
TRUST REGION VERSUS LINE SEARCH FOR COMPUTING THE
OPTICAL FLOW

EL MOSTAFA KALMOUN† AND LUIS GARRIDO‡

Abstract. We consider the numerical treatment of the optical flow problem by evaluating the
performance of the trust region method versus the line search method. To the best of our knowledge,
the trust region method is studied here for the first time for variational optical flow computation. Four
different optical flow models are used to test the performance of the proposed algorithm combining
linear and nonlinear data terms with quadratic and TV regularization. We show that trust region
often performs better than line search; especially in the presence of non-linearity and non-convexity
in the model.

Key words. Optical flow, optimization, trust region, line search, truncated Newton, multires-
olution

1. Introduction. Optical flow is a problem that consists in finding the two-
dimensional field that represents the apparent motion of objects in a sequence of
images. In recent years, many techniques for the computation of optical flow have
been proposed in literature; see e.g. [8, 4, 5, 7]. Variational methods are a well known
mathematical approach to compute dense optical flow estimations. In such context,
the optical flow estimation problem is usually formulated as a minimization of an
energy function, which is a weighted sum of two terms D and R. The first term D is
a data term that comes from the motion modelling and is based on the conservation of
some property during motion such as the gray-level and leads usually to the so-called
optical flow constraint equation (OFCE). The second term R is a regularization term
that allows to impose the assumption that the optic flow varies smoothly in space
and ensures that the optic flow problem is well posed and can be formulated as a
large-scale optimization problem:

min
w
f(w), (1.1)

where f(w) = D(w) + αR(w), w = (u, v) is the optical flow field and α is used to
control the influence of the two terms D and R.

Traditionally, the problem (1.1) is solved by first computing the corresponding
Euler-Lagrange equations, then discretizing and solving them by relaxation schemes.
This approach which is called optimize-discretize has been commonly used for vari-
ational optical flow computation, e.g. [1, 2, 5, 7, 10]. A second approach, called
discretize-optimize, is based on first discretizing the variational functional f and then
solving the finite-dimensional problem using numerical optimization algorithms. We
note that while this computational strategy has been used for many vision problems,
not too much attention was paid to it in the context of optical flow. In [9], we have
shown the competitiveness of the discretize-optimize strategy compared to the clas-
sical first approach. Three Newton-based optimization algorithms were superior to
the Gauss-Seidel method when applied to the classical Horn-Schunck model [8]. In
particular, truncated Newton (TN) method has been shown that it can be used as a
suitable optimization algorithm for variational optical flow and has proved to better

†Department of Mathematics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha,
Saudi Arabia (ekalmoun@kku.edu.sa)

‡Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Barcelona, Spain
(lluis.garrido@ub.edu)

1

2 KALMOUN AND GARRIDO

performance than the quasi-Newton method. The method requires only the computa-
tion of the energy function and gradient values and thus has low memory requirements
to solve large-scale optimization problems. We recall that this iterative method moves
the current approximation wk to the new one wk+1 by means of a step sk which is
obtained by solving approximately the Newton equation given by

∇2f(wk)s = −∇f(wk).

Depending on how the step sk is computed and used, two broad classes of algorithms
are distinguished: line search methods and trust region methods. Line search methods
scale the step sk by a factor αk that approximately minimizes f along the line that
passes through wk in the direction sk,

wk+1 = wk + αksk.

On the other hand, trust region methods solve sk within a certain region around wk
in which the algorithm trusts that sk will be a good update.

As in various computer vision works, the line search strategy has been the focus
of our previous paper [9] in the context of optical flow. However, recent interest is
shown to the use of the trust region techniques in vision applications due to their
strong convergence properties. For instance, the method was used to solve the image
restoration [3], the tracking problem [12], the object pose from a single view problem
[16], online inference for computer vision and robotics problem [17], logistic regression
problem [11].

In the present paper we evaluate the performance of trust region methods and
compare them with line search methods. To the best of our knowledge, the trust
region method is studied here for the first time for variational optical flow compu-
tation. Four different optical flow models are used to test the performance of the
proposed algorithm combining linear and nonlinear data terms with quadratic and
TV regularization.

The paper is organized as follows: In Section 2, we recall the basics of line search
and trust region methods and state the optimization algorithms used in this paper.
In Section 3, we present the details used to implement the optical flow models and
the optimization algorithms. In Section 4, we precise the measures we use in our
experiments and we give and discuss the results. Finally, we conclude the paper in
Section 5.

2. Line Search versus Trust Region Truncated Newton Methods. New-
ton methods solve (1.1) with an iterative process that approximates, at each iteration
wk, the objective function f by means of a second order Taylor approximation qk,

qk(s) = fk + gTk s+
1

2
sTHks (2.1)

where fk = f(wk), gk = ∇f(wk) is the gradient of f , and Hk = ∇2f(wk) is the
Hessian.

Depending on how a step solution sk is computed and exploited, two broad classes
of algorithms are distinguished: line search methods and trust region methods. Line
search methods compute sk as the minimization of the unconstrained problem given
by (2.1). The Newton step sk is thus obtained by solving the linear system

Hks = −gk (2.2)

TRUST REGION METHODS FOR OPTICAL FLOW 3

The current solution wk is then updated by scaling the step sk by a factor αk that
approximately minimizes f along the line that passes through wk in the direction sk,
wk+1 = wk + αksk.

