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7 Abstract The organization, assembly and remodeling of

8 the actin cytoskeleton provide force and tracks for a variety

9 of (endo)membrane-associated events such as membrane

10 trafficking. This review illustrates in different cellular

11 models how actin and many of its numerous binding and

12 regulatory proteins (actin and co-workers) participate in the

13 structural organization of the Golgi apparatus and in traf-

14 ficking-associated processes such as sorting, biogenesis and

15 motion of Golgi-derived transport carriers.

16

17 Keywords Golgi apparatus � Cytoskeleton � Actin �

18 Spectrin � Myosin � Rho GTPases

19 Introduction

20 The function of the Golgi apparatus is the result of a

21 complex interaction between the molecules that establish

22 its architecture, those that determine protein transport and

23 those that integrate signals from either outside or inside the

24 cell. Cytoskeletal elements (microtubules, actin filaments

25 or microfilaments and intermediate filaments) integrate

26 these processes. Association and coordination between

27 them as well as their respective binding and regulatory

28proteins are present in the majority of endomembrane

29systems, including the Golgi apparatus. While its basic

30function is highly conserved, the Golgi varies greatly in

31shape and number from one organism to another. Briefly, it

32ranges from dispersed cisternae or isolated tubular net-

33works as occurs in algae, protozoa and the yeast Saccha-

34romyces cerevisiae, to a pile of flattened cisternae aligned

35in parallel and known as the Golgi stack. This, depending

36on the organism examined, could be present in a single

37(fungi and the yeast Pichia pastoris) or multiple copies, the

38latter being scattered throughout the cytoplasm (plants and

39Drosophila) or organized as a ribbon around centrioles

40(vertebrates) (daSilva et al. 2004; Hawes and Satiat-Je-

41unemaitre 2005; He et al. 2004; He 2007; Henderson et al.

422007; Kondylis and Rabouille 2003; Ladinsky et al. 1999;

43Lowe 2011; Mogelsvang et al. 2003; Pelletier et al. 2002;

44Preuss et al. 1992; Rambourg and Clermont 1986; Ram-

45bourg et al. 2001; Ramı́rez and Lowe 2009; Rios and

46Bornens 2003; Rossanese et al. 1999). The cytoskeleton

47determines the location of the Golgi, and depending on the

48cellular model, either microtubules or actin filaments have

49the greater influence (Egea and Rios 2008), the impact of

50intermediate filaments being very limited (Gao and Sztul

512001; Gao et al. 2002; Styers et al. 2006; Toivola et al.

522005). Historically, microtubules were the first cytoskele-

53ton element to be linked to the Golgi structure and function

54(Thyberg and Moskalewski 1999), and only later was it

55firmly established that actin and associated proteins (actin

56et al.) also played a significant role (for recent reviews see

57Brownhill et al. 2009; Egea et al. 2006; Harris and Tepass

582010; Hehnly and Stamnes 2007; Lanzetti 2007; Loubéry

59and Coudrier 2008; Myers and Casanova 2008; Ridley

602006; Smythe and Ayscough 2006; Soldati and Schliwa

612006). Here, we provide an up-to-date overview of the

62structural and transport consequences of the coupling
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63 between the actin-based cytoskeleton and the Golgi in a

64 variety of cellular models that are commonly used to

65 investigate membrane trafficking events.

66 Actin and co-workers in the structural organization

67 of the Golgi apparatus

68 The first experimental evidence that actin and the Golgi

69 interacted was that Golgi membranes and Golgi-derived

70 vesicles contained actin and actin-binding proteins (Hei-

71 mann et al. 1999) and that the Golgi invariably compacted

72 when cells were treated with a variety of naturally occurring

73 substances that perturbed the actin organization and its

74 dynamics, which mainly include cytochalasins, latrunculins,

75jasplakinolide and botulinum toxins and are known generi-

76cally as actin toxins or actin drugs (Fig. 1) (di Campli et al.

771999; Valderrama et al. 1998, 2000, 2001). At ultrastructural

78level, the compacted Golgi was seen to depend on whether

79actin drugs depolymerized or stabilized actin filaments,

80giving rise, respectively, to dilatation (Fig. 1) or fragmen-

81tation/perforation of cisternae. Moreover, these ultrastruc-

82tural impairments occurred in a microtubule-independent

83manner, which ruled out synergic cooperation between

84microtubules and actin filaments controlling the shape and

85integrity of Golgi cisternae (Lazaro-Dieguez et al. 2006).

