
Our reference: COMPHY 5258 P-authorquery-v11

AUTHOR QUERY FORM

Journal:
Computer Physics Communications

Article Number: 5258

Please e-mail or fax your responses and any corrections to:

E-mail: corrections.esch@elsevier.river-valley.com

Fax: +44 1392 285879

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation
in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then
please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections
within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

Location
in article

Query / Remark click on the Q link to go
Please insert your reply or correction at the corresponding line in the proof

Q1 Please confirm that given names and surnames have been identified correctly.

Please check this box or indicate
your approval if you have no
corrections to make to the PDF file

Thank you for your assistance.

Page 1 of ...1...

http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions

Computer Physics Communications xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A framework for building hypercubes using MapReduce
Q1

∧
D.

∧
Tapiador a,∗,

∧
W.

∧
O’Mullane a,

∧
A.G.A.

∧
Brown b,

∧
X.

∧
Luri c,

∧
E.

∧
Huedo d,

∧
P.

∧
Osuna a

a Science Operations Department, European Space Astronomy Centre, European Space Agency, Madrid, Spain
b Sterrewacht Leiden, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
c Departament d’Astronomia i Meteorologia ICCUB-IEEC, Marti i Franques 1, Barcelona, Spain
d Departamento de Arquitectura de Computadores y Automática, Facultad de Informática, Universidad Complutense de Madrid, Spain

a r t i c l e i n f o

Article history:
Received 26 July 2013
Received in revised form
17 November 2013
Accepted 4 February 2014
Available online xxxx

Keywords:
Hypercube
Histogram
Data mining
MapReduce
Hadoop
Framework
Column-oriented
Gaia mission

a b s t r a c t

The European Space Agency’s Gaia mission will create the largest and most precise three dimensional
chart of our galaxy (the Milky Way), by providing unprecedented position, parallax, proper motion, and
radial velocitymeasurements for about onebillion stars. The resulting

∧
catalogwill bemade available to the

scientific community and will be analyzed in many different ways, including the production of a variety
of statistics. The latter will often entail the generation of multidimensional histograms and hypercubes as
part of the precomputed statistics for each data release, or for scientific analysis involving either the final
data products or the raw data coming from the satellite instruments.

In this paper we present and analyze a generic framework that allows the hypercube generation
to be easily done within a MapReduce infrastructure, providing all the advantages of the new Big Data
analysis paradigm but without dealing with any specific interface to the lower level distributed system
implementation (Hadoop). Furthermore,we showhowexecuting the framework for different data storage
model configurations (i.e. rowor columnoriented) and compression techniques can considerably improve
the response time of this type of workload for the currently available simulated data of the mission.

In addition, we put forward the advantages and shortcomings of the deployment of the framework
on a public cloud provider, benchmark against other popular solutions available (that are not always the
best for such ad-hoc applications), and describe some user experiences with the framework, which was
employed for a number of dedicated astronomical data analysis techniques workshops.

© 2014 Published by Elsevier B.V.

1. Introduction1

Computer processing capabilities have been growing at a fast2

pace following Moore’s law, i.e. roughly doubling every two years3

during the last decades. Furthermore, the amount of data man-4

aged has been also growing at the same time as disk stor-5

age becomes cheaper. Companies like Google, Facebook, Twitter,6

LinkedIn, etc. nowadays deal with larger and larger data setswhich7

need to be queried on-line by users and also have to answer busi-8

ness related questions for the decision making process. As instru-9

mentation and sensors are basically made of the same technology10

as computing hardware, this has happened aswell in science as we11

∗ Corresponding author. Tel.: +34 686028931.
E-mail addresses: dtapiador@gmail.com (D. Tapiador),

womullan@sciops.esa.int (W. O’Mullane), brown@strw.leidenuniv.nl
(A.G.A. Brown), xluri@am.ub.es (X. Luri), ehuedo@fdi.ucm.es (E. Huedo),
Pedro.Osuna@sciops.esa.int (P. Osuna).

can discern in projects like the human genome, meteorology infor- 12

mation and also in astronomical missions and telescopes like Gaia 13

[1], Euclid [2], the Large Synoptic Survey Telescope – LSST [3] or 14

the Square Kilometer Array – SKA [4], which will produce data sets 15

ranging from a petabyte for the entire mission in the case of Gaia 16

to 10 petabytes of reduced data per day in the SKA. 17

Furthermore, raw data (re-)analysis is becoming an asset for 18

scientific research as it opens up new possibilities to scientists 19

that may lead to more accurate results, enlarging the scientific 20

return of every mission. In order to cope with the large amount of 21

data, the approach to take has to be different from the traditional 22

one in which the data is requested and afterwards analyzed (even 23

remotely). One option is tomove to Cloud environmentswhere one 24

can upload the data analysis work flows so that they run in a low- 25

latency environment and can access every single bit of information. 26

Quite a lot of research has been going on to address these 27

challenges and new computing paradigms have lately appeared 28

such as NoSQL databases, that relax transaction constraints, or 29

other Massively Parallel Processing (MPP) techniques such as 30

http://dx.doi.org/10.1016/j.cpc.2014.02.010
0010-4655/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.cpc.2014.02.010
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:dtapiador@gmail.com
mailto:womullan@sciops.esa.int
mailto:brown@strw.leidenuniv.nl
mailto:xluri@am.ub.es
mailto:ehuedo@fdi.ucm.es
mailto:Pedro.Osuna@sciops.esa.int
http://dx.doi.org/10.1016/j.cpc.2014.02.010

