < 1,

0, θ > 1,
(12)

and

p(0,t |x0) = e−x0e
−t /(1−e−t )

1 − e−t
(θ = 1). (13)

We thus see that when θ > 1 the probability for the Feller
process to reach the value x = 0 is zero but when θ � 1 this
probability is greater than zero. In other words, if θ � 1 the
origin is an accessible boundary, while if θ > 1 it is not [1,2].

III. FIRST-PASSAGE AND ESCAPE PROBABILITIES

After reviewing the main traits of the Feller process we
will now focus on level-crossing problems—a collective name
embracing questions such as hitting, first-passage, escape, and
extreme values, among others—for that process. According to
whether we are dealing with one-sided or two-sided barrier
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problems, we separate level crossing into two different issues.
In one of them, the hitting or first-passage problem, we deal
with the time that the process reaches some “critical” value, or
“threshold,” for the first time. The second issue, albeit closely
related to the first one, concerns the time when the process
first leaves a given interval. This is the so-called escape or exit
problem.

A. The first-passage probability

Let us first address the first-passage problem for the Feller
process. The problem is solved when one knows the first-
passage probability to threshold xc. Let us denote by Wc(t |x)
the probability of first reaching xc � 0 when the process starts
at t = 0 from the value x > 0.

As is well known [4,23,27] the first-passage probabil-
ity satisfies the backward Fokker-Planck, or Kolmogorov,
equation

∂Wc

∂t
= −(x − θ )

∂Wc

∂x
+ x

∂2Wc

∂x2
. (14)

Note that at t = 0 the process cannot have reached the
threshold as long as x �= xc. The following initial condition
thus holds:

Wc(0|x) = 0. (15)

Moreover, if the initial value happens to be the threshold itself,
x = xc, then crossing will be a sure event at any time. We have,
therefore, the following boundary condition:

Wc(t |xc) = 1. (16)

The difficulty of solving the initial-boundary problem
(14)–(16) is decreased by taking the time Laplace transform,

Ŵc(s|x) =
∫ ∞

0
e−stWc(t |x)dt,

which reduces the original problem to the solu-
tion of an ordinary differential equation (the Kummer
equation [28]):

x
d2Ŵc

dx2
− (x − θ )

dŴc

dx
− sŴc = 0, (17)

with boundary condition

Ŵc(s|xc) = 1

s
. (18)

Since Wc is a probability it is obvious that any solution of the
problem must be finite and nonnegative for all x � 0.

The general solution of the Kummer equation (17) is [28]

Ŵc(s|x) = AF (s,θ,x) + BU (s,θ,x), (19)

where A and B are arbitrary constants and F (s,θ,x) and
U (s,θ,x) are the confluent confluent hypergeometric functions
of the first and second kind [28], respectively, defined by

F (s,θ,x) = �(θ )

�(s)

∞∑
n=0

�(s + n)

�(θ + n)

xn

n!
(20)
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FIG. 1. (Color online) First-passage probability Wc(t |x) given
by Eq. (23) as a function of the scaled time and for two different
parameters θ and initial values x. Inverse Laplace transform is
obtained with the Stehfest algorithm.

and

U (s,θ,x) = �(1 − θ )

�(s + 1 − θ )
F (s,θ,x)

+ �(θ − 1)

�(s)
xθ−1F (s + 1 − θ,2 − θ,x). (21)

In order to proceed further we need to specify whether the
initial value x is above or below the threshold xc.

1. Initial value below threshold (x � xc)

In this case x can be arbitrarily small and taking into account
that [see Eqs. (20) and (21)]

lim
x→0

U (s,θ,x) =
{

�(1−θ)
�(s+1−θ) , θ < 1,

∞, θ > 1,
(22)

we see that the solution to the problem staying finite for any
initial position between the origin and xc and for any positive
value of the parameter θ is

Ŵc(s|x) = AF (s,θ,x).

The boundary condition (18) fixes the value of A and

Ŵc(s|x) = F (s,θ,x)

sF (s,θ,xc)
(x � xc). (23)

Figure 1 shows the numerical computation of this expression
in the original Laplace domain. We have used the well-
known Stehfest algorithm [29] and the results do not show
any computational problem. As expected the closest to the
threshold the fastest the first-passage time probability decays.
And a greater θ corresponds to a smaller Wc(t |x), as well.

2. Initial value above threshold (x � xc)

In such a case x can be arbitrarily large. Hence, taking into
account that

lim
x→∞ F (s,θ,x) = ∞,

while U (s,θ,x) stays finite for all positive values of x [28],
we see from Eq. (19) that the general solution of the problem
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which remains finite for all x > 0 is

Ŵc(s|x) = BU (s,θ,x),

and from the boundary condition (18) we conclude

Ŵc(s|x) = U (s,θ,x)

sU (s,θ,xc)
(x � xc). (24)

Numerical inversion of this result is again easy to compute with
standard algorithms. The small difference lies in the fact that
the confluent hypergeometric function of the second kind (21)
is slightly more complicated than the confluent hypergeometric
function of the first kind (20).

