
  

Positional stability of holographic optical traps 

Arnau Farré,1 Marjan Shayegan,2 Carol López-Quesada,1 Gerhard A. Blab,3,4  

Mario Montes-Usategui,1 Nancy R. Forde,3 Estela Martín-Badosa1,* 
1Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, 

Martí i Franquès, 1 08028 Barcelona, Spain 
2Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, 

British Columbia, V5A 1S6, Canada 
3Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, 

British Columbia, V5A 1S6, Canada 
4Current address: Molecular Biophysics, Universiteit Utrecht, Postbus 80000, 3508 TA Utrecht, The Netherlands 

*estela.martinb@ub.edu 

Abstract: The potential of digital holography for complex manipulation of 

micron-sized particles with optical tweezers has been clearly demonstrated. 

By contrast, its use in quantitative experiments has been rather limited, 

partly due to fluctuations introduced by the spatial light modulator (SLM) 

that displays the kinoforms. This is an important issue when high temporal 

or spatial stability is a concern. We have investigated the performance of 

both an analog-addressed and a digitally-addressed SLM, measuring the 

phase fluctuations of the modulated beam and evaluating the resulting 

positional stability of a holographic trap. We show that, despite imparting a 

more unstable modulation to the wavefront, our digitally-addressed SLM 

generates optical traps in the sample plane stable enough for most 

applications. We further show that traps produced by the analog-addressed 

SLM exhibit a superior pointing stability, better than 1 nm, which is 

comparable to that of non-holographic tweezers. These results suggest a 

means to implement precision force measurement experiments with 

holographic optical tweezers (HOTs). 
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1. Introduction 

Since proposed in the late 1990s [1], the capabilities of holographic technology to precisely 

modulate the light of an optical trap in real time have awoken the interest of the optical 

trapping community. Holographic optical tweezers (HOTs) provide a powerful means to 

dynamically generate exotic beam shapes or complex 3D patterns of light foci for a wide 

variety of manipulation experiments [2–5]. 

The use of diffractive elements to split a laser beam into arrays of traps was first 

implemented by Dufresne and Grier [6]. A desired pattern of traps was obtained by placing a 

fixed, computer-generated hologram at a conjugate plane of the objective’s entrance pupil. An 

improvement of this basic idea quickly followed with the introduction of a spatial light 

modulator (SLM) into the beam path. A phase kinoform on the liquid crystal (LC) display 

could be updated at video rate, which translated into real-time control of several traps 
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independently [7]. Different strategies to compute these kinoforms at high rates have been 

reported and a wide choice of algorithms that optimize several performance metrics is 

currently available [5,8]. 

Parallel nematic liquid crystal SLMs provide a simple way to modulate light, since they 

allow a precise phase modulation of the incident beam without changing its amplitude [9]. 

The molecules of the liquid crystal tilt in response to an applied voltage, so the extraordinary 

refractive index of the material and therefore the phase of the beam can be controlled at each 

pixel. Independent voltages are sent to the display in the form of a two-dimensional gray-level 

mask [9], which contains Fourier transform information of the desired pattern of traps [10]. 

The dynamic modulation of the light provided by the SLM can however introduce 

undesired temporal fluctuations in both the phase and the intensity of the beam, and can 

ultimately degrade the trap performance [11,12]. Although holographic traps have been used 

for force measurements [13–15], their use could arguably compromise the reliability of 

quantitative experiments when accuracy and stability are key [16]. 

The phase of the reflected beam in a phase-only SLM is controlled solely by the 

orientation of the LC molecules, whose response is, in turn, dependent on the applied voltage 

and on the viscosity and elasticity of the liquid crystal mixture [17]. If the voltage is 

modulated quickly enough, the LC molecules sense only its average value, whereas 

modulations slower than the relaxation time of the LC (determined by its viscosity and 

elasticity) are followed by the molecules, resulting in a time-dependent phase flicker [17–20]. 

Unfortunately, SLMs typically require the application of a time-varying voltage to 

operate. One timescale involves the refresh frequency of the kinoform displayed on the LC 

(generally at video rate), which makes the display turn off for a short period of time and back 

on [21,22]. More importantly, because charge accumulation on the LC walls occurs with DC 

voltages, degrading device performance [23], the applied voltage must change sign (typically 

at hundreds of Hertz within each refresh period). This modulation can lead to modulation of 

the phase, with differences in LC response depending on whether the modulator is digitally or 

analog-addressed [19]. 

