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We consider the linearized semiclassical Einstein equations for small deviations around de Sitter

spacetime including the vacuum polarization effects of conformal fields. Employing the method of order

reduction, we find the exact solutions for general metric perturbations (of scalar, vector and tensor type).

Our exact (nonperturbative) solutions show clearly that in this case de Sitter is stable with respect to small

metric deviations and a late-time attractor. Furthermore, they also reveal a breakdown of perturbative

solutions for a sufficiently long evolution inside the horizon. Our results are valid for any conformal

theory, even self-interacting ones with arbitrarily strong coupling.
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I. INTRODUCTION

De Sitter space can be understood as an exponentially
expanding cosmological spacetime entirely driven by a
positive cosmological constant. It plays a central role in
most models of cosmological inflation, where the
potential-dominated energy density and pressure of the
inflaton field act approximately as a cosmological constant
and lead to a quasi-exponential accelerated expansion.
The inflationary scenario provides a natural mechanism,
through parametric amplification of quantum vacuum fluc-
tuations, for generating a nearly scale-invariant spectrum
of adiabatic primordial inhomogeneities, which can suc-
cessfully explain the observed CMB anisotropies and the
large scale structure of the universe [1,2]. Furthermore, the
physics of de Sitter could also be important for elucidating
the final fate of the universe if its current accelerated
expansion is entirely due to a small cosmological constant,
a possibility compatible with observations so far.

The exponential expansion quickly redshifts away any
initial perturbations. This offers a simple means of estab-
lishing natural initial conditions for subsequent evolution
once such an accelerated expansion has already started
over a region with a size larger than the Hubble radius
and lasts for a sufficiently large number of e-foldings.
Under these conditions the initial classical perturbations
are effectively erased and the quantum state for modes with
wavelengths much smaller than the Hubble radius is very
close to the Bunch-Davies or Euclidean vacuum, which
locally is essentially equivalent to the Minkowski vacuum

since at those length-scales the spacetime appears almost
flat. Such a scenario and the late-time attractor character of
local de Sitter spacetime, often referred to as the ‘‘no-hair’’
property of de Sitter, is supported by a number of results
and theorems in classical general relativity, both for linear
perturbations [3,4] as well as for the full nonlinear case
[5–8].
It is, therefore, of great interest to establish whether

those classical no-hair results can be extended to the quan-
tummechanical case. Solid conclusions have recently been
obtained within the framework of quantum field theory in
curved spacetime [9,10]. Specifically, given a fairly gen-
eral class of massive interacting theories with sufficiently
weak coupling evolving on a fixed (nondynamical) de
Sitter background, it has been shown to all orders in
perturbation theory [11,12] that quantum correlators within
a spacetime region of bounded physical size become at
sufficiently late times arbitrarily close to those of the
Euclidean vacuum (the generalization of the de Sitter-
invariant Bunch-Davies vacuum to interacting theories).
Considering test fields evolving on a fixed background,

however, offers an incomplete answer: addressing the full
dynamical problem requires taking into account the back-
reaction of the quantum fields on the dynamics of the
spacetime geometry. A number of studies have explored
this question in the context of semiclassical gravity, where
the metric is still treated classically, but its dynamics is
governed by a generalization of the Einstein equation
which includes the expectation value of the stress tensor
operator of the quantum matter fields as a source [10,13].
Focusing on the backreaction of conformal matter fields,
the dynamics of scalar-type metric perturbations around de
Sitter has been analyzed in Ref. [14], where the importance
of considering also perturbations of the initial state of the
matter fields has been emphasized. (The linear stability of
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de Sitter including initial classical stress tensor sources had
earlier been studied in Refs. [15,16].) In addition, the
evolution of tensor metric perturbations for the same situ-
ation has been studied in Ref. [17], where the semiclassical
Einstein equation was solved perturbatively. (As we will
show below, however, these perturbative solutions cease to
be valid for a sufficiently long evolution inside the hori-
zon.) The stability of tensor perturbations including the
backreaction from conformal fields has also been consid-
ered [18] in investigations on the existence of unstable
runaway solutions of the corresponding higher-order
equations in the context of inflationary models driven by
the trace anomaly [19]. Nevertheless, those analysis ne-
glected the contribution of nonlocal terms which play a key
role in the existence of runaway solution for perturbations
around flat space [13,20].

Related studies have also been carried out for noncon-
formal fields in de Sitter spacetime. The case of massless
minimally coupled free scalar fields has been considered in
Ref. [21] and a vanishing correction to the classical modes
was found when solving perturbatively the linearized semi-
classical equation for tensor perturbations. Both massless
and massive nonconformal scalar fields were studied in
Refs. [22,23] and the stability of de Sitter spacetime with
respect to spatially isotropic perturbations was established.
A fairly general class of Gaussian initial states was con-
sidered and de Sitter was found to be a late-time attractor in
all cases. Moreover, the importance of taking into account
the contribution of nonlocal terms for light massive fields
when analyzing the stability in the infrared regime was
elucidated [23].

Here we consider the linearized semiclassical Einstein
equation around a de Sitter background including the
vacuum polarization effects of conformal matter fields,
and solve it exactly for general metric perturbations (of
scalar, vector and tensor type). In doing so, we make use of
the method of order reduction [13,24], which eliminates
the spurious solutions associated with higher-order deriva-
tives while capturing the right dynamics in the infrared
regime. Moreover, the method generates a backreaction
equation which is equivalent to the original semiclassical
Einstein equation up to the same order in inverse powers of
the Planck mass at which the latter is valid within an
effective field theory (EFT) approach to perturbative quan-
tum gravity [25,26], but which can be significantly simpler
to solve, a fact that we exploit in our calculation. Our exact
solutions clearly show that de Sitter spacetime is also
stable in this case and a late-time attractor as far as local
geometrical properties are concerned. Furthermore, it re-
veals a breakdown of perturbation theory when solving the
semiclassical equation for a long time evolution inside the
horizon.

It should be stressed that our results are valid for any
conformal field theory (CFT), even self-interacting ones
with arbitrary strong coupling, as explained in Sec. IX.

In addition to metric perturbations, perturbed initial states
of the matter fields have also been considered.
Although semiclassical gravity does take into account

the backreaction of the quantum matter fields on the dy-
namics of the mean spacetime geometry, it does not pro-
vide a complete analysis because it does not include the
quantum mechanical effects of the metric itself. Indeed,
one needs to quantize the metric perturbations in order to
account for certain relevant phenomena: doing so is neces-
sary, for instance, for a proper description of the generation
of primordial cosmological perturbations, and it has even
been suggested that radiative corrections involving higher-
order graviton loops could lead to a secular screening of the
cosmological constant [27,28]. However, detailed calcula-
tions including graviton loops are technically complex and
one is, in addition, confronted with the need to consider
appropriate observables which are not only gauge-invariant
beyond linear order but also infrared safe [29–31]. Because
of such difficulties only partial progress has been made in
this direction. It is, therefore, important to consider also
somewhat less ambitious problems, but obtain solid results
(and, if possible, exact) which can provide a robust foun-
dation for further developments. One such example is the
exact calculation of one-loop corrections frommatter fields
to the correlator of the Riemann tensor [32–34] for quan-
tized metric perturbations around de Sitter. The results
support the existence of quantum states for metric pertur-
bations interacting with matter fields which exhibit (appro-
priately defined) de Sitter invariance, at least when
graviton loops are neglected. In contrast, the results pre-
sented here only apply to the mean field geometry, but
explore the effect of different (non-de Sitter-invariant)
initial states on the dynamics and show not only that a
self-consistent de Sitter-invariant solution exists, but also
that it is a late-time attractor. Furthermore, the methods
described below for obtaining nonperturbative solutions
valid for long evolution times could prove helpful in order
to extend the calculation of the Riemann correlator so that
it correctly captures the details of its behavior for large
separations (both spatial and temporal), which seems to
require a nonperturbative treatment.
The rest of the paper is organized as follows.

Semiclassical gravity and the method of order reduction
are briefly reviewed in Sec. II. The semiclassical Einstein
equation for metric perturbations around a spatially flat
FLRW spacetime including the quantum backreaction of
conformal fields is presented in Sec. III. Given a cosmo-
logical constant and fields in the Bunch-Davies vacuum,
there is a self-consistent semiclassical de Sitter back-
ground. In Sec. IV the metric perturbations are decom-
posed into scalar, vector and tensor contributions. Next, we
fix the gauge and write the (decoupled) semiclassical equa-
tions for the three types of perturbations, before and after
employing the order reduction method. The exact (non-
perturbative) solutions are obtained in Sec. V and their
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implications for the stability of de Sitter spacetime as well
as the breakdown of the perturbative solutions are analyzed
in Sec. VI. The effects of perturbing also the initial state of
the matter fields are studied in Sec. VII and we show that
all our main conclusions remain unchanged. Finally, in
Sec. IX we summarize and discuss our results after ex-
plaining their applicability to any CFT for the matter fields
in Sec. VIII. Several useful formulae concerning the per-
turbative expansion of curvature tensors, their conformal
transformations and some special functions are provided in
the first three appendices. In addition, a method for gen-
erating a family of regular Gaussian initial states is de-
scribed in Appendix D, and in Appendix E we compare our
linearized semiclassical Einstein equation for tensor per-
turbations (before order reduction) with the one previously
obtained by Starobinsky [35].

Throughout the paper we use natural units with c ¼
ℏ ¼ 1 and take �2 ¼ 16�GN. We employ the ‘‘þþþ’’
sign convention of Ref. [36] and Greek indices range over
space and time, while Latin indices denote spatial compo-
nents only.