Trust-region methods solve (2.1) by restricting the search for sk to some region Bk
around the current iterate wk in which the algorithm ”trusts” that the model function
qk behaves like the objective function f . That is, the step sk is obtained by solving
(2.1) with s ∈ Bk. The current iteration wk is updated with sk if this step produces a
suitable improvement over the objective function f , wk+1 = wk + sk. Note that trust
region methods choose the direction and length of the step simultaneously.

Let us now focus on a brief summary of the line search truncated Newton. We
will afterwards detail the trust-region method.

2.1. Line search tuncated Newton. Solving exactly the linear system (2.2)
will be very expensive for large-scale problems. Truncated Newton methods (TN)
use rather an iterative method to find an approximate solution to (2.2). The method
truncates the iterates as soon as a required accuracy is reached or whenever – in case
when the Hessian matrix Hk is not positive definite – a negative curvature is detected.
A non-positive Hk is in fact associated to a non-convex approximation qk(s). One
of the most well known iterative method within TN methods is the Preconjugated
Conjugate Gradient algorithm (PCG) due to its efficiency and small memory require-
ments. The PCG algorithm requires only to be able to explicitly compute the function
and gradient values but not the Hessian. In the context of our paper, the process to
find the step sk is called inner iterations while the process to update wk using the
computed sk is called outer iterations. For the line search truncated Newton method
(LSTN), the inner (Algorithm 1) and outer (Algorithm 2) iterations are recalled from
[9].

Algorithm 1 Preconditioned Conjugate Gradient (inner iterations of TN)

1: Initialization: z0 = 0, r0 = −gk, v0 =M−1
k r0, p0 = v0, ε = 10−10, ζk(see (2.4))

2: for j = 0 to max inner do
3: // Singularity test
4: if

(
|rTj vj | < ε or |pTj Hkpj | < ε

)
then

5: exit with sk = zj (for j = 0 take sk = −gk)
6: end if
7: αj = rTj vj/p

T
j Hkpj , zj+1 = zj + αjpj

8: // Descent Direction Test replaces Negative Curvature test
9: if (gTk zj+1 ≥ gTk zj − ε) then

10: exit with sk = zj (for j = 0 take sk = −gk)
11: end if
12: rj+1 = rj − αjHkpj , vj+1 =M−1

k rj+1

13: // Truncation test (note that ||rj+1||M−1
k

= rTj+1vj+1)

14: if (rTj+1vj+1 ≤ ζkg
T
0 v0) then

15: exit with sk = zj+1

16: end if
17: βj = rTj+1(vj+1 − vj)/r

T
j vj , pj+1 = vj+1 + βjpj .

18: end for
19: exit with sk = zj

Note that lines 14–16 in Algorithm 1 truncate the iterates as soon as the required

4 KALMOUN AND GARRIDO

Algorithm 2 Line Search Truncated Newton (outer iterations of TN)

1: Initialization w0, M0 = Id, εg, εf , εx
2: for k = 0 to max outer do
3: gk = ∇f(wk)
4: if ||gk|| < εg then
5: exit with solution wk
6: end if
7: Compute sk by calling Algorithm 1.
8: Perform a line search to scale the step sk by αk.
9: wk+1 = wk + αksk

10: Update Mk+1 by the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula
11: if |fk+1 − fk| < εf or ||wk+1 − wk|| < εx then
12: exit with solution wk
13: end if
14: end for

accuracy is reached, whereas lines 9–11 truncate the iterates as soon a negative curva-
ture direction is detected. Here the negative curvature test, pTj Hkpj < 0, is replaced
with the equivalent descent direction test [18]. Thus, the solution zj obtained by
Algorithm 1 does not contain a negative curvature direction. One of the advantages
of trust region over line search is that negative curvature directions can be prop-
erly exploited. The trust region method behaves numerically better for non-convex
problems. We discuss this issue in the next section.

2.2. Trust region truncated Newton. In trust region truncated Newton
(TRTN) methods the current iterate wk is updated with a step sk that is found
by minimizing (2.1) within a given region Bk defined as

Bk := {wk + s ∈ Rn | ||s||k ≤ ∆k} (2.3)

where the norm ||s||k used there is with respect the preconditionning matrix Mk:
||sk||k = ||sk||Mk

= (sTkMksk)
1/2.

The trust region radius ∆k is critical for the effectiveness of each iteration wk. If
the region is too small, the algorithm may miss an opportunity to take a substantial
step that will move it much closer to the minimizer of the objective function f . If the
region is too large, the minimizer of the model may be far from the minimizer of the
objective function in the region, so one may to reduce the size of the region and try
again. Thus, the trust region radius has to be automatically adapted according to
previous iterations. If the quadratic model has produced, during the last iterations,
reliable steps that accurately predict the behaviour of the objective function f , the
size of the trust region radius can be increased to allow for longer steps. On the other
hand, a step in which the quadratic model does not adequately predict the behaviour
of the objective function f is an indication that the trust region radius ∆k is too
large. In such a case, we reduce the value of ∆k and try again.

For the inner iterations (i.e. solving (2.1) constrained to (2.3)), the search direc-
tion sk is computed by means of the Steihaug-Toint algorithm which is a truncated
PCG algorithm, see Algorithm 3 (PCG-TRTN). It’s basically the same algorithm
as Algorithm 1 (PCG-LSTN) except the fact that the quadratic function (2.1) has
to be minimized now within a trust region Bk. In a similar way to PCG-LSTN, in
PCG-TRTN we use a scaled two-step limited memory BFGS [13] for preconditioning

TRUST REGION METHODS FOR OPTICAL FLOW 5

the CG method and we truncate the inner iterations when the following criterion is
satisfied:

||rj ||M−1
k

≤ ζk||r0||M−1
k

where rj is the PCG residual at inner iteration j, Mk is the preconditioning matrix
and

ζk = max
(
0.5/(k + 1), ||r0||M−1

k

)
(2.4)

which are both provided at outer iteration k, and where

||rj ||M−1
k

=
√
rTj M

−1
k rj .