B. Reaching the origin

Another interesting quantity is the first-passage probability
to threshold xc = 0, that is to say, the probability of first
attaining the singular boundary of the process. This probability
is relevant in the firing of neurons and it was addressed some
years ago by Capocelli and Ricciardi [6] (see also the work
of Laska et al. [8]). Let us denote by W0 the first-passage
probability to the origin. Since our process is always positive,
x � 0, we must use Eq. (24) in order to evaluate Ŵ0. Setting
xc = 0 in Eq. (24) and using Eq. (22) we obtain

Ŵ0(s|x) =
{

�(s+1−θ)
s�(1−θ) U (s,θ,x), θ < 1,

0, θ > 1.
(25)

We will now proceed to invert Eq. (25) thus obtaining the
first-passage probability W (t |x) in real time, something that
seems to be unfeasible for any value of the threshold xc, at
least exactly (more on this below).

Using the property [28]

U (s,θ,x) = x1−θU (s + 1 − θ,2 − θ,x),

we write for θ < 1

Ŵ0(s|x) = 1

s

�(s + 1 − θ )

�(1 − θ )
x1−θU (s + 1 − θ,2 − θ,x),

which, after using the following integral representation of the
Kummer function U [28],

U (a,c,x) = 1

�(a)

∫ ∞

0
e−xzza−1(1 + z)c−a−1dz,

reads

Ŵ0(s|x) = x1−θ

s�(1 − θ )

∫ ∞

0
e−xzz−θ

(
z

1 + z

)s

dz.

Therefore,

W0(t |x) = x1−θ

�(1 − θ )

∫ ∞

0
e−xzz−θL−1

{
1

s

(
z

1 + z

)s}
dz,

where L−1 stands for Laplace inversion. Since [30]

L−1

{
e−as

s

}
= �(t − a), (26)

where �(·) is the Heaviside step function, we have

L−1

{
1

s

(
z

1 + z

)s}
= �

[
t + ln

(
z

1 + z

)]

= �

(
z − e−t

1 − e−t

)
.
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FIG. 2. (Color online) First-passage probability W0(t |x) given by
Eq. (27) as a function of time (t > 1) for two different values of θ

(θ < 1) and the initial values x. Note that smaller values of θ and x

imply bigger first-passage probability.

Hence,

W0(t |x) = x1−θ

�(1 − θ )

∫ ∞

e−t /(1−e−t )
e−xzz−θdz,

or, equivalently,

W0(t |x) = 1

�(1 − θ )
�

(
1 − θ,

xe−t

1 − e−t

)
,

where �(a,z) is the incomplete Gamma function [28]

�(a,z) =
∫ ∞

z

ya−1e−ydy.

Finally,

W0(t |x) =
{

1
�(1−θ)�

(
1 − θ, xe−t

1−e−t

)
, θ < 1,

0, θ > 1.
(27)

We remark [as shown already in Eq. (25)] that when θ > 1
the first-passage probability to the origin is zero in agreement
with the fact, pointed out in Sec. II, that if θ > 1 x = 0 is
unattainable. The probability of first reaching the origin is
represented in Fig. 2 where W0(t |x) is shown as a function of
time and for two different values of parameter model θ and
initial value x.

As t → ∞ and for θ < 1 the first-passage probability W0

becomes equal to 1, as is expected since if θ < 1 crossing
the origin is a certain event as time grows. It is, however,
interesting to see how W0 approaches unity. To this end we
use the following series expansion of the incomplete Gamma
function [28]:

�(a,z) = �(a) −
∞∑

n=0

(−1)n

n!

za+n

a + n
.

In the limit t → ∞ we then get

�

(
1 − θ,

xe−t

1 − e−t

)

= �(1 − θ ) − 1

1 − θ
x1−θ e−(1−θ)t + O(e−(2−θ)t ).
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Therefore,

W0(t |x) = 1 − 1

�(2 − θ )
x1−θ e−(1−θ)t

+O(e−(2−θ)t ) (θ < 1), (28)

an interesting expression combining a power law in x and an
exponential decay in time.

C. Large threshold

We will now study in some detail the interesting case of
a large value of the threshold which is the opposite case
considered above. It is clear that as xc → ∞ the threshold
becomes unreachable and the first-passage probability ap-
proaches zero. Let us see how the limiting process is. Let
us incidentally mention that these results are of real interest in
econophysics when one, for instance, wants to control financial
asset volatilities since large volatilities correspond to wild
fluctuations in asset prices.

In the case under consideration the initial position is always
below threshold and the starting point of the analysis must be
Eq. (23)

Ŵc(s|x) = F (s,θ,x)

sF (s,θ,xc)
.

Since now xc → ∞ we use the following asymptotic expan-
sion of the Kummer function F [28]

F (s,θ,xc) = �(θ )

�(s)
excxs−θ

c

[
1 + O

(
1

xc

)]

and

Ŵc(s|x) = �(s)

s�(θ )
e−xcxθ−s

c F (s,θ,x)

[
1 + O

(
1

xc

)]
.