In analog-addressed SLMs, the molecules are subjected only to the charge-balancing 

switching of the driving voltage. In this case, the amplitude of the signal, the parameter that 

controls the tilt angle of the LC molecules, can take on continuous values within an operating 

voltage range. By contrast, digitally-addressed SLMs are binary in nature, and require a more 

complex mechanism to modify the signal amplitude, which considerably increases the 

fluctuations inside the LC cell [19]. Digital backplanes provide exclusively two different 

voltage levels and any intermediate value must be achieved through pulse-width modulation 

(PWM). In PWM a combination of square waves of varying duration is used within each 

refresh period to obtain a mean voltage equivalent to the analog value required by the LC to 

provide the desired phase change. 

Here, we provide evidence that the use of digital technology for driving the SLM can 

result in lower stability of the phase, and ultimately in a lower trap pointing stability than 

analog addressing. However, even in this case, the use of appropriate addressing schemes can 

reduce the spatial instability of holographic tweezers to acceptable levels. 

Finally and most importantly, we show that the resulting stability of holographic traps 

generated by analog-addressed SLMs is comparable to conventional, non-holographic 

tweezers. This suggests the capability of holographic traps for precision force measurements 

and their potential application to important new fields of research. 

2. Experimental setup 

We carried out two sets of experiments to study the time-dependent stability of laser beams 

modulated by SLMs: we first analyzed the stability of the phase delay introduced by the 

modulators, and, then, we measured the influence of this on the trap position, through the 

analysis of the motion of holographically trapped particles. 
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The experiments were conducted using two different holographic optical tweezers setups, 

one at Simon Fraser University (Canada) and the other at the University of Barcelona (Spain) 

[11,24]. Infrared (1064 nm) lasers (J20-BL-106C Spectra Physics and YLM-5 IPG Photonics) 

and liquid-crystal-on-silicon (LCoS) phase-only SLMs (HEO 1080P Holoeye and X10468-03 

Hamamatsu) were used. The Holoeye device is a digitally-addressed SLM whereas the 

Hamamatsu modulator uses analog addressing circuitry. 

We have compared the results from three different SLM settings. The Holoeye SLM 

offers the possibility of selecting several programmable addressing schemes, which differ in 

their addressing frequencies and in the number of available gray levels (phase levels). 

Therefore, in addition to the measurements with the analog Hamamatsu SLM (256 gray 

levels), we studied two different digital addressing sequences of the HoloEye SLM, denoted 

by the manufacturer as 5-5 (192 gray levels) and 0-6 (64 gray levels), respectively [18]. Here, 

the first digit indicates the number of equally weighted bitplanes and the second digit 

indicates the number of binary elements in the addressing sequence. 

2.1 Phase measurements 

There exist several alternatives for measuring the phase delay introduced by an SLM onto a 

laser beam [25]. We have used a straightforward method (see Appendix 1) that is appropriate 

for pure phase SLMs [26]. 

 

Fig. 1. Setup for phase measurements. Two polarizers at 45° and −45° with respect to the LC 

alignment direction are inserted before and after the SLM, respectively, and the intensity as 

read by the photodetector provides information on the phase fluctuations. 

The setup is depicted in Fig. 1. Two polarizers at 45° and −45° with respect to the LC 

alignment direction were inserted before and after the SLM, respectively. The intensity, I, of 

the reflected light after the analyzer is related to the phase delay φ introduced by the 

modulator to the beam according to [26]: 

 ( ) 2

0
sin .

2
offsetI I I

φ
φ  = +  

 
 (1) 

Here, Ioffset and I0 represent the minimum and amplitude of intensity modulations, 

respectively. A photodetector (QPD, QP154-Q-HVSD, Pacific Silicon Sensors; or PSD 

PDP90A, Thorlabs) was used to record the temporal fluctuation of this intensity at 15 kHz. 

The signal was measured for different constant gray levels, that is, for different phase delays 

imprinted on the SLM. (The mean phase delay introduced by a given gray level is given by 

the so-called “gamma curve” used for each SLM setting, discussed in Appendix 1). The 

measured intensities were used to determine the phase as a function of time via Eq. (1). Power 

spectra of the intensity were calculated, each as an average of 40 independent 1-second 

measurements. 
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2.2 Bead position measurements 

Positional changes of the holographic traps were indirectly inferred from an analysis of the 

motion of trapped beads. As the information provided by back-focal-plane interferometry 

proved to be inconsistent (see Results and Discussion) we utilized high-speed camera 

tracking. Thus a CMOS camera (PCO, 1200 hs, 1280x1024 pixels, acquisition rate 2500 

frames/sec) and a fast back-illuminated Electron Multiplying CCD camera (EM-CCD, Ixon-

860, Andor Technologies, 128x128 pixels, acquisition rate ~1.2 kHz) were used to measure 

the fluctuations in position of a 2 µm diameter polystyrene bead held in a holographic trap. 

