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Percolation of spatially constrained Erdős-Rényi networks with degree correlations
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Motivated by experiments on activity in neuronal cultures [J. Soriano, M. Rodrı́guez Martı́nez, T. Tlusty, and
E. Moses, Proc. Natl. Acad. Sci. 105, 13758 (2008)], we investigate the percolation transition and critical
exponents of spatially embedded Erdős-Rényi networks with degree correlations. In our model networks, nodes
are randomly distributed in a two-dimensional spatial domain, and the connection probability depends on
Euclidian link length by a power law as well as on the degrees of linked nodes. Generally, spatial constraints
lead to higher percolation thresholds in the sense that more links are needed to achieve global connectivity.
However, degree correlations favor or do not favor percolation depending on the connectivity rules. We employ
two construction methods to introduce degree correlations. In the first one, nodes stay homogeneously distributed
and are connected via a distance- and degree-dependent probability. We observe that assortativity in the resulting
network leads to a decrease of the percolation threshold. In the second construction methods, nodes are first
spatially segregated depending on their degree and afterwards connected with a distance-dependent probability.
In this segregated model, we find a threshold increase that accompanies the rising assortativity. Additionally,
when the network is constructed in a disassortative way, we observe that this property has little effect on the
percolation transition.
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I. INTRODUCTION

The theory of percolation, originally introduced for the
mathematical description of fluid flow through random porous
materials [1], possesses great potential to investigate systems
with random connectivity [2]. Percolation theory has been
applied to many natural and technological systems, such
as electrical conductivity [3], cellular chemical patterns [4],
immune networks [5,6], epidemics [7], or social networks
[8,9]. A pivotal question regards the connectivity or the
number of links in a network at which a giant component
emerges since many structural and dynamical properties of
the network undergo a rapid transition at this point [10,11].
More importantly, the features of the transition may convey
information on the major topological traits of the underlying
network. These aspects have conferred percolation approaches
a remarkable predicting power, particularly in living systems.

Recently, the activity in networks of cultured neurons [12]
has been studied in terms of this theory, with the neuronal
synapses identified as links between cells, and the unison firing
of neurons in the culture identified as percolation [13–16]. The
scaling of the giant component has been used to quantify the
development of connections [14], topological properties of
the underpinned circuitry [13,15,17], as well as their interplay
with the observed neuronal dynamics [14,18].

The first random network of which the percolation threshold
has been calculated exactly in the limit of infinitely large
size is the Erdős-Rényi graph (ER) [19]. The possibility of
an analytical treatment using a mean-field description makes
this simple model particularly attractive. However, several
systems, and most notably neuronal tissues, are embedded in a
physical space. The connection between spatially close nodes
is often more probable than between distant nodes [7,14,20],
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therefore directly affecting the degree distribution, average
path length, and clustering coefficient of random networks
[21–24] (see also [25,26] for reviews). In neuronal systems,
it has been shown that spatial constraints delineate several
topological properties of functional brain networks [27].
Furthermore, metric correlations, inherited from the spatial
embedding of neurons and connections, play an important role
in shaping the collective spontaneous dynamics in neuronal
cultures [28].

Modeling spatial networks is challenging. In many studies,
the connection probability between two nodes i,j of a random
network is given by a function of the link length between
them f (lij ), which is often chosen to be a power law
f (lij ) = lαij . Power-law length distributions of connections
have been empirically observed in social networks [29–31],
the Internet [32], and air transportation networks [33,34].

In addition to the metric constraints, degree correlations
have also been shown to affect the percolation behavior of
random networks [35–42]. A prominent example of such
correlations is assortativity, which describes networks in
which nodes preferably attach to other nodes with similar
degree [35,36]. Detailed criteria for the relevance of degree-
correlations to the percolation threshold were calculated by the
authors of [42]. Assortativity is believed to play an important
role in brain networks since it may provide a subnetwork
of highly connected nodes where information flow can be
reorganized in case of insult [43]. Assortativity in ER networks
was shown to change the universality class of the percolation
transition, while disassortativity was found to be irrelevant in
this regard [41].