Our next step is the use of the following integral represen-
tation of F [28]:

F (s,θ,x) = 1

�(s)

∫ ∞

0
e−zzs−1F (θ,xz)dz,

where F (θ,xz) is the following hypergeometric series [28],

F (θ,xz) =
∞∑

n=0

1

(θ )n

(xz)n

n!
. (29)

Hence, for large values of the threshold, we approximately
have

Ŵc(s|x) 	 1

s�(θ )
e−xcxθ−s

c

∫ ∞

0
e−zzs−1F (θ,xz)dz(xc → ∞).

We now proceed as in Sec. III B. The Laplace inversion of
the last equation reads

Wc(t |x) 	 1

�(θ )
e−xcxθ

c

∫ ∞

0

e−z

z
F (θ,xz)

L−1

{
1

s

(
z

xc

)s}
dz (xc → ∞).

Since (
z

xc

)s

= exp

[
s ln

(
z

xc

)]
,

then, recalling Eq. (26), we have

L−1

{
1

s

(
z

xc

)s}
= �

[
t + ln

(
z

xc

)]
= �(z − xce

−t ).

Therefore,

Wc(t |x) 	 1

�(θ )
xθ

c e−xc

∫ ∞

xce−t

e−z

z
F (θ,xz)dz (xc → ∞).

(30)

Using Eq. (29) we can give an alternative expression to
Eq. (30) which is somewhat more convenient for numerical
work. It reads

Wc(t |x) 	 1

�(θ )
xθ

c e−xc

∞∑
n=0

1

(θ )n

xn

n!
�(n,xce

−t ) (xc → ∞),

(31)

where �(n,xce
−t ) is the incomplete Gamma function. This

expression is particularly suited for small values of the initial
position. Thus, for instance, when x = 0 we write

Wc(t |0) 	 1

�(θ )
xθ

c e−xcE1(xce
−t ) (xc → ∞), (32)

where

E1(x) =
∫ ∞

x

e−z

z
dz

is the exponential integral.

D. The escape probability

We close this section by briefly addressing the escape
problem which, as mentioned before, is closely related with
the first-passage problem studied above. The problem at hand
consists in knowing whether or not the process X(t), starting
at some point inside an interval (a,b), has left this interval for
the first time. The answer lies in the knowledge of the survival
probability Sab(t |x) defined as the probability that, starting at
x ∈ (a,b), the process at time t has not left the interval at that
time or during any previous instant of time:

Sab(t |x) = Prob{a < X(t ′) < b; 0 � t ′ � t | a < x < b},
where x = X(0) is the starting point. The escape probability,
i.e., the probability that at time t the process has exited the
interval (a,b) for the first time, is then given by

Wab(t |x) = 1 − Sab(t |x).

As is well known [4,23,27] the survival probability obeys
the backward Fokker-Planck equation

∂Sab

∂t
= −(x − θ )

∂Sab

∂x
+ x

∂2Sab

∂x2
,

with initial and boundary conditions given by

Sab(0|x) = 1, Sab(t |a) = Sab(t |b) = 0.

Hence, the escape probability is the solution of the
initial and boundary value problem [compare with

041116-5
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Eqs. (14)–(16)]

∂Wab

∂t
= −(x − θ )

∂Wab

∂x
+ x

∂2Wab

∂x2
, (33)

Wab(0|x) = 0, Wab(t |a) = Wab(t |b) = 1. (34)

Following the same reasoning as before [see Eqs. (17) and
(18)] we see that the time Laplace transform of the escape
probability Ŵ (s|x) satisfies the boundary value problem

x
d2Ŵab

dx2
− (x − θ )

dŴab

dx
− sŴab = 0, (35)

Ŵab(s|a) = Ŵab(s|b) = 1

s
. (36)

Again, the general solution of the Kummer equation (35) is
[28]

Ŵab(s|x) = AF (s,θ,x) + BU (s,θ,x),

where A and B are arbitrary constants and F and U are defined
in Eqs. (20) and (21).

Boundary conditions (36) determine the value of A and
B and after routine algebra the final result for the escape
probability reads

Ŵab(s|x) = [U (s,θ,b) − U (s,θ,a)]F (s,θ,x) − [F (s,θ,b) − F (s,θ,a)]U (s,θ,x)

s[F (s,θ,a)U (s,θ,b) − F (s,θ,b)U (s,θ,a)]
(37)

a � x � b.

IV. LONG-TIME ASYMPTOTIC BEHAVIOR AND MEAN
FIRST-PASSAGE TIMES

In the previous section we have solved the hitting and escape
problems for the Feller process by means of the evaluation
of the first-passage and exit probabilities. We have obtained
exact analytical expressions for the time-Laplace transform
of these probabilities. Unfortunately exact inversion seems
to be beyond reach except for the cases in Sec. III B—when
the threshold is located at the origin—and in the following
Sec. IV A—with approximate expressions suitable for long
times. In this section we will also obtain two important
magnitudes associated with the problem: the mean first-
passage time, Tc(x), and the mean escape time, Tab(x), which,
in turn, allow for the long-time asymptotic expressions of the
hitting and escape probabilities as we will first see next.

