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Thermodynamic stability of nanosized multicomponent bubbles/droplets:
The square gradient theory and the capillary approach
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Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many
unresolved scientific questions. We analyze the properties and stability of multicomponent droplets
and bubbles in the canonical ensemble, and compare with single-component systems. The bub-
bles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we
compare the results to a capillary model which gives a macroscopic description. Remarkably, the
solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced
by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient
model form closed loops, which shows the inherent symmetry and connected nature of bubbles and
droplets. A thermodynamic stability analysis is carried out, where the second variation of the square
gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description.
The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed sys-
tems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite
the large difference in complexity, the square gradient and the capillary model predict the same finite
threshold sizes and very similar stability limits for bubbles and droplets, both for single-component

and two-component systems. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4860495]

. INTRODUCTION

Small systems receive now increasing attention, not only
in academia, but also in industry. Fabrication of novel nano
materials, for instance, requires exquisite control and in-
sight into phase transitions such as condensation, evaporation,
and crystallization at the nanoscale. In industry, distillation
columns, heat exchangers, and chemical reactors rely on suf-
ficient transfer of heat and mass during phase transitions.'-? In
nature, precipitation of rain is one of many phase transitions
which initiates at the nanoscale.

The first and important step in a typical phase transition
is the formation of a nucleus from a metastable bulk phase.’
Recent experimental developments have made it possible to
observe formation of tiny droplets and crystals consisting of
only a few molecules.*> Further growth can be limited by
heat and mass transfer through the surface, which will be
strongly affected by the curvature of mesoscopic nuclei.®

Classical Nucleation Theory (CNT) is still today the most
popular theory to predict nucleation rates.>”-® It succeeds
in capturing the qualitative behavior, but fails to predict the
correct temperature dependency of nucleation rates, and the
predicted rates are often orders of magnitude different from
measurements in unary and in multicomponent systems.’?
Molecular dynamics and Monte Carlo simulations are im-
portant sources of information on nucleation,'*™'? that for
complicated mixtures and realistic conditions comes at the
expense of large computational costs.?”
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In this work, we will give attention to square gradient the-
ory, first formulated for single-component systems by van der
Waals,?! extended to mixtures by Cahn and Hillard?? and to
the non-equilibrium domain by Bedeaux and co-workers for
single-component systems?? and Glavatskiy and Bedeaux for
mixtures.>* Square gradient theory is the first approximation
to density functional theory, and has successfully been used
to predict both nucleation rates and non-equilibrium trans-
port properties.”>~2® In many cases, it corrects some of the
limitations and predicts nucleation rates more accurately than
CNT. The computational time for mixtures is of the order
of seconds, which makes the method attractive compared to
molecular simulation techniques.

One of the main difficulties in the study of nucleation is
the fact that the most important entity, the critical cluster, is
unstable. Already in 1985, Yang?’ predicted that bubbles and
droplets in single-component systems were thermodynami-
cally unstable when connected to pressure and temperature
reservoirs, or in open systems connected to thermal reservoirs
(grand canonical ensemble). However, bubbles and droplets
can be stable in closed systems connected to a thermal reser-
voir, i.e., the canonical ensemble (constant total mass of
components, total volume, and temperature). Here, they rep-
resent minima of the system’s Helmholtz energy. The ther-
modynamically stable clusters in this ensemble can be shown
to correspond to condensing or evaporating nuclei in open
systems.?*32 Systems with bubbles/droplets in the canonical
ensemble thus provide a way to investigate the properties of
nanosized bubbles/droplets of interest for nucleation.

Square gradient theory, and density functional theory
in general find constrained stationary states in the system’s

© 2014 AIP Publishing LLC
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Helmholtz energy (zero first functional derivatives), and pay
no attention to whether this corresponds to maxima, minima,
or saddle points. There are many ways to investigate thermo-
dynamic stability. Some authors evaluate the stability of bub-
bles/droplets by comparing the difference in the Helmholtz
energy of the composite system with that of a system at homo-
geneous density, referred to as the reversible work of forma-
tion of the bubble/droplet.’*3* This identifies the phase with
the lowest Helmholtz energy but does not give rigorous an-
swers about the nature and stability of the different stationary
solutions.