The matrixM−1
k may be computed easily if the preconditionningMk is updated using

the BFGS method [14]. In this case, however, M−1
k does not need to be computed

sinceM−1
k rj = vj , and thus rTj M

−1
k rj = rTj vj . The use of a preconditionning strategy

and an adequate truncation criterion may have a large impact on the overall numerical
efficiency of the method.

The fact that the PCG-TRTN is solved within a trust region Bk introduces two
additional aspects with respect to PCG-LSTN. For the PCG-LSTN algorithm, the
inner iterations are truncated as soon as a negative curvature is detected. On the
other hand, in the PCG-TRTN algorithm, if a negative curvature is detected for
direction pj , the method tries to take the longest possible step within this direction;
that is until the trust region boundary is crossed (see lines 9-14 of the code). Second,
if the PCG iterate leaves the trust region, it is backtracked to the boundary (see lines
16-18 of the code). This additional truncation criterion is justified by the fact that
no feasible iterate could be found once we are outside the trust region since all PCG
iterates zj monotonically increase in the M-norm starting from zero and as long as
the Hessian Hk is symmetric positive definite.

In Figure 2.1 a geometrical interpretation of the computation of the step sk for
PCG-LSTN (top) and PCG-TRTN (bottom) is shown. The plots show the contours
associated to the level lines of qk, the quadratic approximation at wk. The plots at
the left (resp. right) are associated to a convex (resp. non-convex) approximation qk.
The PCG-LSTN algorithm generates a series of iterations zj until the (approximate)
minimizer of qk is found. For the convex approximation qk shown at the top-left
corner, the algorithm starts with z0 = 0 and follows direction v0 until it reaches z1,
then uses direction v1 to reach z2, the approximate minimizer of qk. This minimizer
is associated to sk, the search direction along which the objective function f has to be
minimized. For the non-convex approximation at the top-right, note that the PCG-
LSTN algorithm will truncate as soon as direction v1 is generated, since it corresponds
to a negative curvature direction. The PCG-LSTN algorithm returns in this case a
direction sk which corresponds to the direction given by v0. Then line-search will
be performed along sk = zj . Thus, the PCG-LSTN algorithm generally does not
proceed along negative curvature directions. The only case in which sk proceeds along
a negative curvature direction is the case in which v0, the initial search direction for
PCG-LSTN, is associated to a negative curvature. In such a case sk = v0 and thus
line search will be performed along a negative curvature direction, see Algorithm 1.

On the other hand the PCG-TRTN method, see Figure 2.1 (bottom), optimizes
qk within a trust region radius ∆k. For the convex approximation qk, the PCG-
TRTN method finds a direction sk which may differ from the one obtained by the

6 KALMOUN AND GARRIDO

Algorithm 3 Steihaug-Toint Preconditioned Conjugate Gradient (Inner iterations of
TRTN)

1: Initialize z0 = 0, r0 = −gk, v0 =M−1
k r0, p0 = v0, ε = 10−10, ζk (see 2.4)

2: for j = 0 to max inner do
3: // Singularity test
4: if

(
|rTj vj | < ε or |pTj Hkpj | < ε

)
then

5: exit with sk = zj (for j = 0 take sk = −gk)
6: end if
7: αj = rTj vj/p

T
j Hkpj , zj+1 = zj + αjpj

8: // Descent direction replaces negative curvature test
9: if (gTk zj+1 ≥ gTk zj − ε) then

10: exit with sk = zj if p
T
j Hkpj > 0

11: otherwise sk = zj + σjpj
12: where σj is the positive root of ||zj + σpj ||k = ∆k.
13: (for j = 0 take sk = −gk)
14: end if
15: // Trust region boundary test
16: if (||zj+1||k > ∆k) then

17: exit with sk =
∆k

||zj+1||k
zj+1

18: end if
19: rj+1 = rj − αjHkpj , vj+1 =M−1

k rj+1

20: // Truncation test
21: if (rTj+1vj+1 ≤ ζkr

T
0 v0) then

22: exit with sk = zj+1

23: end if
24: βj = rTj+1(vj+1 − vj)/r

T
j vj , pj+1 = vj+1 + βjpj .

25: end for
26: exit with sk = zj

PCG-LSTN. For the non-convex approximation, the method follows direction v1 (a
negative curvature direction) until the boundary of the trust region is reached. As
a consequence, trust region methods will be able to deal more effectively with non-
convex problems.

The outer iterations of TRTN are shown in Algorithm 4. For each iterate wk, a
fidelity measure is introduced by the ratio ρk to decide whether to accept the trial
step sk or not and accordingly how to change the trust region ∆k:

ρk =
Aredk
Predk

where Aredk is the actual reduction in the objective function:

Aredk = f(wk)− f(wk + sk)

and Predk is the predicted reduction by the quadratic model qk:

Predk = qk(0)− qk(sk) = −(gTk sk +
1

2
sTkHksk).