A single holographic trap was generated offset by tens of microns in both x and y 

directions from the zero-order optical center. We used in the two setups the same kinoform, a 

phase ramp with deliberately different spatial frequencies in the two directions. Differences in 

position modulations in the x and y directions were found when using both SLMs. We focus 

our analysis on modulations in the x direction, which were found to be larger, and discuss this 

further below. 

3. Results and Discussion 

We first analyzed the temporal stability of the phase of the modulated beam. This quantity is 

of fundamental importance to trap performance since it controls the trap position. 

Examination of the phase versus time plots shows fluctuations for both analog- and 

digitally-addressed SLMs, with clearly larger modulations for the latter device (Fig. 2, left 

column). The amplitude of the flicker depends on the imposed gray level (phase delay), with 

the maximum amplitude of phase modulations occurring at a different phase value for each 

SLM and setting (Holoeye: gray level = 192, phase delay = 1.7π for 5-5 and gray level = 224, 

phase delay = 1.75π for 0-6; Hamamatsu: gray level = 64, phase delay = 1.2π), and flickering 

by as much as 0.31π and 0.16π for the 5-5 and the 0-6 settings, respectively, and 5·10
−4
π for 

the Hamamatsu. The larger phase fluctuations observed in our digitally-addressed modulator 

suggest that holographic traps generated with this SLM will suffer from a lower position 

stability. However, a large amplitude of phase modulations will not in and of itself cause 

modulations of trap position (Fig. 3a). Rather, it is the variation in amplitude (Fig. 3b) and/or 

temporal phase of the modulations among different gray levels that ultimately determines the 

spatial stability of the optical traps. 

For a deeper analysis of temporal stability, we examined the signals with the largest 

amplitude of phase modulation for each SLM. We computed the power spectrum of the 

measured I(φ) signal to obtain information about the frequency dependence of the phase noise 

introduced by the modulator (Fig. 2, right column). For the analog-addressed device, the SLM 

introduces peaks at 240 Hz and 480 Hz (Fig. 2(a)), which, according to the manufacturer, 

correspond to the addressing frequencies of the SLM electronics [27]. For comparison, we 

included in this plot the spectrum of the laser alone. Its characteristic flat spectrum is affected 

by the noise introduced by the detector at higher frequencies (~6 kHz), and by the 

transparency of the silicon photodiode, which acts as a band-pass filter with f3dB = 6.7 kHz 

(close to that found by others [28]). 
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Fig. 2. Left column: phase variation as a function of time for (a) the analog-addressed SLM, (b) 

the 5-5 setting of the digitally-addressed SLM and (c) the 0-6 setting of the digitally-addressed 

SLM. In each plot, different curves correspond to different gray levels: 0 (bottom), 32, 64, 96, 

128, 160, 192, 224 and 255 (top). Missing data points are due to the fact that Eq. (1) is fit to 

mean intensity values; therefore, measured intensities greater than (Ioffset + I0) or less than Ioffset 

(resulting from phase delays of π and 2π, respectively) cannot be converted to phase delays. 

Right column: for each SLM setting, a power spectrum of the trace with the largest phase 

modulation shows the frequency dependence of I(φ) modulation. 

Discrete frequency peaks also appear at the addressing frequency when using the digitally-

addressed SLM (f0 = 300 Hz for the 5-5 setting, and f0 = 600 Hz for the 0-6 setting). In this 

case, however, the amplitude of the noise is considerably larger and, in addition to the 
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addressing frequency, oscillations also appear at 60 Hz, due to the display refresh, and 

overtones of both fundamental modes. 

 

Fig. 3. (a) Phase modulations of equal amplitude that are synchronous will not change the 

phase gradient, maintaining the spatial frequency of the kinoform. In contrast, phase 

modulations that are asynchronous and/or (b) differ in amplitude can alter the phase gradient. 

In this schematic example, temporal variation of the angle α leads to a modulation of the trap 

position d, where f’ is the objective’s focal length and m is the magnification of the telescope 

used to image the SLM onto the objective’s entrance pupil. 