2 D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx

MapReduce [5]. This new architecture emphasizes the scalability1

and availability of the system over the structure of the information2

and the savings in storage hardware this may produce. In this3

way the scale-up of problems is kept reasonably close to the4

theoretical linear case, allowing us to tackle more complex5

problems by investingmoremoney in hardware instead of making6

new software developments which are always far more expensive.7

An interesting feature of this new type of datamanagement system8

(MapReduce) is that it does not impose a declarative language9

(i.e. SQL), but it allows users to plug in their algorithms no10

matter the programming language they are written in and let11

them run and visit every single record of the data set (always12

brute force in MapReduce, although this may be worked around if13

needed by grouping the input data in different paths using certain14

constraints). This may also be accomplished to some extent in15

traditional SQL databases through User Defined Functions (UDFs)16

although code porting is always an issue as it depends a lot on the17

peculiarities of the database and debugging is not straightforward18

[6]. However, scientists andmany application developers aremore19

experienced at, or may feel more comfortable with, embedding20

their algorithms in a piece of software (i.e. a framework) that sits21

on top of the distributed system,while not caringmuch aboutwhat22

is going on behind the scenes or about the details of the underlying23

system.24

Furthermore, someof themorewidely used tools in datamining25

and statistics are multidimensional hypercubes and histograms, as26

they can provide summaries of different and complex phenomena27

(at a coarser or finer granularity) through a graphical representa-28

tion of the data being analyzed, no matter how large the data set29

is. These tools are useful for a wide range of disciplines, in partic-30

ular in science and astronomy, as they allow the study of certain31

features and their variations depending on other factors, as well as32

for data classification aggregations, pivot tables confronting two33

dimensions, etc. They also help scientists validate the generated34

data sets and check whether they fit within the expected values of35

themodel or the otherway around (also applicable to simulations).36

As multidimensional histograms can be considered a very37

simple hypercube which normally contains one, two or three38

dimensions (often for visualization purposes) and whose measure39

is the count of objects given certain concrete values (or ranges)40

of its dimensions, we will generally refer to hypercubes through41

the paper and will only mention histograms when the above42

conditions apply (hypercubes with one to three dimensions whose43

only measure is the object count).44

Previous work applying MapReduce to scientific data includes45

[7], where a High Energy Physics data analysis framework is em-46

bedded into the MapReduce system by means of wrappers (in the47

Map and Reduce phases) and external storage. The wrappers en-48

sure that the analytical algorithms (implemented in a different49

programming language) can natively read the data in the frame-50

work specific format by copying it to the local file system or to51

other content distribution infrastructures outside the MapReduce52

platform. Furthermore, [8] and [9] examine some of the current53

public Cloud computing infrastructures for MapReduce and study54

the effects and limitations of parallel applications porting to the55

Cloud respectively, both from a scientific data analysis perspec-56

tive. In addition, [10] shows that novel storage techniques being57

currently used in commercial parallel DBMS (i.e. column-oriented)58

can also be applied to MapReduce work flows, producing signifi-59

cant improvements in the response time of the data processing as60

well as in the compression ratios achieved for randomly-generated61

data sets. Last but not least, several general-purpose layers on top62

of Hadoop (i.e. Pig [11] and Hive [12]) have lately appeared, aim-63

ing at processing and querying large
∧
data sets without dealing di-64

rectly with the lower level API of Hadoop, but using a declarative65

language that gets translated into MapReduce jobs.66

Fig. 1. Star density map using HEALPix.

This paper is structured as follows. In Section 2, we present the 67

simulated data set that will be used through the paper and some 68

simple but useful examples that can be built with the framework. 69

Section 3 describes the framework internals. In Section 4, we show 70

the experiments carried out, analyzing the deployment in a public 71

Cloud provider, examining the data storage models (including 72

the column-oriented approach) and compression techniques, and 73

benchmarking against two otherwell knownapproaches. Section 5 74

puts forward some user experiences in some astronomical data 75

analysis techniques workshops. Finally, Sections 6 and 7 refer to 76

the conclusions and future work respectively. 77

2. Data analysis in the Gaia mission 78

In the case of the Gaia mission, many histograms will be 79

produced for each data release in order to summarize and 80

document the
∧
catalogs produced. Furthermore, a lot of density 81

maps will have to be computed, e.g. for visualization purposes, as 82

otherwise it would be impossible to plot such a large amount of 83

objects. All these histograms and plots (see [13] for examples), the 84

so-called precomputed statistics, will have to be (re)generated in the 85

shortest period of time and this will imply a load peak in the data 86

∧
center. Therefore, the solution adopted should be able to scale to 87

the Cloud just in case it is needed due to e.g. the absence of a local 88

infrastructure that can execute thesework flows (as it wouldmean 89

a high fixed cost for hardware which is underutilized most of the 90

time). 91

Figs. 1 and 2 show two simple examples of histograms that 92

have been created with the framework and which we will use 93

throughout the paper for presenting the different results obtained. 94

The GUMS10 data set [13], from which histograms have been 95

created, is a simulated
∧
catalog of stars that resembles the one that 96

will be produced by the Gaia mission. It contains a bit more than 97

two billion objectswith a size of 343GB in its original delivery form 98

(binary and compressed with Deflate). Since there is no Gaia data 99

yet, all Gaia data processing software is verified against simulated 100

observations of this universe model [13]. 101

The histogram shown in Fig. 1 is a star density map of the sky. It 102

has been built by using a sphere tessellation (pixelization) frame- 103

work named HEALPix [14], which among other things provides a 104

set of routines for subdividing a spherical surface into equal area 105

pixels, and for obtaining the pixel number corresponding to a given 106

pair of angular coordinates. HEALPix is widely known not only in 107

astronomy but also in the field of earth observation. HEALPix also 108

allows indexing of geometrical data on the sphere for speeding up 109

queries and retrievals in relational databases. The resolution of the 110

pixels is driven by a parameter called Nside, whichmust be a power 111

of two. The higher this parameter is, the more pixel subdivisions 112

the sphere will have. For Nside = 1024 (used in Fig. 1 and in the 113

rest of tests below) there are 12582912 pixels. 114

D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx 3

Fig. 2. Theoretical Hertzsprung–Russell diagram. The horizontal axis shows the
temperature of the stars on a logarithmic scale and the vertical axis shows a
measure of the luminosity (intrinsic brightness) of the stars (also logarithmic,
brighter stars are at more negative values).

The example in Fig. 2 is a theoretical Hertzsprung–Russell1

diagram (twodimensional)which shows the effective temperature2

of stars vs. their luminosity. This is a widely used diagram in3

astronomy, which contains information about the age (or mixture4

of ages) of the plotted set of stars as well as about the physical5

characteristics and evolutionary status of the individual stars.6

For the scenario just sketched the MapReduce approach is the7

most reasonable one. This is not only due to the fact that it scales up8

verywell (also in the Cloud) or that there are open-source solutions9

already available like Hadoop1 (which we will use), but also be-10

cause the generation of a hypercube fits perfectly into the MapRe-11

duce paradigm. This is not necessarily true for other parallel com-12

puting paradigms such as Grid computing, where the processing is13

efficiently distributed but the results are cumbersome to aggregate14

afterwards, or MPI,2 where the developer has to take care of the15

intrinsic problems of a distributed system. In the case of a parallel16

DBMS, these two simple examples could be easily created either17

by using UDFs with external HEALPix libraries (something already18

done for Microsoft SQL Server at the Sloan Digital Sky Survey3) or19

directly with a SQL query for the theoretical Hertzsprung–Russell20

diagram. However, more complex histograms or hypercubes21

would be much more difficult to generate. Furthermore, the scal-22

ability will be better in Hadoop as the data set grows due to the23

inherent model of MapReduce. Last but not least, the generation of24

several histograms and/or hypercubes each onewith different con-25

straints in terms of filtering or aggregation (e.g. several star density26

maps at different Nside granularities) will be more efficient using27

our framework on top of Hadoop (provided the amount of data is28

very large) as they will be computed in one single scan of the data.29

3. Framework description30

The framework (implemented in Java) has been conceived31

considering the following features:32

• Thin layer on top of Hadoop that allows users or external tools33

to focus only on the definition of the hypercubes to compute.34

1 http://hadoop.apache.org.
2 www.mpi-forum.org.
3 http://www.sdss.org/.

