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Abstract: In his version of the theory of multicomponent systems, Friedman used the anal-
ogy which exists between the virial expansion for the osmotic pressure obtained from the
McMillan–Mayer (MM) theory of solutions in the grand canonical ensemble and the virial
expansion for the pressure of a real gas. For the calculation of the thermodynamic properties
of the solution, Friedman proposed a definition for the “excess free energy” that is a reminder
of the ancient idea for the “osmotic work”. However, the precise meaning to be attached to
his free energy is, within other reasons, not well defined because in osmotic equilibrium the
solution is not a closed system and for a given process the total amount of solvent in the solu-
tion varies. In this paper, an analysis based on thermodynamics is presented in order to obtain
the exact and precise definition for Friedman’s excess free energy and its use in the compar-
ison with the experimental data.
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INTRODUCTION

The McMillan–Mayer (MM) theory of solutions [1–6] is a general theory that was originally formu-
lated within the context of the grand canonical ensemble. This theory allows a very general theoretical
analysis starting from theoretical models and/or the treatment of the experimental data in a semi-empir-
ical way when the complexity of the system is very great. From the MM theory all the equilibrium ther-
modynamic properties of a multicomponent system can be considered. However, the development of
the theory is not finished, and there are still conceptual and practical problems in its application to real
systems. In this paper we will discuss the interpretation of several excess properties that can be obtained
from the theory and their comparison with the results obtained from the experiment. Particularly, we
will consider the so-called “excess free energy” as a starting point for obtaining the rest of the thermo-
dynamic properties for a solution. Previously, we will introduce the notation employed and a brief intro-
duction to the MM theory, which is necessary for what follows. Biographical information about the cre-
ators of the MM theory, Joseph E. Mayer and William George McMillan Jr., can be found in refs. [7,8].

Even though the MM theory is a very general theory including also quantum effects, we will con-
sider only a more simplified system that shows the basic ideas without making the presentation unnec-
essarily complicated [1,5]. We will consider a solution formed only by a solute σ and a solvent s. The
“natural” variables in the MM theory are the usual ones for the grand canonical ensemble [2,3,5]:
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(zσ, zs, T, V) or (μσ, μs, T, V) where z is the activity of each component in the solution, T is the absolute
temperature, and V the volume of the solution. The activities are defined in terms of the chemical poten-
tial μ as z ≡ exp(μ/kT)/Λ3 where Λ is the thermal wavelength of De Broglie (h/2πmkT)1/2. It is very
important to be careful with this definition for z because several authors define z = exp(μ/kT) [9] and
use the notation λ for the same quantity. As a consequence, the thermodynamic properties have differ-
ent meanings as well as the mathematical relationships that permit their derivation from the grand par-
tition function [5, Chap. 1; 9, Chap. 4]. The solute activity coefficient, γ∼σ, is defined as zσ = γ∼σρσ where
ρs(=cσ) is the concentration/number density of the solute (or molarity). When cσ → 0, cs ≠ 0, γ∼σ → γ 0

σ,
which is the activity coefficient of the solute at “infinite dilution”. A more practical definition for the

activity coefficient is used. We define γσ as                               , and in this form we have that

γσ → 1 when cσ → 0; cσ ≠ 0. Now the chemical potential for the solute can be written as

(1)

where p0 is the pressure of the pure solvent with chemical potential μs. The two possible elections
(T, μs) or (T, p0) for the independent variables set that can be chosen are shown explicitly in eq. 1. The
MM theory, in the form that is usually understood, is a particular version of the formalism that was
developed in the first place by Mayer for one-component systems [2] and later extended by McMillan
and Mayer for multicomponent systems [1,2]. The more general theory relates the grand canonical par-
tition function and the potentials of mean force between two different thermodynamic states of the sys-
tem with different activities. Choosing the two thermodynamic states in the way described below, the
MM theory of solutions obtains for the grand canonical partition function at the MM level (ΞMM) for a
system with a solute σ in a solvent s the following expression:

(2)

where z ≡ (zs, zσ) and z* ≡ (zs, 0σ) are the activities of the solution at a finite concentration and at “infi-
nite dilution” (0σ, when zσ → 0, cσ ≠ 0). W∞

Nσ
is the potential of mean force among the Nσ solute mol-

ecules in a solvent s at infinite dilution or in other words, in the thermodynamic state characterized by
the variables (z*, T, V) and really is a free energy which depends on the thermodynamic state and the
coordinates of the solute molecules. Finally, γ 0