A. Long-time behavior of the first-passage probability

Let τc(x) be the first-passage time for the process, starting
at x, to reach some threshold xc for the first time. It is a
random variable depending on each realization of the process.
Formally

τc(x) = inf{t |X(t) > xc; X(0) = x < xc}
when the initial value is below threshold, and

τc(x) = inf{t |X(t) < xc; X(0) = x > xc}
when the initial value is above threshold.

We next relate the first-passage time with the hitting
probability Wc(t |x) defined in the previous section. Note that
if τc(x) is the first-passage time, the hitting probability can be
defined as

Wc(t |x) = Prob{τc(x) � t},
which shows that Wc(t |x) is the distribution function of the
first-passage time. The corresponding probability density is
thus defined

fc(t |x)dt = Prob{t � τc(x) < t + dt},

and it is related to the distribution Wc by

fc(t |x) = ∂Wc(t |x)

∂t
. (38)

The moments of this distribution are

Tn(x|xc) =
∫ ∞

0
tnfc(t |x)dt

(n = 1,2,3, . . . ), and the mean first-passage time (MFPT) is
the first moment:

Tc(x) ≡ T1(x|xc).

Note that in terms of the Laplace transform

f̂c(s|x) =
∫ ∞

0
e−stfc(t |x)dt,

the first-passage moments are

Tn(x|xc) = (−1)n
∂nf̂c(s|x)

∂sn

∣∣∣∣∣
s=0

,

which implies that, as long as Tn(x|xc) (n = 1,2,3, . . . ) exist,
the Laplace transform of the first-passage time density has the
following expansion in powers of s:

f̂c(s|x) =
∞∑

n=0

(−1)n

n!
Tn(x|xc)sn. (39)

On the other hand the Laplace transform of Eq. (38), along
with the initial condition Wc(0|x) = 0, yields

Ŵc(s|x) = 1

s
f̂ (s|x). (40)

By combining Eqs. (39) and (40) we then have

Ŵc(s|x) =
∞∑

n=0

(−1)n

n!
sn−1Tn(x|xc), (41)

expansion that furnishes the basis for the asymptotic analysis
of the first-passage probability W (t |x). Indeed, the so-called
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Tauberian theorems prove that the long-time behavior of a
function g(t) is determined by the small s behavior of its
Laplace transform ĝ(s) [31]. For the case of the first-passage
probability we see from Eq. (41) that the small s behavior of
Ŵc is

Ŵc(s|x) = 1

s
− Tc(x) + O(s) = 1

s
[1 − sTc(x) + O(s2)],

(42)

where Tc(x) ≡ T1(x|xc) is the mean first-passage time. Note
that expansion (42) may also be written, within the same level
of approximation, as

Ŵc(s|x) = 1

s[1 + sTc(x) + O(s2)]
, (43)

which by the Tauberian theorems [31] implies that the long-
time behavior of the first-passage probability Wc(t |x) is given
by the Laplace inversion of Eq. (43). That is,

Wc(t |x) 	 1 − e−t/Tc(x) (t → ∞). (44)

We have thus obtained the long-time behavior of the
first-passage probability to threshold xc and see that
the MFPT determines the long-time behavior of the first-
passage probability. We will next evaluate this average time
for the Feller process.

B. The mean first-passage time

In terms of the Laplace transform of first-passage probabil-
ity Ŵc(s|x) obtaining the MFPT is straightforward. In effect
from Eq. (42) we see that

Tc(x) = lim
s→0

[
1

s
− Ŵc(s|x)

]
. (45)

Using the findings of Sec. III we know that the first-passage
probability has different expressions as to whether the initial
value of the process x is above or below the threshold xc. Let
us now treat these two cases including the special case xc = 0.

1. Initial value above threshold (x � xc)

In this case [see Eq. (24)]

Ŵc(s|x) = U (s,θ,x)

sU (s,θ,xc)

and

Tc(x) = lim
s→0

[
1

s

U (s,θ,xc) − U (s,θ,x)

U (s,θ,xc)

]
. (46)

The expansion in powers of s of the Kummer function
U (s,θ,x) is presented in Appendix A where it is shown that

U (s,θ,x) = 1 + sU1(x) + O(s2), (47)

where

U1(x) ≡ −ψ(1 − θ ) −
∫ x

U (1,1 + θ,z)dz, (48)

and ψ(z) = �′(z)/�(z) is the psi function. We note that the
function, defined as the indefinite integral∫ x

U (1,1 + θ,z)dz,

cannot be reduced to another Kummer function [28] or, to the
best of our knowledge, to any other tabulated function.

Plugging Eqs. (47) and (48) into Eq. (46) we finally obtain

Tc(x) =
∫ x

xc

U (1,1 + θ,z)dz (x � xc). (49)

2. MFPT to the origin

In Secs. II and III [see Eq. (25)] we have seen that when θ >

1 the origin is unattainable. However, if θ < 1 this singular
boundary can be reached by the process. In this later case it is
natural to ask which is the MFPT to the origin. The question has
not only an academic interest but is relevant in mathematical
biology where x = 0 corresponds to the potential at which a
neuron is fired [6]. Also in econophysics it is useful to know
whether volatility or the interest rates can drop to zero and
what is the average time expected to do so.