In this work we investigate the impact of degree correlations
on the percolation behavior of a spatial random network
with Poisson degree distribution. We find that assortativity
is related to strong changes in the percolation behavior. We
employ two different methods to achieve degree correlations.
In the first method, nodes are homogeneously distributed

1539-3755/2014/89(1)/012116(10) 012116-1 ©2014 American Physical Society

http://dx.doi.org/10.1073/pnas.0707492105
http://dx.doi.org/10.1073/pnas.0707492105
http://dx.doi.org/10.1073/pnas.0707492105
http://dx.doi.org/10.1073/pnas.0707492105
http://dx.doi.org/10.1103/PhysRevE.89.012116


SCHMELTZER, SORIANO, SOKOLOV, AND RÜDIGER PHYSICAL REVIEW E 89, 012116 (2014)

in a spatial domain and degree correlations are enforced
by the wiring probability during network construction. This
probability depends both on distance and the degrees of
nodes to be linked. In the second method, nodes are first
spatially shuffled in dependence on their degree. This results in
networks with homogenous density of nodes, but segregation
in terms of the node degrees. The nodes are finally linked in
a distance-dependent manner. In this way, degree correlations
occur only for spatially constrained networks.

Our study results in two major conclusions. First, in
our nonsegregated spatial networks, assortativity leads to a
decrease of the percolation threshold, as expected from prior
results for nonspatial networks [44]. Second, in segregated
networks, we find a threshold increase that accompanies the
rising assortativity. Interestingly, the segregated case could be
relevant for neuronal networks, where the density of neurons
may be approximately constant in space, but the number of
links per neuron may be space dependent, as possibly occurs
in modular brain networks [27]. If we interpret percolation
as a conveyance of information across a neuronal network,
our results suggest that the transmission is eased by a simple
assortative network, but hindered by a network with degree
segregation.

II. SPATIAL EMBEDDING OF THE RANDOM NETWORK

We first describe the construction of spatial networks with-
out degree correlations. To construct an undirected network
with the desired degree distribution, we use the configuration
model of Newman, Strogatz, and Watts [45]: Each node
is assigned a target-degree, drawn from a desired degree
sequence. The target-degree of a node can be regarded as a
number of stubs, which will be randomly connected to stubs
of other nodes. We focus on the Poisson degree distribution
of the ER graph [46]. For convenience, we quantify network
connectivity with the ratio of the total number of links and
the number of nodes q = E/N , which is related to the mean
degree of the network 〈k〉 = 2q. In our computational network
construction, the nodes are positioned randomly in a domain
of side lengths L × L with L = 100. Then, we randomly
choose a free stub (belonging to node i) and calculate the
probabilities � to connect to remaining free stubs in the
network

�(free stub at node j ) = lαij

Z
, (1)

where lij is the Euclidian distance between the nodes and
Z = ∑

lαij a normalization constant, summing over all re-
maining stubs that node i can connect to. Self-loops and
multiedges are rejected in the algorithm. A stub from node
j is randomly chosen according to this distribution and the
procedure is iterated until all stubs are connected.

The exponent α plays the role of a distance exponent.
For α = 0 there are no metric correlations in the network.
Long-range connections gradually become less probable as α

decreases below zero, until the network is essentially described
by neighbor-to-neighbor interactions for α � −1.

Examples of networks constructed in this way for different
values of the exponent α are shown in Fig. 1. The networks

(a) (b)

FIG. 1. Illustrative network with 300 nodes and 600 links.
(a) Random network without spatial dependence α = 0. (b) Spa-
tially constrained network with α = −10. Note that for α = −10
connectivity is mostly local. Nodes are not shown for clarity.

illustrate that for large |α| the desired distribution of link
lengths cannot be achieved since the probability of long-range
links is very small. The construction algorithm provided by
Eq. (1) gives rise to a distribution of links lengths P (l), as
shown in Fig. 2. As we will elaborate below, only for small |α|
the probability distribution of link lengths follows a power-law
scaling function, of the form

P (l) ∼ lα+1. (2)

The exponent α + 1 originates from the annulus area
2πldl in the relation P (l)dl ∼ lα(2πldl). Due to the fixed
degree of each node, the length distribution in our simulations
cannot follow arbitrarily large negative exponents: As α

decreases, nodes will preferably connect to others in their
close neighborhood. As the wiring procedure progresses, many
nodes reach their target degree and will be rejected from
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FIG. 2. (Color online) Distribution of link lengths in spatial
networks generated with different distance exponents α. Gray (red)
straight lines are fits of the form P (l) ∼ lδ , with δ = 1.0,0.0, − 2.0,

and − 3.4, from the largest to the smallest slope, respectively. Note
that α is the target exponent of the network, while δ is the resulting
exponent of the actual network. δ = α + 1 for α > −4, but for smaller
values of α it holds that δ > α + 1. In all cases the distributions are
constructed with 105 nodes and network connectivity q = 2 and after
averaging over 100 realizations.
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connection. Thus, nodes in the close neighborhood might not
be available and links will extend to more distant areas.