Since the step sk is obtained by minimizing the model qk(s) over a region that includes
s = 0, the predicted reduction will be always nonnegative. The value of Aredk should

TRUST REGION METHODS FOR OPTICAL FLOW 7

Fig. 2.1. Geometrical interpretation of the computation of the step sk for PCG-LSTN (top)
and PCG-TRTN (bottom) for convex (left) and non-convex (right) quadratic approximations. The
contours are associated to the level lines of the quadratic form qk. The fact that trust region methods
optimize the quadratic function within a trust region Bk makes the method behave better for such
types of problems. See text for a discussion.

be positive for each iteration wk in order to correspond to a decrease of the objective
function f . However, Aredk may be negative, f(wk+1) > f(wk), if ∆k is too large.

Roughly speaking, the trial step sk is accepted when the quadratic model qk
adequately predicts the behavior of the objective function (1.1) at wk, that is when
ρk is not too small or negative; otherwise sk is rejected and recomputed in a smaller
region. More precisely, in this work we will update the solution wk+1 and adjust
the trust region radius ∆k+1 as follows: given constants 0 ≤ η0 ≤ η1 < η2 < 1 and
0 < λ0 ≤ λ1 < 1 < λ2, we have for the next outer iterate

wk+1 =

{
wk if ρk ≤ η0
wk + sk otherwise

(2.5)

and for the next trust region radius

∆k+1 =

 min(λ0∆k, λ1||sk||k) if ρk < η1
∆k if η1 ≤ ρk ≤ η2
max(λ2||sk||k,∆k) if ρk > η2.

(2.6)

A value of ρk close to 1 means that there is a good agreement between the model qk
and the objective function f over this step, so it is safe to try to expand the trust

8 KALMOUN AND GARRIDO

region for the next iteration. If ρk is positive but smaller than 1, we do not alter
the trust region, but if it is close to zero or negative, we reduce the trust region by
reducing the trust region radius ∆k at the next iteration.

One might take η0 = 0 so that all steps that provide a descent in the objective
function are considered regardless of how small the reduction is with respect to the
model reduction. However, stronger theoretical convergence results are proven for the
case η0 > 0 [6]. In our experiments we have used the following values:

η0 = 10−4, η1 = 0.05, η2 = 0.9, λ0 = 0.0625, λ1 = 0.25 and λ2 = 2.5.

For the case η1 ≤ ρk ≤ η2, we have noted also that better performance is reached if
we enlarge the radius when, for the inner iterations, the boundary is reached in very
few inner iterations (one or two) and reduced in case there is no truncation (that is,
when the loop of the inner iterations is exited without satisfying any of the truncation
tests inside the loop).

As commented before, we use the same preconditioner as in LSTN, that is a scaled
two-step limited memory BFGS. The BFGS method requires that (gk+1−gk)T (sk+1−
sk) is positive between successive iterations wk. For LSTN this restriction is not a
problem since the line-search algorithm (i.e. computation of αk) generally imposes
the Wolf conditions, which ensure that the previous condition is satisfied for each
iteration [14]. However, for the TRTN method we can not guarantee that the update
wk+1 = wk + sk satisfies the previous condition. As suggested in [15], we will not
use the BFGS update when (gk+1 − gk)

T (sk+1 − sk) is negative; which means for our
algorithm that the preconditioner is not updated in this case. The BFGS algorithm
is updated for the iteration m > k such that (gm − gk)

T (sm − sk) is positive.

Algorithm 4 Trust Region Truncated Newton (outer iterations of TRTN)

1: Initialize w0 = 0, M0 = Id, εg, εf , εx
2: for k = 0 to max outer do
3: gk = ∇f(xk)
4: if ||gk|| < εg then
5: exit with solution wk
6: end if
7: Compute sk by calling Algorithm 3.
8: ρk = (f(wk)− f(wk + sk))/(g

T
k sk +

1
2s
T
kHksk)

9: Update wk+1 by (2.5) and ∆k+1 by (2.6).
10: Update Mk+1 by the BFGS formula.
11: if fk − fk+1 < εf or ||wk+1 − wk|| < εx then
12: exit with solution wk+1

13: end if
14: end for

2.3. Multiresolution methods. The TRTN algorithm may be embedded in a
multiresolution method. Using multiple levels of resolution allows us to deal, in the
case of optical flow computation, with large displacements and enhances the chance
of the convergence to the global minimum or a good local minimum since worse local
minima may disappear at sufficient coarse resolutions.

Let us denote by Ωi the image domain at level i, where i = 0, . . . , r, where i = 0
corresponds to the finest level of resolution and i = r to the coarsest one. Grid spacing

TRUST REGION METHODS FOR OPTICAL FLOW 9

at the coarser grid Ωi+1 is usually twice the spacing at the grid Ωi. Multiresolution
methods use the latter levels of resolution to obtain an estimate of the solution to
the problem. For a given grid Ωi, the method solves the problem for that level and
then extends the solution to grid Ωi−1, where it is refined. This process is repeated
until the finest grid Ω0 is reached, where the final estimate is reached. The method
is initiated by solving the problem at the coarsest grid Ωr. By using this method one
expects to obtain a good initial guess for each grid Ωi.

3. Optical flow models. In the energy functional in (1.1), two data terms D
and two regularization terms R have been tested. To describe them here in short,
let us consider a sequence of gray level images I(t, x, y), t ∈ [0, T], (x, y) ∈ Q, where
Q denotes the image domain, which we assume to be a rectangle in R2. The image
sequence is actually sampled at the times tj = j∆t, j = 0, . . . ,K.