In the capillary model, thermodynamic stability can be
evaluated through the eigenvalues of the Hessian matrix.
Since the Helmholtz energy is a function of a finite number
of variables, the method gives a finite number of eigenvalues,
where all are positive in a stable system. It is more difficult
to examine stability of the square gradient model, or density
functional formulations in general. A thermodynamically sta-
ble configuration is here characterized by a second variation
of the Helmholtz energy functional which has to be positive
for all feasible density fluctuations. The complexity of the
second order functional derivatives makes it difficult to prove
thermodynamic stability in functional representations.>

For single-component systems with simplified expres-
sions for the Helmholtz energy, the problem has been
addressed by several authors by taking advantage of the sim-
ilarity between the second variation of the square gradi-
ent model and the eigenvalue problem of the Schrodinger
equation.®3% With orthogonal eigenfunctions, the second
variation is quadratic in the eigenfunctions and stability is
decided by the sign of the eigenvalues. Unlike in the capil-
lary model, there is an infinite number of eigenvalues. For
a realistic choice of the Helmholtz energy, the problem can-
not be solved analytically, which makes the methodology
unfeasible.

In this work, we use a perturbation approach to address
the thermodynamic stability of bubbles/droplets in the square
gradient model coupled with an accurate cubic equation of
state.?*+3*! We discuss the behavior of single-component
systems and mixtures. The results are compared to a similar
analysis with the capillary model. Despite the large difference
in complexity, we show that these two approaches predict very
similar stability limits also for mixtures. This has to the best
of our knowledge, not been shown before.

The paper is structured as follows. The theoretical frame-
work is presented in Sec. II. A short introduction is given to
the square gradient theory (mesoscopic approach), the cap-
illary approach (macroscopic approach), and the framework
to analyze the thermodynamic stability. We present the cases
considered and our findings in Sec. III. Finally, concluding
remarks are provided in Sec. IV.

Il. THEORY

Consider a spherical container with radius Ry, volume,
Viot, temperature, 7, and a fixed number of moles of compo-
nents i, Nyoi. We assume that a perfectly spherical bubble or
droplet with radius R, is placed at the center of the container
as depicted in Fig. 1.
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FIG. 1. Illustration of the system investigated.

Both the square gradient model and the capillary
approach rely on an equation of state which is capable of
capturing the thermodynamic behavior of both the liquid and
the vapor at different compositions. In this work, we use the
Peng-Robinson cubic equation of state, which has proven to
give accurate predictions of the density and vapor-liquid equi-
librium properties in both gas and liquid regions for non-polar
mixtures.>**! Cubic equations of state can be represented as

Peos = RgT - aa(T) . (1)

v—>b (v—>bm)(v—bmy)

Here, P, is the pressure predicted by the equation of state,
R, the universal gas constant, v the molar volume, and a,
o, and b are parameters of the equation of state. The con-
stants m; and m, characterize various two-parameter cubic
equations of state. For the Peng-Robinson equation of state,
my=—14++2 and my = —1— 2. Equation (1) is in-
tegrated with respect to the volume to give the residual
Helmbholtz energy density (i.e., the difference between the
Helmbholtz energy of the homogeneous phase and that of an
ideal gas). The Helmholtz energy density [J/m?] is

¥ _ R,T In v aa(T) In v —myb
COSIE Ty v—>b) (m —my)bv v—mb)
2

The expression is valid if m; # m,. The Helmholtz energy was
further differentiated to give the thermodynamic variables. A
complete thermodynamic description of the system was ob-
tained by linking the residuals to the properties of the ideal
gas state. A comprehensive consistency check was applied to
assure a fully consistent thermodynamic framework.*

A. The square gradient model

The square gradient model is frequently used to describe
the surface between two phases, also in systems with spherical
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symmetries, such as bubbles and droplets.>*3+*3 Since ther-
modynamic equilibrium in the canonical ensemble is charac-
terized by a minimum in the Helmholtz energy, we find the
molar density distributions, c;, which give a stationary state
of the Helmholtz energy functional

fsgm = / dr feem(T, ¢, Ve)
Viot

1 &
= ledr feos(T,C)-i-EZKijVCi'VCj .3

ij=1

Here, subscript sgm refers to the square gradient model. In
the following, a bar over the symbol refers to a functional of
the whole distribution of the temperature, densities, and the
gradients of the densities. ¢ will be used as short hand notation
for the set {c1, ..., cn,} and Ve for the set {Vcy, ..., Vep, ).
Bold variables are either vectors or matrices (capital letters).
The total number of particles of each component is specified
by integral constraints