Since x > 0, the expression for the MFPT to the origin,
denoted by T0(x), will be given by Eq. (49) with xc = 0.
Unfortunately setting xc = 0 in Eq. (49) is not possible because
the integral is singular at the lower level.

We proceed as follows: Start with the definition of the
Kummer function U given in Eq. (21), use the integration
rule [28] ∫ x

F (a,c,z)dz = xc

c
F (a,c + 1,x),

and take into account the standard property of the Gamma
function �(z + 1) = z�(z). We write∫ x

U (1,1 + θ,z)dz = −1

θ

∫ x

F (1,1 + θ,z)dz

−�(θ − 1)x1−θF (1 − θ,2 − θ,x).

(50)

Substituting into Eq. (49) and taking the limit xc → 0+, we
have

T0(x) = lim
xc→0+

{
−1

θ

∫ x

xc

F (1,1 + θ,z)dz − �(θ − 1)
[
x1−θ

×F (1 − θ,2 − θ,x) − x1−θ
c F (1 − θ,2 − θ,xc)

]}
.

Using the value of the Kummer function F at the origin,
F (1,1 + θ,0) = 1 [see Eq. (20)], we have

T0(x) = −1

θ

∫ x

0
F (1,1 + θ,z)dz − �(θ − 1)

× [
x1−θF (1 − θ,2 − θ,x) − lim

xc→0+
(x1−θ )

]
. (51)

Hence, if θ < 1 we get

T0(x) = −1

θ

∫ x

0
F (1,1 + θ,z)dz

−�(θ − 1)x1−θF (1 − θ,2 − θ,x),

and taking into account Eq. (50) we see that in this case the
expression for the MFPT to the origin is given by Eq. (49) with
xc = 0:

T0(x) =
∫ x

0
U (1,1 + θ,z)dz (θ < 1). (52)
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However, we see from Eq. (51) that when θ > 1, x1−θ
c → ∞

as xc → 0+ and the process takes an infinite average time to
reach the origin,

T0(x) = ∞ (θ > 1), (53)

which confirms that when θ > 1 the singular boundary x = 0
is unattainable.

3. Initial value below threshold (x � xc)

Now [see Eq. (23)]

Ŵc(s|x) = F (s,θ,x)

sF (s,θ,xc)
.

Hence,

Tc(x) = lim
s→0

[
1

s

F (s,θ,xc) − F (s,θ,x)

F (s,θ,xc)

]
. (54)

In Appendix B we show that the expansion of powers of s of
the Kummer function F (s,θ,x) is

F (s,θ,x) = 1 + sF1(x) + O(s2), (55)

where

F1(x) ≡ 1

θ

∫ x

0
F (1,1 + θ,z)dz. (56)

Substituting Eqs. (55) and (56) into Eq. (54) yields

Tc(x) = 1

θ

∫ xc

x

F (1,1 + θ,z)dz (x � xc), (57)

a result we obtained a few years ago [32] in another context and
using a different approach. This result that applies for x � xc

jointly with the previous Eq. (49) that applies for x � xc are
presented in Fig. 3. We show there the marked asymmetric
behavior of the MFPT depending on whether the initial value
x is larger or smaller than the critical value xc.

 0
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T
c(
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x

xc=1

=0.5
=1.5

FIG. 3. (Color online) The mean first-passage time as function
of the initial value x for two different values of θ when the critical
value xc equals to one. The figure jointly shows all MFPT (57) when
x < xc and the MFPT (49) when x > xc. Putting together the two
mathematical expressions allows us to clearly observe the distinct
and asymmetric behavior of the mean first passage depending on
whether x < xc or x > xc.

C. The mean escape time

We close this section by obtaining the time taken by the
process X(t) starting at X(0) = x to first leave a given interval
(a,b), where a < x < b. This is called the escape (or exit) time
out of an interval, τab(x), and is formally defined as

τab(x) = inf{t |a � X(t) � b; a < x < b}.
The exit time is a random variable characterized by the
distribution function

Prob{τab(x) < t |X(0) = x} = Prob{a � X(t) � b|X(0) = x},
which is precisely the escape probability Wab(t |x) discussed
in Sec. III. The moments of the exit time are thus defined by

T
(n)
ab (x) =

∫ ∞

0
tndWab(t |x)

(n = 1,2,3, . . . ) and the mean escape time (MET) is the first
moment:

T
(1)
ab (x) ≡ Tab(x).