The first data term corresponds to the classical Horn-Schunk linear version of the
brightness conservation assumption:

I(t+ 1, x(t) + u(t, x, y), y(t) + v(t, x, y)) = I(t, x(t), y(t)), (3.1)

where (x(t), y(t)) is the apparent trajectory of a given point at time t and the vec-
tor field w(t, x, y) := (u(t, x, y), v(t, x, y)) is called the optic flow. When only small
displacments occur between two succesive frames, we can take a first order Taylor
development of the first term and differentiate with respect to t to obtain the optical
flow constraint

It + uIx + vIy = 0, (3.2)

where It, Ix, Iy denote the partial derivatives of I with respect to t, x, y, respectively.
Clearly, each of the single constraint: the nonlinear equation (3.1) and the linear
equation (3.2) is not sufficient to uniquely compute the two components (u, v) of the
optic flow. In the case of the second equation, this is called the aperture problem;
only the component of the flow normal to the image gradient, i.e., to the level lines of
the image could be computed. As it is usual, in order to recover a unique flow field
a regularization constraint is added. For that, we assume that the optic flow varies
smoothly in space, or better, that is piecewise smooth in Q. This can be achieved by
including a smoothness term of the form

R(w) :=

∫
Q

G(∇u,∇v) dxdy, (3.3)

where G : R2 × R2 × R2 → R is a suitable function. The case G = ‖∇u‖2 + ‖∇v‖2
corresponds to the Horn-Schunk model [8], and the case G =

√
‖∇u‖2 + ‖∇v‖2 or

G = ‖∇u‖+ ‖∇v‖ correspond to total variation regularization models.
Both linear data attachment and regularization terms can be combined into a

single energy functional∫
Q

Ψ
(
(It + uIx + vIy)2

)
dxdy + α

∫
Q

G(∇u,∇v) dxdy, (3.4)

where α > 0 is the regularization parameter weighting the relative importance of both
terms and Ψ : R → R is an increasing smooth function used to enhance robustness
with respect to outliers. Similarly to our previous work [9], we use here

ψ
(
x2

)
=

{
x2 if |x| ≤ γ
γ2 otherwise,

10 KALMOUN AND GARRIDO

where γ is a given threshold.
In case of large displacements the form (3.1) may be more appropriate for the

data term. A corresponding energy functional can be obtained by combining the non
linearized form of the brightness constancy assumption and a regularization term∫

Q

Ψ
(
(I(t, x, y)− I(t+ 1, x+ u, y + v))

2
)
dxdy + α

∫
Q

G(∇u,∇v) dxdy. (3.5)

The same two examples of function G as above are used for this case as well. Observe
that the energy (3.5) is nonlinear and non convex.

4. Implementation Issues. The numerical algorithms LSTN, TRTN and their
multiresolution versions have been implemented in C. In this section we provide some
details about the implementation of the optical flow models.

4.1. Functional and gradient calculation. The gradient of the objective
function in (1.1) is calculated analytically and given by

g = ∇f =

(
fu

fv

)
=

(
Du + αRu

Dv + αRv

)
.

where Du, Dv, Ru and Rv) correspond to the partial derivatives of D and R with
respect to u and v).

4.1.1. Linear data term. For the linear data term we use

D(u, v) =
1

2

∑
i,j

(
Ψ[Ixui,j + Iyvi,j + It]

)2
.

where i (respectively j) corresponds to the discrete column (respectively row) of the
image. The coordinate origin is located in the top-left corner of the image. The
gradient D for |x| ≤ γ is therefore given by(

Du
i,j

Dv
i,j

)
=

(
Ix [Ixui,j + Iyvi,j + It]

Iy [Ixui,j + Iyvi,j + It]

)
,

where Du
i,j and D

v
i,j refer to the partial derivative of D(u, v) with respect to variables

ui,j and vi,j , respectively. Note that for |x| > γ the gradient D is (Du
i,j , D

v
i,j)

T =

(0, 0)T .

4.1.2. Non-linear data term. The nonlinear data term based on the intensity
constancy assumption is as follows

D(u, v) =
1

2

∑
i,j

ψ
(
[I2(i+ ui,j , j + vi,j)− I1(i, j)]

2
)
.

Note that the previous term is not convex. The gradient for |x| ≤ γ is given by(
Du
i,j

Dv
i,j

)
=

(
Ix2 (i+ ui,j , j + vi,j) [I2(i+ ui,j , j + vi,j)− I1(i, j)]
Iy2 (i+ ui,j , j + vi,j) [I2(i+ ui,j , j + vi,j)− I1(i, j)]

)
.

The image gradient Ix2 and Iy2 is computed as explained in [9]. Note that the function
and gradient evaluation requires the evaluation of the image and gradient at non-
integer points. For that issue bilinear interpolation is used.

TRUST REGION METHODS FOR OPTICAL FLOW 11

4.1.3. Quadratic regularization term. We have

R(u, v) =
1

2

∑
i,j

||∇i,j(u, v)||2,

where ||∇i,j(u, v)|| =
√
(uxi,j)

2 + (uyi,j)
2 + (vxi,j)

2 + (vyi,j)
2. The partial derivatives of

u, v are computed by forward finite differences with a discretization step h, that is,
uxi,j = h−1(ui+1,j − ui,j) and uyi,j = h−1(ui,j+1 − ui,j) (derivatives vx and vy are
computed similarly). The gradient of this functional is obtained as(

Rui,j
Rvi,j

)
=

1

h2

(
4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1

4vi,j − vi−1,j − vi,j−1 − vi+1,j − vi,j+1

)
.

The previous gradient expression corresponds to the discretization of the Laplacian
operator, the operator that is obtained from the Euler-Lagrange equations of the
quadratic term.

4.1.4. Total variation term. Here we suppose that

R(u, v) =
∑
i,j

||∇i,j(u, v)||.

To overcome the problem of non-differentiability of the total variation, a commony
used technique consists in approximating R by a differentiable function:

R(u, v) ≈
∑
i,j

ψi,j ,

where ψi,j =
√
(uxi,j)

2 + (uyi,j)
2 + (vxi,j)

2 + (vyi,j)
2 + µ and µ is a small positive param-

eter. Using again forward finite differences, the gradient of the last approximation is
given by

(
Rui,j
Rvi,j

)
=

1

h

 ux
i−1,j

ψi−1,j
+

uy
i,j−1

ψi,j−1
− ux

i,j+u
y
i,j

ψi,j

vxi−1,j

ψi−1,j
+

vyi,j−1

ψi,j−1
− vxi,j+v

y
i,j

ψi,j

 .

4.2. Hessian calculation. For computing the Newton direction in TRTNmeth-
ods, the linear conjugate gradient is a Hessian-free procedure (see Algorithms 3). The
user only needs to supply a routine for computing the product of the Hessian with
Newton direction p (see e.g. lines 7 and 19 of Algorithm 3). This matrix-vector
product is computed via forward finite differences:

H(w) p =
g(w + εp)− g(w)

ε

where ε is chosen to be the square root of the machine precision divided by the norm
of w. Thus, Newton methods only require the user to specify a procedure to compute
the function and gradient values.

12 KALMOUN AND GARRIDO

4.3. Iterative procedure for norm computation in the PCG method.
Algorithm 3 requires computation of ||zj ||2k = zTj Mkzj during the inner iterations,
which may lead to a high computational cost if the product Mkzj has to be explicitly
computed. However the preconditionning matrix, Mk, remains unchanged along the
inner iterations computations. Taking advantage of the iterative nature of the algo-
rithm an iterative procedure to compute ||zj+1||2k can be envisaged. Indeed, observe
that ||zj+1||2k can be developed as

zTj+1Mkzj+1 = (zj + αjpj)
TMk(zj + αjpj)

= zTj Mkzj + 2αjz
T
j Mkpj + α2

jp
T
j Mkpj (4.1)

where zTj Mkzj = ||zj ||2k. The last term of the previous equation, pTj Mkpj , can be
further developed as

pTj Mkpj = (vj + βj−1pj−1)
TMk(vj + βj−1pj−1)

= vTj Mkvj + 2βj−1v
T
j Mkpj−1 + β2

j−1p
T
j−1Mkpj−1

= vTj rj + β2
j−1p

T
j−1Mkpj−1

where vTj Mkpj−1 = 0 due to the fact that Algorithm 3 is a conjugate gradient. The

second term of (4.1), zTj Mkpj , is developed as

zTj Mkpj = zTj Mk(vj + βj−1pj−1)

= zTj Mkvj + βj−1z
T
j Mkpj−1

= zTj rj + βj−1(z
T
j−1Mkpj−1 + αj−1p

T
j−1Mkpj−1)

where we have used the recurrence zj = zj−1 + αj−1pj−1. The iterative process is
initiated with j = 0 and thus ||z0||2k = zT0 Mkz0 = 0, zT0 Mkp0 = 0, and pT0Mkp0 =
vT0 r0. Thus, to obtain ||zj+1||2k only information of the previous two iterations is
needed, namely the terms zTj Mkzj , v

T
j rj , z

T
j rj and z

T
j−1Mkpj−1, p

T
j−1Mkpj−1. These

terms can be easily computed with the Algorithm 3. The algorithm is initiated at
j = 0 with zT0 Mkz0 = 0, zT0 Mkp0 = 0 and pT0Mkp0 = gTk vk.

5. Experimental Results. This section is devoted to the assessment of the pro-
posed trust region algorithms, namely TRTN (unilevel) and MR/TRTN (multiresolu-
tion). Our purpose is to compare their numerical performance with the corresponding
line search versions previously studied in [9]: LSTN (unilevel) and MR/LSTN (mul-
tiresolution), respectively. For that issue we use three sequences of synthetic images
that consist of scenes of various complexity; namely, the translating tree, the diverging
tree and the Yosemite sequences. The reference frame and the corresponding ground
truth of the synthetic sequences are show in Figures 5.1 and 5.2. The image size of
the tree sequences is 150× 150 while the Yosemite sequence is of size 316× 252.

Moreover, we use four optical flow models combining linear and nonlinear data
terms with quadratic and TV regularization as described in Section 3. In Tables 5.1-
5.3, Model 1 refers to the linear data term plus the quadratic regularization; Model
2 refers to the nonlinear data term plus the quadratic regularization; Model 3 refers
to the linear data term plus the TV regularization; and finally Model 4 refers to the
nonlinear data term plus the TV regularization.

Since we are interested in comparing the computational work of the TRTN,
MR/TRTN and LSTN, MR/LSTN algorithms, we use the following measures to as-
sess the numerical performance: i) the CPU time needed by each numerical algorithm

TRUST REGION METHODS FOR OPTICAL FLOW 13

Fig. 5.1. On the top one frame of the original sequence is shown. On the bottom the ground
truth for the corresponding translating (left) and diverging (right) is shown. Motion vectors have
been scaled by a factor of 2.5 for better visibility.