To quantify the limitation in obtaining the desired distri-
bution, we denote by δ the exponent from the distribution
P (l) ∼ lδ obtained by fitting the tail of the length distribution
in our simulations. These fits are shown as gray (red) straight
lines in Fig. 2. We observed that the equality δ = α + 1 holds
only for small values of α, up to α � −3, and fails for larger
negative values. We note that for exponent α � −3, the nodes
will essentially connect to their nearest neighbors, giving rise
to practically the same distributions independently on α. This
“saturated distribution” is indeed characterized by an exponent
of −3, a value that can be estimated as follows.

We consider an extreme scenario, where a random stub at
iteration step m is being connected to the nearest node that has
a free stub. The probability distribution of the distance l of the
connection is then

Pm(l)dl = Z(m)[1 − Pfull(m)][Pfull(m)]n(l)ldl, (3)

where Pfull is the probability of a node to have reached its
target degree and n(l) = cπl2 is the mean number of nodes in
the circle of radius l. Here, c denotes the node density (total
number of nodes divided by the domain area). The prefactor
Z(m) ensures normalization∫ ∞

0
Pm(l)dl = 1. (4)

At each iteration step m two remaining stubs in the network
will be connected, until all nodes arrive at their target-degree.
The probability of a random node to have reached its target-
degree will be a monotonically increasing function from
0 to 1 with increasing m. As a simple estimate, we choose
Pfull = m/M , with M being the target number of links. By
inserting this assumption in Eqs. (3) and (4), we find

Pm(l)dl = Z(m)(1 − m/M)(m/M)cπl2
ldl, (5)

Z(m) = 2πcM

m − M
ln(m/M). (6)

The total probability density of a link to be of length l is then

P (l) = 1

M

M∑
m=0

Pm(l). (7)

For large M , we can approximate the sum by the integral

P (l) = 1

M

∫ M

0
Pm(l)dm. (8)

Solving the integral with Eqs. (5) and (6) inserted, we obtain

P (l) = 4πlc

(1 + πcl2)2
. (9)

In the limit of small and large l, this finally yields

P (l) ∼
{
l, l � 1,

l−3, l � 1.
(10)

This analysis confirms the saturation value of δ = −3 for
large l. Figure 3 illustrates the dependence of δ on α and
the saturation at δ � −3 for α � −4.
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FIG. 3. Relation between the exponents of the preset link length
distribution P (l) ∼ lα+1 and the actual distribution P (l) ∼ lδ after
network construction. The main plot shows that the relation δ = α + 1
of Eq. (2) remains valid down to α ≈ −4. For values below −4,
the exponent δ saturates to ≈ −3. The inset shows the probability
distribution of link lengths for α = −10. Lines are a guide to the eye
to show the scaling of the distribution at the limit of small and large
l, see Eq. (10).

III. MODELING DEGREE CORRELATIONS

We use two different methods to generate degree-correlated
embedded networks. In the first method, degree correlations
are enforced directly by a degree-dependent prefactor of the
connection probability. In the second method, nodes are first
spatially segregated by their degree and then connected in the
same way as in the uncorrelated network.

A. Model 1: Degree-dependent connection probability

In this model, nodes are first randomly distributed in the
spatial domain. Then, two random nodes i and j , separated by
a distance lij , are connected with probability

�(l,ki,kj ) ∼ eρ|ki−kj |lαij , (11)

where ki,kj are their target-degrees, α is the connectivity
exponent introduced before, and ρ is a prefactor which
determines the type and strength of the degree correlations.
When the exponent is negative, nodes preferably connect to
nodes with similar target-degree which results in assortativity,
whereas a positive exponent leads to disassortativity. We
measure degree correlations with the Pearson coefficient r

as defined in [35]

r = 1

σ 2

∑
jk

jk(ejk − QjQk), (12)

where ejk is the joint probability distribution of the remaining
degrees j and k of two vertices at either end of a randomly cho-
sen edge and Qk = ∑

j ejk = ∑
j ekj . The Pearson coefficient

is normalized by the variance σ 2 = ∑
k k2Qk − (

∑
k kQk)2

and ranges from −1 for a fully disassortative network to
1 for a fully assortative network. In Fig. 4, the value of
r is shown for networks with different combinations of
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FIG. 4. Pearson degree correlation coefficient r for spatial net-
works with 105 nodes and different exponents (α,ρ). (©) Assortative
network, (♦) uncorrelated network, (�) disassortative network.

the exponents (α,ρ). Note that spatial constraints also limit
the possibility of imposing degree correlations, indicated by
a decreasing Pearson coefficient for decreasing α. In the
following discussions of model 1, we choose ρ = ±2 for
assortative and disassortative networks, respectively, if not
stated otherwise.