Proceeding as in Sec. IV A we easily see that the Laplace
transform of the escape probability can be written as [see
Eq. (41)]

Ŵab(s|x) =
∞∑

n=0

(−1)n

n!
sn−1T

(n)
ab (x),

from which it follows that [see Eq. (45)]

Tab(x) = lim
s→0

[
1

s
− Ŵab(s|x)

]
. (58)

Moreover, similarly to the first-passage problem discussed
above, we can easily prove that the long-time behavior of
the escape probability is also solely determined by the MET
[see Eq. (44)]:

Wab(t |x) 	 1 − e−t/Tab(x) (t → ∞). (59)

Plugging the expression for Ŵab(s|x) given by Eq. (37)
into Eq. (58) and taking into account the small s development
of the Kummer functions U and F , as expressed respectively
by Eqs. (47) and (48) and Eqs. (55) and (56) we obtain after
lengthy but otherwise straightforward algebra the following
expression of the MET:

Tab(x) = Nab(x)

Dab(x)
, (60)

where

Nab(x) =
∫ x

a

U (1,1 + θ,z)dz

∫ b

0
F (1,1 + θ,z)dz

+
∫ b

x

U (1,1 + θ,z)dz

∫ a

0
F (1,1 + θ,z)dz

−
∫ b

a

U (1,1 + θ,z)dz

∫ x

0
F (1,1 + θ,z)dz (61)

and

Dab(x) =
∫ b

a

[F (1,1 + θ,z) + θU (1,1 + θ,z)]dz. (62)
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V. SUMMARY AND CONCLUSIONS

We have fully addressed the first-passage and escape
problems for the Feller process. Let us now summarize the
main results obtained. The process is a one-dimensional
diffusion defined by a linear drift and a linear diffusion
coefficient vanishing at the origin. The Feller process has
the property of being positive, a salient characteristic which
has earned the process some popularity in modeling several
phenomena, from neural activity to financial markets.

Perhaps the best way to define the process is by means of
a stochastic differential equation. In the dimensionless units
defined in Eq. (2) of Sec. II this reads

dX(t) = −[X(t) − θ ]dt +
√

2X(t)dW (t)

(we have dropped the prime in the time variable) where W (t) is
the Wiener process and θ > 0 is the saturation or normal level
to which X(t) is attracted as t increases. The origin is a singular
boundary because the noise term vanishes there. In Sec. II we
have reviewed the general properties of the processes which
were mostly obtained by Feller many years ago. One of these
properties refers to the attainability of the origin in which the
normal level plays a crucial role. Thus if θ � 1 the origin is
an accessible boundary while if θ > 1 it is not.

The bulk of the paper is developed in Secs. III and IV where
the first-passage and escape properties of the Feller process are
thoroughly analyzed. The first-passage problem refers to the
crossing by the process of a certain preassigned critical level or
threshold xc while the escape problem refers to the departure
of some interval (a,b).

The first-passage properties are fully characterized by the
hitting, or first-passage, probability, defined as the probability
of first reaching the threshold xc at time t or before. We denote
by Wc(t |x) this probability, where x is the initial value. This
probability depends on whether the process is initially below
(x � xc) or above (x � xc) the threshold. We have obtained
exact expressions for the Laplace transform of the hitting
probability,

Ŵc(s|x) =
∫ ∞

0
e−stWc(t |x)dt,

which are summarized as

Ŵc(s|x) =
⎧⎨
⎩

F (s,θ,x)
sF (s,θ,xc) , x � xc,

U (s,θ,x)
sU (s,θ,xc) , x � xc,

where F and U are Kummer functions.

In general these expressions for the Laplace transform of the
hitting probability cannot be inverted exactly in an analytical
fashion and one has to resort to the numerical inversion. There
are some instances, however, in which we have been able to
obtain analytical expressions in real time. This is the case of
hitting the origin which has a significant interest in the firing of
neurons and also in the Heston volatility model of the financial
analysis. We denote by W0(t |x) the first-passage probability to
threshold xc = 0; we have shown that

W0(t |x) =
{

1

�

(
1−θ)

�(1 − θ, xe−t

1−e−t

)
, θ < 1,

0, θ > 1,

where �(a,z) is the incomplete Gamma function. If θ < 1,
W0(t |x) → 1 as t → ∞. This is the expected behavior since
when θ < 1 crossing the origin is a sure event as time grows.
The way W0 approaches unity is explicitly given by the
following combination of a power law in the initial position
and an exponential time decay:

W0(t |x)

= 1 − 1

�(2 − θ )
x1−θ e−(1−θ)t + O(e−(2−θ)t ) (θ < 1).

Another instance in which we have been able to obtain an
(approximate) expression for the first-passage probability in
real time is when threshold is large. In such a case

Wc(t |x) 	 1

�(θ )
xθ

c e−xc

∞∑
n=0

1

(θ )n

xn

n!
�(n,xce

−t ) (xc → ∞),

where �(n,xce
−t ) is the incomplete Gamma function.

