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The local thermodynamics of a system with long-range interactions in d dimensions is studied using the
mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay
as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand
potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the
local entropy per particle we obtain the local equation of state of the system by using the condition of local
thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with
the density depending on the potential characterizing long-range interactions. By volume integration of the relation
between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied
by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that
modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that
relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the
power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation
is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials
and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
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I. INTRODUCTION

A great variety of systems in nature are dominated by
long-range interactions. Examples are self-gravitating systems
[1–4], two-dimensional vortices [5], nuclear physics [6], and
also toy models such as the Hamiltonian mean-field model [7].
Among other physical properties, the remarkable thermody-
namic behavior of systems with long-range interactions makes
them extremely attractive. They are intrinsically nonadditive
and may have negative heat capacity in the microcanonical
ensemble leading to ensemble inequivalence [8–10]. For very
instructive reviews on the subject with more examples and
phenomena we refer the reader to [10,11].

The relaxation towards thermodynamic equilibrium in
long-range systems proceeds in a different manner than
that of systems with short-range interactions [12]. In short-
range systems, internal collisions drive the system to a state
characterized by a Maxwell-Boltzmann distribution function.
To the contrary, in systems with long-range interactions with
a large number of particles the evolution is collisionless
and the system may remain trapped in a nonequilibrium
quasistationary state that is not described by a Maxwell-
Boltzmann distribution [12–15]. The time that the system
remains in this quasistationary state depends on the number of
particles and diverges if the number of particles is infinite.
However, for a large but finite number of particles in a
very long time limit, the system will evolve to a state
of thermodynamic equilibrium characterized by a Maxwell-
Boltzmann distribution [16] if such a state exists. These
states of thermodynamic equilibrium given by the theory of
ensembles in Boltzmann-Gibbs statistical mechanics are those
we will focus on throughout this paper.

*ilatella@ffn.ub.edu

Interactions in this kind of systems are characterized by
slowly decaying pair interaction potentials that couple the
constituent parts of the system at large distances. Formally,
a potential that decays as 1/rν is said to be long range if
ν � d, where d is the dimension of the embedding space [10].
Systems having such interaction potentials are sometimes
called systems with strong long-range interactions [11]. The
paradigmatic case of Newtonian gravity (ν = 1) has served
as a basis for developing methods for studying an important
part of the phenomenology concerning the thermodynamics
of systems with long-range interactions. In this regard, the
isothermal spheres model has been widely used to study
self-gravitating systems in the mean-field (MF) limit [4,17].
Although in the MF approach correlations are ignored, this
model offers a mathematical tool for a suitable treatment
of self-interactions in the system and turns out to be very
accurate for a large number of particles [18,19], except near
the critical points where the system collapses. It is also well
known that self-gravitating systems possess equilibrium states
with negative heat capacity, provided the system is isolated
(microcanonical ensemble). Equilibrium in that case is ensured
in a certain range in the space of parameters because isothermal
spheres correspond to local maxima of the entropy with an
extremely large lifetime that scales like the exponential of the
number of particles [20]. In the microcanonical ensemble the
system becomes unstable when the heat capacity passes from
negative to positive, leading to the gravothermal catastrophe
[2,21]. When one of these systems is put in contact with a heat
bath (canonical ensemble), the range in the space of parameters
where the heat capacity is negative is replaced by a phase
transition [3]. In the canonical ensemble, isothermal spheres
correspond to states of local minima of the free energy and the
isothermal collapse sets in when the heat capacity passes from
positive to negative [17]. The self-gravitating gas has also
been studied in the grand canonical ensemble with the MF
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approach and Monte Carlo simulations. There, the instability
sets in at a critical value of the parameter controlling the state
of the system that is different from the critical values in the
microcanonical and canonical ensembles [18,19,22,23]. This
illustrates the fact that different ensemble representations are,
in general, inequivalent and the thermodynamic behavior of
the system strongly depends on the control parameter used to
specify its thermodynamic state. In addition, systems with
an attractive interaction potential 1/rν with 0 < ν < 3 in
three dimensions were also considered in the microcanonical
ensemble [24,25] and also there a critical energy was found
below which these systems undergo a gravitational-like phase
transition. Phase transitions in simplified models such as the
ring model have also been studied [26,27].