σ is the solute activity coefficient at infinite solution
(referred to an ideal gas scale) and is associated with the interactions of a solute molecule alone sur-
rounded by the solvent molecules. As we can see, ΞMM is a ratio of partition functions that have in com-
mon the same activity of the solvent, and what is obtained from this ratio are the differences between
the corresponding thermodynamic properties. The corresponding experimental situation with this struc-
ture for ΞMM is the solution in osmotic equilibrium with the pure solvent by means of a semipermeable
membrane [6] and is characterized by the equality of the solvent chemical potential on both sides of the
membrane

μs(T, p0) = μs(T, p = p0 + π, cσ) (3)
μs(T, p0) = μs*(T, zs* = zs)

where p and p0 are the pressures of the solution and the pure solvent, respectively. The osmotic pres-
sure π is related with ΞMM through the basic equation

πV = kT ln ΞMM (4)
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This relationship between the osmotic pressure π and the ΞMM has the same form that exists for the
pressure p of a pure system σ and the corresponding grand partition function Ξ. The ΞMM is analogue
to Ξ but with a “potential energy” W∞

Nσ
instead of the true potential energy among the solute molecules

“alone” UNσ
. In this case, the corresponding partition function can be written as follows:

(5)

The previous equations justify the so-called analogy between the gases and the liquid solutions intro-
duced originally by J. van’t Hoff [10], and because the treatment is general, this analogy is not by any
means restricted to dilute solutions. From ΞMM it is possible to obtain in a way completely analogue to
the virial expansion for real gases [2,3], the virial expansion for the osmotic pressure π as a power series
of the activity and/or the density of the solute σ in the form

(6)

where B2
*, B3

*, ... are the second, third, ... virial coefficients for the osmotic pressure and have the same
form as the correspondent virial coefficients for real gases with the only difference that the potential is
the potential of mean force between two, three, .... molecules of solute in the solvent at infinite dilution.
The first term in expansion 6 constitutes the so-called van’t Hof equation for the osmotic pressure valid
for a dilute solution [10]. In ref. [11], a very extensive presentation and discussion about the usefulness
of the virial expansion for π in the very general case of multicomponent systems can be found.

Is very important to realize that the main result of MM theory is the general expression 2 jointly
with eq. 4. From these two equations, all the thermodynamic properties can be obtained in a very gen-
eral way [6]. There is a very widespread idea that the MM theory is only valid for moderately dilute
solutions and that the basic result is the virial expansion 6. This is not true, and the same situation would
be found in comparing the virial expansion for real gases with the corresponding grand partition func-
tion, which can be applied to very complex systems (see, e.g., refs. [2,3,9]).

The comparison of a given model for the solution obtained with the MM theory with the experi-
mental data poses extra difficulties. This is due to the fact that the thermodynamic properties are those
for a solution in osmotic equilibrium with the pure solvent and the natural variables which appear in
ΞMM, see eqs. 1 and 2, are very different with the usual ones: usually T, p and molalities/molarities or
molar fractions. At this point, the approach formulated by Friedman [4,12–14] appears. Although he
refers to the MM theory, the approach he uses differs remarkably from the original treatment of the the-
ory in the grand canonical ensemble. He uses a very different notation, and the meaning of the thermo-
dynamic properties is not the usual one. Moreover, Friedman adopts a non-standard election for the nec-
essary variables in the description of the solution’s thermodynamic state by using p0 as a variable for
his excess free energy. A broad perspective of Friedman’s work can be found in ref. [16].

FRIEDMAN’S EXCESS THERMODYNAMIC FUNCTIONS 

Even though Friedman presented the MM theory in the grand canonical ensemble in his book Ionic
Solution Theory, published in 1962 and later in a very general review with Dale [4], he developed the
thermodynamics of the solution in a very different way. In his version of the theory for multicomponent
systems, Friedman used instead the analogy between the virial expansion for the pressure of a real gas
and the corresponding expansion for the osmotic pressure (6) which is one of the most used results of
the MM theory. 