The large number of peaks at higher frequencies for the digitally-addressed SLM is 

associated with the pulse-width modulation of the driving voltage amplitude. In PWM, the 

time spent at each of the two voltages of the supplied digital signal is modulated to generate 

intermediate time-averaged voltages. Dwell times in each state are fractions of the address 

cycle time 1/f0 and give rise to higher frequency peaks in the power spectrum. The dominant 

timescale, however, is that of the fundamental mode, where modulation is slowest. At higher 

frequencies, the viscosity of the LC results in smaller amplitudes of LC molecule 

reorientation in response to voltage changes, and this gives rise to lower noise. This same 

effect makes the 0-6 setting, driven at a higher addressing frequency, more stable compared to 

the 5-5 setting (or to the 22-6 setting with f0 = 120 Hz, as observed in [11]). 

We next assessed how these phase fluctuations translated into trap position instabilities 

and how the latter depended on the SLM electronics and settings. In principle, trap positions 

can be measured directly by monitoring the back-reflection of laser foci from the coverslip of 

the trapping chamber. We previously used this method to characterize the position 

modulations of holographically created traps, but modulations in intensity and shape of the 

foci can reduce the accuracy of high-resolution tracking algorithms [12]. Instead, here we 

studied the motion of trapped particles as probes for the spatial and temporal modulations of 

these holographically created traps. 

As shown in [29], any periodic perturbation dragging a trapped particle appears in the 

distinctive Lorentzian shape of the power spectrum as a single peak at the oscillation 

frequency. In particular, the perturbation introduced by the modulator shows up as multiple 

spikes at the addressing frequency and overtones [11]. The height of these peaks is intimately 

connected with the amplitude of the trap motion (see Appendix 2), thus providing a means to 

quantify the pointing stability. 

In conventional optical tweezers, these stability measurements would be performed using 

back-focal-plane interferometry (BFPI) for position detection. The technique is popular due to 

its high temporal and spatial resolution for position tracking. However, previous results using 

HOTs [11] had warned us that the amplitude of the bead oscillation obtained from the height 

of power spectrum peaks may differ significantly from the direct observation of motion with a 

high-speed camera. The problem is related to the presence of other traps which can interfere, 

in and out of phase, with the light scattered by the trapped particle at the back focal plane of 

the collecting lens [12]. 

In order to prevent undesired interference, here we used a pinhole at a plane conjugate to 

the sample to eliminate spurious light entering the trapping chamber from zero and higher 
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diffraction orders. Despite this filtering, there are inconsistencies in our results, in which 

peaks appear in the BFPI power spectra that are not observed with high-speed camera 

tracking (both techniques with similar resolution) and the magnitudes of peak heights in the x 

and y directions are dependent on the presence of the pinhole. Furthermore, the height of the 

peaks at f0 increased for increasing laser powers, indicating a larger relative motion of the 

trapped particle (see below), which is incongruous with the resulting stiffening of the trap. 

In BFPI, deflection is normalized by intensity to give displacement, so modulations in 

intensity may manifest as measured changes in position. Furthermore, any slight temporal 

delay between acquisition of the deflection and intensity readings may result in convolution of 

the temporal fluctuations in these independent values, and may be a possible explanation for 

the failure of BFPI to capture correctly the position modulations of the holographic optical 

trap, as seen by comparison with high-speed camera imaging. 

 

Fig. 4. Left column: power spectra of trapped bead position for different digitally-addressed 

SLM settings: (a) 5-5 and (b) 0-6. The SLM peak appears at f0 = 300 Hz and f0 = 600 Hz, 

respectively (red arrows). The peak at 742 Hz is caused by a fan in the high-speed camera. 

Right column: the amplitude of the oscillation obtained from the peak height is plotted for traps 

with different corner frequencies. The fit of Eq. (3) to the experimental results gives the trap 

motion, x0. 

Instead of BFPI, we therefore used high-speed cameras to provide a direct observation of 

trapped particle motion. We first present the results for the digitally-addressed SLM. A typical 

spectrum of a holographically trapped bead is shown in Fig. 4 for each addressing scheme (5-

5 and 0-6). Peaks at 300 Hz and 600 Hz, respectively, appear as clear signatures of beam 

modulation. The spectra frequently exhibit only one peak, at the fundamental mode of the 

addressing frequency f0, indicating that, despite all the noise observed in the phase plots (Fig. 

2), the particle’s motion is ultimately dominated by a pure sinusoidal modulation: 

0 0
( ) sin(2 )trapx t x f tπ= . 

The power spectrum of the bead’s position in the purely sinusoidal case is [29]: 
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+
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where D is the bead’s diffusion constant, fc is the trap roll-off frequency (proportional to trap 

stiffness), δ(f) is the Dirac delta function, and the amplitude of the bead oscillation, xbead, is 

given by (see Appendix 2): 

 
2

0
2

0 .
1

c

bead
f

f

x
x =

+
 (3) 

This equation shows that the response of the trapped particle is dependent upon the 

strength of the optical potential. Only when the laser power overcomes the viscous forces 

imposed by the surrounding fluid does the particle start to follow the trap, and phase 

fluctuations turn into position fluctuations. Moreover, the existence of a closed mathematical 

relation between the trap strength and the bead motion provides a means to verify that the 

cause underlying the appearance of noise in the power spectra is from actual trap movements, 

and is also a way to determine the trap oscillation amplitude, x0. 

The height of the peak at f0 in each power spectrum was used to obtain an experimental 

measurement of xbead (Appendix 2): 

 ( )2 · ,bead Peak thermx P P f= − ∆  (4) 

where Ppeak and Ptherm are as defined in Appendix 2. Each data point in Figs. 4(a) and 4(b), 

right column, is derived from one power spectrum, which is in turn the average of 40 

measurements. The experiments were repeated to obtain xbead for traps with different corner 

frequencies, which were controlled by means of the laser power. The results are fit by Eq. (3) 

to obtain the value of x0, as illustrated in Fig. 4. The value for the 5-5 setting, x0 = 1.6 ± 0.3 

nm, is in agreement with previous results [12], while for the 0-6 setting, we determined a 

smaller oscillation, x0 = 0.8 ± 0.1 nm, consistent with the improvement seen in the phase 

measurements. Moreover, the good fit supports the model that the physical mechanism by 

which peaks show up in the spectra is indeed a physical oscillation of the trap. The error in x0 

corresponds to the standard deviation of x0 values determined in this manner from 

measurements on three different beads. 

The flicker of the analog-addressed modulator was, by contrast, barely detectable and 

therefore more difficult to quantify (Fig. 5(a)). Only for large laser powers did peaks appear in 

the power spectra, and even then, the perturbations were small. In order to assess the system 

resolution and, therefore, our capability to extract reliable results from these sensitive 

measurements, we introduced a controlled oscillation as a benchmark. 

A piezo stage was used to drive these particle oscillations at a designated frequency, fpiezo 

= 30Hz, and amplitude, xpiezo = 20 nm. Simultaneously, the trapped bead was dragged by the 

fluctuating trap at 480 Hz. Figures 5(a) and 5(b) show two examples of power spectra 

determined from camera measurements, in which the SLM peak and the piezostage oscillation 

appear, respectively. In general, however, the two contributions do not appear simultaneously. 

The SLM effect is present only at high laser powers, when the elasticity of the trap is 

sufficiently high to drag along the particle, whereas the piezo oscillation becomes visible at 

low powers when the viscous drag from the fluid motion overcomes the optical force from the 

laser. 

Measurements were carried out for different roll-off frequencies (Fig. 5(c)). The reliability 

of the results was ensured by measuring the amplitude of the particle motion due to the 

surrounding fluid in every experiment with two complementary techniques: BFPI and high-

speed camera tracking. In this case, BFPI did provide satisfactory results since no fluctuations 

in the intensity altered the measurement. In addition, since trap calibration can be more 
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complicated with the high-speed camera [30], we used BFPI to accurately estimate the roll-off 

frequency. 

 

Fig. 5. Power spectra of a 2µm trapped bead determined using a high-speed camera for (a) high 

and (b) low laser powers, under the simultaneous action of two oscillations: the laser phase 

fluctuation and a piezostage movement. The peak at 100 Hz is parasitic electronic noise from 

the room illumination. (c) The amplitude of the piezostage oscillation obtained from the 30 Hz 

peak from camera data is plotted against the trap roll-off frequency determined from BFPI. The 

red line is a fit using Eq. (5). 

The data and fit shown in Fig. 5(c) correspond to the expected result [29]: 

 
2

·
,

1

piezo

bead

c

piezo

T x
x

f
f

=
 +  
 

 (5) 

where T = 0.27935 is the value of the piezo stage electronics transfer function at fpiezo = 30 Hz 

(the real amplitude of the bead motion was 20 ·  T = 5.6 nm). The fitting of the results with Eq. 

(5) gives us a measure of the amplitude of the piezo oscillation (xpiezo ~19.1 nm) that matches 

the nominal value (xpiezo = 20 nm). 

As a final step, using Eqs. (3) and (4), we determined the amplitude of the SLM-induced 

trap fluctuation from the peaks at 480 Hz in the same data. Because the amplitude of this 

motion is so small, control experiments using the piezo stage to induce a range of bead 

displacements (from ~4 nm to 0.3 nm) were performed in order to evaluate our position 

resolution. 

