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Thermostatistical description of small systems in nonequilibrium conditions:
Energy conversion and harvesting
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Hysteresis cycles are very important features of energy conversion and harvesting devices, such as batteries.
The efficiency of these may be strongly affected by the physical size of the system. Here, we show that in systems
which are small enough, the existence of physical boundaries which produce nonhomogeneities of the interaction
potential gives rise to inflections and barriers in the associated free energy. This in turn brings on irreversible
processes which can be triggered under suitable external conditions imposed by a heat bath. As an example,
by controlling the temperature, the state of a small system may be impelled to oscillate between two different
structural configurations or aggregation states avoiding equilibrium coexistence and therefore dissipating energy.
This cyclical behavior associated with a hysteresis cycle may be prototypical of energy conversion, storage, or
generating nanodevices, as exemplified by Li-ion insertion batteries.

DOI: 10.1103/PhysRevE.89.012144 PACS number(s): 64.60.an, 64.70.Nd, 05.70.Ln, 05.90.+m

I. INTRODUCTION

The concept of stability is essential when describing the
behavior and properties of matter [1]. At the microscopic
level, the stability of atoms becomes manifest through the
existence of chemical elements, from which quantization
can be deduced. Macroscopic thermodynamic systems show
stability through the existence of distinct phases which can
coexist under the same physical conditions.

Unlike macroscopic systems, the existence of boundaries in
small systems confers on them peculiar characteristics. Finite
size induces nonhomogeneities of the interaction energy which
may give rise to free-energy barriers separating two different
structural configurations or even thermodynamic phases [2,3].
Transformations between these structural configurations or
phases is a matter of thermodynamic transformation theory,
a well-understood problem in classical thermodynamics [4,5].

When a macroscopic system is subjected to destabilizing
conditions, it separates into two or more phases that may
coexist in equilibrium [4,5]. This partitioning involves the
formation of new free-energy barriers associated with inter-
faces and finally, from the thermodynamic point of view, to
the emergence of new systems with their own free energy
determining their physical properties: compressibility, specific
heats, etc. [5].

However, when the system is finite and small enough, the
formation of an interface could imply an excessively high en-
ergetic cost and therefore becomes energetically unfavorable.
This energetic restriction has been observed, for instance, in the
formation of magnetic domains in ferromagnetic materials [6]
or in the hysteresis cycles of Li-ion batteries and other energy
storage systems [7–9]. Even more exotic systems such as
atomic nanoclusters with magical numbers show peculiar
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effects on their behavior and properties similar to those of
the small systems we will consider here [10,11].

In this article we will analyze the implications of the finite
size of the system on its thermodynamic behavior, and then
show that inflections and barriers in the thermodynamic free
energy are related to irreversible processes. We show this
by calculating the entropy produced in a transformation that
implies the transition from one structural configuration or
thermodynamic phase to another by overcoming the free-
energy barrier. This is possible due to the existence of a
thermodynamic affinity originated by the external conditions.
Since these processes may be cyclical, they can be used to
generate or convert energy at the nanoscale if the external con-
ditions (or constraints) imposed on the system are appropriate,
that is, when the external constraints force the state of the
system to reside in an interval of the order parameter domain
corresponding to the unstable region of the free energy. Under
these circumstances, we show that an oscillation between both
two mentioned states separated by the free-energy barrier may
be triggered and strongly affected by thermal fluctuations. This
cyclical motion persists provided the system is maintained near
the top of the free-energy barrier.

The results obtained here are of great interest since they
underlie the physics of the energy generation and conversion
nanodevices [12]. Potential applications have been recently
reported for energy nanogenerators [13], systems based on the
pyroelectric effect [14], and also for electric energy storage
systems such as batteries [7]. Coupling of several small
systems may lead to interesting effects that are in the ther-
modynamic origin of the electric hysteresis [8,9]. Oscillating
behaviors are also useful in energy-converting nanodevices
whose operation depends on the pressure conditions imposed
by the heat bath [15].

This article is organized as follows. In Sec. II we analyze
the stability conditions and their relation with small systems.
After analyzing the implications of these conditions on the
bases of statistical mechanics, we show how the free-energy
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barrier leads to an irreversible oscillating behavior in the case
of small systems. We also obtain the expression for the entropy
produced during these oscillations. Section III is devoted to
analyzing the oscillations of an order parameter associated
with the temperature or average kinetic energy of a toy model
of a small system as a function of time for its bistable free
energy in the deterministic and stochastic cases. Section IV
analyzes the problem from the perspective of a Fokker-Planck
equation for the probability density of the order parameter.
A numerical solution of the equations shows the oscillation
of the average value of this order parameter and is used to
determine an apparent stationary, time-averaged distribution
function. Section V is devoted to analyzing the case of insertion
batteries. Finally, in Sec. VI we present our main conclusions.