News = f ¢, dr. @)
‘/‘Ol

We know from variational calculus that the constrained mini-
mum is a stationary state of the modified functional

N,
g = /V dr (fsgm(T, evo -3 c,-usgm,,) G
L
Here, (tsgm,; is the Lagrange multiplier of component i, which
is equal to the chemical potential in the square gradient model.
Note that, in the canonical ensemble that we are consider-
ing, flsgm,i 1s not fixed a priori, but it is rather obtained from
the stationary density profiles. We used the label “sgm” in
Eq. (5) to emphasize this. The Euler-Lagrange equations with
integral constraints require that the first variation of  is zero,
8Q/8c; = 0, which gives the following expression for the
chemical potentials, if the square gradient parameters, « ;, are
constant:

N,

2
Msgm,k = Meos,k — E kixVoe;
i=1

Ne 2 Bcl 9%c;
= Meos,k — Z’Qk ( 3}’2 ) (6)

Note that the square gradient parameters are symmetric. Here,
the second line is a simplified expression valid for a system
with spherical symmetry around the center, such as in Fig. 1.
This can be rewritten in matrix form

M, - Vzc = Meos — Msgm- )

The matrix M, is such that the (i,j) element equals «j;.
Here, psgm and peos are the chemical potential vectors. The
mixing rule for the square gradient constants is defined ac-
cording to the most common expression «;; = ,/k;«x;. This
mixing rule is numerically convenient and for many mixtures,
it gives accurate predictions of the surface tension. The ma-
trix is then singular with row rank 1, since row i equals row j
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times ,/k; /k ;. This allows us to reformulate the multicompo-
nent square gradient model with the structure parameters «,
&;,and g

K = Kp, (8)
5=, ©)
K
N.
q = ZS,‘C,’. (10)
i=1

Component b refers to the most abundant one (highest Ny ;).
We relate the other square gradient parameters to this com-
ponent through &; (note that &, = 1). Since the coefficient
matrix M, has row rank 1, the system of differential equa-
tions in Eq. (7) can be reduced to one differential equation and
(N, — 1) algebraic equations

Meos,b — Msgm,b = K VZQa (11)

(Meos — ﬂ'sgm) — &(Meos,p — Msgm.b) = 0. (12)

In terms of the order parameters, the state function densities
([J/m3] and [J/K m3]) and pressures [Pa] are given as follows:

K
fsgm: feos‘l‘E(VQ)z» (13)
K 2
Usgm = Ueos + E(Vq) ’ (14)
Ssgm = Seos» (15)
hsgm = heos — KqVZQv (16)
8sgm = 8eos — KqV2Qv 17)

1
Psgm = Psgm,ll = Peos — EK(VQ)Z - vazq’ (18)

1
Pggm, 1 = Peos + EK(VQ)Z - KqVZQ~ (19)

This treatment of the multicomponent square gradient model
is similar as in Ref. 24, which we refer to for further details.

1. Solution method

In addition to the second order partial differential
equation, Eq. (11), which can be represented as two
first order differential equations, the cumulative mass,
Niot,i (r)=4m for r2c;dr, is used as additional variable,
satisfying

aNtot,i
ar

The combined system of differential and algebraic equations
was solved using the “bvp4c” solver in Matlab, coupled
with a multidimensional Newton-Raphson approach to
solve the system of algebraic equations at each iteration.
The Jacobian matrix of the Newton-Raphson approach was
constructed based on the Hessian matrix of the Helmholtz

= 4nr’c;. (20)
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energy. In addition to the temperature and the total volume,
the following (2+N,) boundary conditions are necessary to
fully specify the boundary value problem:

3 9
a2 oy, 1)
r |,—g., or |,_o

Niot,i |r:Rm = Niot,i- (22)