• Hide all the complexity of this novel computing paradigm and 35

the distributed system on which it runs. Therefore, it provides 36

a way to deal with a cutting-edge distributed system (Hadoop) 37

without any knowledge of Big Data internals. 38

• Possibility to process asmanyhypercubes as possible in one sin- 39

gle scan of data, taking advantage of the brute-force approach 40

used in Hadoop jobs, thus reducing the time for generating the 41

precomputed statistics required for each data release. 42

• Leverage the capabilities offered by this new computing model 43

so that the solution is scalable. 44

• Java genericshavebeenused throughout the framework in order 45

to ease its integration in any domain and permit a straightfor- 46

ward embedding of any already existing source code. 47

Hypercubes defined in the framework (see Fig. 3 for an exam- 48

ple) may have as many dimensions (categories) as required. They 49

may define intervals (for a continuous function) or be of a dis- 50

crete type (for discrete functions), depending on the use case. Users 51

may supply their own algorithms in order to specify how the value 52

of each dimension will be computed (by implementing the corre- 53

sponding getField method). This value might be of a custom user- 54

defined type in case of need. The input object being processed at 55

each time is obviously available for performing the relevant calcu- 56

lations. 57

It is important to highlight that the possibility of defining as 58

many dimensions as needed is what allows us to easily build data 59

mining hypercubes or concrete pivot tables, and do so on-the- 60

fly (at runtime) without losing generality. This is a key feature 61

for scientific data analysis because the data is always exploited 62

in many different ways due to the diversity of research studies 63

that can be done with them. Furthermore, the cubes generated 64

may be further analyzed (i.e. slice, dice, drill-down and pivoting 65

operations) within the framework by defining a new Hadoop 66

input format that reads the output of the cube generation job 67

and delivers it to the next analytical job. The results can also be 68

exported to a database in order to perform the subsequent analysis 69

in there. 70

We must also set the value that will be returned for each entry 71

being analyzed. This will usually be a value of ‘1’ when performing 72

e.g. counts of objects falling into each combination of categories, 73

but it might also be any other derived (user-implemented) quan- 74

tity for which we want to know the maximum or minimum value, 75

the average, the standard deviation, or any other linear statistical 76

value. There is only one MapReduce phase for the jobs so more 77

complex statistics cannot currently be calculated, at least not ef- 78

ficiently and in a scalable way (e.g. the median, quartiles and the 79

like). We may however define a custom type such that the cells of 80

the hypercube contain more information than just a determined 81

measure. We can also define a filter which is used to decide which 82

input objects will be analyzed andwhich oneswill be discarded for 83

each hypercube included in the job. 84

The current implementation offers a lot of helpers that can be 85

plugged in many different places for many different purposes. For 86

instance, if we just want to get a field out of the input object 87

being processed for a certain dimension (or for the value returned), 88

we can just use a helper reader that obtains that field at runtime 89

through Java reflection, and avoid the generation of a new class 90

whose onlymethodwould just return the field. The user just needs 91

to specify the field name andmake sure that the object provides the 92

relevant accessor (getter method). 93

Last but not least, the manner in which the data is aggregated 94

as well as whether the aggregator can be used as the Hadoop 95

combiner for the job (recommended whenever possible [15]) can 96

also be defined by the user (and could also be defined per 97

hypercube with minor changes), although most of the time they 98

will just set one of the currently available helpers (for computing 99

counts, the minimum/maximum value, the average, the standard 100

http://hadoop.apache.org
http://www.mpi-forum.org
http://www.sdss.org/

4 D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx

Fig. 3. Data workflow through the framework and main interfaces to implement for each hypercube. The sample in the figure shows a hypercube with two dimensions
(discrete for the x axis and continuous with intervals for the y axis) that counts the number of elements falling into each combination of the categories.

deviation, etc.). For more complex hypercubes (i.e. several1

measures aggregated differently on each cell of the hypercube), we2

could create an aggregator along with a custom type for cell values3

so that the differentmeasures are aggregated differently (the count4

for some of them, the average for others, etc.).5

Before running the job it is required to set some configuration6

properties for the definition of the input files and the correspond-7

ing input format to use, the path where to leave the results, the8

class that will define the hypercubes to create (Listing 1 shows the9

skeleton of this class for the example shown in Fig. 3), and some10

other parameters like the type of the output value returned for11

them (mandatory for any Hadoop job). This last constraint forces12

all entities computed in the same job to have the same return13

type (the reducer output value, e.g. the count, themaximum value,14

etc.), although this can be easily worked around if needed by set-15

ting more generic types (a Double for holding both integers and16

floating point numbers, a String for numbers and text, etc.), or as17

stated above, developing a custom type (implementing theHadoop18

Writable interface) that holds them in different fields, along with19

the corresponding aggregator.20

Listing 1: Custom class defining the hypercube(s) to compute.
21

public c l a s s MyHypercubeBuilder22

extends BuilderHelper <Stel larSource , LongWritable > {23

24

@Override25

public L i s t <Hypercube<Stel larSource , LongWritable >>26

getHypercubes () {27

// Create list holding the hypercubes28

// Create CatA instance (with ranges)29

// Create CatB instance30

// Create Filter instance31

// Create ValueBuilder (use Helper)32

// Create Aggregator (use Helper)33

// Create Hypercube instance34

// Add to hypercubes list35

// Return hypercubes list36

}37

38

}3940

The output files of the job have two columns, the first one41

for identifying the hypercube name as well as the combination42

of the concrete values for its dimensions (split by a separator43

defined by the user), and the second one holding the actual value44

of that combination of categories (see Listing 2 for a sample of45

the output for the Theoretical Hertzsprung–Russell diagram shown 46

in Fig. 2). The types used for discrete categories must provide a 47

method to return a string which unequivocally identifies each of 48

the possible values of the dimension. For categories with intervals, 49

the string in the output file will contain information on the interval 50

itself with square brackets and parentheses as appropriate (closed 51

and open ends respectively), but again they must ensure that 52

the types of the interval ends (bin ends) supply a unequivocal 53

string representation. This unequivocal representation might be 54

the primary key of the dimension’s concrete value (for more 55

advanced hypercubes) so that it can later on be joinedwith the rest 56

of the information of that dimension as it usually happens in data 57

mining star schemas. 58

Listing 2: Sample of the output for the Theoretical Hertzsprung–
Russell diagram shown in Fig. 2.