B. Model 2: Spatial segregation of node degrees

In the second model, the nodes are spatially segregated
according to their target-degree before they are connected. The
spatial segregation is achieved by a swapping algorithm similar
to the model of Badham et al. [47]: First, the mean target-
degrees ki, kj within distance d of two randomly selected
nodes is calculated. The radius d is defined so that a circle
of this radius contains on average as many nodes as the larger
target-degree of the two nodes: πd2c = max(ki,kj ), with node
density c = N/L2. N and L2 are, respectively, the number of
nodes in the network and its area. The target-degree of both
nodes is swapped if

(ki − ki)
2 + (kj − kj )2 > (ki − kj )2 + (kj − kj )2, (13)

thus, sorting nodes of similar target-degrees together. The
swapping procedure is illustrated in Fig. 5. The nodes are
then connected in the same way as in the uncorrelated spatial
network with connection probability �(l) ∼ lαij . Note that the
swapping procedure changes the topology of the network
while maintaining the node density, as illustrated in Fig. 6.
We found that a number of iterations S ≈ 103N are needed
until the network reaches a stationary state, e.g., the Pearson
coefficient saturates (Fig. 7). Assortativity emerges for α < 0
because nodes preferably connect to nodes with a similar
degree in their neighborhood, as shown in Fig. 8. While this
model worked well for generating assortative networks, we
found that it was not able to produce disassortative ones.
Therefore, disassortative networks will only be discussed in
the framework of model 1.

FIG. 5. (Color online) Schematic representation of the swapping
procedure for two nodes i and j . The large gray circle shows the
swapping neighborhood range of radius d . Gray (red) dots depict
nodes, with the size proportional to their target-degree. The positions
of the nodes i and j (left) are swapped only if the swapping operation
increases the difference between the mean target-degree of the two
neighborhoods (right).

IV. FINITE-SIZE SCALING METHOD

To quantitatively study the percolation behavior of the de-
scribed networks, we employ standard critical scaling theory.
It is well known that the behavior close to the percolation
transition is associated with power-law scaling [48]. Close to
the percolation threshold qc, the size of the giant component
G and the average size of finite clusters S scale as

G ∼ (q − qc)β, q > qc, (14)

S ∼ |q − qc|−γ . (15)

To obtain the characteristic percolation exponents and thresh-
olds, we use the finite-size scaling method. In infinite networks,

(a) (b)

FIG. 6. (Color online) Comparison of the topological structure
of models 1 and 2, for networks with N = 103 nodes (red spots)
and α = −10. Spot size is proportional to the degree of the node.
Blue lines are representative links between nodes. (a) Construction
using a homogeneous distribution with no swapping (model 1). (b)
Segregated construction (model 2) after 106 node swaps, illustrating
the emergence of highly connected node assemblies.
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FIG. 7. Pearson degree correlation coefficient for networks of
different size with α = −5 after S iterations of the swapping algo-
rithm. About 103N iterations are needed for the Pearson coefficient
to saturate.

the average size of finite clusters diverges at the percolation
threshold, whereas in finite networks it scales with [48,49]

S(q,N ) = N
γ

νd F ((q − qc)N
1
νd ), (16)

where d is the spatial dimension of the system. For spatially
embedded random networks, it has been shown that a useful
definition of d, different from the embedding space dimension,
can be given [50], and a connection to classical percolation
scaling theory can be drawn based on this definition. A
different case is that of the nonspatial complex networks,
where it has been proposed that the product νd can be replaced
by ν̄ in the case that the criticality belongs to the mean-field
universality class [51]. In our scaling analysis below we will
therefore consider only the combined expressions γ /νd and
1/νd. The scaling function F (x) has the limiting behavior
F (|x| → 0) → c1 and F (|x| � 1) → x−γ with a constant c1.
Thus, close to the percolation threshold, we obtain for the
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S = 107
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FIG. 8. Pearson degree correlation coefficient r for model 2
networks with spatial segregation and N = 105, for different number
of node-swaps S. Assortativity emerges for large negative distance
exponents α.
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FIG. 9. Finite-size scaling of mean cluster size of model 1
networks for different values of α and ρ. Data points collapse into a
single curve. The set of percolation threshold and exponents qc, 1