86Golgi compactness is consistently seen when actin partners

87present at the Golgi are perturbed, such as after the depletion

88of the Arp2/3 activator WASp homologue associated with

89actin, Golgi membranes and microtubules (WHAMM)

Fig. 1 Alterations in the Golgi morphology after actin cytoskeleton

disruption. NRK cells treated with the filamentous-actin-depolymer-

izing agents cytochalasin D or mycalolide B show a compacted Golgi

(stained to GM130) in contraposition with the extended one shown by

untreated cells. At ultrastructural level, both actin toxins cause

dilatation of cisternae and an abnormally high number of peri-Golgi

vesicles. Bar for epifluorescence images, 10 lm; bar for ultrastruc-

tural images, 200 nm
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90 (Campellone et al. 2008), cortactin (Kirkbride et al. 2012) or

91 myosin 18A, an unconventional myosin that connects fila-

92 mentous actin to the phosphatidylinositol 4-phosphate

93 (PI4P)-binding protein GOLPH3 (Dippold et al. 2009; Ng

94 et al. 2013) (Fig. 2a). However, in some cases, interference

95 with the actin machinery produces fragmentation (and dis-

96 persion) of the Golgi, which occurs after the depletion or

97 constitutive activation of actin nucleators formin family

98 members mDia (mammalian Diaphanus), the formin-like

99 1/FMNL1 and INF2 (Colon-Franco et al. 2011; Ramabha-

100 dran et al. 2011; Zilberman et al. 2011). Taken together,

101 these findings reinforce the notion that the proper regulation

102 of actin at the Golgi is necessary to maintain the structural

103 integrity of the Golgi apparatus.

104 Other important cytoskeletal organization in which actin

105 is integrated corresponds to that formed by spectrin. In red

106 blood cells, the spectrin-based cytoskeleton determines

107 their characteristic biconcave shape and localizes as a

108 bidimensional network beneath the plasma membrane.

109 Defects in major components (spectrin, ankyrin and protein

110 4.1) are associated with abnormal cell shape and membrane

111 fragility (Lux 1979). By analogy with erythrocytes, the

112 Golgi-associated spectrin skeleton could act as an exten-

113 ded, two-dimensional interactive platform on the cyto-

114 plasmic surface of cisternae, regulating its shape and

115 transport functions (Beck et al. 1994; Beck and Nelson

116 1998; Holleran and Holzbaur 1998; Godi et al. 1998; De

117 Matteis and Morrow 2000). While mammalian red blood

118 cells contain only one type of spectrin tetramer (aIbI

119 subunits), nucleated cells contain numerous isoforms of

120 both subunits, being bIII spectrin present at the Golgi

121(Salcedo-Sicilia et al. 2013; Stankewich et al. 1998). Other

122isoforms of the spectrin-based cytoskeleton components

123typically present in the plasma membrane of red blood cells

124have also been localized in the Golgi, such as b and c actin

125(Valderrama et al. 2000), ankyrins AnkG119 and Ank195
126(Beck et al. 1997; Devarajan et al. 1996, 1997), protein

1274.1B (Kang et al. 2009), anion exchanger AE2 (Holappa

128et al. 2001, 2004) and tropomyosin (Percival et al. 2004).

129bIII spectrin is required to maintain the characteristic Golgi

130architecture since its functional interference or knockdown

131causes fragmentation and dilation of Golgi membranes

132(Salcedo-Sicilia et al. 2013; Siddhanta et al. 2003). Most

133likely, the Golgi fragmentation is produced by the loss of

134the direct interaction of bIII spectrin with the dynein/

135dynactin motor complex subunit Arp1 (Holleran et al.

1362001), and distal cisternae swelling is caused by alterations

137in the activity of ionic channels, or in the mechanical sta-

138bility of cisternae or both. Strikingly, actin toxins did not

139perturb the localization of bIII spectrin at the Golgi, which

140indicates that actin dynamics does not participate in the

141association of bIII spectrin with Golgi membranes, but

142PI4P was crucial in such interaction (Salcedo-Sicilia et al.

1432013). The ultrastructural alterations caused by actin drugs

144(Lazaro-Dieguez et al. 2006) and the depletion of bIII

145spectrin (Salcedo-Sicilia et al. 2013) indicate that they

146provide the necessary mechanical stability to cisternae to

147prevent their expected spontaneous swelling due to the

148hyperosmotic protein content in transit through the Golgi

149stack. Ion regulatory molecules such as vacuolar H?-

150ATPase (Moriyama and Nelson 1989) and cation (NHEs)

151exchangers (Nakamura et al. 2005) either resident in the

Fig. 2 Diagram of the secretory membrane trafficking pathways and

events in which actin, Rho GTPases, actin nucleators and myosin

motors are known to participate. a Actin filaments, their polymeri-

zation and dynamics could act as a force for the scission (1), pulling

(2) and propelling (3) of the transport carrier generated in cisternae,

and for maintaining the flattened shape of cisternae (4) and the

extended Golgi ribbon (5). b Rho GTPases and actin nucleators

reported to act in the post-Golgi (1), Golgi-to-ER (2) and ER-to-Golgi

(3) protein transport. c Myosin motors and their known Rab protein

effectors in the post-Golgi (1) and Golgi-to-ER (2) protein transport.