The result for the analog-addressed SLM (x0 = 0.4 ± 0.1 nm) seems to be constant for 

different trap positions in the sample plane. This value is comparable to the position stability 

observed in the most stable non-holographic tweezers (with external optics also in air) 

[31,32], which indicates that, here, the trap stability is not compromised by the presence of 

beam modulations. 

Interestingly, we found significant differences in position stability along the x and y axes 

for both modulators. For the 5-5 setting of the digital-addressed SLM, we estimate 2y0 = 0.9 

nm, while for the 0-6 setting, no peak is detectable in the power spectrum at f0 = 600 Hz, even 

at the highest laser powers, suggesting that sub-nanometer stability is attainable in the y 

direction. Similarly, no peaks appeared in the y direction with the analog-addressed device. 

Because the kinoform used here was asymmetric, we wondered if the increased stability in y 

was related to the smaller displacement of the holographic trap from the zero order (i.e., to a 
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shallower phase gradient in y than in x). To test this hypothesis, we repeated these 

experiments using a “flipped” kinoform, in which the x and y phase gradients were swapped. 

Although here the phase gradient along y was steeper, the spatial modulations of the trap 

remained larger in the x direction. 

Here, we have focused on characterizing the position instability along the less stable 

direction, because ultimately, it is the overall movement of the trap that is relevant for 

precision measurements. By examining only one axis, one might obtain the impression that 

the digitally-addressed SLM provides exceptionally stable pointing stability, while this is true 

only in one direction. 

Table 1. Experimental results for holographic trap position instability along the less 

stable axis, for the different addressing schemes used here. 

 Hamamatsu Holoeye 0-6 Holoeye 5-5 Holoeye 22-6 (from [11]) 

Modulation frequency f0 

(Hz) 
480 600 300 120 

Total trap displacement 

(nm) ( = 2x0) 
0.8 ± 0.2 1.6 ± 0.2 3.2 ± 0.6 >5 

The values for the trap position instability for both modulators and the different settings 

analyzed herein are summarized in Table 1. These correspond to pointing instabilities of 0.4 

µrad (Holoeye 5-5), 0.23 µrad (Holoeye 0-6) and 0.06 µrad (Hamamatsu). The performance 

of the analog SLM is similar to that of the most stable non-holographic optical traps, where 

pointing stabilities of 0.05 µrad have been achieved [32]. These results, jointly with the 

temporal behavior of the phase, show that: 1) pointing instabilities come from the modulated 

LC driving voltage; 2) these fluctuations are larger for our digitally-addressed SLM, which 

uses pulse-width modulation to adapt the binary applied voltages to small incremental 

changes in phase; 3) for SLMs with digital electronics, the effect of the flickering decreases 

with an increase in addressing frequency [17]; and 4) analog-addressed modulators provide 

similar stability to non-holographic tweezers [31,32]. 

Additionally, we find that the light intensity in a trap created by both the digitally- and the 

analog-addressed SLMs is modulated in time, as seen by a peak at f0 in the power spectrum of 

intensity modulations from a trapped particle recorded using BFPI (data not shown and 

[11,12]). The influence of these modulations on force measurements has not been thoroughly 

investigated, though it has been demonstrated that the use of a time-averaged intensity 

provides correct force values [14]. Furthermore, because intensity fluctuations do not give rise 

to peaks in position variance at the modulation frequency [33], the analysis producing the 

results presented in Table 1 should be unaffected by modulations in trap intensity. 

Our digitally-addressed SLM does exhibit less stability than the analog-addressed SLM, 

but the large phase fluctuations observed surprisingly do not give rise to equivalent 

instabilities of the trap position. Although still unknown, the reason for this lower than 

expected position modulation may lie in the somewhat synchronous modulations across gray 

levels that occur with this digital addressing scheme, giving a predominant effect more like 

Fig. 3(a) than Fig. 3(b). In any case, we have observed that improvements can be achieved by 

selecting among available digital addressing schemes (each corresponding to a different 

addressing rate). It is possible to reduce the amplitude and alter the frequency of the SLM-

induced flicker [11,18,20]. Shorter sequences give rise to higher addressing frequencies, 

which improves the trap performance. We have previously shown an improvement in 

performance by changing from 22 to 6 (120 Hz addressing) to 5-5 (300 Hz addressing) 

[11,12], and here, we have found further improvement in the temporal stability by using the 0-

6 setting (600 Hz addressing). These findings are consistent with the fact that a shorter 

temporal sequence permits a higher repetition rate in a frame period and therefore, less 

relaxation of the liquid crystals between addressing pulses. However, the shorter sequence 

significantly reduces the number of accessible gray levels from 192 (5-5) to 64 (0-6), which 
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can have a strong effect on the efficiency of diffraction into the desired first-order beam, 

particularly at larger steering angles [11]. In addition, due to the design of the modulator’s 

addressing scheme, the 0-6 setting has the disadvantage of not being able to modulate 1064 

nm light by a full 2π (see Appendix 1). 