The first boundary condition in Eq. (21) means that we
have assumed a reflecting wall at » = Ry, with no surface
energy. This assumption has been used previously for
similar systems,** and is expected to have little effect on
bubbles/droplets when their radii are much smaller than
the container radius. The equimolar dividing surface of
component i is defined as**

Rlol
0=f dr[ci(r) =¢;(0)O(Ry,i —r) = Ci(Rio) O(r — Ry i)].
0

(23)

Here, ® is the Heaviside step function. We will refer to the
equimolar radius, R,, as the radius where Eq. (23) is satisfied
for the total density, ¢ = ZlN:Co ¢;, unless otherwise specified.
The densities discussed in this work are scaled with the
density of the liquid-phase at coexistence, cpyax, specified
according to Table I. Ny, is scaled with the number of moles
in a container with homogeneous density ¢pax-

2. Thermodynamic stability analysis of the square
gradient model

The square gradient model gives a stationary state of the
constrained Helmholtz energy functional, but it is not given
whether the state is a minimum, maximum, or a saddle point.
This is decided by the second variation, §; which must be
positive for a minimum

Q. =8 F,

N,
1 . ad i
_ _/ drz<¢i¢j< ﬂeos,l) +Kjiv¢i'v¢j> > 0.
2 Viot ij acc»j T,C,#j

(24)

Subscript ¢ refers to the stationary state. Equality between
the second order functional derivatives follows from the
linear constraints. Note also that there are no cross terms. At

TABLE 1. Data used in the simulations. Component 1 is hexane, compo-
nent 2 is cyclohexane. Surface tension is calculated by the square gradient
model for a flat surface, for the mixture at the temperature and composition
considered.

Variable Value
Temperature 330K

K 4.2x 10713 J m’/kmol?
K2 3.4%10713 J m’/kmol?
Overall mole fractions 0.5

Surface tension | 0.144 N/m
Surface tension ; 0.205 N/m
Container radius, Ry 38 nm

Cmax 8.36 kmol/m?

J. Chem. Phys. 140, 024704 (2014)

the minimum, this equation should be valid for all functions,
¢;, which are sufficiently smooth. Since the constrained num-
ber of particles of each component is already given, perturba-
tions of the density profiles cannot introduce additional mass,
which means that they should satisfy [, dr ¢ = 0.

3. Perturbation functions

We cannot solve Eq. (24) analytically, or test all possible
perturbations of the functional numerically to prove that we
are at a minimum. By partial integration, Eq. (24) can be re-
formulated to a vectorial analogue of the eigenvalue problem
solved for single-component systems.>>® It is challenging to
solve the eigenvalue problem numerically for mixtures. More-
over, for apparently positive eigenvalues, we have no guar-
antee that the smallest eigenvalue has been found, since the
problem is not analytical. On the other hand, we only need
to find one perturbation which violates Eq. (24) to prove that
we are not at a minimum and the state is thermodynamically
unstable.

In this work, we will follow another approach. A set of
perturbation functions, ¢ will be created. Our hypothesis is
that operations which reduce the Helmholtz energy can be
approximated by linear combinations of these. A change in
the equimolar radii of the bubble/droplet is approximated by
a Taylor expansion to first order around the stationary state,
which gives the following perturbations:

dri = Or.i (cci +dri - Veei) — cei- (25)

Here, Q; are normalization constants that satisfy wa[ dr ¢;
= 0. The distances dg, determine the sizes of the pertur-
bations. In the case where dr; = dg j, we call these R-
perturbations, since they correspond to a shift in the equimolar
surface. In the case where dg ; # dg j, but ZlN dr; =0, the
perturbations affect mainly the composition at the surface. We
call these S-perturbations. The bubble/droplet can exchange
mass with the surrounding fluid through the following pertur-
bation functions:

én.i = On.ilcei +dnilcei — Cc,i|r=Rm)) —Cei- (20)

The above perturbation functions are called N-perturbations.
For typical density profiles of bubbles and droplets, they shift
the density of bubbles and droplets compared to the density
of the surrounding fluid. The d’s in the above equations are
constants.