II. SEMICLASSICAL GRAVITY
AND ORDER REDUCTION

A. Semiclassical Einstein equations

Semiclassical gravity can be regarded as a mean field
approximation to a quantum theory of gravity where the
mean gravitational field is treated classically and only
matter is quantized. In contrast to quantum field theory in
curved spacetime, it also includes the backreaction of the
matter fields on the mean geometry, given by the back-
ground metric g��. To achieve this, the stress tensor on the

right-hand side of the Einstein equation is replaced by the
expectation value of an appropriate quantum stress tensor
operator. This expectation value needs to be renormalized,
and counterterms local in the gravitational field have to be
included in the bare gravitational action. At all loop order
for the matter fields (but no graviton loops) those counter-
terms are quadratic in the curvature and the renormalized
semiclassical Einstein equation reads

G�� þ�ð�Þg�� ¼ a1ð�Þ�2ð�ÞA�� þ a2ð�Þ�2ð�ÞB��

þ 1

2
�2ð�ÞhT̂��ð�Þiren; (1)

where A�� ¼ ð�gÞ�1=2ð�=�g��ÞRC����C����
ffiffiffiffiffiffiffi�g

p
d4x

and B�� ¼ ð�gÞ�1=2ð�=�g��ÞRR2 ffiffiffiffiffiffiffi�g
p

d4x are obtained

by functionally differentiating the finite parts of the gravi-
tational counterterms. The dimensionless parameters
a1ð�Þ and a2ð�Þ together with �ð�Þ and �2ð�Þ are in
general renormalized parameters which have to be deter-
mined by experiment, and � is the renormalization scale.
Note, nevertheless, that the backreaction equation (1) is
renormalization group invariant and the dependence on �

of the different parameters appearing in the equation and

the renormalized expectation value hT̂��ð�Þiren cancel out.
Furthermore, in four dimensions we do not need to

consider counterterms quadratic in the curvature tensors
different from the above because of the generalized Gauß-
Bonnet theorem. This theorem states that

R
E4

ffiffiffiffiffiffiffi�g
p

d4x is a
topological invariant, namely 32�2 times the Euler char-
acteristic. E4 is the integrand of the four-dimensional Euler
invariant and is given by

E 4 ¼ R��	
R��	
 � 4R��R�� þ R2: (2)

By expressing the Riemann tensor in terms of the Weyl
tensor (A4), we can formulate any combination of counter-
terms as a linear combination of the squared Weyl tensor,
the squared Ricci scalar and the Euler invariant. Since
variational derivatives of a topological invariant vanish,
the last term does not contribute to the semiclassical
Einstein equation (1).
The tensors A�� and B�� are explicitly given by

A�� ¼ �4rð�r�ÞC���� � 2R��C����

¼ �4R��R
�
� þ 4

3
RR�� � 1

3
g��R

2 þ g��R
��R��

þ 8r½�r��R�
� � 2hgR�� þ 2

3
r�r�R

þ 1

3
g��hgRB�� ¼ 1

2
g��R

2 � 2RR��

þ 2r�r�R� 2g��hgR; (3)

where the two forms of A�� given above were obtained by

using the identity (A5) and the definition of theWeyl tensor
(A4) as well as the second Bianchi identity.

B. Order reduction

The semiclassical Einstein equation (1) contains terms
with up to fourth-order derivatives of the metric, as seen

from Eq. (3). (The expectation value hT̂��ð�Þiren also

involves similar terms, as shown below.) Such kind of
higher-order time derivatives are common in backreaction
problems. Awell known example is the Abraham-Lorentz-
Dirac equation, which describes the effect of radiation
reaction on the motion of a point-like charge in classical
electrodynamics [37,38] (i.e., without considering the in-
ternal structure of the particle nor a finite size for the
charge density distribution). In fact, they are a generic
feature of effective field theories (EFTs), where the effects
of the UV sector on the dynamics of the low-energy
degrees of freedom are encoded at the level of the action
through an expansion of local terms with an increasing
number of derivatives. The validity of the EFT expansion
relies on the fact that for length-scales much larger than the
inverse cut-off scale of the UV sector the higher-order
terms in the expansion become increasingly smaller.
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In this regime their contribution amounts to a small cor-
rection to the equation of motion which results, when
treated perturbatively, into locally small perturbations of
the classical solutions. In contrast, solving the correspond-
ing higher-order equations exactly gives rise to additional
solutions exhibiting exponential instabilities with charac-
teristic time-scales comparable to the inverse cutoff scale
of the EFT (or sometimes fast oscillations with the same
kind of characteristic timescale), often referred to as
‘‘runaway’’ solutions. These are spurious solutions which
should not be taken seriously since they involve character-
istic scales for which the EFT expansion breaks down and
the contributions from the higher-order terms to the equa-
tion of motion no longer correspond to small corrections
but to dominant terms.

The simplest way of avoiding such spurious solutions is
by solving the corrected equations of motion perturba-
tively. However, perturbative solutions may not be valid
for long times. This happens when quantities like the total
time appear multiplying the perturbative parameter so that
the expansion contains so-called secular terms which grow
with time and lead to a breakdown for sufficiently long
times of the truncated perturbative expansion. Those limi-
tations can be overcome with the order reduction method,
which consists in taking the equation of motion with
corrections up to a finite order and writing an alternative
equation which is equivalent up to that order but contains
no higher derivative terms (this is achieved by taking
successive derivatives of the original equation and substi-
tuting the higher-order derivatives in the correction terms
to the appropriate order). The exact solutions of the equa-
tion obtained with this method agree locally with the
perturbative solutions constructed around different times
(each one with a finite domain of validity) and provides an
interpolation between all of them valid for long times. This
is particularly important when considering situations
where the effects of the corrections are locally small, but
can build up over long times and give rise to substantial
accumulated effects. Two examples of such situations are
an electric charge following a quasi-circular trajectory in a
uniform magnetic field and emitting electromagnetic ra-
diation for a sufficiently long time so that the radius of its
orbit decreases, say, to half of its initial value due to
radiation reaction, or an evaporating black hole emitting
Hawking radiation for such a long time that its mass
(or horizon size) decreases to a small fraction of its initial
value.

Related alternative methods which have been employed
in the literature for discarding the spurious solutions men-
tioned above involve finding the exact solutions of the
original backreaction equation and then selecting the ap-
propriate subset either by demanding analyticity of the
solutions with respect to the perturbative parameter or
checking explicitly which solutions exhibit unphysical
characteristic scales and disregarding them [14]. However,

the latter method is less systematic and requires a case-by-
case analysis, whereas the analyticity requirement may be
too restrictive in some cases [13]. Furthermore, the order
reduction method leads to equations of motion which are
equivalent up to the order under consideration, but are often
easier to solve, as will be the case for the problem analyzed
in the remaining sections.
The order reduction method has been applied to elec-

tromagnetic [38] and gravitational [39] radiation reaction
problems as well as higher derivative gravity [40]. It has
also been employed in semiclassical gravity [13,24] and in
this context it has been argued [41] that trace-anomaly-
driven inflationary models (with no cosmological constant
and driven entirely by the vacuum polarization of large
number of matter fields [19]) correspond to spurious solu-
tions which lie beyond the EFT’s domain of applicability
and are automatically discarded when using order
reduction.
It should be noted that order reduction cannot be always

applied in a straightforward way. It may be ambiguous in
integro-differential equations, or may lead to covariance
breaking if the time derivatives and spatial derivatives are
not simultaneously reduced; see Ref. [13] for a detailed
discussion of these issues.
The order reduction method can be illustrated in a nut-

shell with the following simple example of a first order
differential equation in time for a function fð�Þ with a
perturbative correction of order �2. Given

f0 þ bf ¼ �2Pðf; f0; f00; . . .Þ; (4)

where b is a constant and P is an arbitrary function, order
reduction uses that f0 ¼ �bfþOð�2Þ, and by deriving
one more time f00 ¼ �bf0 þOð�2Þ ¼ b2fþOð�2Þ.
Substituting those two equations into the right-hand side,
we get

f0 þ bf ¼ �2Pðf;�bf; b2f; . . .Þ þOð�4Þ; (5)

which is an equation of first order which is valid to the
same order in �2 as the original Eq. (4), but does not have
unphysical solutions. Rather than considering a truncated
perturbative expansion, this equation can now be solved
exactly. It is clear how the method works for equations of
more derivatives or partial differential equations: one
takes the lowest order equation and substitutes it in the
higher order terms (in �2), taking additional derivatives
if necessary.

III. CONFORMAL FIELDS IN A PERTURBED
FLRW UNIVERSE

A. The model

Our model consists of N massless free scalar fields
conformally coupled to the spacetime curvature:
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S½’; ~g� ¼ � 1

2

XN
j¼1

Z
½~g��@�’j@�’j þ �cc

~R’2
j �

ffiffiffiffiffiffiffi�~g
p

ddx;

(6)

where ~R is the Ricci scalar associated with the metric ~g��

and �cc ¼ ðd� 2Þ=½4ðd� 1Þ�, which reduces to �cc ¼ 1=6
in four dimensions. We will use dimensional regulariza-
tion, but after the renormalization procedure has been
carried out we will take d ¼ 4. Furthermore, we will
specialize the physical metric ~g�� to a slightly perturbed

spatially flat FLRW spacetime, which is conformal to an
almost flat metric g��:

~g �� ¼ a2ð�Þg�� ¼ a2ð�Þð��� þ h��Þ; (7)

where � denotes the conformal time.
The renormalized semiclassical Einstein equation (1) for

this model with the fields in the conformal vacuum state
was derived by Campos and Verdaguer in Refs. [42,43]
using the closed-time-path (CTP) effective action, and is
given to linear order in the perturbation h�� by

~G��þ�~g��¼� 1

12
��2 ~B��þ1

2
��2½ ~H���2 ~R�� ~C�����

þ3

2
��2a�2

�
�4r�r�ðC���� lnaÞ

þ
Z
Hðx�y; ��ÞA��ðyÞd4y

�
; (8)

where � ¼ N=ð2880�2Þ. Here and throughout the rest of
the paper r� denotes the covariant derivative with respect

to the metric g�� andhg ¼ r�r�, whereas objects with a

tilde are evaluated with the conformally related metric ~g��.

Furthermore, background quantities will be denoted by a

superscript ð0Þ such as gð0Þ�� ¼ a2ð�Þ���, and quantities

linearized in the perturbation by a superscript ð1Þ as in

~gð1Þ�� ¼ a2ð�Þh��.

For conformal fields the renormalized parameter a2ð�Þ
does not depend on� and we denote it by �=12. Moreover
we have chosen a renormalization scale �� such that
a1ð ��Þ ¼ 0. Similarly, both � and �2 are also independent
of � in this case. The tensors A�� and B�� are defined in

Eq. (3) and

H�� ¼ �R�
R


� þ 2

3
RR�� þ 1

2
g��R

��R�� � 1

4
g��R

2:

(9)

Finally, the kernel Hðx� y;�Þ depending on the
renormalization scale � is given in Appendix E, but its
exact form will not be needed in the bulk of the paper.
Equation (8) coincides with those derived by alternative
methods [35,44,45].