The reduction of the phase flickering for increasing addressing frequencies in the 

digitally-addressed SLM suggests that a further improvement of the trap position stability 

might be possible with SLMs based on alternative technologies permitting higher addressing 

rates [17]. All these various considerations should be taken into account when designing 

experiments requiring precision positioning with HOTs. 

4. Conclusions 

Analog-addressed SLMs provide a high stability to the modified laser beam when generating 

holographic optical traps. Measurements of the phase of the modulated beam allowed us to 

explain the fluctuations observed in the power spectra of holographically trapped beads. The 

oscillations of the electronic signal sent to the LC are the root cause of these instabilities. 

With digitally-addressed modulators these fluctuations can dominate the motion of the 

trapped sample depending on the addressing frequency of the electronics, whereas in the 

analog-addressed devices, the oscillations are notably reduced, so they do not introduce 

visible effects on the stability of the trap. Digitally-addressed SLMs offer, in general, 

reasonable performance, which can be further improved with higher speed addressing [17]. 

Analog-addressed SLMs, on the other hand, can provide stability comparable to that of non-

holographic traps. With the added benefit of real-time positioning of independent traps in 

three dimensions, a feature not possible in conventional multi-trap optical tweezers 

instruments, our results demonstrate the advantages to using HOTs for precise quantitative 

experiments for a wide range of applications. 

Appendix 1 

For a phase-only SLM, phase modulation can be extracted from intensity readings and does 

not require an interferometric or diffraction-based measurement. For incoming light linearly 

polarized at 45° degrees with respect to the extraordinary axis of the SLM nematic liquid 

crystal molecules, only the extraordinary component of the electric field is modulated by the 

SLM, while the ordinary component is unaltered. At the exit, light is thus elliptically 

polarized, with the degree of ellipticity depending on the phase shift φ introduced in the 

modulated component. It follows that the intensity after a second polarizer with its 

transmission axis at −45° has the expression of Eq. (1). A minimum intensity (Imin = Ioffset) is 

read out when no delay is introduced by the SLM (when the SLM is off or when 

2 ,m mδ π= ∈Ζ ), as light will emerge linearly polarized with the same orientation as the 

incoming light (taking into account a double reflection by the mirror before the SLM and the 

backplane mirror behind the LC cell) and thus will be blocked by the crossed analyzer. On the 

contrary, a delay (2 1) ,m mδ π= + ∈Ζ  will rotate the polarization by 90°, and the intensity 

after the analyzer will be maximum (Imax = Ioffset + I0). 
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Fig. 6. Determination of the default gamma curve for the Holoeye SLM in the 0-6 addressing 

scheme. (a) Mean intensity measured for different constant gray levels (red circles) and sine 

squared theoretical curve from Eq. (1) (black line) after determination of I0 and Ioffset from the 

experimental data. The divergence between these curves shows that gray level and phase delay 

are not linearly related in this default setting. (b) The default gamma curve, extracted from part 

(a), gives a nonlinear relation between phase and gray level, not the desired outcome. 

We do not have, however, direct control over φ but over the gray level, which is used by 

the SLM to generate such a phase delay through the applied voltage signal according to the 

addressing scheme. Unfortunately, there is often a non-linear relationship between phase and 

gray level [9], so the phase – gray-level curve (the so-called gamma curve) needs to be 

determined and linearized by properly modifying the internal look-up-table (LUT) of the 

SLM controller. This LUT is provided by some manufacturers to ensure a linear response of 

the SLM with gray levels. For other SLMs (such as the Holoeye SLM used here), a gamma 

curve that provides a linear relationship between phase and gray levels is not provided, and, 

because it can vary with addressing mode and wavelength of operation, it must be determined 

by the end user. We now outline how to optimize the gamma curve when trying to determine 

phase modulation from intensity measurements through Eq. (1). 

The mean intensity for each gray level (as measured by the photodetector) is represented 

by a red circle in Fig. 6(a), when using the Holoeye SLM in the 0-6 addressing mode with the 

default 0-6 gamma curve. We clearly see that the sine squared response predicted by Eq. (1) is 

deformed by the nonlinear relationship between the gray level and the phase. Nonetheless, the 

maximum intensity, Imax, still corresponds to linear polarization parallel to the analyzer (π 

phase shift), while Imin corresponds to a crossed linear polarization (zero or 2π phase shift). 