II. THERMODYNAMIC STABILITY AND THE ENTROPY
PRODUCED WHEN OVERCOMING A FREE-ENERGY

BARRIER

In this section we will use thermodynamic stability theory
and classical statistical mechanics to analyze the behavior
of small systems in contact with a heat bath when the
external conditions impel the system to oscillate between
two different structural configurations or aggregation states
avoiding equilibrium coexistence and therefore dissipating
energy.

For the sake of clarity, it is convenient first to introduce the
concepts of thermodynamic stability theory and apply them to
classical small systems such as droplets or bubbles in which the
distinction between bulk and surface can be performed [16].
After this, we start our general analysis of small systems which
avoids the distinction between bulk and surface, since it is not
clear in the general case.

A. Thermodynamic stability

In the framework of thermodynamics [5] the stability
condition of a large homogeneous system with respect to
thermal fluctuations establishes that the heat capacity at
constant volume and particle number must be positive definite,
CV,N > 0. In the canonical ensemble, this condition can be
expressed in terms of the Helmholtz free energy F (T ,V,N )
which must exhibit an absolute extremum minimum as a
function of the extensive variables or an extremum maximum
as a function of the intensive variables. Accordingly

(∂2F (T )/∂T 2)N,V = −CV,N/T < 0, (1)

which is the concavity condition.
In the case of finite systems the free energy has two contri-

butions, one associated with the bulk and the other one with
the boundary separating the system from the surroundings.
Therefore the free energy can be written as

F (T ,N ) = Fb(T ,N ) +
∫

V

ρ(r,T ,N )φ(r)dV, (2)

where Fb is the bulk free energy, ρ is the local mass density
related to the radial distribution function, and φ(r) is an ef-
fective interaction potential taking into account the mentioned
boundary effects [17]. Here,

∫
V

ρ(r,T ,N )φ(r)dV = 〈φ〉T ,N is
the average energy which plays the role of an order parameter

or reaction coordinate similar to the corresponding one
introduced previously [3,10]. Hence, the stability condition
now reads

(∂2F/∂T 2)N,V = −Cb

T
+ η(N )

∂2hN

∂T 2
< 0, (3)

where Cb is the contribution of the bulk to the heat capacity
and where for simplicity’s sake we have assumed 〈φ〉T ,N ≡
η(N )hN (T ). Equation (3) shows that the stability of a small
system depends dramatically on the curvature of hN (T ) in
such a way that if this function has inflection points, provided
η(N )∂2hN/∂T 2 > Cb/T , the stability condition is violated.
Therefore, in this pathological situation a convexity (barrier)
in the free energy will appear. Additionally, from Eq. (3) it
follows that a critical size of the system Nc(T ) (stability curve)
separating the stable (N > Nc) from the unstable (N < Nc)
regions of the (T ,N ) diagram exists and can be obtained as a
solution of η(Nc)∂2hNc

/∂T 2 = Cb(Nc,T )/T .
The discussion in the previous paragraph can be illus-

trated by considering the following expression of the free
energy [16]: �F = −N�μ + N2/3A(T ), where in the right-
hand side the first term constitutes the bulk contribution with
�μ being the supersaturation and the second term constitutes
a surface free energy. Here, we can identify hN (T ) = A(T )
and η(N ) = N2/3, and therefore the necessary condition for
the appearance of the barrier is ∂2A/∂T 2 > 0. Note that in the
more general case, when the system has a fractal boundary, the
function η(N ) will be of the form η(N ) = Nν/3 with ν < 2 and
with a similar behavior as described in the previous example.

B. Thermodynamic stability approach to small systems

In this work, we will base our description on the assumption
that small systems can be characterized as an effective
homogeneous system whose intensive parameters differ from
those of the corresponding macroscopic system [16,18–20].
Other approaches to the description of processes in systems not
in equilibrium with a bath have been recently reported [21,22].

The partition function of the (small) system is defined,
in classical terms, through the well-known relation: Z(β) ∼∫

exp[−βH (p,q)]dpdq, where p and q are the generalized
momenta and coordinates, and β ≡ 1/kBT with kB the
Boltzmann constant and T the temperature. As follows from
its definition, Z(β) does not depend on the phase-space
coordinates, but only on thermodynamic variables. These
thermodynamic variables can in general be calculated by
means of statistical averages; for example, the temperature
T is related to the average kinetic energy [23,24]. More
precisely, the temperature of a small system is defined here
as the configurational average of the total mean kinetic
energy of the system [24–27]. The difference between the
partition function of macroscopic and small systems relies on
the fact that the Hamiltonian H (p,q) of the latter contains
long-range interactions [28,29], related to boundary effects
and not necessarily to external bodies.