νd
,

and γ

νd
were then obtained by the fitting procedure described in the

main text. For each plot, their values are (a) qc = 0.5, 1
νd

= 0.33,
γ

νd
= 0.33; (b) qc = 0.82, 1

νd
= 0.35, γ

νd
= 0.87; (c) qc = 0.55,

1
νd

= 0.33, γ

νd
= 0.33; and (d) qc = 0.96, 1

νd
= 0.35, γ

νd
= 0.85.

average size of finite clusters

S(q,N )N− γ

νd ∼ N
1
νd (q − qc). (17)

At q = qc, the giant component mass NG(N ) scales with
[48,49]

NG(N ) ∼ N
D
d , (18)

where D is the fractal dimension of the system that is related
to the scaling exponents by the hyperscaling relation [48,49]

D

d
= 1

2

(
1 + γ

νd

)
. (19)

The original ER graph belongs to the same universality
class as the mean-field transition [19]. In the limit of large
network sizes, the percolation exponents and thresholds can
be calculated analytically. The exponents of this universality
class are γ = 1 and dν = 3, while the value of the percolation
threshold depends on the scaling of the connectivity. In our
case we have qc = 0.5.

Using the relation of Eq. (17) for the average size of
finite clusters S(q,N ), we obtain the percolation threshold
qc as well as the exponents γ and νd. This is achieved by
plotting the rescaled S(q,N ) close to the percolation threshold
qc for different network sizes N . The percolation threshold
and exponents are then fitted, providing a collapse of the data
points into a single curve. In Fig. 9 we show exemplary plots
of the rescaled mean cluster size using the relation of Eq. (17).
Data points collapse into a single curve, indicating that the
scaling exponents and percolation threshold are reliable.

From Eq. (19), the exponents γ and νd can then be used
to calculate the fractal dimension D/d, which will be used to
characterize the percolation transition.
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FIG. 10. (Color online) Scaling of giant component mass NG

at different q for an assortative model 1 network with ρ = −2 for
(a) α = 0 and (b) α = −3. The gray (red) dashed lines are guides to
the eye.

It was shown by Noh [41] that in highly assortative ER
networks the relation of Eq. (17) for the mean cluster size is not
valid. However, these networks still show power-law scaling
for the giant component. Interestingly, this scaling exists not
only at qc, but below the threshold as well

NG(q,N ) ∼ Nκ(q) for q � qc. (20)

The property that the scaling does not appear above qc will be
used to estimate the critical transition point qc, as follows. We
plotted NG(q,N ) as a function of N for successively smaller
q values, and chose qc to be the value where the power-law
dependence emerges, which is indicated by a linear behavior in
a log-log plot (Fig. 10). A linear log-log graph emerges for the
lowest q value in the plots, indicating the correct power-law
dependency of Eq. (20). This method is indeed a valuable tool
to characterize the percolation threshold of spatial networks,
as shown by Li et al. [44]. The values of qc estimated by this
method are consistent with those obtained by the finite-size
scaling (data not shown). However, we found the finite-size
scaling method to be much more precise.

−10 −8 −6 −4 −2 0
α
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q c

FIG. 11. Percolation threshold for different values of α for
uncorrelated networks (• , ρ = 0), compared to correlated networks
generated with model 1: assortative networks (�, ρ = −2) and
disassortative networks (�, ρ = 2). Uncorrelated and disassortative
networks show a similar trend, while assortative networks display
a significant decrease of the percolation threshold compared to the
others.

V. RESULTS

A. Uncorrelated spatial networks

We first consider the uncorrelated embedded network.
The solid circles in Figs. 11 and 12 show the dependence
of qc and D/d on the distance exponent α. For α larger
than −2, we find numerically D

d
= 0.66 and qc = 0.5. Using

Eq. (19) these values correspond to the expected results for
the universality class of random ER graphs with mean-field
behavior ( γ = 1, νd = 3, [51]). For α < −2 in Fig. 11,
we observe a positive shift of the percolation threshold. For
strong constraints (α < −5), we calculated D

d
= 0.945, which

is close to the fractal dimension for regular two-dimensional
lattices D/d � 0.95. In the intermediate region −5 < α < −2
the values of the fractal dimension are in between (Fig. 12).
This result indicates a shift of the percolation transition from
the universality class of random networks to the universality
class of two-dimensional lattices.