Comparing Eq. (8) with the general form (1), the local
term coming from the counterterms quadratic in the
curvature tensors is just ~B��, since we have chosen the

renormalization scale �� such that a1ð ��Þ ¼ 0. All other
terms result from the expectation value of the stress tensor

hT̂��ð�Þiren, which includes local as well as nonlocal

terms.

B. The FLRW background

The semiclassical generalization of the Friedmann equa-
tion can be obtained by setting the perturbation h�� to zero

in the 00 component of Eq. (8), which gives

6ða0Þ2 � 2�a4 ¼ 3��2a�4ða0Þ4 þ 3��2a�3½2aa0a000
� aða00Þ2 � 4ða0Þ2a00�; (10)

and using the order reduction method it becomes

ða0Þ2 ��

3

�
1þ 1

6
��2�

�
a4 ¼ Oð�4Þ: (11)

Defining an effective cosmological constant �eff as

�eff ¼ �

�
1þ 1

6
��2�

�
; (12)

Eq. (11) has the solution

að�Þ ¼ � 1

H�
; (13)

where the Hubble parameter H is given by 3H2 ¼ �eff ,
and �1<� � 0. This solution is unique up to a shift of
the origin of conformal time, � ! �� �0, and its sign.
Hence, de Sitter spacetime, given here in spatially flat

coordinates (the Poincaré patch), is a self-consistent solu-
tion of the semiclassical Friedmann equation (10), with the
effective cosmological constant (12) having a small posi-
tive shift of quantum origin. The existence of such self-
consistent solutions follows straightforwardly from the fact
that the renormalized expectation value of the stress tensor
for the Bunch-Davies vacuum must be proportional to the
metric, as implied by de Sitter invariance, and has been
know for a long time [46,47].
When � ¼ 0, Eq. (10) still admits a de Sitter solution

with H2 ¼ 2=ð��2Þ (closely connected to Starobinsky’s
original model of inflation [19,48]), but its characteristic
scale lies beyond the domain of validity of semiclassical
gravity when regarded as part of an EFT approach to
quantum gravity, as briefly discussed in Sec. II B. Such
solutions are automatically discarded by the method of
order reduction [24].

IV. LINEAR PERTURBATIONS

A. Gauge fixing

When considering metric perturbations around a given
background, there is a gauge freedom (corresponding to
local diffeomorphisms) associated with the mapping be-
tween the background and the perturbed geometry.
Infinitessimal diffeomorphisms generated by an arbitrary
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vector field ~�� induce the following gauge transformation
of the physical perturbation a2h�� introduced in Eq. (7):

a2h�� ! a2h�� þ ~r�
~�� þ ~r�

~��: (14)

Rescaling the arbitrary vector field ~�� ¼ a2�� and using

Eq. (13) for the scale factor að�Þ, Eq. (14) becomes

h�� ! h�� þ @��� þ @��� þ 2

�
����0: (15)

Before proceeding any further, it is convenient to decom-
pose the perturbation h�� exploiting the fact that the spatial

sections of the background metric are maximally symmet-
ric spaces [49–51]. The spatial part hij decomposes as

hij ¼ hTTij þ 2@ðiwT
jÞ þ @i@j
þ �ij; (16)

where �ij@ih
TT
jk ¼ 0 ¼ �ijhTTij and �ij@iw

T
j ¼ 0. The tem-

poral components can be similarly decomposed as

h0i ¼ vT
i þ @ic ; h00 ¼ �; (17)

where �ij@iv
T
j ¼ 0. In total, we have four scalars �, c , 
,

, two transverse vectors wT
i and v

T
i (with two independent

components each) and a transverse traceless tensor
hTTij (with two independent components as well).

Decomposing also the spatial part of the vector field �� as

�i ¼ �T
i þ @i�; (18)

where �ij@i�
T
j ¼ 0, we can see the behavior of the various

components under a gauge transformation:

hTTij ! hTTij wT
i ! wT

i þ �T
i 
 ! 
þ 2�

 ! þ 2

�
�0 vT

i ! vT
i þ �0T

i

c ! c þ �0 þ �0 � ! �þ 2�0
0 �

2

�
�0;

(19)

where primes denotes derivatives with respect to the con-
formal time �. Choosing �T

i , � and �0 appropriately, we
can set wT

i , 
 and  to zero. We will work in this gauge,
where the perturbation of the spatial metric is entirely
given by the tensorial component:

hij ¼ hTTij : (20)

This is the transverse traceless gauge, also known
as spatially flat gauge when focusing on the scalar pertur-
bations. This fixes completely the gauge if we restrict
ourselves to metric perturbations that fall off at spatial
infinity.
If we consider perturbations which do not necessarily

fall off, there is still some residual gauge freedom which is
not fixed by condition (20). On one hand, there are trans-
formations which leave hij invariant. One possibility are

those generated by �T
i which are functions only of the

conformal time; this corresponds to translations on the
spatial sections which can change for each surface of
the foliation and lead to changes of vT

i . A second possi-
bility involves transformations generated by @i� ¼
bð�Þ�ijx

j, �0 ¼ �bð�Þ�; this corresponds to dilations

on the spatial sections while changing at the same time
the surface of the foliation so that the expansion of the
FLRW background compensates for that, and leads to
changes of � and c while leaving hij invariant. On the

other hand, the transformations generated by �T
i ¼ Eijx

j

with Eij constant and traceless induce changes of hij but

leave it transverse and traceless. These residual gauge
transformations will play a role in Sec. V to show that
certain solutions are pure gauge.

B. Semiclassical equations of motion

Using the metric decomposition and the gauge fixing
introduced in the previous subsection, one can obtain from
the semiclassical equation (8) the dynamical equations for
the scalar, vector and tensor perturbations, which decouple
form each other. From the 00 component of Eq. (8) and the
scalar part of its 0i component, one gets the following two
equations for the scalar perturbations c and �:

0 ¼ �ð3� 5��2H2ÞH2a4�þ 2½1� ð3�� �Þ�2H2�Ha3 4 c þ 1

2
��2

�
�7H2a2 4�þ 3H2a2�00 þ 6H3a3�0

� 1

3
42 �

�
þ ��2

�
�Ha4 c 00 þHa42 c þ 1

3
42 c 0

�
� ��2

Z
½242 c 0ðx0Þ � 42�ðx0Þ�ðHðx� x0; ��Þ

þ �4ðx� x0Þ ln aÞd4x0;
0 ¼ 2Ha3 4�þ 2��2ðHa42 �� 3H3a3 4�� 2Ha42 c 0Þ þ ��2

�
Hah4�� 2H2a2 4�0 � 1

3
42 �0

�

þ ��2

�
�4H2a2 42 c þ 2

3
42 c 00

�
� 2��2

Z
½242 c 00ðx0Þ � 42�0ðx0Þ�ðHðx� x0; ��Þ þ �4ðx� x0Þ lnaÞd4x0;

(21)
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where h ¼ ���@�@� and 4 ¼ �ij@i@j. Similarly, from
the transverse part of the 0i component one gets the
equation for the vector perturbation vT

i :

0 ¼ ½1� ð�þ 2�Þ�2H2�a2 4 vT
i � 3��2Ha4 v0T

i

þ 3��2
Z
ðh4 vT

i ðx0ÞÞðHðx� x0; ��Þ
þ �4ðx� x0Þ ln aÞd4x0: (22)

Finally, the equation for the tensor perturbations is ob-
tained from the transverse and traceless part of the ij
components:

0 ¼ �2½1� ð�þ 2�Þ�2H2�Ha3h0TTij

þ ½1� ð�þ 2�Þ�2H2�a2hhTTij

þ 3��2H2a2½2h00TTij þhhTTij � � 6��2Hahh0TTij

þ 3��2
Z
ðhhhTTij ðx0ÞÞðHðx� x0; ��Þ

þ �4ðx� x0Þ ln aÞd4x0: (23)

Employing order reduction as explained in Sec. II B, the
equations can be rewritten in the much simpler form

h00TTij � 2

�
ð1� �Þh0TTij � ð1� 2�Þ 4 hTTij ¼ Oð�4Þ; (24a)

4vT
i ¼ Oð�4Þ; (24b)

4� ¼ Oð�4Þ; (24c)

4c þ 3

2�

�
1þ 4

9
�

�
� ¼ Oð�4Þ; (24d)

where we have introduced the following parameter, which
controls the expansion in powers of �2:

� ¼ 3��2H2 � 1: (25)

It is worth emphasizing that those equations are indepen-
dent of the arbitrary parameter � and the renormalization
scale �� of the semiclassical theory. They involve only the
semiclassical parameter �, which depends on the matter
field content.

C. Nonlocal terms

As we have calculated explicitly, when we use order
redution the nonlocal terms do not contribute to the semi-
classical equations of motion (24) for the perturbation h��.

We now want to show that one can see this in general,
without choosing a gauge or expanding the semiclassical
equations explicitly in terms of the perturbation h��.

Basically this amounts to showing that A��, given by

Eq. (3), is of order �2 when using order reduction. In order
to do so, it is convenient to consider its definition as a
functional derivative of the integral of the square of the
Weyl tensor

A�� ¼ 1ffiffiffiffiffiffiffi�g
p �F

�g�� (26)

with

F ¼
Z

C����C����

ffiffiffiffiffiffiffi�g
p

d4x ¼
Z

~C���� ~C����

ffiffiffiffiffiffiffi�~g
p

d4x;

(27)

where the last equality follows from the conformal invari-
ance of the Weyl tensor with one raised index. This also
implies that

A�� ¼ 1ffiffiffiffiffiffiffi�g
p �F

�g�� ¼ a2ffiffiffiffiffiffiffi�~g
p �F

�~g�� ¼ a2 ~A��; (28)

and we can equivalently show that ~A�� is of order �2.