59
[. . .] 60

TheoreticalHR / [3 . 58 , 3 .5825)/ [16 .7 ,16 .725)/ 998 61

TheoreticalHR / [3 . 58 , 3 .5825) / [8 .0 ,8 .025) / 883 62

TheoreticalHR /[3 .5875 , 3.59)/[−4.875 ,−4.85)/ 328 63

TheoreticalHR /[3 .5875 , 3.59)/[−5.4 ,−5.375)/ 391 64

TheoreticalHR /[3 .6075 , 3.61)/[−0.9 ,−0.875)/ 87031 65

TheoreticalHR /[3 .6075 , 3.61)/[−3.6 ,−3.575)/ 2780 66

TheoreticalHR /[3 .6075 , 3.61)/[−3.925 ,−3.9)/ 12384 67

[. . .] 6869

One straightforward but important optimization that has been 70

implemented is the usage of sorted lists for dimensions that de- 71

fine continuous, non-overlapping intervals. This way the number 72

of comparisons to do per input object is considerably lowered, 73

reducing by a factor of 20 the time taken for the execution. There- 74

fore, although non-continuous (and non-ordered) interval cate- 75

gories are allowed in the framework, it is strongly recommended 76

to define continuous (and non-overlapping) ranges even though 77

some of them may be later on discarded. 78

4. Experiments 79

4.1. Cloud deployment 80

Recently there has been a blossoming of commercial Cloud 81

computing service providers, for example Amazon Web Services 82

(AWS), Google Compute Engine, Rackspace Cloud, Microsoft Azure 83

D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx 5

and several other companies or products sometimes focused on1

different needs (Dropbox, Google Drive, etc.). AWS has become2

one of the main actors in this Cloud market, offering a wide3

range of services such as the ones that have been used for4

this work: Amazon Elastic MapReduce (Amazon EMR4), Amazon5

Simple Storage Service (Amazon S35) and Amazon Elastic Compute6

Cloud (Amazon EC26). The way these three services are used is as7

follows: EC2 provides the computers that will run the work flows,8

S3 is the data store where to take the data and leave the results,9

and EMR is the Hadoop ad-hoc deployment (and configuration)10

provided for MapReduce jobs. Amazon charges for each service,11

and not only for the computing resources but also for the storage12

on S3 and the data transfers in and out of their infrastructure. They13

also provide different instances (on-demand, reserved and spot14

instances) which obviously have different prices at different levels15

of availability and service. The EMR Hadoop configuration is based16

on the current operational version of Hadoop with some bug fixes17

included. Furthermore, the overall experience with Amazon EMR18

is very good and it has been quite easy to start submitting jobs to19

it through command line tools openly available. Debugging is also20

quite easy to do as ssh access is provided for the whole cluster of21

nodes.22

The deployment used for testing and benchmarking consists of23

eight worker nodes each one having the Hadoop data and task24

tracker nodes running on them. There is also one master node25

which runs the name node and the job tracker. The AWS instance26

chosen ism1.xlarge, which has the following features:27

• 4 virtual cores (64-bit platform).28

• 15 GB of memory.29

• High I/O performance profile (1 Gbps).30

• 1690 GB of local Direct Attached Storage (DAS), which sums31

up to a bit more than 13 TB of raw storage which may be cut32

down by half ormore depending on theHadoopDistributed File33

System (HDFS) [16] replication factor chosen.34

With this layout, EMR Hadoop deployment launches a maxi-35

mum number of 8 mappers and 3 reducers per worker node (6436

and 24 for the entire cluster respectively). It is important to re-37

mark that the time taken for starting the tasks of a job in Hadoop is38

not negligible (more than oneminute for the tests carried out) and39

certainly affects the performance of short jobs [6], as it imposes a40

minimum amount of time that a job will always last (sequential41

workload) no matter the amount of data to process. This is one of42

the reasons why Hadoop is mostly advised for very big workloads43

(Big Data), where this effect can just be disregarded.44

4.2. Data storage model considerations45

Scientific raw data sets are not normally delivered in a46

uniformly sized set of files as the parameters chosen for placing47

the data produce a lot of skew due to features inherent to the48

data collection process (some areas of the sky are more densely49

populated, a determined event does not occur at regular intervals,50

etc.). This is also true for the data set being analyzed in this paper51

(GUMS10) as it comprises a set of files each one holding the52

sources of the corresponding equal-area sky region (see Fig. 1 for53

its histogram drawn in a sky projection). This may be a problem54

for binary (and often compressed) files when stored in HDFS as55

the records cannot be split into blocks (there is no delimiter as56

in the text format). The data formats studied in this paper are of57

4 http://aws.amazon.com/elasticmapreduce/.
5 http://aws.amazon.com/s3/.
6 http://aws.amazon.com/ec2/.

Fig. 4. Performance for different HDFS block and file sizes (files in GBIN format are
binary and compressed with Deflate).

this type (binary and compressed with no delimiters), defined by 58

the Gaia mission SOC (Science Operations Centre). Thus we have 59

to read each of them sequentially in one Hadoop mapper and their 60

size must be roughly the same and equal to the defined HDFS 61

block size to maximize performance through data locality. Fig. 4 62

shows the performance obtained when computing the different 63

histograms shown in Figs. 1 and 2: a HEALPix density map and a 64

theoretical Hertzsprung–Russell diagram. As we can see, once we 65

group the data into equally sized files and set the HDFS block to 66

that size, the time consumed for generating them is approximately 67

2/3 the time taken when the original highly-skewed delivery is 68

used. The standard format chosen for data deliveries within the 69

Gaia mission is called ‘GBIN’, which contains Java-serialized binary 70

objects compressed with Deflate (ZLIB). 71

In Fig. 4 we can also see that there is a block size which 72

performs slightly better than the others (512 MB) which is a 73

consequence of the concrete configuration used for the testbed, 74

as more files mean more tasks (Hadoop mappers) being started 75

which is known to be slow in Hadoop as already remarked above. 76

Furthermore, less but bigger files may produce a slowdown in the 77

data shuffling period (each Hadoop mapper outputs more data 78

which then has to be combined and shuffled). Therefore, we will 79

use the best configuration (data files and block size of 512 MB) 80

for the comparison with other data storage techniques and for 81

benchmarking. 82

To analyze the effects of the different compression techniques 83

available and study how they perform for an astronomical data set, 84

a generic data input format has been developed. Thisway, different 85

compression algorithms and techniques may be plugged into 86

Hadoop, again without dealing with any Hadoop internals (input 87

formats and record readers). This is more or less the same idea as 88

the generic input format interface provided by Hadoop but more 89

focused on binary (non-splittable) and compressed data. The data 90

reader to use for the job must be configured through a property 91

and its implementation must provide operations for setting up 92

and closing the input stream to use for reading, and for iterating 93

through the data objects. The readers developed so far store Java 94

serialized binary objects with different compression techniques 95

which are indicated below as: GBIN for Deflate (ZLIB), Snappy for 96

Google Snappy7 compression and Plain for no compression. 97

Fig. 5 shows the results obtainedwhen these compression tech- 98

niques are used with the GUMS10 data set for creating the same 99

histograms as before. It is important to remark that no atten- 100

tion has been paid to other popular serialization formats currently 101

available like Thrift,8 Avro9 etc., as the time to (de)serialize is al- 102

ways negligible compared to the (de)compression one. Further- 103

more, as stated above, the data is always stored in binary format as 104

the textual counterpart would lead to much worse results (a proof 105

of this is the battery of tests presented in [6]). 106

7 http://code.google.com/p/snappy/.
8 http://thrift.apache.org/.
9 http://avro.apache.org/.

http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/s3/
http://aws.amazon.com/ec2/
http://code.google.com/p/snappy/
http://thrift.apache.org/
http://avro.apache.org/

6 D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx

Fig. 5. Data storage model approaches performance comparison.

Fig. 6. Data set size for different compression and format approaches.