Similar results were found for spatial ER networks on a
grid by Li et al. [44]. Note that the fractal dimension shown
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FIG. 12. Fractal dimension at criticality for different values of
α for uncorrelated networks (•), compared to correlated networks
generated with model 1: assortative networks (�) and disassortative
networks (�). Only assortative networks show a significant decrease
in the fractal dimension, which saturate for all network constructions
at α � −5.
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in Fig. 12 saturates for values of α < −5, which is the value
where the exponent of the link length distribution saturates
(Fig. 3), whereas the percolation threshold still changes for
values α < −5.

B. Model 1: Correlated spatial networks with degree-dependent
connection probability

We now investigate the impact of degree correlations on the
percolation transition in embedded networks (open symbols in
Figs. 11 and 12). The corresponding Pearson coefficients for
networks with ρ = −2 and 2 were previously described in
Fig. 4(a). Exemplary plots of the dependence of the giant
component and the mean cluster size on connectivity, for
N = 105 and different values of α, are shown in Fig. 13. For
α = 0, assortativity decreases the percolation threshold, while
disassortativity slightly increases it.

An evaluation using the finite-size scaling method reveals
that, similar to the uncorrelated case, spatial embedding
(α < 0) generally increases the percolation threshold in both
correlated networks (assortative or disassortative, open sym-
bols in Fig. 11). With assortativity, the percolation threshold
always remains significantly below the uncorrelated case,
indicating a persistent effect of positive degree correlations
on the transition. However, disassortativity results in small
changes of qc. Clearly, the percolation threshold of the
networks is affected by an interplay of both spatial constraints
and degree correlations.

For both types of correlations we have also calculated the
fractal dimension D/d (open symbols in Fig. 12). Again,
disassortativity has little effect, while for assortative networks
and long-range connectivity (0 > α > −5) we observe a
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FIG. 13. Influence of α in the percolation threshold and mean
cluster size for model 1 networks with 105 nodes. (a,b) Size of
the giant component for two extreme values of α, corresponding
to nonspatial networks (α = 0) and spatial ones (α = −10), re-
spectively. Three network configurations are compared: uncorrelated
(ρ = 0), assortative (ρ = −2) and disassortative (ρ = 2). Assortative
networks always decrease the percolation threshold, i.e., less links
are required to observe the emergence of a giant component. (c,d)
Dependence of the mean cluster size on α for the same three networks.
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FIG. 14. (Color online) Dependence of the percolation threshold
qc for model 1 networks on the Pearson coefficient r and the distance
exponent α. Open symbols show the actual data points for the
construction of the plot.

strong decrease of D/d compared to the uncorrelated case.
Similarly to the uncorrelated network, a transition regime ex-
ists for −5 < α < −2, where intermediate values of the fractal
dimensions D/d were found. For α < −5, the percolation
transition for both networks conforms to the universality class
of two-dimensional lattices with D/d = 0.945. It is interesting
to note that, although the fractal dimensions of both networks
are similar for α < −5, the assortative network exhibits a much
smaller qc.

Figure 14 shows a contour plot of the dependence of the
percolation threshold qc on the Pearson coefficient r and
the distance exponent α. Clearly, the threshold-increasing
effect of spatial constraints (large negative α) competes with
the threshold-decreasing effect of assortativity (large r). The
plot is very illustrative to understanding the behavior of the
constructed networks. Assortative networks with no spatial
constraints (α = 0) need in general less links to achieve global
connectivity or, in other words, the giant component is more
robust to removal of links. The addition of spatial constrains
(α � 0) does not significantly modify the properties of the
network as far as a the balance between short- and long-range
connections is maintained (top-right corner of Fig. 14). Only
for strong locality (α � −4) is the network compromised
by a substantial increase in qc. Disassortative networks, on
the other hand, are always characterized by a high qc that
increases even more when spatial constraints are introduced,
revealing a high vulnerability of the giant component to link
removal.