Another consequence of the invariance of F under confor-

mal transformations of ~g�� is the vanishing trace of ~A��:

0 ¼ �F

�a
¼ �F

�~g��

@~g��

@a
¼ �2

ffiffiffiffiffiffiffi�~g
p

~A��a
�1~g��; (29)

so that ~g�� ~A�� ¼ 0.

Expressing now theWeyl tensor in terms of the Riemann
tensor and its contractions according to its defining
Eq. (A4), we can write

F ¼ 2
Z �

~R�� ~R�� � 1

3
~R2

� ffiffiffiffiffiffiffi�~g
p

d4xþ
Z

~E4

ffiffiffiffiffiffiffi�~g
p

d4x;

(30)

where ~E4 is the integrand of the four-dimensional Euler
invariant given in Eq. (2), which is a topological invariant.
From Eq. (30) and the fact that the variational derivative of

a topological invariant vanishes, we see that ~A�� can be

expressed entirely in terms of the Ricci tensor, the Ricci
scalar and covariant derivatives acting on them.
We are now ready to use order reduction. Taking into

account that

~R�� � 1

2
~g��

~Rþ�~g�� ¼ Oð�2Þ
~R� 4� ¼ Oð�2Þ (31)

and substituting ~R�� ¼ �~g�� into the expression for ~A��,

the result can only be proportional to ~g�� up to order �2.

However, since ~g�� ~A�� ¼ 0, we conclude that ~A�� is of

order �2 when order reduction is employed. One can
alternatively check this fact by substituting Eq. (31) into

the explicit expression for ~A�� in terms of the Ricci tensor

in Eq. (3).
In conclusion, we see that we only have to consider the

local terms in Eq. (8) when using order reduction.
However, as explained at the end of Sec. III A, local terms
come also from the expectation value of the stress tensor

hT̂��ð�Þiren. In fact, since the order-reduced semiclassical

equations (24) do not depend on � nor the renormalization
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scale ��, all the local terms arise exclusively from the stress
tensor expectation value.

V. NONPERTURBATIVE SOLUTIONS

A. Scalar and vector perturbations

The solutions of Eq. (24b) for the components of the
vector perturbation vT

i are arbitrary functions of time,
which can be eliminated by a gauge transformation.
Indeed, by using the residual gauge freedom described at
the end of Sec. IVA and choosing �T

i as an appropriate
function of time only, we can set vT

i ¼ 0.
For �, the solution of Eq. (24c) is also an arbitrary

function of time. The solution for c is then given by

c ¼ fð�Þ � 1

4�

�
1þ 4

9
�

�
�ð�Þr2: (32)

Since c enters into the perturbation h�� only through a

spatial derivative according to Eq. (17), the arbitrary func-
tion fð�Þ does not change the perturbation h�� and we can

set it to zero. If we want to start with bounded initial
perturbations, we must exclude solutions which are un-
bounded and have to take � ¼ 0.

On the other hand, if we had not excluded such un-
bounded solutions, we would first have to choose �0 ap-
propriately to make � vanish, and would need to take a
similar unbounded function � ¼ �1=ð2�Þ�0r

2 so that the
combination @i@j
þ �ij which enters into the decom-

position of the perturbation (16) still vanishes. The solution
for c is then an arbitrary function of time which we can set
to zero as above.

Thus, we see that when order reduction is employed,
both vector and scalar parts after solving the constraints are
pure gauge and can be eliminated by a residual gauge
transformation of the kind mentioned at the end of
Sec. IVA.

Note that Anderson et al. [14], who investigated scalar
perturbations without using order reduction, also con-
cluded that those perturbations (which they refer to as
perturbations of the first kind) have to vanish because the
corresponding solutions that they found lie outside the
range of validity of the semiclassical theory. The gauge-
invariant variables that they introduce, however, take a
simple form in a gauge rather different from the one we
employ, and so their intermediate expressions are not
directly comparable to ours.

B. Tensor perturbations

To find the solutions for the tensor perturbations, we
take the Fourier transform with respect to the spatial
coordinates,

hTTij ð�;xÞ ¼
X
s¼�

Z
esijðpÞgsð�;pÞeipx

d3p

ð2�Þ3 ; (33)

where e�ij ðpÞ are a pair of transverse and traceless tensors

corresponding to two different polarizations. Equation (24a)
then becomes

g00� � 2

�
ð1� �Þg0� þ ð1� 2�Þp2g� ¼ Oð�4Þ: (34)

Setting !2 ¼ ð1� 2�Þp2, s ¼ �!� and g� ¼ s
3
2��f�ðsÞ,

this reduces to a Bessel equation for f�, whose general
solution is

g� ¼ ð�!�Þ32��½C�
1 J3

2��ð�!�Þ þ C�
2 Y3

2��ð�!�Þ�;
(35)

where C�
1 and C�

2 are integration constants.
For the particular case p ¼ 0, which corresponds to no

spatial dependence in position space, Eq. (24) can be
solved directly and the general solution is given by

hTTij ¼ Dijð��Þ3�2� þ Eij; (36)

where Dij and Eij are traceless tensors with respect to the

induced background metric of the spatially flat sections,
and independent of the spatial coordinates and the confor-
mal time.1 The first term on the right-hand side of Eq. (36)
corresponds to a Bianchi I anisotropic deformation of de
Sitter, whereas the second one is pure gauge and can be
eliminated by the residual gauge transformation generated
by the transverse vector �T

i ¼ Eijx
j=2.

VI. DE SITTER STABILITYAND SECULARTERMS

A. Stability with respect to linear perturbations

In this section we analyze the stability of the semiclas-
sical de Sitter geometry with respect to small metric per-
turbations including the backreaction due to quantum
vacuum effects from conformal fields. We do so by focus-
ing on the evolution of the Riemann tensor associated with
the linearly perturbed metric ~g��, which has a number of

appealing properties. First of all, the linear perturbation
around de Sitter of the Riemann tensor ~R��

�� with appro-

priately raised indices is a gauge-invariant object. This
follows from the fact that for the unperturbed background

it can be written as ~Rð0Þ��
�� ¼ 2H2�½�

½��
��
�� , whose Lie

derivative with respect to an arbitrary vector field vanishes.
Furthermore, with this index structure the components
remain unchanged when rescaling by the same constant
the basis vectors of the tangent space at a given point. This
implies that the components coincide with those in the

1These solutions can also be obtained by taking the limit
! ! 0 of Eq. (35) after rewriting C1 ¼ �C1=!

3�2� so that a
finite nonvanishing limit is obtained for the solutions associated
with the two integration constants. In addition, the different ways
of taking the limit p ! 0 of e�ij ðpÞ and the possibility of con-
sidering arbitrary linear combinations gives rise to the general
traceless tensors Dij and Eij.
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physical basis of orthonormal vectors fa�1@0; a
�1@ig of the

background metric. Finally, the Riemann tensor provides a
suitable characterization of the local geometry, in terms of
which the stability and attractor nature of semiclassical de
Sitter spacetime can be naturally formulated, as further
discussed at the end of this subsection.

In terms of the metric perturbations the linearized
Riemann tensor is given by

~Rð1Þ��
�� ¼ 2H2��

½��
�
��h00 þ 2H2�2��½�����@�@½�h���

þ 2H2���
½��

½�
���

���ð2@ð�h�Þ0 � h0��Þ: (37)

Using the gauge transformation (15), one can explicitly
check that it is indeed gauge invariant at linear order.
Fourier transforming with respect to the spatial coordinates
and specializing to tensor perturbations, we get

~R ð1Þ��
�� ¼ 2H2

Z
ðS½���þ ½��� þ S½���� ½���Þeipx

d3p

ð2�Þ3 ;
(38)

where

S0j�0k ¼ �ðe�Þjk�g0�
Sij�0k ¼ i�piS0j�0k

Sij�kl ¼ pipkðe�Þjl�2g� þ �i
kS

0j
�0l:

(39)

Hence, we can see that all the Riemann components can be
written in terms of g� and g0�. Since everything that will be
said is entirely equivalent for both polarizations, for ease of
notation we will omit in the remainder of this section the
subindices � labeling the two transverse polarizations
associated with each momentum p.

Let us consider first the evolution of the Riemann tensor
for modes well outside the horizon, i.e., with !� � 1. In
this case one needs to evaluate the Bessel functions in
Eq. (35) using Eqs. (C3) and (C5), which leads to

g��C2

�
�

�
3

2
� �

�
2
3
2�� þOð!�Þ ¼ const:þOð!�Þ;

g0 �!
C2

�
�

�
1

2
� �

�
2
1
2�� þOð!�Þ ¼ const:þOð!�Þ:

(40)

Substituting into Eq. (39) we see that the components of
the Riemann perturbation in a physical basis decay like
1=a ¼ �H� or higher order at late times, i.e., in the limit
� ! 0.

On the other hand, for modes inside the horizon, with
!� � 1, one can use Eqs. (C4) and (C6) to see that g and
g0 are of the form

g�
ffiffiffiffi
2

�

s
ð�!�Þ1��½1þOð1=!�Þ�;

g0 �!

ffiffiffiffi
2

�

s
ð�!�Þ1��½1þOð1=!�Þ�:

(41)

times an oscillatory factor corresponding to a linear com-
bination of sin ð!�Þ and cos ð!�Þ. Thus, from Eq. (39) it
follows that inside the horizon the components of the
Riemann perturbation oscillate with an amplitude that
decays like 1=a1��.
Putting these results together we can conclude that de

Sitter spacetime remains stable with respect to small metric
perturbations of the semiclassical mean geometry when the
quantum backreaction of conformal matter fields is in-
cluded. This is guaranteed by the fact that for any
Fourier mode with comoving momentum p the perturba-
tion of the Riemann tensor decays like 1=a1�� (times an
oscillatory factor) when the corresponding physical wave-
length 2�a=jpj is smaller than the de Sitter radius 1=H and
like 1=awhen it is larger, together with the regularity of the
perturbation around horizon crossing (when the wave-
length is comparable to 1=H). This extends the conclusions
of the no-hair theorem for de Sitter spacetime, which is not
only stable with respect to small metric perturbations but
also a late-time attractor in classical general relativity, to
the case where radiative corrections from loops of confor-
mal fields are considered. In fact, the main effect of the
radiative corrections compared to the classical case for
pure gravity, which corresponds to taking � ¼ 0 in our
results, is simply to alter slightly the exponent of the
power-law decay for modes inside the horizon.
Our result can be used to illustrate in a simple way the

fact that the stability and the character of late-time attractor
of de Sitter spacetime applies to sufficiently localized
observables characterizing the geometry within a region
of fixed physical size (as opposed to comoving). The tensor
perturbation hTTij ð�;xÞ and the amplitude gð�;pÞ associ-
ated with a given momentum and polarization are gauge-
invariant objects with well-defined geometrical meaning.
However, as their characteristic physical wavelength gets
exponentially redshifted, at late times one would need to
measure them over regions with a physical size that be-
comes arbitrarily large. Instead, the deviations of the geo-
metric properties within a region of fixed physical size
compared to those of de Sitter decay exponentially with
the (proper) cosmological time. These features are ade-
quately captured by the behavior of the Riemann tensor,
which provides a good characterization of the local
geometry.

B. Perturbative vs. nonperturbative solutions

In this subsection we will compare the exact nonperturba-
tive solutions of the linearized semiclassical equation (34),
given by Eq. (35), to those that result from solving the
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equation perturbatively in �. We will see that the perturba-
tive solutions cease to be valid when the modes evolve
inside the horizon for a sufficiently long time.

Here we concentrate on initial perturbations correspond-
ing to Bunch-Davies positive frequency modes, but our
conclusions can be easily generalized to arbitrary initial
conditions. This choice amounts to setting C2 ¼ iC1, so
that the linear combination within the square bracket on the
right-hand side of Eq. (35) becomes a Hankel function of
the first kind, with a purely positive frequency oscillatory
behavior at early times. Indeed, using Eqs. (C4) and (C6)
one can see that in this case the behavior for !� � 1 of
the nonperturbative solution is given by

g ¼ C1

ffiffiffiffi
2

�

s
e�i�2ð2��Þð�!�Þ1��e�i!�½1þOð1=!�Þ�: (42)

On the other hand, if we first expand the solution (35) in
powers of � employing Eqs. (C8) and (C9), we get

gp ¼ �C1

ffiffiffiffi
2

�

s
i½ð1þ ijpj�Þe�ijpj� � �ð2þ p2�2Þe�ijpj�

þ i�½sin ðjpj�Þ � jpj� cos ðjpj�Þ�½ln ðp2�2Þ � i��
þ �ð1� ijpj�Þ½Einð�2ijpj�Þ þ �þ ln 2�eijpj��
þOð�2Þ: (43)

At late times (for !� � 1) the exact solution is well
approximated by the perturbative solution (43): one recov-
ers the asymptotic behavior in Eq. (40) but with the con-
stant term and the coefficients of the higher-order ones
given by their expansion in powers of � truncated at linear
order. That is, however, not the case at early times, with
!� � 1. This can be seen by considering the early-time
limit of the perturbative solution (43):

gp ��C1

ffiffiffiffi
2

�

s
ð�jpj�Þe�ijpj�

�
�
1� �

�
1� i�

2
þ ln ð�jpj�Þ � ijpj�

�
þOð�2Þ

�
;

(44)

which coincides with the result that one obtains by
expanding in powers of � the asymptotic expression (42)
for the exact solution. It is clear that the perturbative
solution deviates significantly from the exact one when
�jpjj�j * 1. The implications can be more easily under-
stood if we normalize the modes so that they have a fixed
amplitude at the initial time �0 independently of the par-
ticular value of �0, which can be implemented by dividing
the mode by its value at�0. Proceeding in this way with the
exact solution, one finds for example that the amplitude
of a mode which was initially well within the horizon has
decreased by a factor 1=ð�!�0Þ1�� by the time of horizon
crossing. In contrast, repeating the procedure with
the perturbative solution and treating � perturbatively

when normalizing by the value at �0, one obtains an
amplitude at horizon crossing of order ð�1=jpj�0Þ�
ð1þ � ln ð�jpj�0Þ � i�jpj�0Þ. For modes which have
spent a long time inside the horizon, so that �jpjj�0j*1,
this amplitude at horizon crossing can be significantly
larger.
The reason for the potentially large deviation of the

perturbative solution with respect to the exact one is a
breakdown of perturbation theory: the actual condition
for the validity of the perturbative solution is �jpj�0�1,
which can be violated even for � � 1 when considering
jpjj�0j large enough. The term proportional to i�jpj� in
Eq. (44), responsible for the main deviations, is a secular
term arising from the truncated perturbative expansion in
powers of � of the oscillatory factor e�i!� in Eq. (42). Such
a breakdown of perturbation theory for long times is very
common when determining the evolution of a system by
solving perturbatively the corresponding dynamical equa-
tions. This can be illustrated with the simple example of a
harmonic oscillator with frequency�þ ��. If one solves
perturbatively in �� the corresponding equation of
motion, €xþ ð�þ ��Þ2x ¼ 0, to first order one finds a
solution of the form xðtÞ 	 A sin ð�tþ ’Þ½1þ ��t�,
where the correction grows with time. In this case, how-
ever, the exact solution is obviously known: xðtÞ ¼
A sin ½ð�þ ��Þtþ ’�. It is, therefore, clear that the exact
solution is qualitatively very similar to the unperturbed one
but with a slightly corrected frequency. The growing terms
in the perturbative solution, which are commonly know as
secular terms, reflect the fact that the perturbative solution
is not valid for arbitrarily long times but restricted instead
to times such that ��t � 1. This is a rather simple
example, but the situation is completely analogous for
our semiclassical solution.
We close this subsection by comparing the perturbative

solution obtained by expanding the exact solution, which
has been discussed above, with the one obtained by solving
perturbatively Eq. (34) as done in Ref. [17]. Substituting
the classical solution for g into the terms proportional to �
in Eq. (34), treating them as a source, and using the
retarded propagator for the unperturbed equation (with
� ¼ 0), one gets the following result for the perturbative
correction, already obtained in Ref. [17] (see their
Eq. (48)):

gð1Þ / 2i�
Z �

�0

½ð1þ p2��0Þ sin ½jpjð�� �0Þ�

� jpjð�� �0Þ cos ½jpjð�� �0Þ�� e
�ijpj�0

�0 d�0: (45)

The integral can be done exactly with the help of
Appendix C. For large negative values of �0 one gets

gð1Þ � �

�
�ijpj�0 þ ln ð�jpj�0Þ þ 1

2
e�2ijpj�0 þOð1Þ

�
;

(46)
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where we have set � ¼ 0 for the upper limit, whose effect
is unimportant for a late-time solution. (Note that the
logarithmic term and the phase were not included in
Ref. [17], where only the dominant term was retained.) If
we had normalized the classical solution at the initial time,
which essentially amounts to dividing the unperturbed
solution by 1=�0, the perturbative correction in Eq. (46)
would agree with the perturbative solution (44) when
normalized at the initial time �0 as discussed below that
equation. There is actually a slight discrepancy: one does

not get the term e�2ijpj�0=2 appearing in Eq. (46). This is
due to a different choice of initial conditions. Whereas our
exact solution (42) results from choosing C2 ¼ iC1 exactly
(at all orders in perturbation theory), Eqs. (45) and (46)
correspond to making the same choice for the zeroth-order
solution but requiring the first-order correction and its
derivative to vanish at the initial time. By imposing the
same conditions when determining our exact and perturba-
tive solutions, one obtains a new pair of constants C1 and
C2 which differ at order � and lead to a perturbative
solution in full agreement with Eq. (46).

It should be pointed out that the perturbative correction
can be large only when the corresponding mode was trans-
Planckian at the initial time, i.e., its physical wavelength
was much smaller than the Planck length (otherwise one
has ��jpj�0 � 1 and the perturbative correction is al-
ways small), as recognized in Ref. [17]. At such scales
semiclassical gravity is not guaranteed to provide an accu-
rate description. Furthermore, one would need a rather
small amplitude of the initial perturbations so that non-
linear gravitational effects do not become important:
otherwise for such short wavelengths the effective stress
tensor quadratic in the metric perturbations [52,53] can
generate a strong backreaction on the background expan-
sion, and even dominate over the cosmological constant.
In any case, even if one carries out a linearized analysis
without much concern for these issues, as done in
Ref. [17], the corrections to the classical solution will
always be small as shown by our exact solutions and
discussed above.

VII. PERTURBED INITIAL STATE

So far we have considered the dynamics of metric
perturbations, but for a fixed initial state of the matter field,
namely the Bunch-Davies vacuum. The state-dependent
expectation value of the stress tensor is affected by the
metric perturbations, but this is due to the their effect on the
evolution of the scalar field operator in the Heisenberg
picture or, alternatively, on the evolution of the state in
the Schrödinger picture. However, if one wants to allow
changes in the initial state, Eq. (8) needs to be generalized.
In fact, as discussed in Appendix D, the Bunch-Davies
vacuum of the matter fields is no longer a Hadamard state
(free of excitations at arbitrarily short wavelengths) for
nonvanishing metric perturbations at the initial time:

Therefore, the initial state needs to be modified so that it
is a Hadamard state in that case and, in particular, the
renormalized expectation value of the stress tensor is finite
at the initial time.
Starting with Eq. (1) and considering not only linear

perturbations around the de Sitter metric but also small
perturbations of the initial state, one obtains

~Gð1Þ
�� þ�a2h�� � a1�

2 ~Að1Þ
�� � a2�

2 ~Bð1Þ
�� � 1

2
�2hT̂ð1Þ

��iren

¼ 1

2
�2�hT̂ð0Þ

��iren 
 1

2
�2�T��; (47)

where the right-hand side corresponds to the perturbation
of the expectation value of the stress tensor evaluated on
the background metric due to the perturbation of the initial
state. Here it has been assumed that such a term is of the
same order as the remaining terms, which are linear in the
metric perturbations. Hence, no further terms should be
considered since those corresponding to the perturbation of
the initial state in the stress tensor expectation value eval-
uated on the perturbed metric would be of higher order.
Note that Eq. (47) and the procedure employed below

can also be used to consider the effect of any other addi-
tional stress tensor sources (even classical ones) which can
be treated perturbatively and regarded of the same order as
the terms linear in the metric perturbations.
For conformal fields in a FLRW background Eq. (47) for

the linear metric perturbations reduces again to Eq. (8) plus
the source term involving �T��. Furthermore, one can

introduce a decomposition of �T�� analogous to that for

the metric perturbations in Eqs. (16) and (17), which is
complemented now by the conservation requirement for
�T�� with respect to the background metric, i.e.,
ð0Þr��T�� ¼ 0 with ð0Þr� being the covariant derivative

associated with the background metric gð0Þ�� ¼ a2���.