In order to show that the free-energy barrier gives rise to
irreversible processes, let us assume that the stability condition
of a small system described in a global way by its partition
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function Z(β) is still given by the relation

∂

∂β

[
β2 ∂

∂β

(
1

β
ln Z

)]
N,V

= 1

kBβ
CV,N > 0, (4)

where CV,N refers to the heat capacity at constant volume of
the whole system.

After performing straightforward calculations we deduce
that from Eq. (4) the following relation for the heat capacity
follows:

CV,N = kBβ2Z−2[Z′′Z − Z′2] > 0, (5)

where Z′ = (∂Z/∂β)V,N and Z′′ = (∂2Z/∂β2)V,N . Hence, for
a stable system at constant volume and particle number Eq. (5)
implies Z′′Z/Z′2 > 1 while for a unstable system Z′′Z/Z′2 <

1. Thus, let us write

Z′′Z
Z′2 ≡ 1 + α(β), (6)

with α(β) �= 0, such that the system is stable for α(β) >

0 and unstable for α(β) < 0. After successive elementary
integrations and arrangements, Eq. (6) leads to

βF = β0F0 + U0

exp (−R0)

∫ β

β0

exp[−R(β ′)]dβ ′, (7)

where F0 = F (β0) and α0 = α(β0). Here, we in-
troduced R(β) = βα(β)F (β) − ∫ β

β0
β ′F (β ′)α′(β ′)dβ ′, R0 =

R(β0), α′(β) = dα(β)/dβ and use has been made of the
identity Z′

0/Z0 = −U0, with Z0 = Z (β0) and U0 = U (β0).
More insight can be achieved by rewriting Eq. (7) us-

ing exp [−R(β)] ≡ exp (−R0) [1 + χ (β,β0)] which defines
χ (β,β0) and taking also into account that U0 − F0 = T0S0,
with S0 = S(β0); we obtain

β�F = T0S0 (β − β0) + U0

∫ β

β0

χ (β ′,β0)dβ ′, (8)

where �F = F − F0. In Fig. 1 we show a schematic rep-
resentation of Eq. (8) when a free-energy barrier exists. In
light of Fig. 1, due to the presence of the barrier there are
two possibilities: (a) For a macroscopic system, its state can
be represented along the straight line, i.e., the coexistence
line, indicating that this system suffers an equilibrium phase

FIG. 1. Schematic representation of the reduced free-energy
change (solid line) and the free-energy bound (solid straight line)
as a function of the inverse temperature β. β0 and β1 represent two
metastable states separated by the free-energy barrier. The dotted
lines indicate the free energies corresponding to the new phases if
these appear.

transformation and splits into two different phases having the
same temperature. In this case, the integral on the right-hand
side of Eq. (8) is zero. (b) For a small system, its state can be
represented along the solid line indicating that this system
undergoes a nonequilibrium transformation. Since β�F −
T0S0 (β − β0) < 0 (as Fig. 1 shows), then

∫ β

β0
χ (β,β ′

0)dβ ′ < 0
regardless of the direction of the evolution in β. From our
analysis, it follows that the integral on the right-hand side of
Eq. (8) clearly is related to the bending of the free-energy
difference in Fig. 1.

From Eq. (8) and by using the thermodynamic relation
�F = �U − � (T S), we can obtain the total entropy change

T �S = �U − U0

β

∫ β

β0

χ (β ′,β0)dβ ′, (9)

which in general can be considered the sum of two contri-
butions: �S = �eS + �iS. Here, �eS is the entropy change
due to exchange of matter and energy with the surroundings,
as stated by Gibbs’ equation: T �eS = �U − W . The term
�iS is the entropy change due to the “uncompensated heat
transformation,” i.e., the entropy produced by irreversible
processes within the system which according to the second
law of thermodynamics must be nonnegative, �iS � 0 [30].
The sign of the entropy production �iS indicates the direction
of evolution of the nonequilibrium system in a natural process.
In view of this, Eq. (9) can be rewritten in the form

U0

β

∫ β

β0

χ (β ′,β0)dβ ′ = Wrev − T �iS, (10)

where Wrev is the reversible work. This result states that the
term on the left-hand side of Eq. (10) is the net work performed
in the presence of irreversible processes, which is less than the
reversible work due to the existence of the dissipated work
Wdis = T �iS. Thus, one can write