B. The capillary model

Based on previous work on small bubbles and
droplets,?31:45:46 we define a modified bubble/droplet
model, referred to as the capillary model. Let us assume that
the bubble/droplet and the exterior both have homogeneous
thermodynamic properties separated by an interface at R,
with constant surface tension, o, with a value which does not
depend on R,. The external phase is connected to a reservoir
at temperature, 7. The changes in the internal energies of the
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gas (g) and liquid phases (1) are

Nc
dUy = TdS, — PodVy + Y jgid i, 27)

i=1

Nc
dUy = TdS; — PdVi+ ) juidNii +odA.  (28)
i=1

Here, A is the area. In this modified capillary model, the sur-
face has been assigned to the liquid phase,’® contrary to the
more sophisticated Gibbs model, where a separate surface
phase is identified."*’ The total number of moles of each
component and the total volume are constant. Moreover, the
bubble/droplet is assumed to be perfectly spherical. This gives
the following total Helmholtz energy differential:

20 Ne
dFo=—\ P, — P, — R_ dv, + Z(U«n,i - Me,i)dNn,i~
" i=1
(29)

Here, we use subscript “n” to denote either a liquid droplet or
a bubble at the center of the container, and “e” for the exterior
(see Fig. 1). All minima of the Helmholtz energy are charac-
terized by dF;, = 0. This leads to equality of the chemical
potentials of both phases and the famous Laplace relation

_20

P, — P, R
n

(30)
The component mass balances for the system give additional
algebraic equations to be satisfied

4 3 3 3

?(C”J'R + Ce,i(Rtar - Rn))) = Nlot,i~ (31)
The Laplace relation and equality of the chemical potentials
are necessary conditions for a minimum, but maxima and sad-
dle points satisfy the same conditions, since they are also
stationary states of the total Helmholtz energy. We have to
investigate the second derivative matrix, H, namely, the Hes-
sian of the Helmholtz energy to resolve whether the solution
is thermodynamically stable, i.e., a minimum

9% Fy PFo ... _0%Fa
V2 oV, 0Ny dV, 0 NpNe
9% Fioy PFo ... _ Fa
aNn.lavn 8Nil 8Nn.]aNn.Nc
H = ) ] ) . (32)
9% Fiot PFa .. P
aIvn,NcaVn 3A’n,NcaI\]n.l 8N§NC

Element (1,1) in the matrix is

92 Fot P, 0P o
=— 33
av? <8Vn + oVe + 27 R 33)
Elements (1,2-N.) and (2-N,,1) are
PFo _ 9*Fur
AVadNnj;  IN,;OV,
JaP, oP, Ofni  Ole;
_ i _ Mn,j T He,j . (34)
ON,; 0N AA Ve

J. Chem. Phys. 140, 024704 (2014)

where we have ignored the composition dependence of the
surface tension. The rest of the elements are

9% Fot _ O An

ONpiONn;  ON,

a:I'Le,i
ONj '

+ (35)

A minimum is characterized by a positive definite Hes-
sian matrix (positive eigenvalues), a maximum by a negative
definite matrix (negative eigenvalues), and a saddle point is
characterized by a non-singular indefinite Hessian matrix. A
singular Hessian means that higher derivatives have to be in-
vestigated. The units of the normalized eigenvectors, v and the
corresponding eigenvalues, A, vary. Since we want to compare
to the second variation with units [J], we define the minimum
eigenproduct

1. g
H.,;, = —min (,Bv Hv,B) = —
2 2
Here, B is a dimensionless constant. Hy,;, can be interpreted
as the smallest second order response to a perturbation in the
capillary model. This quantity has the same properties as the
smallest eigenvalue and shall be used in Sec. III to determine
stability.

Equality of the chemical potential for each component
through the system, together with the mass balances and the
Laplace equation gives a total of 2N.+1 equations, which fully
specify the composition of the interior and exterior of the bub-
ble/droplet and the unknown radius. Equation (34) is valid
with a constant surface tension. We also tried with a compo-
sition dependent surface tension as described in Ref. 31. This
had a negligible effect on the results, and the surface tension
is hence taken constant in subsequent analysis. In the cap-
illary model, the liquid has been considered as compressible,
and its compressibility is determined from the Peng-Robinson
equation of state.