Moreover, de Vega and Sánchez obtained [19] the equation
of state of the self-gravitating gas and pointed out that it was
customary to assume it without any derivation. To obtain the
equation of state these authors took into account the condition
of hydrostatic equilibrium and found that the system locally
behaves as an ideal gas. The same behavior is obtained if the
self-gravitating gas possesses two or more kinds of particles
with different mass [28] and for a system with arbitrary long-
range interactions in the MF limit [29].

In this framework, first, our aim here is to analyze the local
thermodynamics of systems with strong long-range interac-
tions in d dimensions by computing the local thermodynamic
potentials per particle in the MF limit. The local equation of
state is obtained by computing the local entropy per particle
and using the condition of local thermodynamic equilibrium
instead of assuming hydrostatic equilibrium. Although in this
case the two equilibrium conditions lead to the same result,
both approaches are conceptually different. Second, it is shown
that the potential energy enters as a thermodynamic variable
that modifies the global thermodynamic potentials. As a result,
we find a generalized Gibbs-Duhem equation that relates the
potential energy to the thermodynamic variables of the system.

The rest of the paper is organized as follows. In Sec. II
we consider a system with strong long-range interactions in
d dimensions and compute the local entropy, Helmholtz free
energy, and grand potential per particle in the microcanonical,
canonical, and grand canonical ensembles, respectively. In
Sec. III we obtain local relations satisfied by the thermo-
dynamic potentials as well as the local equation of state.
In Sec. IV the global equation of state is obtained for a
d-dimensional system and, by integrating the local relations,
an equation satisfied by the set of global thermodynamic poten-
tials is found. We also obtain the generalized Gibbs-Duhem
equation and consider some examples of its application. In
connection with the latter, we point out a close relationship
existing between our treatment and Hill’s [30] thermodynam-
ics of small systems. Finally, in Sec. V a discussion of our
results is presented. We use units such that kB = 1.

II. MEAN-FIELD LOCAL THERMODYNAMIC
POTENTIALS

In this section we compute the MF local entropy, Helmholtz
free energy, and grand potential per particle in the microcanon-
ical, canonical, and grand canonical ensembles, respectively.
Here we follow a standard approach in the formulation of

statistical mechanics (see, e.g., [31] and references therein)
and hence thermodynamic potentials obtained in the different
ensembles are also standard. From these potentials, the formu-
lation of the thermodynamics at the local level is performed in
Sec. III and exploited in Sec. IV.

Since the long-range character of the interactions depends
on the dimension of the embedding space, we consider that the
system is d dimensional. Interactions are introduced through a
long-range pair interaction potential φ(qi ,qj ), which depends
on qi and qj , the positions of particles i and j . It is formally
assumed that at large enough distances the potential behaves
as

φij ≡ φ(qi ,qj ) = κ|qi − qj |−ν, (1)

where κ is a coupling constant and 0 � ν � d. The potential
must be regularized at short distances in order to avoid
divergences and consistently define the statistical mechanics
of the system [31]. Thus here we consider implicitly a small
distance cutoff that will be taken to be zero once the MF
equilibrium configurations are obtained in the large N limit
[18,22,31]. In this way, short-range interactions are completely
negligible in the MF limit and quantities such as the potential
energy exist and are finite. Throughout the paper the potential
energy has to be understood as an unknown or unevaluated
quantity and in Sec. IV explicit examples are considered. The
power law (1) for the interaction will also be utilized in Sec. IV
to derive global thermodynamic properties of the system.