C. Model 2: Assortative spatial networks with
segregated degrees

The network construction algorithm used in model 2 gives
rise to topologies that are always assortative when locality is
dominant (α � −2), as shown in Fig. 8. We note that for α = 0,
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FIG. 15. Topological features of model 2 networks (S = 108),
characterized by a spatial segregation of node degrees. (a) Percolation
threshold as function of the distance exponent α. (b) Fractal
dimension at criticality as a function of α.

the links are effectively random and the spatial segregation of
node degrees does not affect network topology. Therefore,
for α = 0, the network is uncorrelated and characterized by a
mean-field percolation behavior.

As α decreases, both the percolation threshold and fractal
dimension significantly increase. As shown in Fig. 15, the steep
increase is followed by the saturation of the two numbers for
α � −5. The percolation threshold saturates at about qc � 1.2,
a value that is significantly larger than the 0.95 observed in the
uncorrelated case at saturation.

The contour plot of Fig. 16 shows that the threshold-
increasing effect of locality (α � −1) is intensified by
assortative degree correlations (large r). Thus, networks with
short-range links that are increasingly vulnerable to link
removal become even more fragile. This behavior is contrary to
model 1 networks, where assortativity enhances the robustness
of the network. Note that in model 2 networks, assortativity
can only emerge for nonrandom networks, e.g., for networks
with high locality. Therefore, the top-right corner of Fig. 16
cannot be accessed by this model.
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FIG. 16. (Color online) Dependence of the percolation threshold
qc for model 2 networks on the Pearson coefficient r and the
distance exponent α. Open symbols show the actual data points for
the construction of the plot. Extrapolation to values that cannot be
analyzed directly is omitted (gray area).

D. Comparison of network models

All of the three network architectures have in common a
metric construction inherited from spatial constraints (incor-
porated through the “distance exponent” α), but differ in the
way additional node degree correlations are introduced. A first
architecture is the simplest, uncorrelated one, with only spatial
constraints. The other two comprise an assortative topology
derived from degree correlations (model 1), and a topology
that includes both node segregation and degree correlations
(model 2).

The dependence of qc on α for the uncorrelated network
provides a reference for the understanding of the behaviors
of models 1 and 2. In both models the percolation threshold
increases for increasing localization and saturates for small
α. A contrasting picture for the two models appears in
the dependence on assortativity. For model 1 networks, the
percolation threshold decreases with increasing r , while it
increases for model 2 networks. Indeed, assortative model 1
networks percolate more easily because high-degree nodes
tend to connect to a subnetwork which spans the whole
spatial domain and is resilient to random removal of links.
Thus, the effect on percolation in this case is comparable
to assortativity in nonspatial random networks, where the
percolation threshold is found to decrease or even vanish
[35–42].

For model 2, the prior segregation of nodes by degree results
in an interesting effect. With weak spatial correlations (α � 0),
model 2 is very similar to the uncorrelated network, possibly
because long-range connections dominate degree correlations.
For α � −3, spatial constraints favor short-range connections
while still maintaining long-range connectivity. This archi-
tecture facilitates the interconnectivity of the high degree
nodes, which are spatially close after segregation, giving rise
to a subnetwork of highly connected nodes that extends the
entire system, slightly reducing the percolation threshold.
In contrast, for α � −10, short-range connections become
dominant, giving rise to weakly interconnected modules of
high degree nodes, a configuration that substantially increases
the percolation threshold. Note that spatial segregation, which
places high-degree nodes close to one another, is crucial
in shaping such a network. Nodes indeed become inhomo-
geneously distributed in space and form dense connectivity
clusters that are separated by depleted areas (see Fig. 6). These
subnetworks easily disconnect from one another when links are
randomly removed, leading to the observed higher percolation
threshold.

In the comparison between the two models we have ex-
cluded the disassortative case of model 1 since model 2 cannot
generate disassortative topologies. In general, however, we
have observed that disassortative networks do not significantly
differ in percolation behavior from spatially embedded ER
networks.

VI. CONCLUSION

The spatial embedding of complex networks is often found
to play a role that is more important than initially thought.
Prominent examples are power grids, transportation, and
mobile phone networks [25]. Here the knowledge of topology
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is not sufficient and the extraction of network properties can
be misleading when metric properties are ignored. In neuronal
tissues, the importance of spatial embedding has been often
ignored in the analysis of their formation, structure, and func-
tion. Indeed, the study of spatially embedded neuronal systems
may not only provide a good example for the combination
of metric properties with graph theory, but also advance our
understanding of spatial networks in general. An attractive
system is a neuronal network in culture, which is typically
grown on a two-dimensional substrate [12] or patterned to
follow specific circuits and designs [52]. The topological
features of standard, two-dimensional cultures were studied
experimentally and theoretically within a percolation frame-
work [13–15], although in the context of nonspatial graphs.
These studies concluded that the neurons’ degree distribution
was Poisson-like, which supports an Erdős-Rényi description
of the neuronal network. However, it may be possible that
the connectivity degree distribution and the distribution of
connectivity lengths substantially change with the spatial
location of the neurons and the wiring of connections, as
suggested from experiments in patterned neuronal networks
[53–56].