The sets of variables employed by him in order to characterize the thermodynamic state of the
solution are very diverse as follows: zs, μs, or p0 for the solvent, the temperature T, the volume V, and
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Nσ (or nσ if we use the number of moles for the solute). The basic quantity is Aex
Fried ≡ Aex, the “excess

Helmholtz free energy” or simply the “excess free energy” per litre of solution, which he defined by
analogy with the definition for a closed system [4a,12,13]

(7)

and later [4b]

(8)

where Aex → 0 when cσ → 0. Other thermodynamic properties that derive from the knowledge of Aex

are the “excess energy/enthalpy” Eex
Fried:

(9)

and the “excess volume” Vex
Fried, defined as

(10)

In all the previous definitions for the excess free energy as well as for the excess energy/enthalpy
and the excess volume, their meaning does not match with the usual one in thermodynamics. The def-
inition of the excess free energy (7) is applied to an open system with respect to the solvent, and really
what we have is the Legendre transform of the total solution free energy. For the other two excess ther-
modynamic properties Hex (9) and Vex (10), which are defined in terms of Aex, the problem is wors-
ened because the pressure p0 of the pure solvent in osmotic equilibrium with the solution is used in the
partial derivatives of Aex. The fact that several authors [14,15,22,23] do not write explicitly which ther-
modynamic variables are using increases the confusion about the correct meaning of Aex. In this work
we will consider only the interpretation of Aex and its comparison with the experimental data as well as
with ΞMM.

MEANING OF Aex OF FRIEDMAN AND ITS RELATION WITH THE HELMHOLTZ FREE
ENERGY F OF THE SOLUTION

We will consider a two-component solution with ns,nσ moles of solvent and solute, respectively, for a
given temperature T and volume V. The solution is in a state of osmotic equilibrium with the pure sol-
vent at a pressure p0 being μs*(T, p0) its chemical potential. Because of the equality of the solvent’s
chemical potential on both sides of the semipermeable membrane, the solution is at a pressure p = p0 +
π, where the osmotic pressure, π, varies with the solute concentration if we hold T and p0 constants. The
Helmholtz free energy of the solution, F, is given by

F = nsμs + nσ μσ – pV (11)

Now, if we change in a reversible and isothermal way the volume of the solution in dV, it will be
a variation of the number of solvent moles, dns because the solution is not closed for the solvent due to
the semipermeable membrane. The variation of the Helmholtz free energy of the solution for this
process will be
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dF = –(p0 + π)dV + μsdns (12) 

where T, p0 are constant in the process as well as μs. If we want to treat the solution as if it were a
“closed system” without the explicit mention of the solvent, we can consider the difference F – μsns and
we have

d(F – μsns) = –(p0 + π)dV = –(p0 + π)nσ d(1/c) (13)

where the fact that nσ remains constant in the process has been used. The previous expression consti-
tutes the so-called “osmotic work” in the old formulation of the thermodynamics of solutions by the
“osmotic school” of van’t Hoff, Nernst, and others [10]. Even in our days, there are authors who call it
“the variation of the free energy” [17,18] because of the analogy with the corresponding variation for a
pure component.

With the help of eq. 13, we are going to find the exact thermodynamic meaning of the expression
7, which defines Aex of Friedman. For that purpose, we integrate eq. 13 between the concentration c =
0 (infinite dilution) to a finite concentration c for the solute σ:

(14) 

If we repeat the same process but now considering the solution as ideal respect the solute, the osmotic
pressure will be π = cRT (van’t Hoff’s law) for all the values of the concentration of the solute and we
have

(15)

If we compute the difference between the two previous equations taking into account the validity of the
equation

(F – μsns)
real,∞ = (F – μsns)

ideal,∞ (16)

we get, finally

(17)

The validity of eq. 16 is based in the definition of ideal solution (see ref. [6]) and the fact that a
real solution behaves like an ideal one as the solute’s concentration goes to zero. Finally, in order to
obtain the Aex(c, T, p0), we divide by the volume V and we reach the original expression proposed by
Friedman (7):

(18)

Now, once we have understood the meaning of Aex, we can find an integrated version of eq. 18,
which is more useful to handle by using the definition of F (eq. 11) jointly with the expressions for the
osmotic pressure and the solute chemical potential in the case of the real and ideal solution respectively
(eq. 1). We have for the real solution
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(19)

and for the ideal solution

(20)

and finally, the Aex can be written as

Aex(Friedman) = – π + cσ RT + cσ RT ln γσ (21)

We see that the excess free energy, as defined by Friedman, is not equal to the Helmholtz free energy
of the solution, eq. 11, because of the missing term μsns, which is associated with the solvent. Moreover,
this free energy is defined with reference to an ideal solution at the same concentration, temperature,
and at a pressure p0 + cσ RT. In other words: Aex(Friedman) is a difference of the Legendre trans-
forms of the Helmholtz free energies between the real solution and the ideal solution both in
osmotic equilibrium with the pure solvent (eq. 17). We should not forget that when the solution is in
osmotic equilibrium with the pure solvent at (T, p0), the pressure of the solution p0 + π changes with
cσ.