More specifically, we can write

�T0i ¼ �TT
0i þ @i�

�Tij ¼ �TTT
ij þ 2@ðiWT

jÞ þ
�
@i@j � 1

3
4
�
	þ�T

3
�ij; (48)

and take as independent quantities the transverse and trace-
less tensor �TTT

ij , the transverse vector �TT
0i and the two

scalar functions �T00 and �T. The temporal component of
the conservation equation determines the scalar � and,
similarly, the scalar part of the spatial projection of the
conservation equation, which can be written as the gradient
of a function, determines the scalar 	. On the other hand,
the transverse part of this spatial projection determines the
transverse vector WT

j . Applying this decomposition to the

generalization of Eq. (8) including the source �T��, one

obtains Eqs. (21)–(23) plus the corresponding sources.
Finally, using order reduction Eqs. (24) are generalized to
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h00TTij � 2

�
ð1� �Þh0TTij � ð1� 2�Þ 4 hTTij ¼ �2�TTT

ij þOð�4Þ; (49a)

4vT
i ¼ ��2�TT

0i þOð�4Þ; (49b)

4� ¼ ��2

�
�T00 � 1

2
��T0

00 þ
1

2
����T��

�
þOð�4Þ; (49c)

4c þ 3

2�

�
1þ 4

9
�

�
� ¼ 1

4
��2�T00 þOð�4Þ; (49d)

which correspond, respectively, to the transverse and
traceless part of the ij component of the order-reduced
equations, the transverse part of the 0i component, the
spatial divergence of the 0i component, and the 00 com-
ponent. Moreover, the conservation equation has been used
to express the spatial divergence of �T0i in terms of �T00

and �T on the right-hand side of Eq. (49c).

A. Tensor perturbations

Let us start with Eq. (49a) for the tensor perturbations. In
addition to employing Eq. (33) for hTTij , one can use the

analogous expression

�TTT
ij ð�;xÞ ¼ X

s¼�

Z
esijðpÞJsð�;pÞeipx

d3p

ð2�Þ3 (50)

for the stress tensor perturbation and obtains the following
equation for each one of the two polarizations:

g00� � 2

�
ð1� �Þg0� þ ð1� 2�Þp2g� ¼ �2J�: (51)

This equation is identical to Eq. (34) but with an inhomo-
geneous source term. The general solution can be written
as g� ¼ g�h þ g�i , a sum of a homogeneous solution con-

taining the information on the initial conditions at the time
�0 and a particular solution of the inhomogeneous
equation with vanishing initial conditions,

g�i ð�Þ ¼
Z 0

�0

Gretð�;�0ÞJ�ð�0Þd�0; (52)

where Gret is the retarded propagator associated with
Eq. (51). Given two independent homogeneous solutions,
u1 and u2, the retarded propagator for such a linear second-
order differential equation can be expressed as

Gretð�;�0Þ ¼ u1ð�Þu2ð�0Þ � u2ð�Þu1ð�0Þ
Wð�0Þ �ð�� �0Þ;

(53)

where Wð�0Þ ¼ u01ð�0Þu2ð�0Þ � u02ð�0Þu1ð�0Þ is the
Wronskian for this pair of solutions, which is nonzero for
independent solutions. Therefore, the inhomogeneous
solution can be written as

g�i ð�Þ ¼ C�
2 ð�Þu1ð�Þ � C�

1 ð�Þu2ð�Þ (54)

with

C�
j ð�Þ ¼

Z �

�0

ujð�0Þ
Wð�0Þ J�ð�

0Þd�0: (55)

Provided that C�
j ð�Þ are regular and have a finite limit

when � ! 0, as we will discuss next, the late-time behav-
ior of the contribution form the inhomogeneous solution
g�i is the same as for the homogeneous solution, already

analyzed in Sec. VIA. We can consider the same pair of
homogenous solutions as in that section and choose

u1ð�Þ ¼ ð�!�Þ32��J3
2��ð�!�Þ;

u2ð�Þ ¼ ð�!�Þ32��Y3
2��ð�!�Þ:

(56)

Taking into account that for this choice Wð�0Þ ¼
ð2!=�Þð�!�0Þ2�2�, we can immediately see that C�

j ð�Þ
will be regular and have a finite limit when� ! 0 provided
that J�ð�0Þ is also regular and decays faster than ð��0Þ1�2�

as that limit is approached. This means that the compo-
nents of the stress tensor �TTT

ij should decay slightly faster

than 1=a in conformal coordinates, or 1=a3 in a physical
basis. Such kind of behavior is fulfilled by classical radia-
tion, which decays like 1=a4, and it seems plausible that
small excitations of the vacuum state for the conformal
fields considered here also exhibit the same decay; it is
indeed the case for the class of regular states considered in
Appendix D, as shown there. We stress again that �T�� has

been assumed to be small enough so that it is at most of the
same order as the terms linear in the metric perturbation in
Eq. (47) and nonlinear gravitational effects are not impor-
tant (otherwise one could consider for instance an excita-
tion with sufficiently large energy overdensity to form a
black hole by gravitational collapse, contradicting the
conclusions above).
As seen above, if the quantities in Eq. (55) have a regular

limit as � ! 0, the inhomogeneous solutions g�i behave in

the same way as the homogeneous ones and the same
conclusions drawn in Sec. VI apply to the inhomogeneous
solution as well.

B. Scalar and vector perturbations

Unlike tensor perturbations, vector and scalar ones do
not give any nontrivial contribution in the classical case,
but they get a nonvanishing semiclassical correction.
Nevertheless, since they are governed by dynamical con-
straints which become simple algebraic equations when
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working in Fourier space for the spatial coordinates, their
long time behavior can be directly determined from the
fall-off properties of the stress tensor perturbation �T��.

Let us consider the vector perturbations first. From
Eq. (49b) it follows that in spatial Fourier space ~vT

i ¼
ð�2=p2Þ� ~TT

0i and the metric perturbations decay in the
same way as the stress tensor. From Eq. (37) it follows
that their contribution to the linear perturbation of the
Riemann tensor is given by

~Rð1Þ0j
0l ¼ � i

2
H2�ð�pjv0T

l þ �plv
j0T � plv

jT � pjvT
l Þ;

~Rð1Þ0j
kl ¼ H2�2pjp½kvT

l�;

~Rð1Þij
0l ¼ �H2�2p½iplv

j�T;

~Rð1Þij
kl ¼ 2iH2��½j

½l ðpk�vi�T þ pi�vT
k�Þ;

(57)

and we can conclude that at late-times the curvature per-
turbations decay like 1=a�TT

0i and, hence, for any decaying

(or even asymptotically constant) stress tensor perturbation
the stability and attractor character of de Sitter spacetime
are not altered.

The situation is similar for scalar perturbations but with
some slight differences. From Eqs. (49c) and (49d) one can
see that � decays at least like �T00 or �

���T��, whereas

c is only guaranteed to behave at late times like a�T00 or
a����T��. Given the contributions of scalar perturbations

to the linearized Riemann tensor,

~Rð1Þ0j
0l ¼

1

2
H2ð2�j

l�� �j
l��

0 � �2pjpl�Þ
�H2�pjplðc � �c 0Þ;

~Rð1Þ0j
kl ¼ iH2��j

½kpl��;

~Rð1Þij
0l ¼ �iH2��½i

l p
j��;

~Rð1Þij
kl ¼ 2H2�½i

½kð�j�
l��þ 2�pl�pj�c Þ; (58)

one can see that they basically fall off like �T�� at late

times. Therefore, if �T�� decays at least like 1=a the

conclusions about the stability of de Sitter space remain
unchanged. Moreover, when it falls off as 1=a2, like clas-
sical radiation or as shown to be the case for the class of
initial state perturbations described in Appendix D, the
curvature perturbations due to scalar and vector perturba-
tions fall off faster (by a factor 1=a) than those due to
tensor perturbations, which become the dominant contri-
bution at late times.

VIII. GENERAL CONFORMAL
FIELD THEORIES

The results found for free conformal scalar fields in the
previous sections can be straightforwardly generalized to
any CFT for the matter sector (even strongly coupled

ones). This is because when the background gð0Þ�� is

Minkowski spacetime, the key ingredient for
obtaining the linearized stress tensor expectation value

hT̂ð1Þ
��½gð0Þ þ h�iren, and hence the right-hand side of

Eq. (8), is entirely determined (up to a constant factor)
by conformal as well as Poincaré invariance. Moreover, it
transforms in a relatively simple way under conformal
transformations and can be easily extended to the case of
metric perturbations around a FLRW background, as de-
scribed in some more detail below.
The stress tensor expectation value can be obtained by

functionally differentiating the so-called CTP effective
action Seff½g; g0� [54–56]:

hT̂��½g�iren ¼ 2ffiffiffiffiffiffiffi�g
p �

�g�� Seff½g; g0�
��������g0¼g

: (59)

The effective action Seff½g; g0� can be written as

Seff½g; g0� ¼ Sdiv½g� � Sdiv½g0� þ �½g; g0�; (60)

where the third term which includes nonlocal contributions
results from functionally integrating out the matter fields.
Performing those path integrals for the matter fields gives
rise to UV divergences and one needs to introduce an
appropriate regularization procedure; dimensional regu-
larization is a good choice because it is compatible with
general covariance (and in a number of cases with confor-
mal invariance as well). Such divergences in �½g; g0� can
be absorbed by local counterterms in the bare gravitational
action. For massless fields the cosmological constant and
the Einstein-Hilbert term do not get renormalized in di-
mensional regularization and only counterterms quadratic
in the curvature are necessary, which have been denoted by
Sdiv½g� in Eq. (60). More specifically, the gravitational
counterterms for a generic CFT on a curved background
[9,57] are given in dimensional regularization by

Sdiv½g� ¼ 1

d� 4

�
b
Z

C��	
C
��	
 ffiffiffiffiffiffiffi�g

p
ddx

þ b0
Z

E4

ffiffiffiffiffiffiffi�g
p

ddx

�
; (61)

where d denotes the spacetime dimension and E4 is the
integrand of the Euler invariant defined in Eq. (2).
Although the (regulated) bare �½g; g0� is invariant under
conformal transformations of the metric2 (see the appendix
in Ref. [58]), the counterterms in Sdiv½g� are not, which is
the origin of the trace anomaly. In fact, the constant

2Theories whose classical action is conformally invariant only
in four dimensions can give rise to a finite counterterm quadratic
in the Ricci scalar, which simply implies a finite change of the
arbitrary parameter � in Eq. (8).
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parameters b and b0 in Eq. (61), which take specific values
for each CFT, are also the coefficients of the Weyl-squared
and E4 terms in the trace anomaly (the nonvanishing trace
of the quantum stress tensor for conformal fields). So far
the statements in this paragraph are valid for an arbitrary
metric g. If one is, however, interested in the linearized
stress tensor for metric perturbations around a background

gð0Þ�� one only needs to consider terms in Seff½g; g0� qua-
dratic in the metric perturbations or, equivalently, focus on
its second functional derivative, which is related to the
two-point function of the stress tensor in the background
geometry.