U0

β

∫ β

β0

χ (β ′,β0)dβ ′ = Wrev − Wdis. (11)

For processes occurring at constant volume, Wrev = 0, Eq. (11)
reduces to

�iS = −kBU0

∫ β

β0

χ (β ′,β0)dβ ′. (12)

Thus, from Eqs. (8) and (12) we deduce the following
important relation for the free-energy change:

�F = S0 (T0 − T ) − T �iS. (13)

The following important result must be stressed: Eq. (13)
can be reinterpreted in terms of the entropy produced by the
system during the transformation starting from β0

T �iS
(0) = −�F + S0 (T0 − T ) , (14)

where now �F is a Landau-like free energy and we used the
relation β = 1/kBT . Notice that if the transition occurs from
β1 then the previous equation takes the form

T �iS
(1) = −�F + S1 (T1 − T ) . (15)

The superindexes indicate that the process takes place from T0

or T1 , respectively.
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According to our discussion after Eq. (8), �iS becomes
zero for equilibrium phase transitions and thus it follows
that �F = S0 (T0 − T ). The free-energy change follows the
Maxwell construction between potential wells; that is, the
system performs an equilibrium phase transformation [5]. This
occurs for macroscopic systems by virtue of their extensive
character.

On the other hand, when �F < S0 (T0 − T ) then �iS > 0;
the system performs an irreversible process. These processes
may appear when the energetic cost of partitioning the system
is too high, as occurs for small systems or systems where finite-
size effects are important as those showing hysteresis [7–9],
or many nanodevices designed and used for energy conversion
and generation [7,12–14].

To summarize this section, we may conclude that forcing
the system to reside in the region corresponding to the barrier
(spinodal region) by controlling the temperature of the heat
bath, i.e., maintaining the bath at a critical Tc, leads to two
different outcomes. On the one hand, if the system is large
enough—extensive—it breaks into two different macroscopic
systems experiencing an equilibrium phase transformation in
which two different phases coexist in equilibrium. On the
other hand, if the system is small, partitioning into coexisting
phases could imply a too high energetic cost, becoming
then an energetically unfavorable process. Thus, the finite
system will remain in a stationary state strongly sensitive
to fluctuations that impel the system to relax to one of the
nearest metastable states, either T0 or T1. However, since the
temperature of both states differs from the bath temperature, a
thermodynamic affinity appears driving the state of the system
towards the unstable state Tc where again it cannot remain.
The process just described will start again and so on if the
temperature of the heat bath is maintained constant at Tc

or near to it. Notice that, in practice, since the oscillating
process is irreversible and therefore an uncompensated heat
is produced constantly, an alternative inflow and outflow of
energy is required to compensate for this wasted heat. We
call critical oscillations to this irreversible cyclical process
between the states I and II corresponding to T0 and T1. This
is an operation pathway followed in, for instance, energy
nanogenerating devices based on the pyroelectric effect [14].
For a finite system Eq. (14) and Eq. (15) represent the
entropy produced during the critical oscillations between
the states I and II at T0 and T1, respectively, and passing
through Tc.

It is worth mentioning that a similar oscillatory behavior
between different metastable states has been observed for
simulations of atomic nanoclusters in Refs. [3,11,31]. In
the literature on this subject, this oscillatory behavior has
been described through a single and stationary double-peaked
probability distribution from which equilibrium thermody-
namic properties have been inferred [11]. However, these
stationary double-peaked probability distributions seem to not

be representative of an equilibrium thermodynamic formalism
as we show in the present work.

III. CRITICAL OSCILLATIONS OF
THE ORDER PARAMETER

Let us consider now that the heat bath imposes on the system
the temperature Tc = 1/kBβc, that is, the temperature at the
critical point of the free-energy barrier. Thus, we may write
the system’s temperature as T = Tc − �T . Substituting this
into Eq. (14) and Eq. (15) we obtain

T �iS
(j ) = −�F (Tc + �T ) + Sj�T + Sj (Tj − Tc), (16)

where the j = 0,1 distinguishes the processes described by
Eq. (14) and Eq. (15), respectively. Now, expanding in series
the free energy around Tc we have that

�F � 1
2a (�T )2 − 1

24b (�T )4 + · · · , (17)

since by hypothesis the free energy is a bistable function.
Consequently we have a = +(∂2F/∂T 2)T =Tc

> 0 and b =
(∂4F/∂T 4)T =Tc

> 0. For simplicity we have assumed that the
standard state is defined at Tc. Substituting now Eq. (17) into
Eq. (16) and adding the entropy produced in each irreversible
process we obtain

T �iS = T

1∑
j=0

�iS
(j )

= −a

2
(�T )2 + b

24
(�T )4 + c�T + Qirr

ex , (18)

where the last term is the irreversible heat exchanged between
the system and the bath when passing between states T0 and
T1 through Tc: Qirr

ex = ∑1
j=0 Sj (Tj − Tc). Note that the term

proportional to c = ∑1
j=0 Sj introduces an asymmetry on the

wells of the free energy landscape proportional to the average
of the entropies associated with states T0 and T1.