A better understanding of the meaning of Aex can be obtained if we define the osmotic coefficient
φOS(=φMM) as a function of π as [17,18]

(22)

and which is equal to one for and ideal solution. The final form of Aex can be written in the following
way:

Aex(Friedman) = cσ RT(1 – φOS + ln γσ) (23)

In the literature only in two references [15,24], an expression for Aex equivalent to eq. 23 can be
found but with no derivation or discussion whatsoever. This expression is “equivalent” to the GE, the
excess gibbs free enthalpy, employed usually when we are measuring at a given T, p, and a molality m,
the so-called Lewis–Randall (LR) scale [12,20–21]

GE ≅ mRT(1 – φ + ln γσ
(m)) (24)

The differences between expressions 24 and 23 are due to the fact that GE is defined by kilogram
of solvent whereas the Aex is a “free energy” per litre of solution and that the rational or practical
osmotic coefficient, φ(φR = φLR) is defined in terms of the chemical potential of the solvent instead of
φOS, defined in terms of π. The symbol ≅ in eq. 24 means that there are two variants for the definition
of GE that for all practical purposes are equivalent [20,21]. Finally, we must remember that the γσ

(m) in
eq. 24 is defined in the molality scale. 

Experimentally is usual to measure the values of φ, γσ
(m) as a function of molality at a given tem-

perature and pressure whereas φOS, γσ, which appear in the expression for Aex are given at a variable
pressure p = p0 + π for a temperature T and concentration/molarity cσ. For the comparison between the-
ory/experiment or experiment/experiment, a thermodynamic correction called the correction MM to LR
is necessary [12–14,17,18,25].
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DISCUSSION

The Helmholtz free energy of the solution, see eq. 11, has as natural variables the set (T, V, ns, nσ) but
later we have been working with F – μsns in order to get an interpretation of Aex. What is the meaning
of this difference, and which are its natural variables? In order to facilitate the reasoning, we will call
F
–

as

F
– ≡ F – μsns = –pV + μσ nσ (25)

which in the mathematical language is a Legendre transform [26,27] of in respect to the solvent nσ . The
meaning of this new function is clear as can be seen from eq. 25: it looks like the Helmholtz free energy
for a one-component system σ, the solute alone. In order to look for the natural variables of F

–
, we com-

pute his differential that reads

dF
–

= –pdV – SdT – nsdμs – μσ dnσ (26)

and we see the interchange between ns ↔ μs in the differential form. This change is more useful if we
are considering systems in osmotic equilibrium because the μs is a more natural variable. We have that
F
–

= F
–

(T, V, μs, nσ ) and the Aex is the difference of F
–
(real, c) – F

–
(ideal, c) divided by the volume. The

fact that the natural variables of this difference are not usually employed must be considered when par-
tial derivatives are computed (i.e., for Eex, Vex) and this problem will be discussed in a future work.

A second aspect to be discussed is to understand why the Aex looks like the GE (see eqs. 23 and
24) if we note the different meaning between the two functions. Even though the solvent does not
appears explicitly in F

~
, the term –pV in (25) allows the introduction of the osmotic coefficient φOS,

which includes the solvent chemical potential in another way. This can be see even more clearly if we
try to define an excess Gibbs free enthalpy in a similar way as we have done for Aex. Because of the
relation between F and G = F + pV, we could define and excess free enthalpy in the way of Friedman
as follows:

Gex
Fried ≡ (F

–
+ pV)real,c – (F

–
+ pV)ideal,c = nσ RT ln γσ (27)

and the similarity with GE is lost because the term, which includes the osmotic coefficient, does not
appear in the final expression of Gex

Fried.
To close the discussion, the calculation of Aex from the partition function ΞMM (eq. 2) can be done

if we remember eq. 18 and the expressions which relate Nσ,π with ΞMM [6]. The final result, in terms
of the natural variables of the grand canonical ensemble can be written as follows:

(28)

The calculation of ΞMM
ideal, the MM partition function for an ideal solution (W∞

Nσ
= 0; γ 0

σ ≠ 0), pres-
ents no problem and is given in ref. [6].

As a final conclusion, we can say that the comparison between the MM theory and the experi-
ment (thermodynamics) is not an easy task and it is necessary to proceed with caution taking into
account the meaning of the several thermodynamic functions as well as the variables that are used to
characterize the state of the system.
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