Fig. 5.2. On the left, one frame of the Yosemite sequence is shown. On the right, the corre-
sponding ground truth is depicted where motion vectors have been scaled by a factor of 2.5 for better
visibility.

to reach a similar accuracy using four optical flow models and ii) the total number
of functional and gradient evaluations Nfg that were performed by each algorithm
to reach the estimated optical flow. We measure the overall number of function Nf
evaluations as

Nf =
r∑
i=0

Nf,i
Fi

where Nf,i is the number of function evaluations performed by the optimization al-
gorithm at resolution level i. In the TRTN algorithm the function is only evaluated
to compute Aredk, whereas in the LSTN the function may be evaluated several times
in the line search procedure. Fi is the mesh resolution ratio of a given level i with

14 KALMOUN AND GARRIDO

respect to the finest level 0. In this work Fi = 22i.
The number of gradient evaluations Ng is defined in a similar manner. The

gradient is evaluated for both TRTN and LSTN during the inner iterations of the TN
algorithm (i.e. the computation of the matrix-vector product of the Hessian with the
Newton direction). Additionally, the LSTN evaluates the gradient in the line search
procedure (as a way to increase efficiency to get to an acceptable minimum along
wk +αkpk). Thus, the number of function evaluations is expected to be always lower
than the gradient evaluations. Note also that the number of gradient evaluations is
more crucial to the overall computational work than that of the objective function.
Here one gradient evaluation is approximately equivalent to two function evaluations
when using quadratic regularization, while it takes almost three times in the case of
TV regularization. Thus, the total number of function and gradient evaluations Nfg
is computed as follows,

Nfg =
Nf
K

+Ng

where K = 2 (resp. K = 3) if a quadratic (resp. total variation) regularization is
used.

To compute the accuracy of the optical flow estimations of the numerical algo-
rithms, we measure the average angular error (AAE) of the estimated flow we with
respect to the ground truth wc. For a given pixel (i, j), the angular error (AE) be-
tween the ground truth motion vector, wci,j , and the estimated flow, wei,j , is computed
as:

AE(wci,j , w
e
i,j) = cos−1

 uci,ju
e
i,j + vci,jv

e
i,j + 1√

(uci,j)
2 + (vci,j)

2 + 1
√
(uei,j)

2 + (vei,j)
2 + 1

 .

The average angular error is the mean of the angular error over all pixels Nnp of the
image

AAE(wc, we) =
1

Nnp

∑
i,j

AE(wci,j , w
e
i,j).

In Tables 5.1-5.3, we show the results obtained for the three sequences and the
four optical flow models using line search algorithms (LSTN and MR/LSTN) and
trust region algorithms (TRTN and MR/TRTN). All algorithms were stopped when
similar accuracy was reached, which is confirmed by the similar values of AAE and the
final values of the objective function. For the translating tree sequence (Table 5.1),
the trust region method is better than the line search method for both unilevel and
multiresolution and for all four models. The performance of trust region appears to be
higher for Model 4 which has a nonlinear data term and a TV regularization. For the
diverging tree sequence (Table 5.2), trust region is also better except for Model 1 and
Model 3. Note here that these two models contain a quadratic regularization term.
Finally, for the Yosemite sequence (Table 5.3), the trust region is still better except
for the case of multiresolution with the linear data term; that is Model 1 and Model
2. Overall, in 24 cases, the trust region method performed better 19 times than the
line search method. In particular, for the most complicated model, which is Model 4,
the performance of trust region is always much higher for the three sequences and for
both unilevel and multiresolution.

TRUST REGION METHODS FOR OPTICAL FLOW 15

Table 5.1
Unilevel and multiresolution line search truncated Newton (LSTN and MR/LSTN) versus trust

region (TRTN and MR/TRTN) for two frames of the translating tree sequence using four optical
flow models

LSTN TRTN MR/LSTN MR/TRTN
Time (s) 2.84 2.37 0.76 0.59

Model 1 Nfg 686 583 201 165
Funct. value 1.46e5 1.45e5 7.54e4 7.55e4

AAE 1.05 1.00 0.90 0.83
Time (s) 3.68 3.26 1.11 1.00

Model 2 Nfg 737 624 217 205
Funct. value 7.20e03 7.21e03 7.20e3 7.21e3

AAE 0.24 0.24 0.23 0.23
Time (s) 4.65 3.45 1.52 1.28

Model 3 Nfg 869 676 308 256
Funct. value 8.70e5 8.61e5 3.74e5 3.74e5

AAE 0.97 0.97 0.82 0.82
Time (s) 6.61 4.55 2.06 1.30

Model 4 Nfg 1044 693 344 222
Funct. value 3.03e5 3.03e5 3.03e5 3.03e5

AAE 0.20 0.20 0.20 0.21
Total Time (s) 17.78 13.63 5.45 4.17

Nfg 3336 2576 1070 848

Table 5.2
Unilevel and multiresolution line search truncated Newton (LSTN and MR/LSTN) versus trust

region (TRTN and MR/TRTN) for two frames of the diverging tree sequence using four optical flow
models

LSTN TRTN MR/LSTN MR/TRTN
Time (s) 4.46 4.60 0.50 0.78

Model 1 Nfg 1025 1168 125 217
Funct. value 2.00e4 2.00e4 2.00e4 2.01e4

AAE 1.93 1.94 1.89 1.91
Time (s) 3.91 3.17 1.09 1.03

Model 2 Nfg 703 611 215 211
Funct. value 3.04e4 3.04e4 3.04e4 3.03e4

AAE 2.03 2.05 2.07 2.08
Time (s) 5.28 4.75 0.61 1.46

Model 3 Nfg 996 922 120 286
Funct. value 2.78e5 2.78e5 2.78e5 2.78e5

AAE 2.39 2.37 2.36 2.36
Time (s) 6.78 4.28 2.97 1.76

Model 4 Nfg 1064 669 508 285
Funct. value 2.12e5 2.12e5 2.12e5 2.12e5

AAE 2.22 2.24 2.11 2.08
Total Time (s) 20.43 16.80 5.17 5.03

Nfg 3788 3370 968 999

16 KALMOUN AND GARRIDO

Table 5.3
Unilevel and multiresolution line search truncated Newton (LSTN and MR/LSTN) versus trust

region (TRTN and MR/TRTN) for two frames of the Yosemite sequence using four optical flow
models