Google Snappy codec gives a much better result as the decom-1

pression is faster than Deflate (GBIN). It takes half of the time to2

process the histograms (50%) and the extra size occupied on disk3

is only around 23% (see Fig. 6). This confirms the suitability of4

this codec for data to be stored in HDFS and later on analyzed by5

Hadoop MapReduce work flows.6

Fig. 5 also shows the performance obtained with another7

data storage model developed ad-hoc using a new Hadoop input8

format, column-oriented (see the rightmost two columns in both9

histograms), which resembles the one presented in [10], although10

it integrates better in the client code as the objects returned are11

of the relevant type (the information that we want to populate12

from disk still has to be statically specified though as in [10]).13

Furthermore, we obviously expect that the improvements made14

by the column input format are more significant as the data set15

grows larger (both in number of rows and columns), although we16

can also state that performance will decrease when most of the17

data set columns are required in a job, due to overheads incurred18

in the column-oriented store mechanism (several readers used at19

the same time, etc.). These issues have to be carefully considered20

for each particular use case before any of the formats is chosen.21

The Hadoop operational version at the time of writing does not22

yet provide a way to modify the block data placement policy when23

importing data into HDFS (newer alpha/beta versions do support24

this to some extent although these could not be used in Amazon25

EMR). The current algorithm for deciding what data node is used26

(whenever an input stream is opened for a certain file), chooses27

the local node if there is a replica in there, then another random28

node in the same rack (containing a replica) if it exists, and if29

there is no one serving that block in the same rack it randomly30

chooses another data node in an external rack (containing a replica31

of course). Considering this algorithm, if we set the replication32

policy to the number of cluster worker nodes, we ensure that there33

will always be a local replica of everything on every node and thus34

we can simulate that the column files corresponding to the same35

data objects have been placed in the same data node (and replicas)36

for data locality of input data readers. This is not to be used in an37

operational deployment of course, but it has served its purpose in 38

our study. Meanwhile, new techniques that overcome these issues 39

are being put in place (i.e. embed data for all columns in the same 40

file, and split by row ranges). 41

These new techniques, whose main implementations are 42

Parquet,10 ORC11 (Optimized RowColumnar) and Trevni12 (already 43

discontinued in favor of Parquet) should always be chosen instead 44

of ad-hoc developments like the one presented here, as even 45

though some of them may not yet be ready for operations, they 46

are rapidly evolving and will become very soon the default input 47

and output formats for many use cases, overall for those found in 48

science and engineering. The main features of this new technique 49

are enumerated below: 50

• Data are stored contiguously on disk by columns rather than 51

rows. Then, each block in HDFS contains a range of rows of the 52

∧
data set and there is some metadata that can be used to seek 53

to the start or the end of any column data, so if we are reading 54

just two columns, we
∧
do not have to scan the whole block, but 55

just the two columns data. This way, it is not necessary to create 56

many different files whichmight incur in extra overhead for the 57

HDFS name node. 58

• Compression ratio for each column data will be higher than 59

the row oriented counterpart due to the fact that values 60

for the same column are usually more similar, overall for 61

scientific data sets involving time series, because new values 62

representing certain phenomena are likely to be similar than 63

those just measured. These implementations go beyond a 64

simple compression for the column data by allowing different 65

compression algorithms for different types of data, or evendo so 66

on the fly aswe create the
∧
data set by trying several alternatives. 67

For instance, for a column representing a measure (floating 68

point number) of a determined sensor or instrument, it would 69

be reasonable to use a delta compression algorithm where 70

we store the differences between values which will probably 71

require less bits for their representation. It is important to 72

remark that I/O takes more time than the associated CPU 73

time (de)compressing the same data. For other columns with 74

enumerated values, the values themselves will be stored in the 75

metadata section along with a shorter (minimum) set of bits 76

which will be the ones being used in the column data values. 77

This of course requires (de)serializing the whole block (range of 78

rows) for building back the original values of each column, but 79

this technique usually performs well and takes less time. 80

10 http://parquet.io/.
11 http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/
orcfile.html.
12 https://github.com/cutting/trevni.

http://parquet.io/
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
https://github.com/cutting/trevni

D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx 7

• Predicate push-down. Not only we can specify the set of1

columns that will be read for a determined workflow, but for2

those that need to be queried or filtered with some constraints,3

we can also push down the predicates so that the data not4

needed are not even deserialized in the worker nodes, or even5

not read from disk (only the metadata available is accessed).6

• Complex nested data structures can be represented in the7

format (not just simple flattening of nested namespaces). The8

technique for implementing this feature is presented in more9

detail in [17].10

• This data format representation is agnostic to the data process-11

ing, data model or even the programming language.12

• Further improvements of the column-based approach include13

the ability to split fileswithout scanning formarkers, some kind14

of indexing for secondary sorting, etc.15

Fig. 6 shows that the level of compression achieved by our naive16

implementation of the column-oriented approach (compared to17

the row-oriented counterpart) is not as good as it might be18

expected. This may be caused by the fact that an entire row may19

much resemble the next row (similar physical properties), so the20

whole rowmaybe considered a column, but at a higher granularity,21

leading to a relatively good compression in the row-oriented22

storage model as well. Another more plausible explanation for this23

may be that we do not use deltas for adjacent data (in columns) as24

is usual [18], but the values themselves.25

Contrasting the results in Figs. 5 and 6, we see that the column-26

oriented storagemodel (using Snappy codec) takesmoredisk space27

than the row-oriented one (with Deflate). This extra cost overhead28

(64 GB) amounts to $8 per month in Amazon S3 storage (where29

the data are taken from at cluster initialization time), which is30

much less than the price incurred in a typical workload where31

many histograms and hypercubes have to be computed, as e.g. the32

cluster must be up 24 min more in the case of a HEALPix density33

map computation (which comes to a bit more than $3 extra per34

job) or 25 min more for a single theoretical Hertzsprung–Russell35

diagram (again a bit more than $3 extra per job). Therefore, for36

typical largerworkloads of several (andmore complex) histograms37

and/or hypercubes, we can expect larger and larger cost savings38

with the column-oriented approach as computation is much more39

expensive than the extra overhead in S3 storage, mainly due to the40

amount of jobs to be run as well as the non-negligible cost of the41

cluster nodes.42

4.3. Benchmarking43

Two powerful and well-known products have been chosen for44

the benchmark, Pig13 0.11.0 and Hive14 0.10.0. These open source45

frameworks, which also run on top of Hadoop, offer an abstraction46

of the MapReduce model, providing users with a general purpose,47

high-level language that could be used not only for the hypercubes48

described above, but also for other data processingworkflows such49

as ETL (Extract, Transform and Load). However, they might require50

some further work to do in case wewanted to build more complex51

hypercubes (involving several dimensions and values, some of52

them computed with already existing custom code), or generating53

several hypercubes in one scan of the input data (something not54

neatly expressed in a SQL query).55

The tests carried out use a row-oriented scheme with com-56

pressed (Snappy) binary data and have been run on the infrastruc-57

ture described in Section 4.1. For the purpose of benchmarking, we58

will carefully analyze different scenarios:59

13 http://pig.apache.org/.
14 http://hive.apache.org/.