The escape problem is completely characterized by the
escape probability, Wab(t |x), defined as the probability of
first leaving a given interval (a,b). It is complementary to
the survival probability Sab:

Wab(t |x) = 1 − Sab(t |x),

where Sab(t |x) is the probability that the process has not
exited (a,b) at time t or during any previous instant of time.
Formally,

Sab(t |x)

= Prob{X(t ′) ∈ (a,b), 0 � t ′ � t |X(0) = x ∈ (a,b)}.
For the Feller process we have been able to obtain the exact

expression for the Laplace transform of the escape probability
which turns out to be more involved than the first-passage
probability. It reads

Ŵab(s|x) = [U (s,θ,b) − U (s,θ,a)]F (s,θ,x) − [F (s,θ,b) − F (s,θ,a)]U (s,θ,x)

s[F (s,θ,a)U (s,θ,b) − F (s,θ,b)U (s,θ,a)]
,

where a � x � b, and F and U are Kummer functions.
We have next addressed the problem of the mean first-

passage time (MFPT) and the mean exit time (MET). We
have shown that in terms of the first-passage time moments
Tn(x|xc) (n = 1,2,3, . . . )—of which the MFPT corresponds to

n = 1, T1(x|xc) ≡ Tc(x)—the Laplace transform of the hitting
probability reads

Ŵc(s|x) = 1

s
+

∞∑
n=1

(−1)n

n!
sn−1Tn(x|xc).
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The MFPT to the threshold xc is then given by

Tc(x) = lim
s→0

[
1

s
− Ŵc(s|x)

]
.

From these expressions we have been able to obtain, in terms
of the MFPT, the following long-time asymptotic expression
of the hitting probability:

Wc(t |x) 	 1 − e−t/Tc(x) (t → ∞).

For the Feller process this analysis has led to different
results according to whether initially the system is placed
below or above the threshold:

Tc(x) =
{

(1/θ )
∫ x

xc
F (1,1 + θ,z)dz, x � xc,∫ x

xc
U (1,1 + θ,z)dz, x � xc.

The MFPT to reach the origin, T0(x), has also been analyzed
with the result

T0(x) =
{∫ x

0 U (1,1 + θ,z)dz, θ < 1,

∞, θ > 1,

which constitutes an additional proof of the fact that when
θ > 1 the singular boundary x = 0 is unattainable.

The analysis of the MFPT can be exactly carried out for
the MET. The resulting expressions relating the MET with the
escape probability are formally the same as those relating the
MFPT with the hitting probability as can be seen in Sec. IV C.
Thus, for instance,

Tab(x) = lim
s→0

[
1

s
− Ŵab(s|x)

]
and

Wab(t |x) 	 1 − e−t/Tab(x) (t → ∞),

where Wab(t |x) and Tab(x) are the escape probability and the
MET, respectively. In the case of the Feller process the explicit
expression for the MET is given in Eqs. (60)–(62).

Let us finally mention that the extension of the above results
to the study of the extreme values attained by the process,
such as the maximum and minimum values, as well as their
application to financial time series—in particular the volatility,
is under present research and we expect getting a number of
results very soon.
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APPENDIX A: THE PROBABILITY DENSITY FUNCTION

The solution to the problem (5) and (6) is more conveniently
addressed by its Laplace transform with respect to x:

p̂(σ,t |x0) =
∫ ∞

0
e−σxp(x,t |x0)dx. (A1)

Taking into account condition (7), the transformed problem
(5) and (6) reads

∂p̂

∂t
+ σ (1 + σ )

∂p̂

∂σ
= −θσ p̂, (A2)

p̂(σ,0|x0) = e−σx0 . (A3)

Equation (A2) is a linear partial differential equation of
first order whose solution can be obtained by the method of
characteristics [33]. In effect, let the function h(σ ) be defined
by the characteristic of Eq. (A2), h′(σ ) = −[σ (1 + σ )]−1; that
is,

h(σ ) = ln

(
1 + σ

σ

)
. (A4)

Then the solution of Eq. (A2), as can be rightly seen by direct
substitution, is [33]

p̂(σ,t |x0) = (1 + σ )−θψ(t + h(σ )), (A5)

where ψ(z) is an arbitrary function to be determined by the
initial condition (A3), i.e.,

ψ(h(σ )) = (1 + σ )θ e−σx0 ,

which implies, after inverting Eq. (A4) to write σ in terms of
h, that

ψ(z) = (1 − e−z)−θ exp

{
− x0e

−z

1 − e−z

}
.

Substituting this into Eq. (A5) we finally obtain

p̂(σ,t |x0) = 1

[1 + σ (1 − e−t )]θ
exp

{
− σx0e

−t

1 + σ (1 − e−t )

}
.

(A6)

Let us now proceed to the Laplace inversion of Eq. (A6).
Calling

a = 1 − e−t , b = x0e
−t , (A7)

simple algebraic manipulations followed by a power expansion
yield

exp

{
− bσ

1 + aσ

}
= e−b/a exp

{
− b

a(1 + aσ )

}

= e−b/a

∞∑
n=0

(b/a)n

n!(1 + aσ )n
.

Plugging into Eq. (A6) we get

p̂(σ,t |x0) = e−b/a

∞∑
n=0

(b/a)n

n!(1 + aσ )n+θ
. (A8)

Let us denote by L−1{f̂ (σ )} = f (x) the operation of
Laplace inverting f̂ (σ ) and recall the standard property

L−1{f̂ (aσ + 1)} = 1

a
e−x/af (x/a)

and also

L−1

{
1

σn+θ

}
= xn+θ−1

�(n + θ )
.