LSTN TRTN MR/LSTN MR/TRTN
Time (s) 4.72 3.06 1.09 1.30

Model 1 Nfg 350 194 65 92
Funct. value 1.82e5 1.82e5 1.74e4 1.74e4

AAE 6.86 6.86 6.76 6.78
Time (s) 11.39 9.58 2.31 2.38

Model 2 Nfg 510 423 102 114
Funct. value 1.70e5 1.70e5 1.50e5 1.50e5

AAE 6.26 6.25 6.23 6.24
Time (s) 19.59 10.43 4.05 2.32

Model 3 Nfg 963 531 202 123
Funct. value 3.15e5 3.15e5 2.96e5 2.99e5

AAE 6.32 6.31 6.12 6.11
Time (s) 41.72 19.55 6.37 4.51

Model 4 Nfg 1636 767 261 188
Funct. value 3.42e5 3.20e5 2.90e5 2.91e5

AAE 5.76 5.79 5.43 5.44
Total Time (s) 77.42 42.62 13.82 10.51

Nfg 3459 1915 630 517

6. Conclusion. In this paper, we presented unilevel and multiresolution trust
region algorithms for optical flow computation and investigated their performance
against corresponding line search versions. We considered four optical flow models
that combine linearity and non-linearity in the data term with quadratic and TV
regularization. Three image sequences with different types of motion were used in
the test. The trust region method performed better in 19 cases over 24 than the line
search method. In particular, for Model 4 that contains non-linear data term and
TV regularization, trust region had always a higher performance. This suggests that
the method would be a suitable optimization algorithm for non-linear and non-convex
optical flow models. Our future research will investigate the use of trust region as an
optimizer for multigrid optical flow computation.

Acknowledgments. The first author is grateful to financial support from the
program of research support in King Khalid University under Contract Number
”KKU S064 33”. The second author acknowledges partial support by MICINN project,
reference MTM2009-08171, and by GRC reference 2009 SGR 773.

REFERENCES

[1] L. Álvarez, J. Weickert, and J. Sánchez, Reliable estimation of dense optical flow fields
with large displacements, International Journal of Computer Vision, 39 (2000), pp. 41–56.

[2] P. Anandan, A computational framework and an algorithm for the measurement of visual
motion, International Journal of Computer Vision, 2 (1989), pp. 283–310.

[3] J. M. Bardsley, A nonnegatively constrained trust region algorithm for the restoration of
images with an unknown blur, Electronic Transactions in Numerical Analysis, 20 (2005),
pp. 139–153.

TRUST REGION METHODS FOR OPTICAL FLOW 17

[4] J. Barron, D. Fleet, and S. Beauchemin, Performance of optical flow techniques, Interna-
tional Journal of Computer Vision, 12 (1994), pp. 43–77.

[5] A. Bruhn, J. Weickert, C. Feddern, T. Kohlberger, and C. Schnorr, Variational optical
flow computation in real time, IEEE Transactions on Image Processing, 14 (2005), pp. 608–
615.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust Region Methods, SIAM, Philadelphia,
2000.

[7] W. Enkelmann, Investigations of multigrid algorithms for the estimation of optical flow fields
in image sequences, Computer Vision, Graphics and Image Processing, 43 (1988), pp. 150–
177.

[8] B. Horn and B. Schunk, Determining optical flow, Artificial Intelligence, 20 (1981).
[9] E. Kalmoun, L. Garrido, and V. Caselles, Multilevel optimization as computational meth-

ods for dense optical flow, SIAM Journal of Imaging Sciences, 4 (2011), pp. 695–722.
[10] E. M. Kalmoun, H. Köstler, and U. Rüde, 3d optical flow computation using a parallel

variational multigrid scheme with application to cardiac c-arm ct motion, Image and Vision
Computing, 25 (2007), pp. 1482–1494.

[11] C.-J. Lin, R. Weng, and S. Keerthi, Trust region Newton method for logistic regression,
Jounal of Machine Learning Research, 9 (2008), pp. 627–650.

[12] T. Liu and H. Chen, Real-time tracking using trust-region methods, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26 (2004), pp. 397–402.

[13] S. G. Nash, Preconditioning of truncated-newton methods, SIAM Journal on Scientific and
Statistical Computing, 6 (1985), pp. 599–616.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[15] J. Nocedal and Y. Yuan, Combining trust region and line search techniques, in Advances in

Nonlinear Programming, Y. Yuan, ed., Kluwer, 1998, pp. 153–175.
[16] T. Phong, R. Horaud, A. Yassine, and P. Tao, Object pose from 2-d to 3-d point and line

correspondences, International Journal of Computer Vision, 15 (1995), pp. 496–508.
[17] D. Rosen, M. Kaess, and J. Leonard, An incremental trust-region method for robust on-

line sparse least-squares estimation, in IEEE International Conference on Robotics and
Automation, May 2012, pp. 1262–1269.

[18] D. Xie and T. Schlick, Efficient implementation of the truncated-Newton algorithm for large-
scale chemistry applications, SIAM Journal on Optimization, 10 (1999), pp. 132–154.