Fig. 7. Comparison among the framework presented and other popular data
analysis tools currently available. All tests have been run using theHadoop standard
Merge-Sort algorithm for data aggregation.

• Simple one-dimensional hypercube with the key encoded as 60

text (the default for the framework), and as binary (more 61

efficient but less flexible). 62

• Two-dimensional hypercube with low key cardinality where 63

the aggregation factor is high. 64

• Several hypercubes at the same time with different key 65

cardinalities. 66

• Different aggregation algorithms (default Merge Sort and Hash- 67

based). 68

• Scalability tests by increasing the
∧
data set size, but keeping the 69

same cardinalities for the keys. 70

Fig. 7 shows the results obtained when generating the hyper- 71

cube plotted in Fig. 1. Two approaches (with the key encoded as 72

text and as binary) have been considered in order to prove that the 73

proportions in execution time for the different solutions are kept, 74

although the framework is supposed to alwaysworkwith text in its 75

current version. We can see that the framework performs consid- 76

erably better (33% in the case of Pig and up to 40% for Hive) and we 77

argue that this may be due to its simplicity in the design yet the ef- 78

ficient core logic built inside, which cannot be achieved by general 79

purpose frameworks that are supposed to span a verywide domain 80

of applications. Therefore, this generality has a high impact in cost 81

whenwe focus on a particular use case like the one described here. 82

The results shown in Fig. 8 refer to the scalability of the 83

alternatives studied for different computations and configurations. 84

The same
∧
data set (GUMS10) is used to enlarge the input size, 85

although it is important to notice that the output size will remain 86

the same as the number of bins will not change as we increase the 87

input data. 88

We can see that the framework performs significantly better in 89

the use cases studied, which proves that for well-known, opera- 90

tional workloads, it is usually better to use a custom implementa- 91

tion (or an ad-hoc framework) rather than using general purpose 92

tools which are more suited for exploration or situations where 93

performance is not so important. However, we can be certain that 94

these general purpose and higher level implementations are catch- 95

ing up fast enough if we look at the optimizations they are cur- 96

rently releasing, such as hash-based aggregation. This technique 97

(known as In-Mapper combiner) tries to avoid data serialization 98

and disk I/O by aggregating data in a hash table in memory. Then, 99

the mappers that run in the same JVM do not emit data until they 100

are all finished (as long as the aggregation ratio is high enough). 101

Then, the steps for serializing data and the associated disk I/O 102

before the combiner is executed are not needed anymore, thus im- 103

proving performance dramatically. The logic built-in for accom- 104

plishing this new functionality is rather complex not only because 105

Hadoop was not designed for this kind of processing in the first 106

place, but also due to the dynamic nature of the implementations, 107

which can switch on-the-fly between hash-based and merge-sort 108

http://pig.apache.org/
http://hive.apache.org/

8 D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx

(a) Star density map using HEALPix (one dimension). (b) Theoretical Hertzsprung–Russell diagram (two dimensions).

(c) Star density map using HEALPix at eight different resolutions
(one dimension, eight different hypercubes in the same run).

Fig. 8. Scalability benchmark for (a) star density map, (b) theoretical HR diagram and (c) star density map at eight different resolutions. The approaches shown encompass
different alternatives from the Hadoop ecosystem and the two main algorithms used for aggregating data, i.e. Merge Sort (the default for Hadoop) and Hash Aggregation
(whose implementation is known in the Hadoop ecosystem as In-Mapper combiner). The results for Hash aggregation are only shown for Hive, which is the only one that
showed some improvements in the tests run. The

∧
data set is enlarged one, two and four times with the same data (1×GUMS10, 2×GUMS10 and 4×GUMS10 respectively)

and therefore the cardinality of the key space for each hypercube being computed remains unchanged.