The intermediate intensities correspond to elliptically polarized light given by intermediate 

phase shifts according to Eq. (1), where Ioffset = Imin and I0 = Imax - Imin . Thus, if we plot how 

intensity changes with phase (black line in Fig. 6(a)), we can determine the phase shift φ that 

occurred for each gray level by means of its intensity I, through: 

 1

0

2 sin .
offsetI I

I
φ −

−
= ⋅  (6) 

Figure 6(b) shows the dependence of the phase with the gray level deduced from this 

adjustment. We can clearly see a non-linear behavior and that for this addressing setting the 

phase shift extends only from ~0.2π το 2π. (For the 5-5 addressing scheme, the default gamma 

curve provides a much more linear gray scale - phase relation over a 2π range for 1064 nm 

light.) 
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Fig. 7. (a). In order to change the old phase values (filled red circles, left axis) to the desired 

phase values (red line, left axis), the default LUT value assigned to each gray level (open black 

circles, right axis) needs to be changed. The filled black squares (right axis) correspond to the 

new LUT values after adjustment. (b). Resulting phase vs. gray level plot for 0-6, 

demonstrating the correct linear relation between these two parameters. Note, however, that 

this setting does not provide a full 2π phase modulation for 1064 nm light. 

To obtain a linear relationship between phase and gray level, for each gray level, the 

correct LUT value must be assigned such that the desired phase delay is generated at the 

SLM. For instance, as shown in Fig. 7(a) for a gray level of 100, in order to change the 

corresponding phase delay from 1.28π (default) to 0.78π (desired), we must modify the LUT 

value for this gray level from 34 to 21. By performing the measurements at small increments 

of gray scale, we are able to provide new LUT values that lead to a linear gamma curve (Fig. 

7(b)). This modified, improved gamma curve was used for all 0-6 measurements reported in 

this work. 

Appendix 2 

The amplitude of the particle oscillation in Eq. (3) can be readily derived from the equation of 

motion governing the dynamics of the system in the absence of thermal noise: 

 ( )( ) ( ) ( ) ( ) 0,trapmx t x t k x t x tγ+ + − =ɺɺ ɺ  (7) 

where x(t) is the particle’s position at time t, m is the particle mass, γ is the viscous drag 

coefficient, k is the harmonic trap stiffness, and the trap motion is described by a pure sine 

with frequency f0 : 0 0
( ) sin(2 )trapx t x f tπ= . At the timescales of the measurements presented 

here, the viscosity of the fluid typically overdamps the inertial forces of the particles in it [34], 

which translates into a small Reynolds number (Re<<1). This guarantees that the first term in 

Eq. (7) vanishes, so the final expression is simplified to: 

 ( ) ( ) ( ).trapx t kx t kx tγ + =ɺ  (8) 

The general solution is obtained as a combination of two terms: a transient component 

with a characteristic exponential decay, and a stationary solution given by sinusoidal motion 

with frequency f0. The decay time in the former term, 2 kτ πγ≡ , takes values on the order of 

milliseconds, meaning that this contribution becomes relevant at several kHz (negligible for 

the timescales analyzed in the power spectra presented here). Thus, the final solution to Eq. 

(8) is given by the stationary term, where the amplitude corresponds to Eq. (3): 
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Here, fc is the roll-off frequency, given by fc = k/2πγ (=1/τ). As explained in Section 3, the 

value of xbead was experimentally obtained from the height of the peaks in the power spectra. 

Eq. (4) was used for this purpose. We followed a similar approach to that in [29] to obtain this 

formula. 

The temporal Fourier transform of Eq. (9) is given by: 

 0 0
( ) ( )

( ) ,
2

i
bead

f f f f
x f x e

i
φ δ δ+ − −

=ɶ  (10) 

where δ(f) is the Dirac delta function. Then, the one-sided power spectrum associated with the 

oscillation corresponds to a delta function at frequency f0: 
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0

2 ( )
( ) ( ).

2

bead
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x f x
P f f f

T
δ= = −

ɶ
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Here, Tmsr is the measurement time for each power spectrum. The integral under the curve is 

given by 2 2beadx , which can be connected to the experimental measurement obtained from the 

area under the peak, A, as follows: 

 ( )
2

.
2

bead
peak therm

x
A P P f= − ∆ =  (12) 

The peak height Ppeak is integrated above the thermal noise background Ptherm (determined 

by a Lorentzian fit to the power spectrum) and the frequency spacing is ∆f= 1/Tmsr. From this 

last equation one obtains Eq. (4). 
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