See the text for details
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152 Golgi or in transit to the plasma membrane could con-

153 tribute to this actin/spectrin-dependent cisternal mechani-

154 cal stability, finely regulating intra-Golgi ion concentration

155 and pH homeostasis. In accordance with this idea are the

156 reports that the sorting of some secretory cargo at the trans-

157 Golgi network (TGN) by the actin-filament-severing pro-

158 tein ADF/cofilin activates the calcium ATPase 1 (SPCA1)

159 (Curwin et al. 2012; von Blume et al. 2009, 2011) and that

160 the actin depolymerisation-induced cisternae swelling is

161 accompanied by a rise in the intra-Golgi pH (Lazaro-Die-

162 guez et al. 2006). Therefore, actin seems to regulate the

163 activity of some ionic regulatory proteins present in Golgi

164 membranes, similarly to what occurs at the plasma mem-

165 brane (Mazzochi et al. 2006) (Fig. 2a).

166 Actin and co-workers in the sorting, biogenesis

167 and motion of transport carriers at the Golgi

168 Filamentous actin

169 A key aspect in the structure of polarized cells is the

170 maintenance of polarized molecular organization. This is

171 based on highly specific sorting machinery at the exit of the

172 TGN (Rodriguez-Boulan et al. 2005). Cytoskeleton ele-

173 ments form part of this machinery, and the integrity of

174 actin filaments is necessary for efficient delivery of some

175 proteins destined for the apical or the basolateral plasma

176 membrane domains in both polarized and non-polarized

177 cells, but not for the transport of lipid raft-associated pro-

178 teins (Jacob et al. 2003; Lazaro-Dieguez et al. 2007;

179 Lebreton et al. 2008) (Fig. 2a).

180 Rho GTPases and actin nucleators

181 Tight control of the coupling between Golgi-associated

182 actin polymerization and membrane elongation and fission

183 reactions prevents the structural and functional collapse of

184 the Golgi. Part of this control can be achieved by regulating

185 the activation state of Rho GTPases and downstream

186 effectors in Golgi membranes (Fig. 2b). Briefly, classical

187 Rho GTPases cycle between active GTP-bound and inac-

188 tive GDP-bound forms. There are three types of proteins

189 that regulate this cycle: guanine nucleotide exchange fac-

190 tors (GEFs) activate GTPases; GTPase-activating proteins

191 (GAPs) inactivate them and guanine nucleotide dissocia-

192 tion inhibitors (GDIs) keep GTPases in a GDP-inactive

193 form. Cdc42, which was the first RhoGTPase to be local-

194 ized in the Golgi (Erickson et al. 1996; Fucini et al. 2000;

195 Luna et al. 2002; Matas et al. 2004; Prigozhina and

196 Waterman-Storer 2004; Wu et al. 2000), affects ER/Golgi

197 interface and post-Golgi intracellular trafficking (Harris

198 and Tepass 2010) (Fig. 2b). Constitutively active and

199inactive Cdc42 mutants block the ER-to-Golgi transport of

200anterograde cargo (VSV-G) (Wu et al. 2000). The over-

201expression and activation of Cdc42 (Luna et al. 2002) or

202the knockdown of Cdc42 GAP ARHGAP21 (also known as

203ARHGAP10) (Hehnly et al. 2009) inhibit the Golgi-to-ER

204transport of retrograde cargo (Shiga toxin) (Fig. 2b). Cdc42

205binds cCOPI subunit recruiting N-WASP and Arp2/3 to

206Golgi membranes. p23 (a receptor for cargo containing the

207dilysine motif in the COOH-terminal) competes with

208Cdc42 for binding to cCOPI subunit. Cargo loading by p23

209disrupts the Ccdc42–cCOP interaction and recruits dynein

210to promote the dynein-dependent ER-to-Golgi transport

211(Chen et al. 2005) (Fig. 2b). Therefore, Cdc42 coordinates

212actin- and microtubule-dependent motility of transport

213carriers at the ER/Golgi interface (Hehnly and Stamnes

2142007) (Fig. 2b). In post-Golgi trafficking (Fig. 2b), the

215expression of constitutively active or inactive Cdc42

216mutants slows the exit of basolateral protein markers and

217accelerates the exit of apically destined ones (Cohen et al.

2182001; Kroschewski et al. 1999; Musch et al. 2001).

219ARHGAP21/10 and Cdc42 GEFs Fgd1 and Dbs are also

220present in Golgi membranes regulating post-Golgi vesicu-

221lar transport (Dubois et al. 2005; Egorov et al. 2009;

222Estrada et al. 2001; Kostenko et al. 2005; Menetrey et al.

2232007).

224At first, Cdc42 was believed to be the only Rho GTPase

225working at the Golgi (Matas et al. 2005), but recent data

226also implicate other Rho GTPases and downstream effec-

227tors (Fig. 2b). This is the case for RhoA with mDia

228(Ziberman et al. Zilberman et al. 2011) and Citron-N

229(Camera et al. 2003), RhoD with WHAMM (Gad et al.

2302012) and Rac1 and its exchange factor b-PIX with the

231clathrin heavy-chain-binding protein CYFIP/Sra/PIR121

232(Anitei et al. 2010). RhoD-WHAMM and the ARF1-

233primed Rac1-CYFIP/Sra/PIR121 protein complexes stim-

234ulate the Arp2/3-induced actin polymerization at the Golgi

235and vesicle biogenesis (Anitei et al. 2010; Campellone

236et al. 2008). The ROCK/LIM kinase (LIMK) signaling

237pathway and its substrate cofilin are necessary for apical

238cargoes (Rosso et al. 2004; Salvarezza et al. 2009). RhoA

239GEF-H1 interacts with exocyst component Sec5, which in

240turn activates RhoA-regulating post-Golgi trafficking and

241assembly of other exocyst components (Pathak et al. 2012).

242The presence in Golgi membranes of molecular com-

243ponents that trigger actin polymerization with those that

244control vesicular budding and fission suggests intimate

245molecular coupling between them, which is strongly

246similar to that observed during endocytosis (Mooren et al.

2472012). Actin assembly provides the structural support that

248facilitates the formation of transport carriers in the lateral

249portions of Golgi membranes (Fig. 2a). This can be

250achieved by generating force through actin polymerization

251triggered by actin nucleators, which in turn can be
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252 accompanied by the mechanical activity of actin motors

253 (myosins). In accordance with this idea, Arp2/3, mDia,

254 formin-like 1/FMNL1 and INF2 and Spir1 are all present

255 in the Golgi (Carreno et al. 2004; Chen et al. 2004; Colon-

256 Franco et al. 2011; Kerkhoff et al. 2001; Matas et al.

257 2004; Ramabhadran et al. 2011; Zilberman et al. 2011)

258 (Fig. 2b). At the TGN, there is a functional coupling

259 between dynamin-mediated membrane fission and Arp2/3-

260 mediated actin-based mechanisms (Cao et al. 2005; Car-

261 reno et al. 2004; Kerkhoff et al. 2001; Kessels and

262 Qualmann 2004; Praefcke and McMahon 2004). Interfer-

263 ence with dynamin2/cortactin or dynamin2/syndapin2/

264 cortactin blocks post-Golgi protein transport (Cao et al.

265 2005; Kessels et al. 2006; Salvarezza et al. 2009). As

266 indicated above, in early Golgi compartments, there is a

267 functional connection between actin polymerization gov-

268 erned by Cdc42, coatomer (COPI)-mediated transport

269 carrier formation and microtubule motor-mediated motion.

270 WASH (Wiskott-Aldrich syndrome protein and SCAR

271 homolog) is another Arp2/3 activator that regulates the

272 cation-independent mannose phosphate receptor (CI-MPR)

273 trafficking from endosomes to the Golgi, forming an

274 endosomal subdomain containing Arp2/3, F-actin, tubulin

275 and retromer components (Gomez and Billadeau 2009).

276 The local fine regulation of actin dynamics on the trans-

277 port carrier assembly could represent an early step that

278 precedes its scission in the lateral portions of cisternae for

279 subsequent switching to microtubule tracks for motion

280 (Fig. 2a).

281 Actin nucleation/polymerization activity associated with

282 Arp2/3 on Golgi membranes could also give rise to the

283 formation of actin comet tails, which consist of filamentous

284 actin and various actin-binding proteins that focally

285 assemble and grow on a membrane surface (Campellone

286 and Welch 2010) (Fig. 2a). After the overexpression of

287 phosphatidylinositol 5-kinase, actin tails have been

288 observed only in raft-enriched TGN-derived vesicles

289 (Guerriero et al. 2006; Rozelle et al. 2000). An in vitro

290 approach in liposomes showed actin polymerization

291 occurring after the recruitment of the activated form of

292 ARF1 around liposomes. This actin polymerization was

293 dependent on Cdc42 and N-WASP present in HeLa cell

294 extracts and resulted in the formation of actin comets,

295 which pushed the ARF1-containing liposome forward

296 (Heuvingh et al. 2007). However, actin comet tails do not

297 seem to be an efficient mechanism to provide directionality

298 for transport carriers, in which microtubule tracks, and to

299 lesser extent actin ones, seem more suitable. However, an

300 actin comet tail-like mechanism could easily provide brief

301 local force to facilitate the final separation of the transport

302 carrier at the lateral rims of Golgi cisternae (Fig. 2a)

303 similarly to what happens during endocytosis (Merrifield

304 2004; Merrifield et al. 2005; Taylor et al. 2012), and/or for

305its translocation to closely arranged microtubule tracks

306(Egea et al. 2006) (see green arrows in Fig. 3).

307Myosin motors

308In addition to actin polymerization, myosins also generate

309a force, which can selectively couple protein sorting and

310transport carrier biogenesis and motility. Class I myosin is

311a monomeric, non-processive motor that binds to Golgi

312membranes and is present on apical Golgi-derived vesicles

313of polarized cells (Almeida et al. 2011; Fath and Burgess

3141993; Jacob et al. 2003; Montes de Oca et al. 1997; Tyska

315et al. 2005). Myosin Ib together with actin polymerization

316have recently been shown to participate in membrane

317remodeling to form tubular transport carriers at the TGN

318directed to endosomes and the plasma membrane (Almeida

319et al. 2011; Coudrier and Almeida 2011) (Fig. 2c). It has

320been hypothesized that myosin Ib spatially controls actin

321assembly at the TGN, interacting with F-actin via its motor

322domain and at the membrane via its PH domain. Such

323interaction generates a force concomitantly with the poly-

324merization of actin, leading to membrane curvature chan-

325ges (Coudrier and Almeida 2011; Loubéry and Coudrier

3262008). Coudrier and collaborators have suggested coordi-

327nation between myosin 1b and non-muscle myosin II for

328the scission of tubular carriers at the TGN (Coudrier and

329Almeida 2011). If this is confirmed, it would represent a

330new level of cooperation between different actin motors for

331transport carrier biogenesis. It has been suggested that

332myosin I could also have sorting ability, which could be

333linked to its capacity to interact with lipid raft-associated

334cargo. In this respect, myosin Ic controls the delivery of

335GPI-linked cargo proteins to the cell surface from the

336endosomal recycling compartment (Brandstaetter et al.

3372012), but this does not seem to be the case for myosin Ib

338either at the TGN or in endosomes (Almeida et al. 2011).

339Non-muscle myosin II is another non-processive motor

340that directly interacts with Golgi membranes (Fath 2005;

341Heimann et al. 1999; Miserey-Lenkei et al. 2010) and

342mediates both Golgi-to-ER and post-Golgi protein trans-

343port (DePina et al. 2007; Duran et al. 2003; Musch et al.

3441997; Stow et al. 1998) (Fig. 2c). It was postulated that this

345motor is tethered to the cisterna by its tail and to actin

346filaments by its motor head. Its subsequent motion along

347actin filaments could provide the force needed to extend

348Golgi-derived membranes away from the cisterna (Fig. 2a),

349which could facilitate the functional coupling of membrane

350scission protein(s), leading to the release of the transport

351carrier. In accordance with this hypothesis, myosin II forms

352a complex with Rab6, which facilitates its localization to

353Golgi membranes and controls the fission of anterograde

354and retrograde Rab6 transport carriers (Miserey-Lenkei

355et al. 2010). The Golgi-associated tropomyosin isoform
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356 (Percival et al. 2004) could stabilize short actin filaments

357 formed locally in the cisternae lateral rims during vesicle

358 biogenesis. These short actin filaments together with

359 myosin II could equivalently act as a sarcomeric-like sys-

360 tem to generate the force necessary to split transport car-

361 riers (Fig. 2a). Accordingly, there is an abnormal

362 accumulation of uncoated vesicles close to cisternae after

363 the knockdown of myosin II or the pharmacological

364 blockade of its motor activity (Duran et al. 2003; Storrie

365 et al. 2012) (Fig. 3). Many of them still remained attached

366 to cisternae (see red arrows in Fig. 3), which argues in

367 favor of the participation of myosin II in the fission process

368 (Miserey-Lenkei et al. 2010). However, in another line of

369 evidence, myosin II has been reported to be required only

370 for motion but not for the biogenesis of PKD-dependent

371 transport carriers at the TGN (Wakana et al. 2012).

372 In contrast to endocytic recycling and translocation of

373 secretory vesicles/granules to cell periphery actin cyto-

374 skeleton, there is no clear experimental evidence of myosin

375V activity at the Golgi in mammalian cells (not the case in

376yeast; see below). However, a yeast two-hybrid screen of

377human Rab proteins for myosin Va binding has revealed

378that myosin Va isoform functions in post-Golgi-trafficking

379interacting with Rab6 together with Rab8 and/or Rab10,

380although myosin Va does not localize in the Golgi (B.

381Goud, personal communication).

382Myosin VI is another myosin motor located in the Golgi

383(Buss et al. 2004;Warner et al. 2003) (Fig. 2c). It differs from

384the other processive myosins in that it only moves transport

385carriers toward the fast-depolymerizing minus-end pole of

386the microfilament. Therefore, myosin VI could provide the

387force and directionality for the transport carrier movement

388away from cisternae in accordance with the expected fast-

389growing plus-end polarization of the actin filaments origi-

390nating in Golgi membranes. Myosin VI is involved, among

391many others (Buss and Kendrick-Jones 2008; Sweeney and

392Houdusse 2010), in the maintenance of Golgi morphology

393(Sahlender et al. 2005; Warner et al. 2003). The interaction

Fig. 3 The pharmacological blockade of the myosin II motor activity

by blebblistatin in NRK cells produces an accumulation of peri-Golgi

vesicles close to swollen cisternae. Note that some vesicles remain

connected to cisternae by a narrow neck (red arrows). Microtubules

and actin filaments are, respectively, indicated by green and purple

arrows. Bar 200 nm
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394 between myosin VI and optineurin, a partner of Rab8 (Sah-

395 lender et al. 2005), acts at the TGN of polarized epithelial

396 cells in the protein sorting and basolateral transport mediated

397 by the clathrin adaptor protein complex AP-1B (Ang et al.