aggregations by spilling to disk what is inside the hash table once1

a certain configured aggregation threshold is not met by the work-2

flow at run time. The implementation of this automatic switching3

is something that will make these higher level tools muchmore ef-4

ficient, but it will also require much more expertise from users for5

tuning the best configuration for the workflows.6

Furthermore, the current implementation for Hive shows a very7

good performance gain as shown in Fig. 8(c) but is not significantly8

better than the merge-sort counterpart when using Hadoop9

directly. This may be caused by the fact that there is not much I/O10

due to the small size of each pair of keys and values, compared to11

the savings produced for a better in-memory aggregation. Results12

for hash-based aggregation in Pig have been omitted due to its13

very poor performance in the release used, which proves that a14

more robust implementation must properly handle the memory15

consumed by the hash table, allowing to switch to Merge Sort16

dynamically whenever the cardinality goes beyond a predefined17

threshold. This dynamism in query executionmay become an asset18

for Hadoop-based processing comparing to parallel DBMS, where19

the query planner picks one alternative at query parsing time and20

usually sticks to it till the end. In Hadoop, this is more dynamic and21

gives more flexibility and adaptability at run time.22

One of the most common features of data pipelines is that they23

are often DAG (Directed Acyclic Graph) and not linear pipelines.24

However, SQL focuses on queries that produce a single
∧
result set.25

Thus, SQL handles trees such as joins naturally, but has no built26

in mechanism for splitting a data processing stream and applying27

different operators to each sub-stream. It is not uncommon to28

find use cases that need to read one data set in a pipeline and29

group it by multiple different grouping keys and store each as30

separate output. Since disk reads and writes (both scan time and31

intermediate results) usually dominate processing of large data32

sets, reducing the number of times data must be written to and 33

read from disk is crucial to good performance. 34

The recent inclusion of the GROUPING SETS clause in Hive 35

has also contributed to the improvements shown in Fig. 8(c), 36

comparing to those in Fig. 8(a) and (b), as it allows that the 37

aggregation is made with different keys (the ones specified in the 38

clause) yet only one scan of data is needed. This fits perfectly in the 39

scenario posed in the test shown in Fig. 8(c), where we compute 40

several hypercubes at the same time in the same
∧
data set. However, 41

GROUPING SETS clause is complex since the keys specified have to 42

be in separate columns. Therefore, when trying to compute results 43

in the format of a single key plus its corresponding value, we will 44

always get the key which the row refers to, plus the rest of keys 45

with empty values (null). 46

We have found other usability issues in Hive, which we believe 47

will be addressed soon, but which may currently lead to a worse 48

user experience, such as the lack of aliases on columns. This is a 49

minor problem, but most of the users and client applications are 50

used to relying on them everywhere for reducing complexity or 51

increasing flexibility, overall when applying custom UDF or other 52

built-in operators. Furthermore, there is noway to pass parameters 53

to the UDF when initializing, which has made the execution of 54

the multi-hypercube workflow more difficult to run, as several 55

different UDF had to be coded, even though they all share the same 56

functionality and the only difference is the parameter that sets the 57

resolution of the map. 58

Comparing Pig and Hive, results show that Pig performs 59

significantly better than Hive when the (Hadoop) standard Merge 60

Sort algorithm is chosen. However, the implementation of the 61

hash-based aggregation in Hive seems more mature and gives a 62

better performance than the Merge Sort alternative in Hive, for 63

those cases where the aggregation factor is high enough (see the 64

D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx 9

tendency of Fig. 8(b) where the aggregation factor is increased as1

we enlarge the
∧
data set due to the same data being duplicated).2

One of themost important conclusions to take awaywhen look-3

ing at these results is that there is no solution that fits all problems.4

Therefore, special care has to be taken when choosing the product5

to use as well as when setting the algorithm and tuning its param-6

eters. Results show that a bad decision may even double execu-7

tion time for certain workloads. In this case, an ad-hoc solution fits8

better than more generic ones, even though already implemented9

hash-based algorithms in Hive and Pig may seem more appropri-10

ate upfront. In addition, there are other optimizations that could11

be easily made, such as sort avoidance, because it is normally not12

needed when processing aggregation workflows.13

Another remark worth mentioning is that when we double14

the input size, the execution time is a bit less than the expected15

(double) one. This is due to the fact that Hadoop inherent overhead16

starting jobs is compensated by the larger workload, which proves17

that Hadoop is not well suited for small
∧
data sets as there is a non-18

negligible (and well-known) latency starting tasks in the worker19

nodes.20

5. User experience21

The hypercube generation framework is packaged as a JAR (Java22

Archive) file and has a few
∧
dependences on other packages (mainly23

on those of Hadoop distribution). To make use of the framework,24

the user has to write some code that sets what hypercubes to25

compute (see Listing 1), as well as any extra code that will be26

executed by the framework, e.g. when computing the concrete27

categories or values for each hypercube and input record in the28

∧
data set being processed. Furthermore, the user is expected to29

package all classes into a JAR, create a file containing (at least) the30

properties specified in Section 3 (input and output paths, etc.), and31

run that JAR on aHadoop cluster followingHadoopdocumentation.32

The framework has been tested by offering it to a variety of33

user groups. One of the authors (AB), without any background in34

computer science (butwith experience in Javaprogramming), tried35

out the framework as it was being developed. He had no significant36

problems inunderstandinghow towrite pieces of Java codeneeded37

to generate hypercubes for specific categories or intervals and38

was able to quickly write a small set of classes for supporting the39

production of hypercubes for quantities (e.g. energy and angular40

momentum of stars) that involve significant manipulation of the41

basic
∧
catalog quantities. How to write additional filters based on42

these quantities was also straightforward to comprehend.43

Subsequently the framework (together with the small set of44

additional classes) was offered to students attending a school45

on the science and techniques of Gaia. During this school the46

students were asked to produce a variety of hypercubes (such as47

the ones in Figs. 1 and 2) based on a subset of the GUMS10 data48

set. The aim was to give the attendants a feel for working with49

data sets corresponding to the Big Data case. The programming50

experience of this audience (mostly starting Ph.D. students) ranged51

from almost non-existent, to experience with procedural and52

scripting languages, to very proficient in Java. Hence, although the53

conceptual parts of the frameworkwere not difficult to understand54

for the students (what is a hypercube, what is filtering, etc.), the55

lack of knowledge in both the Java programming language, and in56

its philosophy and methods proved to be a significant barrier in57

using the framework.58

Widespread opinions were for instance: ‘‘Given the Java pro-59

gramming language learning curve the framework is a huge60

amount of work for short term studies but is very useful for long61

term and more complex studies’’ and ‘‘Java needs a complete62

change of mind with respect to the way we are used to program-63

ming’’. The framework was also offered at a workshop on simulat-64

ing the Gaia catalogue data and there the attendants consisted of65

a mix of junior and senior astronomers. The reactions to the use of 66

the framework were largely the same. 67

On balance we believe that once the language barrier is 68

overcome the frameworkprovides a very flexible tool toworkwith. 69

Theway of obtaining the data and the fact that the usermay choose 70

the treatment of these data, enables a wide range of possibilities 71

with regard to scientific studies based on the data. 72

The fact that it operates under a Hadoop system makes it an 73

efficient way of serving data analysis of huge amounts of data with 74

respect to conventional database systems, due to the nature of the 75

requests presented by the users in the seminars: ‘‘They must be 76

completely customizable for any statistics or studies a scientist 77

wanted to develop with the source data’’. 78

Another interesting point is the way the data is presented on 79

output. It can be parsed with any data mining software that can 80

represent graphical statistical data due to its simple representa- 81

tion, and it can also be understood by the users themselveswithout 82

major issues. 83

6. Conclusions 84

In this paper, we have presented a framework that allows us to 85

easily build data mining hypercubes. This framework fills the gap 86