Let us now show the universality of the linearized stress
tensor expectation value in two steps. The first step is to
establish it for metric perturbations around a Minkowski
background. By requiring conservation of the linearized
stress tensor together with Poincaré and conformal invari-
ance, it has been shown [59] that the form of the properly
renormalized two-point function of the stress tensor in a
Minkowski background for any conformal theory is essen-
tially unique (up to a constant factor), and so is the renor-
malized vacuum expectation value of the stress tensor in
the linearly perturbed metric. Note that for perturbations
around a Minkowski background the second term on the
right-hand side of Eq. (61) is at least cubic in the metric
perturbations and does not contribute to the renormalized
expectation value of the linearized stress tensor operator: it,
therefore, depends only on the constant b.

The second step is to extend this result to the case of
perturbations around a FLRW background via a conformal
transformation. As already mentioned above, the counter-
terms in Eq. (61) are not invariant under a conformal
transformation of the metric and lead to the following
change of the effective action:

Seff½~g; ~g0� ¼ Seff½g; g0� � ðSdiv½g� � Sdiv½g0�Þ
þ ðSdiv½~g� � Sdiv½~g0�Þ: (62)

A conformal transformation leaves the two terms within
the square brackets on the right-hand side of Eq. (61)
invariant in four dimensions and gives rise to terms of
order (d� 4) otherwise, which amounts to a finite contri-
bution in Eq. (61). The difference between the gravitational
counterterms in two conformally related geometries is,
therefore, finite. The difference between the Weyl-squared
terms gives a term proportional to C��	
C

��	
 ln a in the

effective action, whose functional derivative corresponds
to the first term inside the second square bracket on the
right-hand side of Eq. (8). On the other hand, since the E4

term in Eq. (61) vanishes up to quadratic order in the metric
perturbations for perturbations around Minkowski space,

only the ~E4 term for the conformally transformed metric ~g
contributes at this order. Its functional derivative corre-
sponds to the terms inside the first square bracket on
the right-hand side of Eq. (8), which are conserved

because they result from functionally differentiating a
diffeomorphism-invariant integral. In addition to a finite
contribution to the coefficient of the Weyl-squared term,
which can be absorbed by redefining the renormalization
scale ��, the coefficient of the squared Ricci scalar term can
take arbitrary finite values. Its functional derivative corre-
sponds to the first term on the right-hand side of Eq. (8) and

it generates a term ~h ~R in the trace anomaly.
In summary, the linearized semiclassical equation (8)

will have the same form for any CFT and only the numeri-
cal coefficients in front of the two square brackets will
change depending on the values of the parameters b0 and b,
respectively.

IX. CONCLUSIONS

Employing the method of order reduction, we have
solved nonperturbatively the semiclassical Einstein equa-
tion governing the dynamics of linear metric perturbations
around de Sitter spacetime when the quantum backreaction
of conformal scalar fields on the mean geometry is in-
cluded. Our exact solutions establish the stability of de
Sitter with respect to general linear metric perturbations (of
scalar, vector and tensor type) and extend some of the
existing ‘‘no-hair’’ results for de Sitter in classical general
relativity to the case in which the effects of the quantum
vacuum polarization of conformal fields on the semiclas-
sical geometry are included. Indeed, we confirm the late-
time attractor character of de Sitter space (for geometrical
properties within a region of fixed physical size) by show-
ing that the perturbations of the Riemann tensor, which
characterizes entirely the local geometry, fall off with an
inverse power of the scale factor.
Perturbative solutions of the semiclassical equation for

tensor perturbations have recently been obtained [17] and it
was found that the correction to the classical solution can
grow arbitrarily large for modes spending a long time
inside the horizon. In contrast, our exact nonperturbative
solutions exhibit oscillations with decaying amplitude in-
side the horizon and reveal a breakdown of perturbation
theory for long times inside the horizon due to secular
terms that arise when expanding perturbatively oscillatory
factors with a perturbatively corrected frequency. In addi-
tion, we have considered the effects due to perturbations of
the initial state of the matter fields. In fact, in order for the
state of the fields to continue being a Hadamard state (with
no unphysical excitations of arbitrarily short-wavelength
modes) when metric perturbations are present at the initial
time, it is in general necessary to correct the states that one
would consider in the absence of perturbations and con-
sider instead properly ‘‘dressed’’ states which are adiabatic
on the perturbed geometry at sufficiently high order.
As explained in Sec. VIII, our results are applicable to

general conformal field theories with arbitrarily strong
self-interaction couplings. It would also be interesting to
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extend the results for free scalar fields to nonvanishing
masses and arbitrary curvature couplings, particularly to
massless (or sufficiently light) minimally coupled
fields, which typically give rise to larger IR effects in de
Sitter. We plan to return to this question in future
investigations.

Besides semiclassical perturbations of the mean geome-
try, it is interesting to study the quantum fluctuations
around it, which can be achieved by quantizing the metric
perturbations around the mean geometry and dealing with
them as an effective field theory. This was done in
Ref. [33], where the two-point quantum correlation func-
tion for tensor metric perturbations around de Sitter, in-
cluding one-loop corrections from conformal fields, was
calculated. A suitable method for selecting the adiabatic
vacuum of the interacting theory was employed and two-
point functions compatible with de Sitter invariance were
obtained. In particular, all secular terms cancelled out
despite being a perturbative calculation. The reason for
that can be understood with a simpler but qualitatively
similar example. Let us consider a system whose dynamics
is governed by a time-independent Hamiltonian with a
small interaction term, and let us focus on the following
two-point correlation function:

Cðt2; t1Þ ¼ h�0jÛyðt1; t0ÞÛyðt2; t1Þ
� Bðt2ÞÛðt2; t1ÞAðt1ÞÛðt1; t0Þj�0i; (63)

where A and B are time-local operators in the Schrödinger
picture. Evolving an arbitrary initial state j�0i for a long
period (t1 � t0) will require in general a nonperturbative
calculation. However, for eigenstates of the full
Hamiltonian (including the small interaction term) one

simply gets a phase factor, Ûðt1; t0Þj�0i¼ e�iEðt1�t0Þj�0i,
which cancels exactly with the complex conjugate counter-
part arising from the evolution of h�0j. Such an exact
cancellation also implies a cancellation at every order in
perturbation theory and guarantees the cancellation of any
possible secular terms associated with the period (t1 � t0)
which may arise in a perturbative calculation at finite order
provided that an energy eigenstate of the full Hamiltonian
is properly selected as the initial state. Nevertheless, addi-
tional secular terms may arise due to the time evolution

Ûyðt2; t1Þ in case of large time differences between the
arguments of the correlation function. Thus, a perturbative
calculation of the ground-state correlation function will be
valid for small (t2 � t1) no matter how large (t1 � t0) is,
but will break down for large (t2 � t1). The situation is
analogous for metric perturbations around de Sitter. In
general a nonperturbative calculation is needed to evolve
arbitrary initial states other than the adiabatic vacuum for a
sufficiently long time, but it is also required in order to
calculate loop corrections to the two-point function with

respect to the adiabatic vacuum which are valid for large
invariant intervals (both for time-like or space-like separa-
tions). In this respect, the connection provided by stochas-
tic gravity [60] between the solutions of the semiclassical
Einstein equation and the two-point quantum correlation
functions for metric perturbations with (resummed) matter
loop corrections [61] suggests that the nonperturbative
semiclassical solutions found here, and the methods em-
ployed to obtain them, could be exploited to compute
matter loop corrections to the two-point function of the
metric perturbations valid for arbitrarily large separations.
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APPENDIX A: METRIC EXPANSION

Given the perturbed metric g�� and expanding through

quadratic order in the metric perturbation we have

g�� ¼ ��� þ h��;

g�� ¼ ��� � h�� þ h
�

h�
 þOðh3Þ;

h ¼ �abhab;ffiffiffiffiffiffiffi�g
p ¼ 1þ 1

2
hþ 1

8
h2 � 1

4
h��h

�� þOðh3Þ;

(A1)

where indices are raised and lowered with the unperturbed
metric ���, i.e., we regard h�� as a tensor field in flat

space. For the Christoffel symbols we get

��
�� ¼ 1

2
S��� � 1

2
h�
S



�� þOðh3Þ;

S��� ¼ @�h
�
� þ @�h

�
� � @�h��:

(A2)

The calculation of the curvature tensors can be done
straightforwardly and we obtain
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R�
��� ¼ @½�S���� � h�
@½�S
��� � 1

2
����

�
S�
½�S
�
��� þOðh3Þ;

R�� ¼ 1

2
ð@�S��� � @�@�hÞ � h��@½�S���� � 1

2
����

��S��½�S
�
��� þOðh3Þ;

R ¼ ð@�@�h�� �hhÞ þ h��ð@�@�hþhh�� � 2@�@

h�
Þ

� 1

4
ð2@
h�
 � @�hÞð2@h� � @�hÞ þ 1

4
ð3@�h�� � 2@�h��Þð@�h��Þ þOðh3Þ: (A3)

where h ¼ ���@�@� and @� ¼ ���@�.
The Weyl tensor is given by

C��
�� ¼ R��

�� �
4

ðd� 2ÞR
½�
½��

��
��

þ 2

ðd� 1Þðd� 2ÞR�
�
½��

�
��: (A4)

In four dimensions it obeys the identity

C����C�
��� ¼ 1

4
g��C����C

����; (A5)

which can be proved [62,63] by expanding the equality

0 ¼ �
½�
½� C���

���C��
��: (A6)

Alternatively, it can also be proved using the Gauß-Bonnet
theorem.