Following Onsager nonequilibrium thermodynamics, the
dynamics of the system can be derived by taking the time
derivative of Eq. (18). We obtain

T
diS

dt
= −

[
−2a�T + 1

3
b (�T )3 + c

]
dT

dt
+ dQirr

ex

dt
. (19)

To satisfy the second law statement diS/dt > 0 we may adopt
linear relationships between fluxes dT /dt and thermodynamic
forces X = −∂F/∂T . This yields the dynamic equation

τ
dT

dt
= 2a (�T ) − 1

3
b (�T )3 − c + j irr

q (t), (20)

where τ is a characteristic time (an Onsager coefficient) and
the time dependent heat exchange rate, dQirr

ex /dt ∝ −dT /dt ,
can be modeled through an oscillating function. In the present
case we can assume that it is determined by the square wave
function j irr

q (t):

j irr
q (t) = d

{
1 if |t | < t0/2
−1 if t0/2 < |t | < t0

; with j irr
q (t + t0) = j irr

q (t),
(21)

where d is the amplitude of the square wave.
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(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) Deterministic (red solid lines) and stochastic (blue irregular points) oscillations of the order parameter 〈φ〉 = �T

in the presence of a noisy heat exchange with the heat bath. In all the simulations we have used normalized variables with a = 0.24, b = 0.7,
and a Gaussian random force with amplitude D1/2

ε = 0.44.

This term implies that the external forcing coming from
the heat exchange with the bath tilts the bistable potential
periodically in two directions, thus alternatively favoring
the states which correspond to T0 or T1, acting as an
energy source to maintain the oscillating behavior of the
system.

Figure 2 shows the time behavior of the state of the system
for different values of parameters controlling the tilting and the
amplitude of the oscillation of the free-energy landscape due to
the heat exchange that alternatively favors states I and II. The
red (solid) lines correspond to the numerical solution of the
deterministic equation (20), whereas the blue (irregular) points
correspond to the stochastic equation (22), that we will discuss
in detail in the following subsection. Figures 2(a) and 2(b)
show an asymmetric case in which the heat exchanged is large
enough to produce deterministic oscillations in the state of
the system. The different cases correspond to opposite tilts
of the free energy as indicated by the initial behavior of the
deterministic solution. Figure 2(c) corresponds to a case with
no stationary tilting (c = 0) and a strong amplitude of the
energy exchange d = 0.6.

Figures 2(d) and 2(e) correspond to cases in which the heat
exchange is weak and produces a small oscillation within the
same well. In this case, however, fluctuations in the rate of
heat exchange may induce transitions between states I and II.
Finally, Fig. 2(f) corresponds to the case when no tilting and no
oscillating force is taken into account. In this case, if the noise
is sufficiently large, it may spontaneously produce transitions
between potential wells, as is well known. The difference
between Figs. 2(a)–2(c) and 2(d)–2(f) is that the first ones
lead to a nonequilibrium distribution function whose average
value oscillates between states I and II. The other cases show
other possibilities in which small external oscillations together
with noise may also induce random transitions between the two
states.

IV. CRITICAL OSCILLATIONS OF THE
PROBABILITY DENSITY

In view of the previous analysis, it is important to consider
now that the variables characterizing the state of small finite

systems may fluctuate. In our case, this implies that the
dynamic equation for the temperature of the system should be
perturbed by a noise term coming from thermal fluctuations.
This term has its origin in the energy fluctuations that a system
in contact with a heat bath may experience. Thus, Eq. (20)
becomes

τ
dT

dt̃
= 2a (�T ) − 1

2
b (�T )3 − c + jq(t̃) + τξ (t̃), (22)

where ξ (t̃) is a random Gaussian noise term with zero
mean and second moment (fluctuation-dissipation theorem):
〈ξ (t̃)ξ (t̃ ′)〉 = 2Dδ(t̃ − t̃ ′), with D = T 2

bath/τ the intensity of
noise.