between the computer science and scientific (e.g. astrophysical) 87

communities, easing the adoption of cutting-edge technologies for 88

accomplishing new scientific research challenges not considered 89

before. In this respect the framework adds a layer on top of 90

the Hadoop MapReduce infrastructure so that scientific software 91

engineers can focus on the algorithms themselves and forget about 92

the underlying distributed system. The latter provides a new way 93

ofworkingwith big data sets such as the ones thatwill be produced 94

by ESA’s Gaia mission (only simulations currently available). 95

Furthermore, we explored the suitability of current commercial 96

Cloud deployments for these types of work flows, analyzed the 97

application of novel data storage model techniques currently 98

being exploited in parallel DBMS (i.e. column-oriented storage) 99

and benchmark the solution against other popular data analysis 100

techniques on top of Hadoop. On one hand, the column orientation 101

has proven to be very effective for the generation of hypercubes 102

as the number of columns involved in the process is often much 103

less than the ones available in the original data set (the facts table 104

in a data mining star schema), especially in scientific contexts 105

where each study often focuses on a very specific area (astrometry 106

or photometry in the astrophysical field for instance). On the 107

other hand, the fact that the framework focuses on a specific 108

field (generation of hypercubes), makes it better in terms of 109

performance than other well-known solutions like Pig and Hive 110

under the same conditions for the data processing. We argue that 111

this is one aspect that must always be considered (tradeoff of the 112

generality
∧
vs. performance) as too generic solutions may penalize 113

performance as they need more logic inside to cope with the 114

variety of features they provide. 115

In addition, we show several results that suggest the architec- 116

ture to be considered for binary data in Hadoop work flows and 117

conclude that it is always better to compress the data set as the CPU 118

time for decompression is much less than the extra I/O overhead 119

for reading theuncompressed counterpart.We also prove that light 120

compression techniques, such as Snappy, are more suited for ana- 121

lytical work flows than more aggressive compression techniques 122

(which are aimed at increasing data transfer rates). 123

Last but not least, the framework can also be used in any 124

other discipline or field, as it is very common to use hypercubes 125

(and pivot tables) for summarizing big data sets, or for providing 126

business intelligence capabilities. Using the framework in other 127

disciplines can be donewithout losing its generality (much needed 128

due to the diversity of studies that can bemadewith scientific data 129

sets). 130

10 D. Tapiador et al. / Computer Physics Communications xx (xxxx) xxx–xxx

7. Future work1

There are several lines of work that have been opened by this2

research, including:3

• Extensions or internal optimizations of the framework.4

• Benchmarking against other possible solutions such as the ones5

provided in the datamining extensions of commercial (parallel)6

DBMS, or other solutions being currently developed within7

the Hadoop ecosystem which aim at providing near-real time8

responses for queries that return small data sets.9

• Use other already existing implementations of the column-10

based approach and benchmark against the improvements11

already made with more naive implementations.12

Some possible extensions are the ability to automatically use13

data coming from different sources by joining and filtering them14

in a first MapReduce phase with the user-supplied field and15

constraints respectively, and computing the hypercube requested16

in a subsequent phase. This would be ideal for raw data analysis.17

Furthermore, another internal optimizationmight be to use binary18

types instead of text for the keys when the hypercubes are simple19

enough (as shown in the benchmark), as the usage of long text20

strings can cause a slowdown in the sorting, hashing and shuffling21

stages.22

The framework’s efficiency should be benchmarked and com-23

pared to new technologies that aim at producing near-real time24

responses by both working in memory as much as possible, and25

by pulling the intermediate results of the internal computations26

directly from memory instead of disk. These tests should not only27

focus on the speedup and scale-up, but also analyze differentwork-28

loads involving geometry and time series. This comparison should29

also take into account the different data storage model layouts de-30

scribed in this paper (particularly the column input format), aswell31

as the data aggregation ratio for each particular hypercube (and the32

best algorithms to apply in each case).33

Acknowledgments34

This research was partially supported by Ministerio de Ciencia35

e Innovación (Spanish Ministry of Science and Innovation),36

through the research grants TIN2012-31518, AYA2009-14648-37

C02-01 and CONSOLIDER CSD2007-00050. The GUMS simulations38

were run on the supercomputer MareNostrum at the Barcelona39

Supercomputing Center—Centro Nacional de Supercomputación.40

References 41

[1] F. Mignard, Overall science goals of the Gaia mission, in: C. Turon,
K.S. O’Flaherty, M.A.C. Perryman (Eds.), ESA SP-576: The Three-Dimensional
Universe with Gaia, 2005, pp. 5–+.

42

[2] Euclid. Mapping the geometry of the dark Universe, Definition Study Report,
Tech. rep., European Space Agency/SRE, July, 2011.

43

[3] Z. Ivezic, J.A. Tyson, LSST: from science drivers to reference design and 44

anticipated data products. ArXiv e-prints arXiv:0805.2366. 45

[4] P. Dewdney, P. Hall, R. Schilizzi, T. Lazio, The square kilometre array, Proc. IEEE
97 (8) (2009) 1482–1496.

46

[5] J. Dean, S. Ghemawat,MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

47

[6] A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S.Madden,M. Stonebraker,
A comparison of approaches to large-scale data analysis, in: Proceedings of
the 2009 ACM SIGMOD International Conference on Management of Data,
SIGMOD’09, ACM, New York, NY, USA, 2009, pp. 165–178.

48

[7] J. Ekanayake, S. Pallickara, G. Fox, MapReduce for data intensive scientific
analyses, in: Proceedings of the 2008 Fourth IEEE International Conference on
eScience, ESCIENCE’08, IEEE Computer Society, Washington, DC, USA, 2008,
pp. 277–284.

49

[8] T. Gunarathne, T.-L.Wu, J. Qiu, G. Fox, MapReduce in the Clouds for science, in: 50

2010 IEEE Second International Conference on Cloud Computing Technology 51

and Science, CloudCom, 2010, pp. 565–572. 52

[9] S.N. Srirama, O. Batrashev, P. Jakovits, E. Vainikko, Scalability of parallel
scientific applications on the Cloud, Sci. Program. 19 (2–3) (2011) 91–105.

53

[10] A. Floratou, J.M. Patel, E.J. Shekita, S. Tata, Column-oriented storage techniques
for MapReduce, Proc. VLDB Endow. 4 (7) (2011) 419–429.

54

[11] A.F. Gates, O. Natkovich, S. Chopra, P. Kamath, S.M. Narayanamurthy, C. Olston, 55

B. Reed, S. Srinivasan, U. Srivastava, Building a high-level dataflow system 56

on top of Map-Reduce: the Pig experience, Proc. VLDB Endow. 2 (2) (2009) 57

1414–1425. URL http://dl.acm.org/citation.cfm?id=1687553.1687568. 58

[12] A. Thusoo, J.S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, 59

R. Murthy, Hive: a warehousing solution over a Map-Reduce framework, Proc. 60

VLDB Endow. 2 (2) (2009) 1626–1629. 61

URL http://dl.acm.org/citation.cfm?id=1687553.1687609. 62

[13] A.C. Robin, X. Luri, C. Reylé, Y. Isasi, E. Grux, S. Blanco-Cuaresma, F. Arenou, C.
Babusiaux, M. Belcheva, R. Drimmel, C. Jordi, A. Krone-Martins, E. Masana, J.C.
Mauduit, F. Mignard, N. Mowlavi, B. Rocca-Volmerange, P. Sartoretti, E. Slezak,
A. Sozzetti, Gaia Universe model snapshot, A&A 543 (2012) A100.

63

[14] K.M. Grski, E. Hivon, A.J. Banday, B.D. Wandelt, F.K. Hansen, M. Reinecke, M.
Bartelmann, HEALPix: a framework for high-resolution discretization and fast
analysis of data distributed on the sphere, Astrophys. J. 622 (2) (2005) 759.

64

[15] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, A study of skew in MapReduce
applications, in: 5th Open Cirrus Summit, 2011.

65

[16] K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file 66

system, in: 2010 IEEE 26th Symposium on Mass Storage Systems and 67

Technologies (MSST), 2010, pp. 1–10. 68

[17] S. Melnik, A. Gubarev, J.J. Long, G. Romer, S. Shivakumar, M. Tolton, T. 69

Vassilakis, Dremel: interactive analysis of web-scale datasets, in: Proc. of the 70

36th Int’l Conf on Very Large Data Bases, 2010, pp. 330–339. 71

URL http://www.vldb2010.org/accept.htm. 72

[18] J. Krueger, M. Grund, C. Tinnefeld, H. Plattner, A. Zeier, F. Faerber,
Optimizing write performance for read optimized databases, in: Proceedings
of the 15th International Conference on Database Systems for Advanced
Applications, Volume Part II, DASFAA’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 291–305.

73

http://arxiv.org/0805.2366
http://dl.acm.org/citation.cfm?id%3D1687553.1687568
http://dl.acm.org/citation.cfm?id%3D1687553.1687609
http://www.vldb2010.org/accept.htm

	A framework for building hypercubes using MapReduce
	Introduction
	Data analysis in the Gaia mission
	Framework description
	Experiments
	Cloud deployment
	Data storage model considerations
	Benchmarking

	User experience
	Conclusions
	Future work
	Acknowledgments
	References

	ikona:
	2:
	3:
	7:
	8:
	9:
	10:

	animtiph:
	1:
	2:
	3:
	4:
	5:
	6:
	7:
	8:
	9:
	10:
	11:
	12:
	13:
	14:
	15:
	16:
	17:
	18:
	19:
	20:
	21:
	22:

	TooltipField:

