

Differential pharmacologic properties of the two C75 enantiomers: (+)-C75 is a strong anorectic drug. (-)-C75 has antitumour activity

Journal:	Chirality
Manuscript ID:	CHIR-12-0117
Wiley - Manuscript type:	Regular Article
Date Submitted by the Author:	21-Sep-2012
Complete List of Authors:	Makowski, Kamil Mera, Paula Paredes, David Herrero, Laura Ariza, Xavier Asins, Guillermina Hegardt, Fausto; School pf Pharmacy, University of Barcelona, Biochemistry and Molecular Biology García, Jordi Serra, Dolors
Keywords:	CPT1 carnitine palmitoyltransferase 1, FAS fatty acid synthase, obesity, cancer, stereoselectivity

SCHOLARONE[™] Manuscripts

Chirality

Differential pharmacologic properties of the two C75 enantiomers: (+)-C75 is a strong anorectic drug. (–)-C75 has antitumour activity

Kamil Makowski,^{1, 2, *} Paula Mera,^{1, *} David Paredes,² Laura Herrero,¹ Xavier Ariza,²

Guillermina Asins,¹ Fausto G. Hegardt,^{1,†} Jordi García,^{2,†} Dolors Serra.¹

¹ Department of Biochemistry and Molecular Biology, *Facultat de Farmàcia*, *Universitat de Barcelona*, E-08028 Barcelona, Spain and *Institut de Biomedicina de la Universitat de Barcelona* (IBUB) and *CIBER Fisiopatología de la Obesidad y la Nutrición* (CIBERObn), *Instituto de Salud Carlos III*, Spain.

² Department of Organic Chemistry, *Facultat de Química*, *Universitat de Barcelona*, E-08028 Barcelona, Spain and *Institut de Biomedicina de la Universitat de Barcelona* (IBUB)

* Both authors contributed equally to this study

[†]Corresponding authors: E-mail addresses: **fgarciaheg@ub.edu** and **jordigarciagomez@ub.edu**

SHORTENED TITLE

Stereoselectivity of C75 enantiomers

KEYWORDS

CPT1 carnitine palmitoyltransferase 1, FAS fatty acid synthase, obesity, cancer, stereoselectivity.

GRANT INFORMATION

Supported by the *Ministerio de Educación y Ciencia* of Spain and CIBERObn. Contact grant sponsor: Fausto G. Hegardt, contact grant number: SAF2007-61926 and CB06/03/0026; Contact grant sponsor: Dolors Serra, contact grant number: SAF2011-30520-C02-01; Contact grant sponsor: Jordi García, contact grant number: CTQ2009-9692; Contact grant sponsor: Laura Herrero, contact grant number: SAF2010-20039.

ABSTRACT

C75 is a synthetic compound described to have antitumoural properties. It produces hypophagia and weight loss in rodents, limiting its use in cancer therapy but identifying it as a potential anti-obesity drug. C75 is a fatty acid synthase (FAS) inhibitor and, through its CoA derivative, it acts as a carnitine palmitoyltransferase (CPT) 1 inhibitor. Racemic mixtures of C75 have been used in all the previous studies; however, the potential different biological activities of C75 enantiomers have not been examined yet. To address this question we synthesized the two C75 enantiomers separately. Our results showed that (–)-C75 inhibits FAS activity *in vitro* and has cytotoxic effect on tumour cell lines, without affecting food consumption. (+)-C75 inhibits CPT1 and its administration produces anorexia, suggesting that central inhibition of CPT1 is essential for the anorectic effect of C75. The differential activity of C75 enantiomers may lead to the development of potential new specific drugs for cancer and obesity.

1. INTRODUCTION

C75 is a synthetic compound with several possible pharmacological applications. On the one hand, it is an inhibitor of fatty acid synthase (FAS).¹ Most tumour cells present a typical phenotype of abnormally elevated FAS activity, the inhibition of which triggers apoptosis.^{2,3} This aspect makes FAS inhibitors potential chemotherapeutic compounds. In fact, C75 has antitumour activity in both tumour-cell lines and animal models.^{1,3,4} On the other hand, C75 produces anorexia and weight loss in rodents, which limits its use in cancer therapy, but makes it a potential drug for the treatment of obesity and related diseases.⁵⁻⁷

The central nervous system (CNS), specifically the hypothalamus, plays a major role in the control of food intake and the maintenance of energy balance. It has been widely reported that C75-derived anorexia is due to its action on hypothalamic neurons; however the exact molecular mechanism underlying the central effect of C75 on food intake has not been fully elucidated. Recent evidences suggest that malonyl-CoA and long chain fatty acyl-CoAs (LCFA-CoAs) in hypothalamic neurons could be molecular signals for the regulation of appetite and energy homeostasis.⁸⁻¹¹ Importantly, it has been demonstrated that C75 raises hypothalamic malonyl-CoA levels.⁸ This metabolite is the physiological inhibitor of carnitine palmitoyltransferase (CPT) 1, which catalyzes the first step in the transport of LCFA-CoAs into the mitochondria for β -oxidation.¹² Additionally, we previously demonstrated that central injection of C75 is followed by the formation of C75-CoA, which directly inhibits CPT1 activity in the hypothalamus.^{13,14} Nevertheless further research is needed to clarify whether C75-induced hypophagia is directly related to hypothalamic inhibition of FAS, CPT1 or both enzymes.

A major problem associated with C75 research is that, since this compound was first synthesized,¹ only the racemic mixtures has been used in experiments. Indeed, the enzymatic

resolution of the two C75 enantiomers was not reported until very recently.¹⁵ Significantly, it is well known that the stereochemistry of a drug can determine its biological action.¹⁶ It is thus essential that each enantiomer should be studied separately. Taking advantage of our previous experience on asymmetric synthesis of paraconic acids¹⁷⁻¹⁹ herein we describe an efficient stereoselective synthesis of (+)-C75 and (–)-C75 to study their possible differential biological activity. Our results show that the two enantiomers of C75 have selective effects on food intake, body weight and cytotoxicity, demonstrating that the absolute configuration of each molecule plays a crucial role in its respective pharmacological action. Furthermore, each C75 enantiomer is selective for its respective target, FAS and CPT1, which helps us to understand the central anorectic effect of this compound. This study provides results that could facilitate the search for more specific drugs for the treatment of obesity, cancer and other related diseases.

З

2. MATERIAL AND METHODS

2.1. Materials

L-[Methyl-³H]carnitine hydrochloride was purchased from Amersham Biosciences. [Malonyl-2-¹⁴C]- Malonyl-Coenzyme A was from PerkinElmer Health Sciences. Yeast culture media products were from DifcoTM Laboratories. Bradford solution for protein assays was from Bio-Rad Laboratories. RPMI 1640 was from Gibco-Invitrogen Corporation. Defatted bovine serum albumin (BSA), palmitoyl-CoA, malonyl-CoA, (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and other chemicals were from Sigma–Aldrich.