)\min . (36)

lll. RESULTS AND DISCUSSION

Although the formulation in Sec. II has been derived for
multicomponent systems, for simplicity, results will be partic-
ularized for the binary system, hexane-cyclohexane, because
this has been popular in the literature.>**% We have investi-
gated the single-component systems and the two-component
system with several overall compositions. Since all the sys-
tems have the same qualitative behavior, we present results
only for the 50% hexane-cyclohexane mixture in the figures.

Parameters of the models can be found in Table 1. The
square gradient parameters, k| and «;, were chosen such
that they reproduce exactly the surface tension reported for
the single-component systems hexane and cyclohexane at
300 K.* The surface tension used in the capillary model,
reported in Table I, is that predicted by the square gradient
model for a planar surface.

Figs. 2 and 3 show density profiles of three bubble-like
and droplet-like cases. We refer to cases where the density in
the center is lower than at Ry, as bubble-like and the oppo-
site situation as droplet-like. First, let us discuss the possible
stationary states of the square gradient model, and whether
they can be reproduced by the capillary model. For the stable
bubbles and droplets (solid lines in Figs. 2 and 3), the density
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FIG. 2. Bubble density profiles from the square gradient model. Stable bub-
ble, Niots = 0.82 (solid line). Unstable bubble, Nys = 0.86 (dashed line).
Unstable bubble, Nis = 0.04 (dashed-dotted line).

changes from approximately the equilibrium liquid density in
one phase, to approximately the equilibrium vapor density in
the other. For smaller bubbles and droplets which are thermo-
dynamically stable, these densities change only moderately,
as shown in Fig. 1 in previous work.**

From the dashed lines in Figs. 2 and 3, it is clear that
we can obtain density profiles where the size of the bub-
ble/droplet is comparable to the thickness of the surface, even
if these solutions are thermodynamically unstable, as we will
discuss later. The profiles represented by the dashed-dotted
lines are not easily characterized as bubbles or droplets, but
are nonetheless stationary states of the square gradient model.
Even if it is not clear from the figures, a zooming in near
r=0and r = Ry, shows that dc/0r =0 .

At 330 K, the 50% hexane-cyclohexane system gives sta-
tionary states which vary with the total number of particles
as shown in Fig. 4(a) for the capillary model and Fig. 4(b)
for the square gradient model. Both single-component sys-
tems and two-component systems with all compositions in-
vestigated display qualitatively the same behavior as shown
in these figures. It has, to the best of our knowledge, not
been shown before that the solutions of the square gradient
model representing bubbles and droplets can be connected in

© o o
> ) e

Scaled density

o
no

0 10 20 30 Riot
r [nm]

FIG. 3. Droplet density profiles from the square gradient model. Stable
droplet, Nios = 0.47 (solid line). Unstable droplet, Niys = 0.02 (dashed
line). Unstable droplet, Ny s = 0.87 (dashed-dotted line).

J. Chem. Phys. 140, 024704 (2014)

a closed loop as in Fig. 4(b). This shows the importance of
considering bubbles and droplets as connected phenomena,
instead of treating them separately according to the most com-
mon procedure. The figures show that four stationary states
are possible for given values of the scaled total mass in the
container.

The bubble-like solutions transform into droplet-like
solutions at the bullet points where the dashed lines meet the
solid lines. This corresponds exactly to the spinodal points
(see vertical dashed-dotted lines in Fig. 4(b)). At the spin-
odal, the radius of the bubble/droplet diverges, since the so-
lution of the square gradient model is a homogeneous density
profile at that point. Equation (23) will, however, give a finite
radius. The divergence of the square gradient model and den-
sity functional theory at the spinodals is well known and has
been discussed in previous work (see Ref. 50 and references
therein). The symmetry of the stationary solutions is striking.
This symmetry is also reflected in the thermodynamic stabil-
ity of bubbles and droplets. Note that the bullet points in the
top part of Fig. 4 may at first sight look unsymmetrical. A
closer investigation reveals that they are both located before
the curves turn over.