398 2003; Au et al. 2007; Jordens et al. 2005). Therefore, the

399 known role of some Rab proteins as linkers of endocytic

400 membranes to cytoskeletalmotors is nowalso extended to the

401 Golgi (Goud and Gleeson 2010).

402 Finally, the unconventional myosin 18A has also been

403 located in distal Golgi membranes (Fig. 2c), where it binds

404 to the PI4P-binding protein GOLPH3. It has been sug-

405 gested that the GOLPH3–Myos18 interaction couples actin

406 filaments to Golgi membranes and the tension generated by

407 this interaction facilitates the maintenance of the extended

408 Golgi ribbon organization and flattens Golgi cisternae

409 (Fig. 2a). In addition, it also seems to support secretory

410 function because the depletion of GOLPH3 blocks the exit

411 of VSV-G from the TGN (Dippold et al. 2009). The con-

412 tribution of this unconventional myosin- to Golgi-associ-

413 ated membrane trafficking requires further characterization

414 because it exhibits low motor activity (Guzik-Lendrum

415 et al. 2013).

416 The Golgi apparatus–actin interaction in other cellular

417 models

418 Plant cells

419 Stationary actin filaments or actin bundles are the most

420 prominent cytoskeleton element in plant cells. They are all

421 oriented with the same polarity and aligned along the plant

422 cell. Attached to the actin bundles are the ER, vesicles and

423 numerous discrete or a few clustered Golgi stack-TGN

424 units, also known as Golgi bodies. They are highly variable

425 in number (from a few tens to hundreds) depending on the

426 plant type, plant cell type and its developmental stage

427 (Boutte et al. 2007; Hawes and Satiat-Jeunemaitre 2005;

428 Kepes et al. 2005). In polarized root hairs and pollen tubes,

429 the TGN is segregated from Golgi bodies, which localize to

430 growing tips, where together with actin, Rho/Rac members

431 (ROPs and Rac1, respectively), Rab (Rab4a and Rab11)

432 and ARF (ARF1) small GTPases regulate secretory and

433 endocytic trafficking (Samaj et al. 2006). Also in this cell

434 type, the motility and positioning of Golgi bodies is highly

435 dependent on the actin organization, being faster and

436 directional in areas containing actin filament bundles and

437 slower and non-directional in areas with fine filamentous

438 actin (Akkerman et al. 2011).

439 In plants, most of the endomembrane compartments are

440 in constant movement together with the cytoplasmic

441 streaming whereby cellular metabolites are distributed

442 throughout the cell (Shimmen and Yokota 2004). Golgi

443bodies show actin-dependent dispersal and spatial organi-

444zation (Boevink et al. 1998) and contain a fine fibrillar

445material enriched in actin, spectrin- and myosin-like pro-

446teins (Mollenhauer and Morre 1976; Satiat-Jeunemaitre

447et al. 1996). The depolymerization of actin filaments with

448actin toxins uncouples the association between specific

449regions of cortical ER with individual Golgi bodies

450(Boevink et al. 1998; Brandizzi et al. 2003), but, and in

451contrast to animal cells (Valderrama et al. 2001), it does

452not perturb the brefeldin A (BFA)-induced Golgi disas-

453sembly (Ito et al. 2012). Thus, cytochalasin or latrunculin

454treatments induce the aggregation of Golgi bodies and

455variably alter the Golgi morphology depending on the cell

456type and the period of treatment (Chen et al. 2006; Satiat-

457Jeunemaitre et al. 1996). Actin toxins also perturb the

458coordinated movement of Golgi bodies and ER tubules (da

459Silva et al. 2004; Uemura et al. 2002; Yang et al. 2005).

460Actin does not participate in the ER/Golgi interface protein

461transport (Saint-Jore et al. 2002), but it does contribute to

462post-Golgi trafficking to the plasma membrane and the

463vacuole. In the tip of growing cells like pollen tubes, actin

464filaments are the tracks through which Golgi-derived

465secretory vesicles are transported (Picton and Steer 1981;

466Vidali et al. 2001). An intact actin–myosin system is

467required for the transport of cargo containing polysaccha-

468rides and the enzymes necessary for cell wall morpho-

469genesis, and the local differences in the actin cytoskeleton

470organization determine where their secretion is required

471(Blancaflor 2002; Crowell et al. 2009; Hu et al. 2003; Kato

472et al. 2010; Miller et al. 1995; Nebenfuhr et al. 1999).

473Finally, Golgi bodies are propelled by plant myosin family

474members, especially the myosin XI class (Avisar et al.

4752008, 2009; Boutte et al. 2007; Higaki et al. 2007;

476Peremyslov et al. 2010; Sparkes 2011).

477Yeast

478The use of a large number of mutants that alter intracellular

479traffic in the budding yeast S. cerevisiae has led to the

480identification of proteins involved in both membrane traf-

481ficking and actin organization (Kaksonen et al. 2006;

482Mulholland et al. 1997). Most components of the secretory

483pathway and many of the actin-based cytoskeleton are

484conserved between yeast and mammalian cells. The actin

485cytoskeleton in yeast consists primarily of cortical patches

486and cables (Moseley and Goode 2006). Actin filaments

487polarize growth in yeast (Novick and Botstein 1985). In

488this respect, many actin mutants accumulate large secretory

489vesicles and exhibit phenotypes consistent with defects in

490polarized growth (Pruyne et al. 2004). This, together with

491the polarized organization of actin cytoskeleton, has sug-

492gested a role for actin in the positioning and orientation of

493the secretory pathway and polarized transport of late
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494 secretory vesicles to the plasma membrane (Finger and

495 Novick 2000; Mulholland et al. 1997; Yamaguchi and

496 Kopecka 2010). A mutation of GRD20, a protein involved

497 in sorting in the TGN/endosomal system, showed aberrant

498 secretion of the vacuolar hydrolase carboxypeptidase Y

499 (but not other TGN membrane proteins) and defects in the

500 polarization of the actin cytoskeleton (Spelbrink and

501 Nothwehr 1999). As in mammalian cells, the actin-sever-

502 ing protein cofilin concomitantly with Pmr1, the yeast

503 orthologue of the secretory pathway calcium ATPase 1

504 (SPCA1), is also required for sorting at the late Golgi

505 compartment (Curwin et al. 2012). Overexpression of

506 Avl9p, a member of a novel protein superfamily, produces

507 vesicle accumulation and a post-Golgi defect in secretion.

508 Its depletion in a strain that also lacks Vps1 (dynamin) and

509 Apl2 (adaptor protein complex 1) results in perturbed actin

510 cytoskeleton organization and defects in polarized secre-

511 tion (Harsay and Schekman 2007). Concentration of late

512 (but not early) Golgi elements at the sites of polarized

513 growth (the bud) depends on actin, which is transported

514 along actin cables by yeast myosin V (Myo2) (Rossanese

515 et al. 2001). Crucial in this process is Ypt11, a Rab GTPase

516 that interacts with Myo2 and Ret2, a subunit of the coa-

517 tomer complex. The polarization of late Golgi cisternae in

518 the bud is not produced in Ypt11D mutant (Arai et al.

519 2008). The Rab protein Ypt31/32 present at the TGN

520 directly interacts with Myo 2 and the secretory vesicle Rab

521 Sec4, whose interaction is modulated by PI4P levels

522 (Santiago-Tirado et al. 2011). Moreover, the Ypt31/32-

523 Myo2-Sec4 complex interacts with exocyst subunit Sec15

524 regulating post-Golgi trafficking and cell growth (Jin et al.

525 2011).

526 With regard to the early secretory pathway, actin fila-

527 ment depolymerization with actin toxins does not affect

528 anterograde ER-to-Golgi protein transport (Brazer et al.

529 2000). However, this is not the case in retrograde Golgi-to-

530 ER trafficking, which is regulated by the ubiquitin ligase

531 Rsp5, a protein that forms a complex containing COPI

532 subunits and has as substrates the actin cytoskeleton pro-

533 teins Sla1, Lsb1, Lsb2, which bind to the Arp2/3 activator

534 Las17 (Jarmoszewicz et al. 2012; Kaminska et al. 2011).

535 Drosophila

536 The Drosophila cellular model is an alternative to yeast to

537 study the Golgi because it shares many structural and

538 functional similarities with the mammalian model,

539 although most Drosophila cells and tissues lack the char-

540 acteristic mammalian Golgi ribbon. Instead, they present a

541 scattered and fairly constant number of what are known as

542 tER-Golgi units, which are ultrastructurally constituted by

543 a pair of Golgi stacks (Kondylis and Rabouille 2009). The

544 integrity of the actin cytoskeleton is crucial for Golgi stack

545pairs since actin depolymerization causes their splitting and

546perturbs Golgi inheritance, which requires duplication to

547form the paired structure. Abi and Scar/WAVE (but not

548WASP) are necessary in this process (Kondylis et al. 2007).

549The inactivation of the golgin-like microtubule/actin-

550binding protein lava lamp prevented the necessary Golgi

551dispersal in the cellularization process (Papoulas et al.

5522005; Sisson et al. 2000). The analysis of a genome-wide

553RNA-mediated interference screen in adherent Drosophila

554S2 cells showed that the depletion of the tsr gene (which

555codifies for destrin, also known as ADF/cofilin) induces

556Golgi membranes to aggregate and swell, resulting in

557inhibition of the HRP secretion (Bard et al. 2006). Coronin

558proteins dpdo1 and coro regulate the actin cytoskeleton and

559also govern biosynthetic and endocytic vesicular traffick-

560ing, as indicated by mutant phenotypes that show severe

561developmental defects, ranging from abnormal cell divi-

562sion to aberrant formation of morphogen gradients

563(Rybakin and Clemen 2005).