Chirality

2.2. Synthesis of (+)-C75 and (-)-C75

(+)-C75 and (-)-C75 were stereoselectively prepared using Evans' auxiliaries derived from L-phenylalanine and D-phenylalanine respectively (Scheme 1).

2.2.1. Stereoselective synthesis of (+)-C75

(S)-Methyl 4-(4-benzyl-2-oxooxazolidin-3-yl)-4-oxobutanoate [(+)-1]:

BuLi in hexanes (16.3 ml, 40.7 mmol) was added dropwise over 15 min at –78 $^{\circ}$ C under N₂ to a solution of the commercially available (*S*)-4-benzyloxazolidin-2-one (6.00 g, 33.90 mmol) in dry THF (250 ml). The resulting mixture was stirred for 35 min. Then, methyl 4-chloro-4-oxobutanoate (4.68 ml, 37.29 mmol) was added and the mixture was stirred for 30 min at –78 $^{\circ}$ C and 30 min at rt. The reaction was quenched by adding saturated aq. NH₄Cl (30 ml), the volatiles were evaporated and the resulting residue was taken up in CH₂Cl₂ (50 ml). The aqueous layer was extracted with 50 ml of CH₂Cl₂ and then the combined organic extracts were washed with NaOH 1N (20 ml) and brine (20 ml). The solution was dried (MgSO₄) and concentrated under reduced pressure. The

resulting orange solid was recrystallized from AcOEt:hexane (1:1) to give 7.18 g (24.67 mmol, 73%) the almost pure product as a white solid.

White solid [(+)-1]; mp: 81-82 °C; **R**_f (hexane/AcOEt 7:3) = 0.33; **[α]**_D = + 55.3 (*c* 1.0, CHCl₃); ¹**H NMR** (CDCl₃, 400 MHz): δ 2.69-2.75 (2 H, m, CH₂-CO-N), 2.77 (1 H, dd, *J*=13.4, 9.5 Hz, CHPh), 3.24-3.31 (3 H, m, CHPh and CH₂-COO), 3.72 (3 H, s, OCH₃), 4.21 (2 H, m, CH₂-O), 4.68 (1 H, m, C<u>H</u>-N), 7.20-7.36 (5 H, m, Ar); ¹³**C NMR** (CDCl₃, 101 MHz): δ 28.0, 30.8, 37.7, 51.9, 55.1, 66.3, 127.3, 128.9, 129.4, 135.1, 153.4, 171.9, 172.8; **IR** (film): 2953, 2928, 1780, 1737, 1697, 1390, 1213, 993, 761; **HRMS** (ESI+) calcd for C₁₅H₁₇NO₅Na [M+Na]⁺ = 314.0999, found: 314.0992.

(S)-4-Benzyl-3-((2R,3S)-2-octyl-5-oxotetrahydrofuran-3-carbonyl)oxazolidin-2-one [(+)-2]:

A solution of Bu₂BOTf 1 M in CH₂Cl₂ (0.57 ml, 0.57 mmol) was added dropwise via cannula to a mixture of methyl (*S*)-4-(4-benzyl-2-oxo-1,3-oxazolidin-3-yl)-4-oxobutanoate (150 mg, 0.515 mmol) and activated 4 Å molecular sieves (~0.8 g) in dry CH₂Cl₂ under N₂ at -20 °C. In few minutes the solution became dark pink. The mixture was stirred for 30 min at the same temperature and then DIPEA (0.11 ml, 0.625 mmol) was added carefully. The resulting yellow solution was stirred 45 min at -20 °C and then freshly distilled *n*-nonanal (0.13 ml, 0.76 mmol) was added dropwise. The mixture was further stirred at -20 °C for 3 h and then quenched with saturated NH₄Cl (1.5 ml). The aqueous layer was extracted with CH₂Cl₂ (2 × 5 ml). The combined organic extracts were dried (MgSO₄) and the solvent was removed under vacuum. MeOH (5 ml) and a catalytic amount of *p*-toluensulfonic acid were added to the residue (278 mg) and the resulting solution was refluxed for 1 h. Then, the solvent was removed and the residue was dissolved in CH₂Cl₂ (10 ml). The organic layer was washed with NaHCO₃ (5 ml) and H₂O

(5 ml), dried (MgSO₄) and the volatiles were evaporated under vacuum. Purification of the residue by flash chromatography (hexane/AcOEt 6:4) furnished the desired product (0.130 g, 0.33 mmol, 65 %).

White solid [(+)-2]; mp: 55-57 °C; **R**_f (hexane/AcOEt 6:4) = 0.61; **[α]**_D = + 85.3 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 400 MHz): δ 0.88 (3 H, t, *J* = 6.9 Hz, CH₃), 1.26-1.55 (12 H, m, CH₂), 1.71 (2 H, m, OCHC*H*₂), 2.71 (1 H, dd, *J* = 6.8, 17.6 Hz, CHH-CO), 2.83 (1 H, dd, *J* = 9.2, 13.2 Hz, *CH*H-Ph), 3.00 (1 H, dd, *J* = 9.6, 17.6 Hz, CHH-CO), 3.26 (1 H, dd, *J* = 3.2, 13.2 Hz, *CH*H-Ph), 4.16 (1 H, m, *CH*R-CO), 4.28 (2 H, m, *CH*₂-OCO), 4.71 (1 H, m, *CH*R-N), 4.80 (1 H, m, CHR-O-CO), 7.17-7.37 (5 H, m, Ar); ¹³C NMR (CDCl₃, 101 MHz): δ 14.0, 22.6, 25.3, 29.1, 29.2, 29.3, 31.7, 32.4, 35.1, 37.7, 45.0, 55.2, 66.7, 81.5, 127.6, 129.0, 129.3, 134.6, 153.0, 171.0, 174.3; **IR** (film): 2926, 2855, 1782, 1698, 1559, 1456, 1389, 1210, 1113, 1076, 1054, 762, 703; **HRMS** (ESI+) calcd for C₂₃H₃₂NO₅ [M+H]⁺ = 402.2275, found: 402.2284.

(2R,3S)-2-Octyl-5-oxotetrahydrofuran-3-carboxylic acid [(+)-3]:

 H_2O_2 (100 µL, 0.98 mmol) and LiOH·H₂O (6 mg, 0.25 mmol) were added to a solution of (*S*)-4-benzyl-3-((2*R*,3*S*)-2-octyl-5-oxotetrahydrofuran-3-carbonyl)-1,3-oxazolidin-2-one (50 mg, 0.125 mmol) in THF/H₂O 1:1 (5 ml) at 0 °C. The resulting mixture was stirred at rt for 30 min. Then reaction was quenched with Na₂SO₃ 1.5 M (0.4 ml). The mixture was treated with 1N NaOH until the solution was basic and the aqueous layer was washed with CH₂Cl₂ (5 × 10 ml) and then was acidified to *p*H=1–2 with conc. HCl. The aqueous layer was extracted with CH₂Cl₂ (5 × 10 ml). The combined organic extracts were washed with brine, dried (MgSO₄), and concentrated under vacuum to give 22 mg (0.091 mmol, 73 %) of product.

White solid [(+)-**3**]; **mp**: 98-100 °C; **R**_f (hexane/AcOEt/AcOH 8:2:0.1) = 0.24; **[α]**_D = + 34.0 (*c* 1.0, MeOH); ¹**H NMR** (CDCl₃, 400 MHz): δ 0.88 (3 H, t, *J* = 6.4 Hz, CH₃), 1.28-1.56 (12 H, m, CH₂), 1.70-1.86 (2 H, m, CH₂), 2.82 (1 H, dd, *J*= 9.6, 17.6 Hz, *CH*H-CO), 2.95 (1 H, dd, *J*= 8.4, 17.9 Hz, CH*H*-CO), 3.10 (1 H, m, *CH*-COOH), 4.62 (1 H, m, CHR-O); ¹³**C NMR** (CDCl₃, 101MHz): δ 15.1, 23.6, 26.2, 30.1, 30.2, 30.3, 32.8, 32.9, 36.3, 46.4, 83.0, 175.7, 177.1; **IR** (film): 3000-3300, 2926, 2853, 1749, 1718, 1393, 1243, 1215, 1195, 759, 669; **HRMS** (ESI+) calcd for C₁₃H₂₂NaO₄ [M+Na]⁺ = 265.1410, found: 265.1410. *Synthesis of (2R,3S)-4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid [(+)-*

C75]:

A sample of (2R,3S)-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (85 mg, 0.35 mmol) was heated in a 2M solution of MMC (magnesium methyl carbonate) in DMF (6 ml) at 130-135 °C under N₂ for 45 h. Then, 6N HCl (10 ml) and CH₂Cl₂ (15 ml) were added carefully. The aqueous layer was extracted with CH₂Cl₂ (2 × 10 ml). The combined organic extracts were dried (MgSO₄) and the volatiles were removed to afford 100 mg of residue. The crude was stirred with 1.2 ml of a freshly prepared stock solution (1 ml AcOH, 0.75 ml formalin, 30 mg NaAcO and 0.26 ml *N*-methylaniline) for 1.45 h. To the resulting mixture, a (10:1) solution NaCl : conc. HCl (5 ml) and CH₂Cl₂ (12 ml) were added. The aqueous layer was extracted with CH₂Cl₂ (5 × 10 ml). The combined organic extracts were washed with LiCl 5% (2 × 4 ml), HCl 0.02 N (2 × 4 ml) and H₂O (3 × 5 ml). The organic layer was then treated with concentrated HCl until pH~ 1-2 and was extracted with CH₂Cl₂ (4 × 10 ml). The combined organic extracts were washed with brine and dried (MgSO₄) and the solvent was removed to give 54 mg (0.21 mmol, 60%) of (+)-C75.

White solid [(+)-**C75**]; **mp**: 88-89 °C; **R**_f (CH₂Cl₂/MeOH 9:1) = 0.27; **[α]**_D = + 11.4 (c 1.0, CHCl₃); ¹H NMR: δ 0.88 (3 H, t, *J* = 6.9 Hz, CH₃), 1.20-1.53 (12 H, m, CH₂), 1.67-1.79 (2 H, m, CH₂) 3.63 (1 H, dt, *J*=5.6, 2.8 Hz, C*H*-COOH), 4.81 (1 H, td, *J*=7.2, 5.6 Hz, CHR-O), 6.02 (1 H, d, *J*= 2.7 Hz, =C*H*H), 6.46 (1 H, d, *J*=3.0 Hz, =CH*H*); ¹³C NMR: δ 14.0, 22.6, 24.7, 29.1, 29.3, 31.7, 35.7, 49.4, 78.8, 125.9, 132.4, 168.2, 174.5; **IR** (film): 3000-3400, 2924, 2852, 1743, 1717, 1660, 1621, 1460.

<u>2.2.2. Stereoselective synthesis of (–)-C75</u>

(*R*)-methyl 4-(4-benzyl-2-oxooxazolidin-3-yl)-4-oxobutanoate [(-)-1]:

Compound (-)-1 was obtained from (*R*)-4-benzyloxazolidin-2-one as a white solid in 70% yield as described above for (+)-1. Compound (-)-1: **mp**: 81-82 °C; $[\alpha]_D = -56.2$ (*c* 1.0, CHCl₃); **HRMS** (ESI+) calcd for C₁₅H₁₇NO₅Na [M+Na]+ = 314.0999, found: 314.0989.

(R)-4-Benzyl-3-((2S,3R)-2-octyl-5-oxotetrahydrofuran-3-carbonyl) oxazolidin-2-one [(–)-2]:

Compound (–)-**2** was obtained from (–)-**1** as described above for its enantiomer in 59% yield. Compound (–)-**2**: white solid; **mp**: 55-57 °C; $[\alpha]_D = -85.3$ (*c* 1.0, CHCl₃); **HRMS** (ESI+) calcd for C₂₃H₃₂NO₅ [M+H]⁺ = 402.2275, found: 402.2280.

(2S,3R)-2-Octyl-5-oxotetrahydrofuran-3-carboxylic acid [(-)-3]:

Compound (–)-**3** was obtained from (–)-**2** as described above for its enantiomer in 77% yield. Compound (–)-**3**: white solid; **mp**: 98-100 $^{\circ}$ C; **[\alpha]D** = – 39.6 (*c* 1.0, MeOH); **HRMS** (ESI+) calcd for C₁₃H₂₂NaO₄ [M+Na]⁺ = 265.1410, found: 265.1414.

Synthesis of (2S,3R)-4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid [(–)-**C75**]:

(-)-**C75** was obtained from (-)-**3** as described above for its enantiomer in 55% yield. (-)-**75:** white solid; **mp**: 88-89 °C; $[\alpha]_{D} = -11.4$ (c 1.0, CHCl₃).

2.3. Synthesis of (±)-C75-CoA, (+)-C75-CoA and (-)-C75-CoA

2.3.1. Non-enzymatic synthesis of C75-CoA adducts

Coenzyme A (HSCoA) sodium salt hydrate (8.6 mg), and Na₃PO₄·12H₂O (7.6 mg) were added to a solution of (\pm)-C75 (2.5 mg) in D₂O (0.8 ml) in an NMR tube (Figure 1). The structure of the C75-CoA adduct was fully determined by ¹H and ¹³C NMR, gCOSY and gHSQC experiments.¹³ Similarly, (+)-C75-CoA and (–)-C75-CoA were prepared respectively with (+)-C75 or (–)-C75 and HSCoA. The structure of the CoA adducts was subsequently determined as described above.

The most significant spectroscopic data of (+)-C75-CoA are (Figure 1): ¹H NMR (500 MHz): δ 0.58 (s, 3H, H10"), 0.71 (t, *J*=6.9, 3H, Hm), 0.72 (s, 3H, H11"), 1.07-1.21 (m, 10H, Hh-l), 1.22-1.34 (m, 2H, Hg),1.62-1.67 (m, 2H, Hf), 2.33 (t, *J*=6.7, 2H, H6"), 2.58 (t, *J*=6.6, 2H, H9"), 2.73 (d, *J*=13.8,1H, Hc), 2.77 (d, *J*=9.1, 1H, Hd), 2.85 (d, *J*=13.8, 1H, Hc'), 3.22 (t, *J*=6.6, 2H, H8'), 3.32(q, *J*=6.7, 2H, H5"), 3.38 (dd, *J*=9.8, 5.0, 1H, H1"), 3.67 (dd, *J*=9.8, 5.0, 1H, H1"), 3.87 (s, 1H, H3"), 4.05-4.12 (m, 2H, H5'), 4.41-4.45 (m, 2H, H4', He), 4.60-4.70 (m, HDO,H2', H3'), 6.03 (d, *J*=7.1, 1H, H1'), 8.13 (s, 1H, H2), 8.42 (s, 1H, H8). ¹³C NMR (100MHz): δ 13.6 (Cm), 18.1 (C11"), 21.0 (C10"), 22.2 (Cl), 24.4 (Cg), 28.4, 28.5, 28.6 (Ch,i,j),30.4 (Cc), 31.3 (Ck), 31.7 (C9"), 34.0 (Cf), 35.5 (C5"), 38.4, 38.6 (C8", C6"), 54.7 (Cd),65.9 (C5'), 72.0 (C1"), 73.8, 74.2, 74.5 (C2', C3', C3"), 83.7 (C4'), 84.3 (Ce), 86.7

З

Chirality

(C1'),118.8 (C5), 140.1 (C8), 149.6 (C4), 153.1 (C2), 155.9 (C6), 174.0 (C7"), 174.9
(C4"),178.0 (Ca), 179.8 (CO ₂ H).
(–)-C75-CoA and (+)-C75-CoA adducts showed identical ¹ H and ¹³ C NMR spectra.
2.3.2. An attempt at enzymatic synthesis of C75-CoA adducts
All the components required for the preparation of the reaction buffer [0.1% (w/v)
Triton X-100, 10mM ATP, 1 mM DTT, 10 mM MgCl ₂ , 100 mM MOPS-NaOH (pH 7.5)]
were previously dissolved in D_2O and the ¹ H NMR spectrum of the mixture was recorded.
Then, HSCoA (5 mM) and (+)-C75, or the (-)-isomer, (4 mM) were added to 1 ml of the
buffer. After each addition, ¹ H NMR spectrum was recorded in order to assign representative
signals to each component in the complex sample. Finally, to assess whether acyl-CoA
synthetase (ACS) was a necessary step for the adduct formation, ACS from <i>Pseudomonas sp.</i>
(0.25 unit) was added and the mixture was incubated at 35 °C for 2 h. recording the ¹ H NMR
spectrum for each enantiomer.

2.4. Animals and treatments

Sprague-Dawley male rats (260–290 g) were purchased from Harlan, and experiments were performed following 1 week's acclimatization. Six-wk-old C57/BL6J male mice were purchased from Janvier, and experiments were performed after 4 wk. Animals were maintained under a 12 h dark/light cycle with free access to food (2014, Harlan) and water. All experimental protocols were approved by the Animal Ethics Committee at the University of Barcelona, in accordance with current legislation.

Chronic intracerebroventricular (i.c.v.) cannulae were stereotaxically implanted into lateral ventricle of rats under ketamine (Imalgene, 90 mg/kg) and xylazine (Rompun, 11 mg/kg) anaesthesia. The coordinates were 1.0 mm posterior to bregma, 1.4 mm lateral of the sagittal sinus and 4 mm ventral to the dura mater.²⁰ Analgesics (buprenorphin, 0.3 mg/400 ml)

and antibiotics (enrofluoxacin, 10%) were added to the water for 7 days after surgery. I.c.v. injections (10 μ l, 33 mM final concentration in DMSO:RPMI 1640 medium (1:3) of (+)-C75, (–)-C75 or vehicle (DMSO:RMPI 1640, 1:3)) were performed with a microliter syringe (Hamilton) after 1 wk of postsurgical recovery. For feeding experiments, rats received single injections 30 min before the light was turned off. We measured intakes of chow, corrected for spillage, and body weight after 22 h. For the CPT1 activity experiments rats were killed 1 h after injection. The hypothalamus was then excised and mitochondrial-enriched extract was obtained and assayed immediately. For determination of FAS activity rats were killed 1 h after injection, and the hypothalamus was excised and stored at -80 °C.

Intraperitoneal (i.p.) injections of of (+)-C75, (–)-C75 (100 μ L in RPMI 1640 medium, 15 mg/kg) or vehicle were carried out daily in mice 3 h before the light was turned off, for 3 days. Body weight and food intake were measured after every injection.

2.5. Expression of CPT1 in Saccharomyces cerevisiae

Rat CPT1A was expressed in yeast cells and mitochondrial cell extracts were obtained as previously described.²¹

2.6. Determination of carnitine acyltransferase activity

Mitochondrial-enriched fractions were obtained by differential centrifugation,²² with minor modifications. All protein concentrations were determined using the Bio-Rad protein assay with bovine serum albumin as a standard.

A radiometric method was used for the assay of carnitine acyltransferase as described previously.²¹ The activity was assayed in mitochondrial-enriched fractions obtained from yeast (3–4 μ g protein) and from rat hypothalamus (100 μ g protein). Enzyme activity was assayed for 5 min at 30 °C in a total volume of 200 μ L. The substrates were 400 μ M L-

John Wiley & Sons

carnitine, and 50 μ M palmitoyl-CoA. For the studies *in vitro* enzyme was preincubated with increasing concentration of drugs (0.1-100 μ M) for 1 min. The values obtained were used to estimate the IC₅₀ (the concentration that inhibits 50% of the enzymatic activity). In all cases, the molar ratio of acyl-CoA to albumin was kept at 5:1 to avoid the presence of free acyl-CoA and its deleterious detergent effects and to prevent the formation of micelles.

2.7. Determination of fatty acid synthase activity

For experiments *in vitro*, FAS was purified from rat liver following the protocol described by Linn.²³ For the fatty acid synthase activity assay a spectrophotometric method was used.²⁴ Drugs concentrations ranging 100 to 5000 μ M were used to estimate the IC₅₀ value.

For experiments *in vivo*, frozen hypothalamus extracts were homogenized with 400 μ L of buffer (0.25 M sucrose, 1 mM EDTA, 1mM DTT and protease inhibitors) then centrifuged (14,000xg) at 2°C for 30 min. Supernatant was assayed for fatty acid synthase activity using a radiometric method.²⁵

2.7.1. Spectrophotometric method

Cytosolic hepatic extracts obtained from rat (315 μ g) were preincubated at 30 °C for 30 min with increasing concentration of drugs; (+)-C75 or (–)-C75, dissolved in DMSO (in the main: 100 – 5000 μ M) using DMSO for a blank, and (±)-C75-CoA dissolved in distilled water. 250 μ M NADPH and 200 μ M acetyl-CoA in potassium phosphate buffer (pH 7.2) were added to preincubated enzyme and equilibrated at 37 °C for 3 min. The reaction was initiated by the addition of 200 μ M malonyl-CoA. Total reaction volume was 1 ml. The oxidation of NADPH was monitored at 340 nm at 37 °C for 10 min.

2.7.2. Radiometric method

 μ L of hypothalamic cytosolic extract was preincubated at 37 °C for 10 min and then a mixture of 225 μ M NADPH, 24 μ M Acetyl-CoA, 640 μ M Malonyl-CoA and 0.05 μ C ¹⁴C-Malonyl-CoA in buffer (0.1 M K₂HPO₄ pH 7.2, 0.2 mM EDTA pH 8, 4 mM DTT and 0.2% BSA) was added. Total reaction volume was 500 μ L. After 20 min at 37 °C reaction was arrested with 100 μ L of NaOH 0.5 N. Afterwards, 200 μ L of EtOH 96% was added and the mixture was heated to 100 °C for 15 min to induce saponification. The solution was then acidified with 100 μ L of HCl 1 N and fatty acids were extracted with 2 ml of pentane (3 washes). 5 ml of combined organic layer was washed with 2 ml of AcOH 0.1%, and then pentane extract was evaporated. The residue was redissolved in 0.5 ml of pentane and subjected to scintillation counting.

2.8. Cell cultures and viability assays

MCF7, SKBr-3 and OVCAR3 cell lines were used in all the studies. Cells were cultured at 37 °C in a humidified atmosphere of 5% CO_2 in complete medium composed of HAM'S F12 supplemented with 10% heat-inactivated foetal bovine serum (FBS), 100 U/ml penicillin and 100 µg/ml streptomycin. The cultures were passaged once or twice a week by gentle trypsinization, and cells were grown to confluence in 10 cm culture dishes.

To evaluate the cytotoxic effect of the drugs, MTT-cytotoxicity assay was performed. $4-8 \times 10^3$ cells/well were plated in 96-well plates in 100 µl of culture medium. Once the cells were attached to the plate the medium was removed and cells were incubated for 72h in fresh medium with different concentrations (2.5, 5, 10, 15, 20 and 30 µg/ml) of (+)-C75 or (-)-C75. DMSO was used for a blank at a final concentration $\leq 0.2\%$. Then the cells were incubated for 3h with 100 µL of fresh medium and 20 µL of MTT (5 µg/ml). Following treatment, the supernatants were carefully removed and the MTT-formazan crystals, formed by

metabolically viable cells, were solubilised by adding 100 μ L/well of DMSO and absorbance was measured at 570 nm.

2.9. Statistical analysis

Data are expressed as the mean \pm SEM. Different experimental groups were compared using the unpaired Student's *t* test and one-way ANOVA followed by Bonferroni's test for comparisons *post hoc*. A probability level of p < 0.05 was considered to be statistically significant.

3. RESULTS AND DISCUSSION

3.1. Synthesis and characterization of (+)-C75, (-)-C75 and their Coenzyme A adducts

Enantiomers of C75 were synthesised in parallel (Scheme 1). We established that (+)-C75 is (2R,3S)-4-methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid and (-)-C75 is the (2S,3R) isomer. The synthesis of the C75-CoA adducts was performed by mixing both reagents in D₂O at pH~8. The structure and relative stereochemistry of the CoA adducts was determined by ¹H NMR spectroscopy (Figure 1). In a previous study¹⁴ we hypothesized that the enzyme acyl-CoA synthase (ACS) could catalyze the formation of C75-CoA *in vivo*. Among the different ways in which HSCoA could be bound to C75, we envisaged that HSCoA could be added to the exocyclic double bond of C75. To confirm this hypothesis, we performed a series of structural ¹H NMR studies (data not shown). Thus, ¹H NMR spectra of the complex mixtures including ACS showed a significant reduction of the signals corresponding to the exocyclic methylene of C75 as well as the presence of conclusive signals assignable to the same product obtained in the former experiment in the absence of ACS enzyme (Figure 1). Therefore, we conclude that C75-CoA is the thioether adduct produced after the spontaneous nucleophilic attack of the SH group at the exocyclic methylene of C75.

3.2. C75 enantiomers have selective activities on FAS and CPT1 in vitro

Since previous studies had indicated that the CoA adduct is the form of C75 that inhibits CPT1,^{13,14} the effect of the compounds (+)-C75-CoA and (–)-C75-CoA on yeastoverexpressed CPT1A activity was analyzed (Figure 2a). Results showed that (+)-C75-CoA inhibits CPT1 *in vitro* (IC₅₀ = $0.68 \pm 0.21 \mu$ M). In contrast, (–)-C75-CoA barely affected the activity of yeast-overexpressed CPT1A (IC₅₀ > 50 μ M). Consistent with our previous observations,¹³ the free form of C75 had no effect on CPT1 activity. Next, the action of both C75 enantiomers on FAS activity was analyzed. Activity assays were performed with

Chirality

cytosolic hepatic extracts containing FAS. Results demonstrated that (–)-C75 acts as a FAS inhibitor with an IC₅₀ of 460 ± 44 μ M. In contrast, (+)-C75 showed a much smaller effect on FAS activity (IC₅₀ > 5000 μ M) (Figure 2b). The adduct (±)-C75-CoA does not affect FAS enzymatic activity. Altogether, these data demonstrate for the first time that C75 enantiomers present stereoselectivity for the targets FAS and CPT1. These differences raised the idea that pharmacological actions of C75 enantiomers should be different. To test this hypothesis we evaluate the effect of these molecules on tumour-cell viability, food intake and body weight, all parameters affected by the racemic mixture of C75.

3.3. (-)-C75 has a cytotoxic effect on tumour-cell lines

In order to study the cytotoxicity of (–)-C75 and (+)-C75 we performed an MTTcytotoxic assay with MCF7, SKBr-3 and OVCAR3 tumour-cell lines, all commonly used for cancer studies. Results showed that (–)-C75 has a cytotoxic effect on all the lines tested with an IC₅₀ of $38 \pm 2 \mu$ M, $46 \pm 3 \mu$ M and $18 \pm 3 \mu$ M, on MCF7, SKBr-3 and OVCAR3 cells respectively. However, (+)-C75 presented a higher IC₅₀ (> 60 μ M) in all cases (Figure 3). In the light of our results, the findings reported by different authors regarding the effect of racemic C75 on tumour cell growth and survival, could be attributed mainly to the (–)-C75 enantiomer. Many studies published during the last decade demonstrate a link between FAS inhibition and cytotoxicity in tumour cells.²⁶ Since the (+)-C75 enantiomer is a weak inhibitor of FAS, we conclude that the main critical effects on inhibition of growth malignancies, due to the C75-derived FAS inhibition, are probably produced by the enantiomer (–)-C75 when the racemic mixture is used. However, further research is needed to identify the molecular mechanism underlying (–)-C75-mediated cancer cell toxicity.

3.4. Central administration of (+)-C75 decreases food intake, body weight and hypothalamic CPT1 activity

Next, we analyzed the central effect of each C75 enantiomer on food consumption and body weight. Male adult Sprague-Dawley rats received intracerebroventricular (i.c.v.) injections of (+)-C75, (-)-C75 or vehicle (control animals). Interestingly, (+)-C75 caused a significant inhibition in chow intake $(52 \pm 12\%$ respect to control animals, p (0.05) and reduction in body weight $(2.7 \pm 0.62\%$ respect to control animals, p 0.05) while (-)-C75 did not produce significant changes (Figure 4a and b). We also examined the action of C75 enantiomers on CPT1 and FAS activities in the hypothalamus. The results indicated that only i.c.v. administration of (+)-C75 inhibited hypothalamic CPT1 activity $(25.4 \pm 3.6\%)$ respect to control animals, p (0.05) (Figure 4c). In a previous study we already demonstrated that formation of C75-CoA, essential for CPT1 inhibition, occurs in the hypothalamus after central administration of the free form C75.¹³ Neither of the two enantiomers caused FAS inhibition in the hypothalamus after their i.c.v. injection (Figure 4d), although central inhibition of this enzyme has been proposed as a mechanism of C75-induced hypophagia.^{5,8} We cannot rule out the possibility that C75 could act as a FAS inhibitor in different experimental conditions, but importantly at the dose tested here, C75 suppressed food intake without reducing central FAS activity. It is worth noting that hypothalamic FAS activity had not been previously measured after C75 i.c.v. administration. Instead, hypothalamic malonyl-CoA levels were considered to indicate FAS inhibition.^{8,27} However, this is only an indirect measurement, since malonyl-CoA concentration does not depend exclusively on FAS enzymatic activity. Furthermore, other authors previously proved a disconnection between C75-induced anorexia and hypothalamic FAS inhibition,^{28,29} suggesting that other enzymes could be implicated in the reduction of appetite caused by this compound.

Chirality

It has been stated that pharmacological and genetic inhibition of CPT1 in the hypothalamus reduces food intake.^{11,30} In the present study we demonstrate that only (+)-C75, through its CoA derivative, inhibits CPT1 activity both in vitro and in vivo and reduces body weight and food intake after i.c.v. administration. These results suggest that CPT1 inhibition might be the cause of the appetite loss produced by C75. It is known that malonyl-CoA accumulates in the hypothalamus after C75 central administration,⁸ which may contribute to the inhibition of CPT1;^{8,27} however, it is important to mention that hypothalamic CPT1 inhibition observed in our experiments is independent of the putative inhibition by increased malonyl-CoA. As we discussed previously,¹³ hypothalamic CPT1 activity was measured in twice-washed mitochondria. Hence, malonyl-CoA was unlikely to remain within CPT1 after this procedure. In contrast, C75-CoA is a tight-binding inhibitor that remains bound to CPT1 after mitochondria have been washed.¹⁴ This demonstrates that C75-CoA, after its formation in the hypothalamus, directly inhibits CPT1 activity in vivo. Pharmacologic inhibition of CPT1 in the hypothalamus leads to an accumulation of LCFA-CoA in hypothalamic neurons.¹¹ which has been proposed as a satiety signal that reduces food intake through downregulation of orexigenic neuropeptides. We hypothesized that this mechanism may also underlie the central (+)-C75-induced hypophagia.

3.5. Peripheral administration of (+)-C75 decreases food intake and body weight

We also examined the effect of peripheral administration of each C75 enantiomer. Thus, we performed daily intraperitoneal (i.p.) injections of (+)-C75 and (–)-C75 on 10-wkold C57/Bl6 mice. Our results showed a decrease in body weight and food intake after (+)-C75 injection (Figure 4e and f); however, consistent with previous results,³¹ animals showed resistance to C75-induced anorexia after the second day of treatment (Figure 4f). It was previously reported that i.p. administration of C75 has the same aforementioned effect on

hypothalamic orexigenic neuropeptides,³¹ since a small portion of C75 reaches the hypothalamus after i.p. injection;⁵ however, a direct systemic effect of C75 cannot be excluded and might indirectly contribute to the observed anorexia.³² Peripheral administration of (–)-C75 produced a mild reduction in body mass respect to control animals ($4.4 \pm 1\%$ respect to control animals on day 1, *p* = 0.05) (Figure 4e), although no effect was observed after central administration of the same compound (Figure 4c). Remarkably, this weight loss was significantly lower than that observed with (+)-C75 (Figure 4e), and it could not be attributed to a decrease in food consumption (Figure 4f). Given that we and others observed that C75-treated-animals produced watery stools^{5,32} the reduction in body mass could be due to a toxic effect in the intestine, although this possibility requires further study.

John Wiley & Sons

4. CONCLUSIONS

Results presented here indicate that the two C75 enantiomers have different biological actions and show selectivity on their respective targets, FAS and CPT1 (Figure 5). (+)-C75 is anorectic and inhibits CPT1 activity. (–)-C75 is a FAS inhibitor and anti-tumour agent without affecting food intake, which confers an advantage for the use of this enantiomer as a chemotherapeutic agent. These results shed light into the central mechanism of C75-derived hypophagia, highlighting hypothalamic CPT1 as a potential therapeutic target for weight-loss treatments. The pharmacological effects of C75 can thus be separated, which may lead to more specific drugs for cancer and obesity.

FOOTNOTES

K.M. is a recipient of a fellowship from *Institut de Biomedicina de la Universitat de Barcelona* (IBUB), Barcelona, Spain. Research contract to P.M. is supported by CIBERObn, *Instituto de Salud Carlos III*, Spain. The pharmacological use of C75 enantiomers has been protected by the research group under patent application. The research team is interested in synthesizing and selling the products through the University of Barcelona Facilities.

REFERENCES

- Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A 2000;97(7):3450-4.
- Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF. Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 1998;58(20):4611-5.
- Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP. Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 1996;56(12):2745-7.
- Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP. Inhibition of fatty acid synthesis delays disease progression in a xenograft model of ovarian cancer. Cancer Res 1996;56(6):1189-93.
- Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP. Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 2000;288(5475):2379-81.
- Clegg DJ, Wortman MD, Benoit SC, McOsker CC, Seeley RJ. Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes 2002;51(11):3196-201.
- Aja S, Bi S, Knipp SB, McFadden JM, Ronnett GV, Kuhajda FP, Moran TH. Intracerebroventricular C75 decreases meal frequency and reduces AgRP gene expression in rats. Am J Physiol Regul Integr Comp Physiol 2006;291(1):R148-54.
- Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc Natl Acad Sci U S A 2003;100(22):12624-9.

9. Hu Z, Dai Y, Prentki M, Chohnan S, Lane MD. A role for hypothalamic malonyl-CoA in the control of food intake. J Biol Chem 2005;280(48):39681-3. 10. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002;51(2):271-5. 11. Obici S, Feng Z, Arduini A, Conti R, Rossetti L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nat Med 2003;9(6):756-61. 12. McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur J Biochem 1997;244(1):1-14. 13. Mera P, Bentebibel A, Lopez-Vinas E, Cordente AG, Gurunathan C, Sebastian D, Vazquez I, Herrero L, Ariza X, Gomez-Puertas P and others. C75 is converted to C75-CoA in the hypothalamus, where it inhibits carnitine palmitoyltransferase 1 and decreases food intake and body weight. Biochem Pharmacol 2009;77(6):1084-95. 14. Bentebibel A, Sebastian D, Herrero L, Lopez-Vinas E, Serra D, Asins G, Gomez-Puertas P, Hegardt FG. Novel effect of C75 on carnitine palmitoyltransferase I activity and palmitate oxidation. Biochemistry 2006;45(14):4339-50. 15. Chakrabarty K, Forzato C, Nitti P, Pitacco G, Valentin E. The first kinetic enzymatic resolution of methyl ester of C75. Letters in organic chemistry 2010;7:245-8. 16. Kasprzyk-Hordern B. Pharmacologically active compounds in the environment and their chirality. Chem Soc Rev 2010;39(11):4466-503. 17. Amador M, Ariza X, Garcia J, Ortiz J. A straightforward synthesis of (-)-phaseolinic acid. J Org Chem 2004;69(23):8172-5. 18. Ariza X, Fernández J, Garcia J, López M, Montserrat L, Ortiz J. [3,3]-sigmatropic rearrangements in the enantioselective synthesis of (-)-methylenolactocines]. Synthesis 2004:128-134.

Chirality

19.	Amador M, Ariza X, Garcia J. A versatile stereoselective approach to paraconic acids.
	Heterocycles 2006;67:705-720.
20.	Paxinos G, Watson C. The rat brain in stereotaxic coordinates. San Diego ; London:
	Academic; 1998. xxvi, [236]p. p.
21.	Morillas M, Gomez-Puertas P, Bentebibel A, Selles E, Casals N, Valencia A, Hegardt
	FG, Asins G, Serra D. Identification of conserved amino acid residues in rat liver
	carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of
	methionine 593 abolishes malonyl-CoA inhibition. J Biol Chem 2003;278(11):9058-
	63.
22.	Rickwood D G, JM. Subcellular fractionation: a practical approach; 1997.
23.	Linn TC. Purification and crystallization of rat liver fatty acid synthetase. Arch
	Biochem Biophys 1981;209(2):613-9.
24.	Nepokroeff CM, Lakshmanan MR, Porter JW. Fatty-acid synthase from rat liver.
	Methods Enzymol 1975;35:37-44.
25.	Arslanian MJ, Wakil SJ. Fatty acid synthase from chicken liver. Methods Enzymol
	1975;35:59-65.
26.	Flavin R, Peluso S, Nguyen PL, Loda M. Fatty acid synthase as a potential therapeutic
	target in cancer. Future Oncol 2010;6(4):551-62.
27.	Cha SH, Rodgers JT, Puigserver P, Chohnan S, Lane MD. Hypothalamic malonyl-
	CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal
	muscle: Role of PGC-1alpha. Proc Natl Acad Sci U S A 2006;103(42):15410-5.
28.	Rohrbach KW, Han S, Gan J, O'Tanyi EJ, Zhang H, Chi CL, Taub R, Largent BL,
	Cheng D. Disconnection between the early onset anorectic effects by C75 and
	hypothalamic fatty acid synthase inhibition in rodents. Eur J Pharmacol
	2005;511(1):31-41.

- 29. Kim EK, Miller I, Landree LE, Borisy-Rudin FF, Brown P, Tihan T, Townsend CA, Witters LA, Moran TH, Kuhajda FP and others. Expression of FAS within hypothalamic neurons: a model for decreased food intake after C75 treatment. Am J Physiol Endocrinol Metab 2002;283(5):E867-79.
- 30. Pocai A, Lam TK, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, Rossetti L. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest 2006;116(4):1081-91.
- 31. Kumar MV, Shimokawa T, Nagy TR, Lane MD. Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proc Natl Acad Sci U S A 2002;99(4):1921-5.
- 32. Takahashi KA, Smart JL, Liu H, Cone RD. The anorexigenic fatty acid synthase inhibitor, C75, is a nonspecific neuronal activator. Endocrinology 2004;145(1):184-93.
- 33. Hajra S, Karmakar A, Giri AK, Hazra S. Concise syntheses of (+)- and (-)methylenolactocins and phaseolinic acids. Tetrahedron Letters 2008(49):3625–3627.