APPENDIX B: CONFORMALTRANSFORMATION

Under the conformal transformation

~g�� ¼ a2g�� (B1)

the Christoffel symbols transform as

~��
�� ¼ ��

�� þ a�1ð��
��



� þ ��

��


� � g��g

�
Þ@
a; (B2)

and the curvature tensors become

~R�
���¼R�

����2a�2��
½�g���ðr
aÞðr
aÞ

þ4g��

½�g��½½a�1r��r
a�2a�2ðr��aÞðr
aÞ�

~R��¼R���2a�1r�r�aþ4a�2ðr�aÞðr�aÞ
�g��½a�2ðr
aÞðr
aÞþa�1hga�

a2 ~R¼R�6a�1hga; (B3)

where r� is the covariant derivative associated with g��.

APPENDIX C: SPECIAL FUNCTIONS

We define the entire function EinðzÞ by

Ein ðzÞ ¼
Z z

0

et � 1

t
dt ¼ X1

k¼1

zk

kk!
: (C1)

Its asymptotic expansion at infinity (for Re� � 0) is
given by

Einð�rÞ � ��� ln ð��rÞ þO
�
1

r

�
ðr ! 1Þ; (C2)

where � is the Euler-Mascheroni constant.
For completeness we list here some properties of the

Bessel functions which are needed in this paper. Their
limits are given by

JnðxÞ ! 1

�ðnþ 1Þ
�
x

2

�
n ðx ! 0Þ; (C3)

JnðxÞ !
ffiffiffiffiffiffiffi
2

�x

s
cos

�
x� �

4
ð2nþ 1Þ

�
ðx ! 1Þ; (C4)

YnðxÞ ! ��ðnÞ
�

�
2

x

�
n ðx ! 0Þ; (C5)

YnðxÞ !
ffiffiffiffiffiffiffi
2

�x

s
sin

�
x� �

4
ð2nþ 1Þ

�
ðx ! 1Þ; (C6)

and for their derivatives we have

d

dx
½xnJnðxÞ� ¼ xnJn�1ðxÞ; d

dx
½xnYnðxÞ� ¼ xnYn�1ðxÞ:

(C7)

Expanding the Bessel functions with respect to the order
n, we get

ffiffiffiffi
�

2

r
x
3
2��J3

2��ðxÞ ¼ �x cos xþ sin xþ �½�2 sin x

þ ðx cos x� sin xÞð�þ ln ð2x2ÞÞ
þ Im½Einð2ixÞð1þ ixÞe�ix�� þOð�2Þ;

(C8)ffiffiffiffi
�

2

r
x
3
2��Y3

2��ðxÞ ¼ �cosx� x sinx

þ �½2cosx� ðcosxþ x sinxÞð�þ ln 2Þ
�Re½Einð2ixÞð1þ ixÞe�ix�
��ðx cosx� sinxÞ� þOð�2Þ: (C9)

APPENDIX D: REGULAR INITIAL STATES

In deriving the linearized semiclassical Einstein
equation (8) from the renormalized CTP effective action
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[42,43], a number of integration by parts with respect to the
spacetime variables y� were performed in order to write
the nonlocal term as it appears in Eq. (8). After renormal-
ization, the kernel Hðx� x0; ��Þ in the effective action is a
well-defined distribution provided that the metric pertur-
bations fall-off sufficiently fast at spatial infinity and at the
asymptotic initial time (there is no such requirement for the
asymptotic future due to the causal nature of the kernel).
However, when giving initial conditions at some finite time
�0, the linearized stress tensor expectation value gets
boundary contributions from that lower integration limit
which diverge when the stress tensor is evaluated at �0.

Working in Fourier space for the spatial coordinates, the
nonlocal term in Eq. (8) can be written as

hT̂ð1Þ
��ð�;pÞinl ¼ 3�

a2ð�Þ
Z

~Hð�� �0;p; ��ÞA��ð�0;pÞd�0;

(D1)

where the Fourier transformed kernel is given by

~Hð�� �0;p; ��Þ

¼ cos ½jpjð�� �0Þ�d-lim �!0

�
�ð�� �0 � �Þ

�� �0

þ �ð�� �0Þðln ð ���Þ þ �Þ
�
; (D2)

see Ref. [33] for its computation and for further details.
The structure of the nonlocal term for each spatial Fourier
mode is then analogous to that for the case of spatially
isotropic and homogeneous metric perturbations studied in
Refs. [22,23]. There it was shown in detail that boundary
terms at �0 arise when writing the result in the same form

as in Eq. (D1) and that they give a contribution to hT̂ð1Þ
��ð�Þi

which diverges for � ¼ �0. Furthermore, it was clarified
that the reason for such divergences is the fact that
although the Bunch-Davies vacuum is a Hadamard state
[9] with regular UV behavior in de Sitter spacetime, in
general that is no longer the case in a perturbed geometry:
with respect to well-behaved adiabatic vacua associated
with this geometry it exhibits excitations of modes with
arbitrarily short wavelengths.

In Refs. [22,23] a simple method was employed for
constructing a family of properly ‘‘dressed’’ Gaussian
initial states which are regular on the perturbed geometry.
The states are prepared by evolving an asymptotic Bunch-
Davies vacuum state from �1 to �0 in a given (non-
dynamical) perturbed geometry which is asymptotically
de Sitter and matches the dynamical geometry at �0. The
metric perturbations during this preparation period can be
fairly arbitrary, which allows the generation of a wide
family of Gaussian states, but need to fulfill a few require-
ments: they need to fall off sufficiently fast as � ! �1, so
that the time integral in the nonlocal term converges, and
they need to be small enough so that their contribution to

hT̂ð1Þ
��ð�Þi can be treated as a small perturbation. Moreover,

the matching at �0 between the nondynamical metric
perturbations during the preparation period and the dy-
namical ones has to be smooth enough: up to fourth order,
which is the maximum number of time derivatives that can
appear in A��. In fact, as shown in detail in Refs. [22,23],

requiring a smooth matching up to this order is exactly
equivalent to demanding that the states generated in this
way are of fourth adiabatic order, the standard requirement
for regular states with a finite renormalized stress tensor
expectation value [9].
When the preparation method described in the previous

paragraph is employed, the nonlocal contribution in
Eq. (D1) can be naturally separated into two contributions
which result from the following splitting of the time
integral: Z �

�1
d�0 ¼

Z �

�0

d�0 þ
Z �0

�1
d�0: (D3)

The first term on the right-hand side will contain the
dynamical metric perturbations in the integrand and it
will vanish when using order reduction since A�� vanishes

in that case, as described in Sec. IVC. On the other hand,
the second term will give a finite contribution in Eq. (D1),
even for � ¼ �0, provided that A�� is regular and vanishes

at� ¼ �0, which follows from the condition of sufficiently
smooth matching required above. This term gives a con-
tribution to the right-hand side of Eq. (8) which can be
interpreted as a perturbation of the stress tensor expecta-
tion value associated with the modified initial state. In fact,
the equation can then be rewritten as Eq. (47) with

�T��ð�;pÞ ¼ 3�

a2ð�Þ
Z �0

�1
A��ð�0;pÞ ~Hð�� �0;p; ��Þd�0:

(D4)

The integral is finite for � � �0 (remember that the metric
perturbations are required to fall off sufficiently fast as
� ! �1 so that the lower integration limit is convergent)
and so is its limit � ! 0. Therefore, at late times �T��

decays like 1=a2, clearly fulfilling the requirement of
Secs. VII A and VII B so that the inhomogeneous solutions
of the semiclassical equation do not alter the conclusions
about the semiclassical stability of de Sitter spacetime in
this context.

APPENDIX E: COMPARISON WITH
STAROBINSKY’S EQUATION

To our knowledge, the semiclassical equations of motion
for the scalar and vector perturbations, Eqs. (21) and (22),
have not appeared explicitly in the literature before. On the
other hand, Eq. (23) for the tensor perturbations can be
directly compared with Starobinsky’s Eq. (7) in Ref. [35].
To do so, we need to calculate first the curvature terms for

the unperturbed physical metric gð0Þ�� ¼ a2��� which were

employed by Starobinsky, and which are given by
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R0
0 ¼ 3H2; R ¼ 12H2; R0 ¼ 0: (E1)

If we insert the following result for the kernel in Fourier space obtained in Ref. [42]:

Hðx; ��Þ ¼ � 1

2

Z �
ln

��������p2

��2

���������i��ð�p2Þsgnp0

�
eipx

d4p

ð2�Þ4 ; (E2)

employ the mode decomposition introduced in Eq. (33) and divide by a2, Eq. (23) becomes

½1� ��2H2 � 2��2H2�ðg00� þ k2g�Þ þ 2½1� ��2H2 � 2��2H2�Hag0�
¼ 3��2a�2½2Haðg000� þ k2g0�Þ þH2a2ðg00� � k2g�Þ

� 1

2

Z
e�ik0�

�Z
g�ð�0Þeik0�0

d�0
�
ðk2Þ2

�
ln

�������� k2

��2a2

��������þi��ð�k2Þsgnk0
�
dk0

2�

�
: (E3)

This coincides exactly with Starobinsky’s equation if we take into account that his constants M2, H2 and G�=ð60�Þ
correspond to 2=ð��2Þ, �2=ð��2Þ and 3��2, respectively. Note that Starobinsky’s H2 is positive because he considers
photon fields, while we have conformal scalars, for which the corresponding constant changes sign [64].

In Starobinsky’s inflationary model the expansion is driven by the trace anomaly of the quantized matter fields, so that
the actual value of Starobinsky’s Hubble parameter H is different from our H, where the expansion is driven by the
cosmological constant �. Nevertheless, this has no effect on the form of Eq. (E3).
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