The presence of a noise term is interesting because it makes
more drastic the oscillations of the system between states I and
II. This is shown in Fig. 2, where different cases are shown
for the intensity of the tilting term c in Eq. (22). In Fig. 2(d)
we show the case when the random heat exchange induces a
permanent oscillation between states I and II even in the case
of negligible deterministic oscillations. The effect of noise is
to change the frequency of the oscillation.

A interesting consequence of Eq. (22) is the fact that it is
equivalent to a Fokker-Planck equation for the nonequilibrium
distribution function P (T ,t̃) or equivalently for the micro-
scopic averaged potential. Since the temperature of the system
can be defined as the microscopically averaged kinetic energy
of the system kBT = 〈K〉 and in view of the virial theorem
2〈K〉 = −〈φ〉T ,N , one has 2kBT = −〈φ〉T ,N = −ε(t̃). The
corresponding Fokker-Planck equation may be determined by
comparing the moments of (22) with those coming from a
Kramers-Moyal expansion; the result is

∂

∂t
P (ε,t) = ∂

∂ε

{
−

[
−2aε + 1

2
bε3 + c − j irr

q (t)

]
P (ε,t)

+Dε

∂

∂ε
P (ε,t)

}
, (23)

where we have introduced the diffusion coefficient of
the energy Dε = (kBTbath)2/τ , and the dimensionless time
t = t̃/τ .
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FIG. 3. (Color online) Snapshots of the occupation probability P (ε,ti) as a function of the order parameter ε for different reduced times
ti . The maximum of the probability oscillates between states εI � 1.2 and εII � 1.8. Panel (a) shows the initial distribution and its initial
evolution for three different times. Panel (b) shows intermediate times, whereas (c) shows the behavior of the probability near the second state.
The state of the system spends different times in states εI and εII because of the asymmetry of the potential, favoring state εI . The time spent
at the middle of the oscillation ε � 1.5 is much lower than the time spent at the extrema. Thus, an apparent stationary bimodal distribution can
be obtained by averaging P (ε,t) over a window of time larger than the period of the oscillations. Panel (d) shows three different reduced time
averages P (ε,t)

t
of the oscillating probability distribution P (ε,t). The red dashed line represents an average performed on the time interval

�t = 20, the blue dotted line in the time interval �t = 60, and the black solid line in the time interval �t = 100 all for an initial condition of
t = 2. The influence of the initial condition is evident in the first average. For averages taken over longer intervals the result converges to an
apparent stationary bimodal distribution.

The numerical solution of this equation has been calculated
by using a BDF implicit method implemented in Mathematica
(Wolfram Research) assuming that the initial condition is a
Gaussian distribution located at ε0 = 1.3 with variance σ 2 =
0.06. The results obtained are shown in Figs. 3(a)–3(c). The
oscillation of the distribution function is shown by the fact
that its maximum oscillates around ε = 1.5. The oscillation
of the energy distribution P (ε,t) is shown in Fig. 4 to make
clearer the dynamic ensemble. This result is fully consistent
with the oscillations reported in Fig. 1 of Ref. [3] for the short
time (microscopic) average of the interaction energy. A similar
result is also commented on below Fig. 2 of Ref. [11], where
the authors mention that it must be described as a special case
of “dynamic equilibrium” (dynamic coexistence); we conclude
that the distribution of energy P (ε,t) can also be periodic.

The bimodal distribution represented by the solid line in
Fig. 2(b) of Ref. [11] is the result of MC simulations whereas
the dashed lines are Gaussian fits. Likewise, the bimodal
distribution represented in Figs. 3 and 4 of Ref. [32] can
be interpreted as the cumulative effect of two distributions
characterizing the two possible states of the clusters, just
as is represented in Fig. 2(b) of Ref. [11]. Since the local
minimum of this distribution of macroscopic states has a
finite value, the population of clusters within the unstable
region is not negligible. This fact indicates the presence of

a macroscopic number of clusters which would suggest that
the system is at chemical equilibrium. In fact, it can be probed
that in an equilibrated chemical reaction the population of the
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t

0.5 1.0 1.5 2.0
0.0

0.5

1.0
P ∋

∋

,ti

FIG. 4. Occupation probability P (ε,ti) as a function of the order
parameter ε and different reduced times ti . The maximum of the
probability oscillates between states εI � 1.1 and εII � 1.8. Black
solid lines correspond to states with maximum around εI whereas the
gray solid lines to states with maximum at εII . Light gray dotted lines
correspond to crossing states. The diagonal lines correspond to states
εI and εII .
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intermediate state is negligible (strictly zero) whereas for a
nonequilibrated reaction the population of the local minimum
is finite. As we mentioned above, this rather suggests that the
bimodal distributions represented in Figs. 3 and 4 of Ref. [32]
does not correspond to an equilibrium distribution of energies.
It seems instead a time average of a nonequilibrium distribution
over a large enough window of time.