FIGURE LEGENDS

Scheme 1. The enantioselective synthesis of the two enantiomers of C75 was carried out by standard organic synthesis methodologies.³³

Figure 1. (a) Synthesis of (+)-C75-CoA and (–)-C75-CoA. (c) ¹H NMR spectra of an equimolar mixture of C75 and HSCoA at t = 0 and after 4 h, when the reaction was completed. The signals of exocyclic double bond of starting C75 and the signals of saturated methylene group of the product are marked with triangles.

Figure 2. Effects of (+)-C75-CoA and (-)-C75-CoA on CPT1A activity and (+)-C75 and (-)-C75 on FAS activity. (a) Mitochondrial extracts from yeast expressing rat CPT1A were preincubated for 5 min with increasing concentrations of (±)-C75 (), (+)-C75-CoA (•) and (-)-C75-CoA (\blacktriangle), then CPT1 activity was measured. (b) Cytosolic hepatic extracts obtained from rat were preincubated 30 min with increasing concentrations of (±)-C75-CoA (\blacksquare), (+)-C75-CoA (\blacksquare), (+)-C75 (\bigcirc), (-)-C75 (\triangle), then FAS activity was measured.

Figure 3. Effect of (+)-C75 and (–)-C75 on SKBr-3 MCF-7, and OVCAR3 cell viability. SKBr-3, MCF7 and OVCAR3 cells were incubated with increasing concentration of the compounds over 3 days. Then drug cytotoxicity was determined using a standard colorimetric MTT assay and the respectively IC₅₀ were calculated.

Figure 4. Effect of central and peripheral administration of (+)-C75 and (-)-C75 on food intake, body weight and hypothalamic CPT1 and FAS activities. (a) Food intake and (b) body weight change measured in rats 22 h after i.c.v. injection of (+)-C75 (n = 8) and (-)-C75 (n = 7). Data expressed as percentage respective to control. (c) Determination of hypothalamic CPT1 activity after i.c.v. injection. Control injections (n = 13), (+)-C75 (n = 7)

and (-)-C75 (n = 5). (d) Determination of hypothalamic FAS activity after i.c.v. injection. Control injections (n = 5), (+)-C75 (n = 7) and (-)-C75 (n = 6). (e) Change of body weight and (f) food intake measured in 10-wk-old mice after daily i.p. injection (15 mg/kg) of (+)-C75 (n = 16) and (-)-C75 (n = 16). * p < 0.05, respect to control; ** p < 0.05, respect to control and (-)-C75; # p < 0.05, respect to control and (+)-C75.

Figure 5. Proposed action of C75 enantiomers on enzymes involved in lipid metabolism.

Each C75 enantiomer is stereoselective for its respective target, FAS and CPT1. (–)-C75 enantiomer inhibits FAS irreversibly, probably through the formation of a covalent bond with a cystein of the enzyme. (+)-C75 enantiomer inhibits CPT1 through the derivative (+)-C75-CoA, produced by the reaction of (+)-C75 with HSCoA. Other possible targets of the C75 enantiomers should be examined in the future in order to use these compounds for therapeutic purposes.

Scheme 1. The enantioselective synthesis of the two enantiomers of C75 was carried out by standard organic synthesis methodologies.33 122x87mm (300 x 300 DPI)

John Wiley & Sons

Figure 1. (a) Synthesis of (+)-C75-CoA and (-)-C75-CoA. (c) 1H NMR spectra of an equimolar mixture of C75 and HSCoA at t = 0 and after 4 h, when the reaction was completed. The signals of exocyclic double bond of starting C75 and the signals of saturated methylene group of the product are marked with triangles. 176x181mm (300 x 300 DPI)

а

Remaining CPT1 Activity

%

100

80

60

40

20

0

0

10 20

b

₫

50

(±)-C75

(+)-C75-CoA

(-)-C75-CoA

Remaining FAS Activity

%

Figure 2. Effects of (+)-C75-CoA and (-)-C75-CoA on CPT1A activity and (+)-C75 and (-)-C75 on FAS

activity. (a) Mitochondrial extracts from yeast expressing rat CPT1A were preincubated for 5 min with

increasing concentrations of (±)-C75 (\Box), (+)-C75-CoA (•) and (–)-C75-CoA (\blacktriangle), then CPT1 activity was

measured. (b) Cytosolic hepatic extracts obtained from rat were preincubated 30 min with increasing

concentrations of (±)-C75-CoA (\blacksquare), (+)-C75 (\circ), (–)-C75 (Δ), then FAS activity was measured.

59x24mm (300 x 300 DPI)

100

80

60

40

20

0

0

Δ

0.0

FAS

-C75-CoA

0.6

Inhibitor (mM)

0.9

2.5 5.0

+)-C75

(-)-C75

0.3

CPT1

30 40

Inhibitor (µM)

John Wiley & Sons

Figure 3. Effect of (+)-C75 and (-)-C75 on SKBr-3 MCF-7, and OVCAR3 cell viability. SKBr-3, MCF7 and OVCAR3 cells were incubated with increasing concentration of the compounds over 3 days. Then drug cytotoxicity was determined using a standard colorimetric MTT assay and the respectively IC50 were calculated. 127x241mm (300 x 300 DPI)

Figure 4. Effect of central and peripheral administration of (+)-C75 and (-)-C75 on food intake, body weight and hypothalamic CPT1 and FAS activities. (a) Food intake and (b) body weight change measured in rats 22 h after i.c.v. injection of (+)-C75 (n = 8) and (-)-C75 (n = 7). Data expressed as percentage respective to control. (c) Determination of hypothalamic CPT1 activity after i.c.v. injection. Control injections (n = 13), (+)-C75 (n = 7) and (-)-C75 (n = 5). (d) Determination of hypothalamic FAS activity after i.c.v. injection. Control injections (n = 5), (+)-C75 (n = 7) and (-)-C75 (n = 6). (e) Change of body weight and (f) food intake measured in 10-wk-old mice after daily i.p. injection (15 mg/kg) of (+)-C75 (n = 16) and (-)-C75 (n = 16). * p < 0.05, respect to control; ** p < 0.05, respect to control and (-)-C75.

218x340mm (300 x 300 DPI)

Figure 5. Proposed action of C75 enantiomers on enzymes involved in lipid metabolism. Each C75 enantiomer is stereoselective for its respective target, FAS and CPT1. (—)-C75 enantiomer inhibits FAS irreversibly, probably through the formation of a covalent bond with a cystein of the enzyme. (+)-C75 enantiomer inhibits CPT1 through the derivative (+)-C75-CoA, produced by the reaction of (+)-C75 with HSCoA. Other possible targets of the C75 enantiomers should be examined in the future in order to use these compounds for therapeutic purposes.

80x51mm (300 x 300 DPI)