A. Local entropy: Microcanonical ensemble

Consider a system of N classical pointlike particles of equal
mass m enclosed in a container of d-dimensional volume V ∼
Ld , L being a characteristic length defining the size of the
system. Positions and momenta of particles are respectively
described by qi = (q1

i ,q
2
i , . . . ,q

d
i ) and pi = (p1

i ,p
2
i , . . . ,p

d
i ),

1 � i � N . The Hamiltonian of the system is HN (qi , pi) =
E0 + W , where the kinetic and potential energies E0 and W ,
respectively, are given by

E0 =
N∑
i

| pi |2
2m

, W =
N∑

i>j

φij . (2)

In the microcanonical description the state of the system
is characterized by a fixed value of the energy E and
the number of accessible microstates is given by �(E) =
(2πh̄)−dN (N !)−1

∫
E>HN

∏N
i=1 dd pid

d qi . The domain of spa-
tial integrations extend over the d-dimensional volume V and
there are no restrictions on the domain of the momentum;
this will always be the case throughout the paper unless
another domain is specified. Introducing ε ≡ 2πh̄2m−1V −2/d

and integrating over momentum leads to

�(E) = 1

N !�
(

dN
2 + 1

) ∫
ddN q
V N

⎛
⎝E

ε
−

N∑
i>j

φij

ε

⎞
⎠

dN/2

× θ

⎛
⎝E

ε
−

N∑
i>j

φij

ε

⎞
⎠ , (3)
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where ddN q ≡ ∏N
i=1 dd qi , θ (x) is the Heaviside step function

and �(x) is the Gamma function. Using the integral represen-
tation [18]

xγ θ (x) = �(γ + 1)

2π

∫ ∞

−∞
dk

exp(ikx)

(ik)γ+1
, (4)

with ik = εβ and defining

eJ (β) ≡ 1

N !

∫
ddN q
V N

exp

⎛
⎝−β

N∑
i>j

φij − dN

2
ln(εβ)

⎞
⎠ , (5)

the number of microstates becomes

�(E) = ε

∫ i∞

−i∞

dβ

2πi
exp[βE + J (β) − ln(εβ)]. (6)

To evaluate (5), we assume N � 1 and use the MF approach
following Ref. [18]. In this way, (5) can be written as a
functional integral over the number density n(x), x being a
point in one-particle configuration space. We have (see the
Appendix)

eJ (β) =
∫ i∞

−i∞

dα

2πi

∫
Dn exp(Ĵ [n; α,β]), (7)

where we have introduced

Ĵ [n; α,β] ≡ α

(
N −

∫
n(x)dd x

)

−
∫

n(x) ln
n(x)V

e
dd x

− 1

2
β

∫
n(x)n(x′)φ(x,x′)dd x dd x′

− d

2
ln(εβ)

∫
n(x)dd x. (8)

Since the microcanonical entropy is given by S(E) = ln �(E),
substituting (7) in (6) yields

eS(E) = ε

∫ i∞

−i∞

dα

2πi

∫ i∞

−i∞

dβ

2πi

∫
Dn exp(Ŝ[n; α,β]), (9)

where

Ŝ[n; α,β] ≡ βE + Ĵ [n; α,β]. (10)

In the definition of Ŝ we have neglected the term ln(εβ)
coming from the exponential in (6) since it does not contribute
in the large N limit. This is the same as assuming that
the microcanonical entropy is given by the logarithm of
the number of microstates or, equivalently, by the logarithm
of the density of states. To proceed further, (9) will be
evaluated using the saddle point approximation. The value
of the integral will be then given by the exponential of
Ŝ[ns ; αs,βs], where ns(x), αs , and βs are the number density
and the value of the parameters that maximize Ŝ[n; α,β].
Accordingly, the microcanonical entropy can be approximated
by S(E) ≈ Ŝ[ns ; αs,βs]. In order to simplify the notation, in
what follows we will omit the subscript s since we will only
consider the stationary solutions given by the saddle point
approximation.