In Figs. 3(a), 3(b), and 3(c) we show three snapshots
of the probability distribution P (ε,t) in terms of the order
parameter for ten different reduced times t = t̃/τ as obtained
by numerically solving Eq. (23). For dimensionless time
t > 10, P (ε,t) returns periodically to states εI � 1.2 and
εII � 1.7. Averaging this behavior over a sufficiently large
period of time leads to an apparent stationary double peaked
distribution, P (ε,t)

t
. This fact is shown in Fig. 3(d), where

the red dashed line represents a time average performed
in the time interval �t = 20, the blue dotted line in the
time interval �t = 60, and the black solid line in the time
interval �t = 100. As expected, the initial condition deforms
the averaged distribution in the first case. Once the average
becomes independent from the initial condition, the result
takes the form of an apparent stationary bimodal distribution.
Unlike the stationary distributions of energy reported in the
literature [11,32], this time average cannot be interpreted
as representative of chemical equilibrium and cannot be
used to extract the equilibrium thermodynamic properties
of the system [33]. Figure 4 shows the three-dimensional
representation of the normalized probability density as a
function of ε for different reduced times.

V. SMALL PARTICLE INDUCED VOLTAGE OSCILLATION
IN INSERTION BATTERIES

During charging and discharging of a lithium-ion battery
there is an exchange of Li ions that are respectively released
and adsorbed by the interstitial lattice sites of the electrode,
that may be made up by FePO4 crystals [9]. Experimental
studies have reported that the kinetics of this process strongly
depends on the size of the FePO4 crystals that made up the
electrode [7–9,34].

For small enough sizes (nanometric) of FePO4 [34] or
TiO2 particles [7], when the cell voltage takes values in the
hysteresis zone, instead of the usual coexisting phase separa-
tion characterized with zones with large Li concentration and
zones with low concentration, typical of large crystals or bulk
matter, an alternating process is observed in which the small
electrode crystals become successively filled and unfilled.
This behavior is an example of the phenomenology already
described and represented, in this case, through the oscillations
of the hysteresis cycle, according to the different scenarios
of an ensemble of particles that have been characterized in
Refs. [8,9].

Using our framework to analyze this system, we will
describe the kinetics of a single small FePO4 or TiO2 particle
in the presence of a heat bath controlling the chemical affinity
of the system. To achieve this program, we first note that the
kinetic change of crystallographic phases is dominated by the
mole fraction y of Li ions occupying holes in lattice sites of
the electrodes, and therefore its kinetics is more conveniently
described by the Gibbs free energy, G(p,T ,y), instead of the

Helmholtz free energy we previously used. This free energy
has two contributions, one coming from the bulk and other
from surface effects G(y) = Gb(y) + Gs(y), Refs. [7,9], as
we have considered previously.

Let us now assume that temperature and pressure are
constants and that in this case the bath is made up by a solution
in which the Li ions are free to diffuse. Controlling the number
of these ions in solution is a way to control the number of ions
within the nanocrystals.

In terms of the Gibbs free energy, the stability condition at
constant pressure and temperature can be given by(

∂2G

∂2y

)
p,T

=
(

∂μ(y)

∂y

)
p,T

> 0, (24)

implying that for a stable system the free energy has to
be convex as a function of the mole fraction yε[0,1]. The
derivative of the chemical potential with respect to the mole
fraction at constant pressure and temperature plays the same
role as the derivative of the entropy with respect to temperature
at constant volume and mole number.

However, for small enough particles, it has been suggested
in the literature that the molar Gibbs free energy or chemical
potential has the form

μ(y) = RT

L
[y ln |y| + (1 − y) ln |1 − y|] + y(1 − y), (25)

where L is the positive heat of solution, which is assumed
constant, and the last term of Eq. (25) comes from the surface
contribution. From Fig. 5(a), it is clear that the chemical
potential of the adsorbing particles has a change of convexity
for intermediate values of y, therefore having an unstable
[yellow (light gray)] region. In this figure we also show that
the distance between the equilibrium molar Gibbs free energy
difference �Gm,eq or chemical potential and its corresponding
nonequilibrium value �Gm, associated with phase coexistence
along the Maxwell construction (blue dashed line), is minus
the entropy production −T �iS . If the system is originally at
point y0 (as occurs for the charging process), then the molar
entropy produced can be written as