564Dictyostelium discoideum

565Cells of this social amoeba are easy to manipulate by

566genetic and biochemical means. They contain various types

567of vacuole, ER and small Golgi stacks (Becker and

568Melkonian 1996). Comitin (p24) is a dimeric Dictyostelium

569actin-binding protein present in the Golgi and vesicles that

570contains sequence motifs homologous to lectins. It seems

571that this protein binds Golgi-derived vesicles to the actin

572filaments via the cytoplasmic exposed mannosylated gly-

573cans (Jung et al. 1996; Weiner et al. 1993). Villidin is

574another actin-binding protein that associates with secretory

575vesicles and Golgi membranes (Gloss et al. 2003). The

576centrosomal protein LIS1 (DdLIS1) links microtubules, the

577nucleus and the centrosome and indirectly controls the

578Golgi morphology. Mutants of this protein lead to micro-

579tubule disruption, Golgi fragmentation and actin depoly-

580merization (Rehberg et al. 2005). AmpA is a secreted

581protein necessary for cell migration in an environment-

582dependent manner that also participates in the regulation of

583actin polymerization. It is found in the Golgi but trans-

584ported to the plasma membrane, where it regulates endo-

585cytosis (Noratel et al. 2012). In addition to Rho GTPases,

586Dictyostelium also contains other Rho-regulated signaling

587components such as RhoGDI, Arp2/3 complex, PAK,

588WASP, Scar/WAVE, formins, GEFS and GAPS (Eichinger

589et al. 2005). The acquisition of cell polarity during che-

590motaxis needs WASP, which localizes on vesicles whose

591formation in the Golgi requires the interaction between

592WASP with the pombe Cdc15 homology (PCH) family

593protein members Nwk/Bzz1-p-like and syndapin-like pro-

594teins (Lee et al. 2009). RacH is a closer protein to Rac and

595Cdc42 which localizes to compartments of the secretory
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596 pathway (nuclear envelope, ER and the Golgi) where it

597 stimulates actin polymerization, and it also seems to be

598 involved in actin-based trafficking of vesicles, but in con-

599 trast to AmpA, it is uncoupled from chemotaxis (Somesh

600 et al. 2006).

601 Caenorhabditis elegans

602 Very little is known about the Golgi and actin cytoskeleton

603 interaction in this organism, but consistent with a possible

604 role of coronin 7 in Golgi trafficking (Rybakin et al. 2004;

605 Rybakin and Clemen 2005), depletion of the coronin 7

606 homolog POD1 leads to aberrant accumulation of vesicles

607 in cells of the early embryo (Rappleye et al. 1999).

608 Moreover, CRP-1, a Cdc42-related protein, localizes at the

609 TGN and recycling endosomes. Alteration of CRP-1

610 expression in epithelial-like cells perturbs apical but not

611 basolateral trafficking (Jenna et al. 2005).

612 Concluding remarks and perspectives

613 The actin cytoskeleton usually works in tight coordination

614 with microtubules (Disanza and Scita 2008). The func-

615 tional relationship between each cytoskeleton network and

616 Golgi dynamics is complementary. In animal cells, actin

617 and co-workers participate in early events of transport

618 biogenesis such as protein sorting, membrane fission and

619 keeping cisternae flat. Microtubules and associated motors

620 are more directly involved in the motion of Golgi-derived

621 transport carriers to their final destinations and in the

622 positioning and organization of the Golgi as a ribbon-like

623 structure (at least in vertebrates) (Brownhill et al. 2009;

624 de Forges et al. 2012). Conversely, in plant cells, endo-

625 membrane compartments and associated trafficking are

626 almost exclusively mediated by actin filaments. In other

627 cellular models, less is known but in general terms, actin

628 cytoskeleton elements regularly participate in post-Golgi

629 protein transport and Golgi inheritance. Finally, the actin

630 cytoskeleton as a dynamic biopolymer surely affects the

631 biophysical properties (rigidity/elasticity and tension) of

632 Golgi membranes. Future research in this biophysical cell

633 biology interactive area will undoubtedly provide valuable

634 information about how actin contributes to the structural

635 and functional organization of the Golgi. Another impor-

636 tant question is how myosin motors participate in the

637 genesis of transport carriers, particularly in providing the

638 force that generates curvature and facilitates membrane

639 fission. In vitro models such as the giant unilamellar ves-

640 icles (GUVs) (Bassereau and Goud 2011) will help to our

641 knowledge of the precise molecular mechanism and

642 sequence of this process. According to the evidence

643furnished by this particular line of research, curved mem-

644branes, but not flat ones, use phosphoinositides to stimulate

645Cdc42-N-WASP-Arp2/3-driven actin polymerization

646(Gallop et al. 2013). Finally, the results that clearly

647implicate actin in protein sorting and the identification of

648molecular targets that directly regulate the ionic environ-

649ment of the TGN/Golgi provide an unexpected new per-

650spective on the Golgi–cytoskeleton interaction.
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