Our models presented here take into account more complex
features of the network that may provide a better description
of topological features in such cultures. This regards not only
the spatial embedding of the network, but also the possibility
that the network exhibits correlations in the degree of the
nodes, which have been found in some neuronal networks
[57,58]. We tackle the issue by numerical percolation analysis
for random networks with power law length distributions and
degree correlations.

Our results are twofold. First, the impact of spatial con-
straints on degree-correlated random networks is qualitatively
similar to the uncorrelated case. As Li et al. [44] recently
showed, spatial constraints generally increase the percolation
threshold and shift the percolation transition from the uni-
versality class of random graphs to the universality class of
two-dimensional lattices. Second, assortativity decreases the
percolation threshold of spatial random graphs when nodes are
distributed randomly in space, whereas assortativity increases

percolation when nodes are spatially segregated by their
degree. Therefore, regarding percolation, degree correlations
cannot be treated as an independent topological feature, but
must be taken into account together with the geographical
properties of the network.

Our models may be valuable in other contexts, including the
resilience of the network to insult and the interplay between
topology and dynamics. Hence, in the future, and following the
experimental concept in Breskin et al. [13], we aim at carrying
out experiments in neuronal cultures with distinct architectures
to test and refine our study. We foresee that the comparison of
the experimental and numerical curves of the giant component
G(q,N ) will provide a valuable insight on the existence
of assortativity an degree correlation in neuronal cultures.
Additionally, recent studies have provided tools for the re-
construction of connectivity in neuronal cultures from activity
data [59], which allows the identification of degree correlations
and the characteristics of connectivity length distributions.
This information will be highly valuable to test the validity
of our models and their applicability to experimental data.
Our ultimate goal is to comprehend the interplay between
connectivity degree correlations, percolation threshold, and
neuronal network dynamics.

Finally, we would like to stress that our findings could
be of importance for further systems. For example, in dis-
ease spreading, research focuses on the resilience of social
networks. Social networks usually show assortative degree
correlations [35,36] and evolve under geographical constraints
[25]. The idea that social networks are resilient to failure
because they are assortative could be reexamined, taking into
account their geographical characteristics.
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[27] P. E. Vértes, A. F. Alexander-Bloch, N. Gogtay, J. N. Giedd,

J. L. Rapoport, and E. T. Bullmore, Proc. Natl. Acad. Sci. 109,
5868 (2012).

[28] J. G. Orlandi, J. Soriano, E. Alvarez-Lacalle, S. Teller, and
J. Casademunt, Nat. Phys. 9, 582 (2013).

[29] R. Lambiotte, V. Blondel, C. De Kerchove, E. Huens, C. Prieur,
Z. Smoreda, and P. Van Dooren, Phys. A (Amsterdam, Neth.)
387, 5317 (2008).

[30] D. Brockmann, L. Hufnagel, and T. Geisel, Nature (London)
439, 462 (2006).

[31] D. Liben-Nowell, J. Novak, R. Kumar, P. Raghavan, and
A. Tomkins, Proc. Natl. Acad. Sci. USA 102, 11623
(2005).

[32] S. Yook, H. Jeong, and A. Barabási, Proc. Natl. Acad. Sci. 99,
13382 (2002).

[33] G. Bianconi, P. Pin, and M. Marsili, Proc. Natl. Acad. Sci. 106,
11433 (2009).

[34] A. Barrat, M. Barthélemy, and A. Vespignani, J. Stat. Mech.:
Theory Expt. (2005) P05003.

[35] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002).
[36] M. E. J. Newman, Phys. Rev. E 67, 026126 (2003).
[37] R. Xulvi-Brunet and I. M. Sokolov, Phys. Rev. E 70, 066102

(2004).
[38] R. Xulvi-Brunet, Ph.D. thesis, Humboldt Universität zu Berlin,

Berlin, 2007.
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