T �iS
(0)
m = −μ + μeq

(y − y1)

y
, (26)

where the factor (y − y1)/y corresponds to the fraction of Li
ions in y0 when the system is forced to be at state y by the
bath. In similar form, the molar entropy produced when the
system is originally at point y1 is

T �iS
(1)
m = −μ + μeq

(y − y0)

y
. (27)

Adding both contributions the entropy production associated
with the complete oscillation is

T �iS = T

1∑
j=0

�iS
(j )
m = −μ + c̃(y − ybath) + Eex. (28)

Here, the external forcing is given by Eex = ∑1
j=0

μeq

yb
(ybath −

yj ) and the constant c̃ by c̃ ≡ μeq( y0+y1

y2
b

). Both expressions

follow after considering the leading contribution of the last
term of Eqs. (26) and (27). In a way similar to Sec. II, the
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FIG. 5. (Color online) (a) Chemical potential of the LixFePO4 system at the electrode. (b) One realization of the oscillating behavior
with initial condition at y = 0.05 for a small oscillation amplitude and one realization of a process affected by noise. The right panel is the
three-dimensional solution of the Fokker-Planck equation for the probability density P (y,t).

last term in Eq. (28) constitutes an alternating external forcing
that comes from the bath, which imposes a given value of ion
concentration in the solution ybath.

Taking now the time derivative of Eq. (28) we obtain the
entropy production per unit time

T
diSm

dt
= −

(
∂μ

∂y
+ c̃

)
dy

dt
+ dEex

dt
, (29)

where, according to nonequilibrium thermodynamics [37],
we introduced the time dependent energy exchange rate with
the bath, dEex/dt ∝ dy/dt , that can be modeled through an
oscillating function. From the last result, we may derive the
following dynamical equation for the ion concentration in the
electrodes:

τ
dy

dt
= −

(
∂μ

∂y
+ c̃

)
+ Ibath, (30)

where τ is a characteristic time and Ibath = dEex/dt .
Figure 5(b) and the right panel show the dynamics of the
filling fraction y as a function of time for a small amplitude
of the oscillation. One realization of the stochastic case
(irregular points) is also shown. Noise may induce different
dynamics associated with stochastic resonance phenomena.
The solution of the corresponding Fokker-Planck equation
for the probability density P (y,t) also shows the oscillating
behavior in Fig. 5.

VI. DISCUSSION

Here, our goal has been to analyze how energy barriers
corresponding to a nonconcave free energy as a function
of intensive parameters affect the thermodynamic properties
and the dynamic behavior of small systems. We follow a
global approach starting from the partition function of the
whole system which makes no distinction between bulk and
surface, since this characterization may be not clear in all
situations. Hence, we assume that the small system can be
characterized as an effective homogeneous system whose
intensive parameters differ from those of the corresponding
macroscopic system. In this sense, we coincide with the idea
underlying Hill’s thermodynamic theory of small systems.

In addition, this approach allows us to take advantage of
Onsager’s theory of irreversible processes when analyzing
the dynamics. As a result of this description, peculiar
behaviors of small systems can be predicted that underly
the dynamics of energy generating, storage, or conversion
nanodevices.

To go into further detail, we have examined the ther-
modynamic stability for extensive and small nonextensive
systems using thermodynamic stability theory and elemen-
tary statistical mechanics. We found that under suitable
external conditions, small systems do not break down into
thermodynamic phases with different aggregation states as
macroscopic extensive systems do, or even states with different
structural configurations. Instead, since for small systems this
process of division may have an excessively high energetic
cost, they can only dissipate energy by performing critical
oscillations between two metastable states [3] or structural
configurations [2].

This behavior is supported by our own numerical analysis
(see Figs. 2 and 3) as well as by the results previously
reported in the literature of small systems [2,3,8,9,11,14,15].
Similar oscillating dynamics has been observed in single-
and many-particle energy storage systems [7–9] whose state
is characterized by the number of lithium atoms stored in
electrode nanoparticles. This dynamics is described by means
of an equation analogous to our Fokker-Planck equation (23).
Oscillations of the probability density of the stored energy are
also obtained and shown in Fig. 5; see also [9].

Our results allows us to conclude that the cyclical dynamics
described here constitutes a general nonequilibrium behavior
of small systems which may be convenient to take into account
in the design of energy exchange and storage nanodevices.
Other recent advances in nanotechnology [35,36] suggest more
potential applications along this line. Further contributions as
to the implementation of our theory in practical situations are
currently in progress.
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