The capillary model reproduces very well the stable
bubble and droplet solution in the whole range of masses.
For the unstable branches, corresponding to the critical clus-
ters, the capillary model reproduces well the bubble and
droplet radii predicted by the square gradient method until
scaled masses of Ny ~ 0.81 and Ny s ~ 0.03 according to
Fig. 4. Other quantities like pressures, densities, and compo-
sitions are also well reproduced,’’ given that the same sur-
face tension is used in the capillary model, as predicted by the
square gradient model for a planar surface. In fact, if the lines
in Figs. 4(a) and 4(b) are placed on top of each other, they are
so similar for large parts of the diagram that they can hardly
be distinguished from each other before they separate near the
spinodals.

After they separate, the radii of the solutions of the square
gradient model follow nearly vertical lines in Fig. 4(b) which
reconnect to form a closed loop. The solutions of the capil-
lary model continue nearly horizontally and diverge. The rea-
son for this divergent behavior is that the surface tension in the
capillary model is fixed. In the square gradient model, the sur-
face tension drops quickly after the minimum bubble/droplet
radii have been reached, and drops to zero at the spinodal.
The capillary model predicts a non-diverging radius at and
also beyond the spinodal points, but both phases are here me-
chanically unstable (thin lines in Fig. 4(a)). These solutions
have no physical meaning.

It is possible that there are more stationary states of the
square gradient model than those presented in Fig. 4(b). For
instance, the trivial homogeneous solution of the square gra-
dient model with homogeneous densities for all components
is not represented in the figures. The trivial solution is thermo-
dynamically locally stable on both sides outside of the region
enclosed by the spinodal points. With an overall composition
which lies within this region, however, a bubble or droplet will
form. Remarkably, both the capillary and the square gradient
model predict the existence of a minimal radius of stable bub-
bles and droplets. Thus, as in the single-component case,**>!
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FIG. 4. (a) Capillary model and (b) square gradient model: Radii of the solutions of the two models as function of the scaled total number of moles. Bubble-like
solutions (red dashed lines) and droplet-like solutions (blue solid lines). The spinodal compositions (dashed-dotted lines). Thin lines in the capillary model mean
that both bubble/droplet and surrounding fluid are mechanically unstable. The bullet points denote a change in thermodynamic stability or nature of solution,

with US: Unstable, S: Stable, MS: Metastable.

it is not possible to stabilize very small bubbles and droplets,
not even in closed systems.

A. Thermodynamic stability

To investigate the thermodynamic stability involves ana-
lyzing the eigenvalues of the Hessian matrix in the capillary
model, and the second variation in the square gradient model
as explained in Sec. II.

First, let us examine the eigenvalues and eigenvectors of
the Hessian matrix in the capillary model. The eigenvectors
can be interpreted for the stationary states representing bub-
bles, but are more convoluted for droplets. One eigenvalue
corresponds to a change in the bubble radius with little ex-
change of mass. The next N, eigenvalues correspond mainly
to exchange of mass from the bubble/droplet to the surround-
ing fluid. Our hypothesis is that the operations represented by
these eigenvectors, and also other relevant operations can be
reproduced in the square gradient model by linear combina-
tions of the N,R,S-perturbations described in Sec. II. Since
the surface tension is fixed in the capillary model, we can-
not change the properties of the surface. This means that the
S-perturbation which changes the composition at the surface
has no equivalent in the capillary model.

In the bottom parts of Figs. 4(a) and 4(b), the bubbles
and droplets go from stable/metastable to unstable. Figs. 5(a)
and 5(d) compare the minimum eigenproduct of the Hessian-
matrix in the capillary model with the second variation of
the square gradient model in the transition from stable to
unstable.

Figs. 5(b) and 5(d) present results with linear combi-
nations of the S,R and N-perturbations giving the smallest
possible value of the second variation. The prefactor in
the minimum eigenproduct was specified according to
B x AV, = (A,dg), such that the length of the eigenvectors
of the minimum eigenproduct corresponds with the perturba-
tion invoked in the square gradient model. This allows us to
compare the response of perturbations in the two models also
quantitatively.