Then the Laplace inversion of Eq. (A8) yields

p(x,t |x0) = 1

a
e−(x+b)/a

∞∑
n=0

(b/a)n(x/a)n+θ−1

n!�(n + θ )
,
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which after simple manipulations reads

p(x,t |x0) = 1

a

(√
x

b

)θ−1

e−(x+b)/a
∞∑

n=0

(
√

bx/a)2n+θ−1

n!�(n + θ )
.

We recognize the series appearing in this equation as the
expression of a modified Bessel function. Indeed

Iν(z) =
∞∑

n=0

(z/2)2n+ν

n!�(n + ν + 1)

is the modified Bessel function of order ν [28]. Therefore,

p(x,t |x0) = 1

a

(
x

b

)(θ−1)/2

e−(x+b)/aIθ−1

(
2
√

bx

a

)

and, reverting to the original notation [see Eq. (A7)], we write

p(x,t |x0) = 1

1 − e−t

(
xe−t

x0

)(θ−1)/2

× exp

{
−x + x0e

−t

1 − e−t

}
Iθ−1

(
2
√

xx0e−t

1 − e−t

)
,

which is Eq. (8).

APPENDIX B: EXPANSIONS FOR F(s,θ,x) AND U(s,θ,x)

In terms of the Pochhammer’s symbol (a)n = �(a +
n)/�(a), Kummer function F is defined as the series [28]

F (s,θ,x) =
∞∑

n=0

(s)n
(θ )n

xn

n!
.

Since (s)0 = 1 and

(s)n = s(s + 1)(s + 2) · · · (s + n − 1) = s(n − 1)! + O(s2),

we have

F (s,θ,x) = 1 + s

∞∑
n=1

1

(θ )n

xn

n
+ O(s2). (B1)

In the sum of the right-hand side we make the replacement
n → n + 1 and take into account that (θ )n+1 = θ (θ + 1)n; we
thus write

∞∑
n=1

1

(θ )n

xn

n
= 1

θ

∞∑
n=0

1

(θ + 1)n

xn+1

n + 1

= 1

θ

∞∑
n=0

1

(θ + 1)n

∫ x

0
zndz.

We can easily see that (1)n = n!, hence

∞∑
n=1

1

(θ )n

xn

n
= 1

θ

∫ x

0

[ ∞∑
n=0

(1)n
(θ + 1)n

zn

n!

]
dz,

which, after recalling the definition of the confluent hyperge-
ometric function F , Eq. (20), yields

∞∑
n=1

1

(θ )n

xn

n
= 1

θ

∫ x

0
F (1,1 + θ,z)dz.

Substituting into Eq. (B1) we get

F (s,θ,x) = 1 + sF1(x) + O(s2), (B2)

where

F1(x) ≡ 1

θ

∫ x

0
F (1,1 + θ,z)dz. (B3)

The small s expansion of the Kummer function of the
second kind U (s,θ,x) is a bit more involved. We start from
the definition of U in terms of F [see Eq. (21)],

U (s,θ,x) = �(1 − θ )

�(1 − θ + s)
F (s,θ,x)

+ �(θ − 1)

�(s)
xθ−1F (1 − θ + s,2 − θ,x), (B4)

then expand

�(1 − θ + s) = �(1 − θ ) + s�′(1 − θ ) + O(s2)

= �(1 − θ )[1 + sψ(1 − θ ) + O(s2)], (B5)

where ψ(z) = �′(z)/�(z) is the psi function [28]. Also [34]

�(s) = 1

s
[1 − γ s + O(s2)], (B6)

where γ = 0.5772 · · · is Euler’s constant. Plugging Eqs. (B2),
(B5), and (B6) into Eq. (B4) we get

U (s,θ,x) = 1 + sU1(x) + O(s2), (B7)

where

U1(x) ≡ F1(x) − ψ(1 − θ ) + �(θ − 1)F (1 − θ,2 − θ,x).

(B8)

Let us finally show that a more convenient form for U1(x)
is given by

U1(x) = −ψ(1 − θ ) −
∫ x

U (1,1 + θ,z)dz. (B9)

In effect, recalling the definition of F1(x) given in
Eq. (B3) and using the integration rule

∫
xc−1F (a,c,x)dx =

(xc/c)F (a,c + 1,x), we have

U1(x) = −ψ(1 − θ ) −
∫ [

�(−θ )

�(1 − θ )
F (1,1 + θ,x)

+�(θ )xθF (1 − θ,1 − θ,x)

]
dx,
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where we have used the well-known property �(1 + z) = z�(z) to write 1/θ = −�(−θ )/�(1 − θ ) and (1 − θ )�(θ − 1) =
−�(θ ). Note that the integrand is precisely the Kummer function of the second kind

U (1,1 + θ,x) = �(−θ )

�(1 − θ )
F (1,1 + θ,x) + �(θ )xθF (1 − θ,1 − θ,x)

[see Eq. (B4) with s = 1 and θ replaced by 1 + θ ]. We have thus proven Eq. (B9).
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