By comparing Figs. 5(a)-5(d), the smallest second
variation is a remarkably good approximation of the minimum
eigenproduct. In particular, they shift from stable to unstable
in exactly the same point. In the stability analysis of the square
gradient model, the main role of the R-perturbation is to shift
the surface. The role of the N-perturbations is to change the
densities inside and outside the bubble/droplet without mov-
ing the surface. The S-perturbation mainly changes the prop-
erties of the surface. We found that the perturbation which
gave the smallest second variation, was a superposition of the
R and the N-perturbations such that the density in the bub-
ble/droplet remained the same. Many superpositions of per-
turbations gave negative second variations and destabilized
the stationary solution in the unstable region, however, the
combination above destabilized bubbles and droplets at the
highest and lowest values of the total mass in the system,
respectively (see Fig. 4).

The S-perturbations, which change the properties of the
surface, were found to increase the second variation in all
cases investigated. This means that the properties of the sur-
face found by the square gradient model attain a minimum
surface energy and only a displacement of the surface leads to
a destabilization.

The largest eigenvalue of the capillary model always
stays positive, meaning that the unstable solutions are saddle
points. This is also the case for the second variation, where
we could always find linear combinations of perturbations
which gave both positive and negative values in the unstable
region.

The difference in Helmholtz energy between a system
with a bubble or a droplet and a supersaturated gas or under-
saturated liquid, AW, is known as the reversible work of for-
mation. We refer to thermodynamically locally stable states
where AW is positive as metastable. Metastable systems with
small bubbles and droplets have higher energies than a ho-
mogeneous fluid, but are stable to perturbations, i.e., local
minima. Before the solutions change from stable to unsta-
ble in the bottom parts of Figs. 4(a) and 4(b), the bubbles
and droplets are metastable with respect to the homogeneous
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FIG. 5. Comparison of the minimum eigenproduct in the capillary model (a) and (c), with the smallest second variation obtained in the square gradient model

(b) and (d) for model for 50% hexane-cyclohexane.

state.””3% This can be seen from Figs. 6(a) and 6(b). They
show results from both models, since AW is close to identi-
cal for the square gradient model and the capillary model. No-
tice the similar behavior of bubbles and droplets in Figs. 6(a)
and 6(b). Other authors have also found metastable droplets,*
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while metastable regions for bubbles are rarely mentioned in
the literature.

In the region between the spinodal points, both bubbles
and droplets are stable. Medium sized droplets, however, have
higher Helmholtz energies than systems with large bubbles
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FIG. 6. (a) The droplet and (b) the bubble: The reversible work of formation near the transition between the stable/unstable solutions of hexane-cyclohexane.
The solutions are stable (solid lines), metastable (dashed-dotted lines), and unstable (dashed lines).
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below a scaled mass, Ny s ~ 0.49, and systems with medium
sized bubbles have higher Helmholtz energies than systems
with large droplets at scaled masses above Ny ~ 0.49. This
is the point where the dashed and solid lines cross in Fig. 4.
It is energetically favorable for the system to form bubbles
when the homogenous fluid is vapor-like, and favorable to
form droplets when the fluid is liquid-like.

IV. CONCLUSION

In this paper, we have investigated the formation and
stability of nanoscale multicomponent bubbles and droplets
in a closed container. We have seen that there exists a min-
imum threshold radius for their formation in the canonical
ensemble. We used the square gradient model for curved sys-
tems to analyze the system from a mesoscopic point of view,
and compared the results to those obtained from the capil-
lary model, which addresses the problem from a macroscopic
point of view. For the hexane-cyclohexane mixture, the capil-
lary model was able to reproduce the results from the square
gradient model in the stable regions well, if the value for the
surface tension obtained from the square gradient model for a
planar surface was used. The solutions of the square gradient
model formed closed loops, which emphasizes the symmetric
and connected nature of bubbles and droplets.

The eigenvalue of the Hessian matrix in the capillary
model, and the second variation in the square gradient model
was used to analyze the thermodynamic stability. For all in-
vestigated systems, the same stability limits were found in the
capillary model and the square gradient model away from the
spinodals, given that the size of the bubble/droplet was not
close to the size of the container. Metastable regions were
located in both models before the minimum threshold radii.
The impossibility of forming very small drops and bubbles
in multicomponent systems has important implications on
nucleation that will be explored in a future work.
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