The parameters α and β in (9) can be viewed as Lagrange
multipliers that respectively restrict the value of the number

of particles and the energy. Indeed, the MF equations in the
saddle point approximation given by the extremal condition
(δn; ∂α,∂β)Ŝ[n; α,β] = (0; 0,0) yield

N =
∫

n(x)dd x, (11)

E = d

2β

∫
n(x)dd x + W [n], (12)

with

W [n] = 1

2

∫
n(x)n(x′)φ(x,x′)dd x dd x′, (13)

after computing the derivatives of Ŝ[n; α,β] with respect to
α and β. Moreover, taking into account (8), variations of the
number density in (10) lead to δŜ[n] = δĴ [n] with

δĴ [n] =
∫ {

−β�(x) − α − ln

[
n(x)V

(εβ)−d/2

]}
δn(x)dd x,

(14)

where the term containing the potential �(x) comes from the
variation δW [n] = ∫

�(x)δn(x)dd x and is given by

�(x) =
∫

n(x′)φ(x,x′)dd x′ =
∫

κn(x′)
|x − x′|ν dd x′. (15)

In terms of �(x), the total potential energy takes the form

W [n] = 1

2

∫
n(x)�(x)dd x. (16)

Hence, by setting the functional derivative with respect to n(x)
to zero, δnŜ[n] = δnĴ [n] = 0, it follows the coupling between
the number density and the potential through the relation

n(x) = λ−d
T exp[−β(�(x) − μ)], (17)

where we have introduced λT = V 1/d (εβ)1/2 and μ = −α/β.
We emphasize that the density strongly depends on the form
of the interaction potential, i.e., on ν, as can be seen from (15).
As a result, by substituting (11) and (12) in (8) and (10), the
extrema of Ŝ and consequently the microcanonical MF entropy
become

S =
∫

n(x)

[
− ln

[
n(x)λd

T

] + 2 + d

2

]
dd x, (18)

which is an integral over the volume and therefore the integrand
can be interpreted as the density of entropy. From this density
of entropy one can construct the local entropy per particle and
in this way, as we shall see below, information about the local
thermodynamic nature of the system can be obtained. Taking
into account (18), the local entropy per particle is given by

s(x) = − ln
[
n(x)λd

T

] + 2 + d

2
(19)

in such a way that the total MF entropy can be written as

S =
∫

n(x)s(x)dd x. (20)

In addition, using (8) and (10), it can be checked that
β = (∂ES)N,V = 1/T , T being the temperature, and that
μ = −T (∂NS)E,V = −αT is the chemical potential. Thus
λT =

√
2πh̄2β/m is the thermal wavelength.
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The microcanonical MF entropy (18) is a solution of the
saddle point equations and therefore an extremum of Eq. (10).
In order to guarantee thermodynamic equilibrium, we will
assume that there exists a certain range of parameters where Ŝ

is a maximum and thus our analysis here must be understood
to be restricted to such a range. It is not difficult to see that
such a range in the space of parameters does exist: If the
temperature is high enough so that β�(x) � 1, the number
density becomes n ≈ N/V and the stable global ideal gas
behavior is recovered.

The critical values of the parameters that set the instability
will depend on the interactions under consideration. For
instance, consider the case of ν = 1 and κ = −GNm2 in
d = 3 with spherical symmetry, which corresponds to self-
gravitating isothermal spheres (see Sec. IV B). Here GN is
Newton’s constant. Consider also that the system is placed
in a box of radius R. The density contrast defined by R ≡
n(0)/n(R) is usually taken as the parameter describing the
thermodynamic state of the system and the critical point at
which the MF breaks down in the microcanonical ensemble
is R = 709 [1,2,4,22,23]. Beyond this point there are no
stable configurations and the system undergoes gravitational
collapse, known as the gravothermal catastrophe [2]. Further-
more, by solving the isothermal sphere equation, or Emden
equation, (72), one sees that −ER/(N2GNm2) never exceeds
0.335 for any equilibrium gas sphere [2,21], thus leading to
a critical radius RA = −0.335N2GNm2/E. When R = RA,
the density contrast is 709 and no stable thermal equilibrium
exists for R > RA.

B. Local Helmholtz free energy: Canonical ensemble

Here we will consider that the control parameter used to
specify the equilibrium configurations is the inverse temper-
ature β. At fixed temperature one must use the canonical
description and in this section we will compute the canonical
partition function Z(β) in the saddle point approximation. In
doing so, the canonical Helmholtz free energy A(β) can be
obtained and written as an integral over the volume, which
allows us to identify the local free energy.

The canonical partition function can be obtained from the
microcanonical density of states ωE = ∂E�(E) by computing
its Laplace transform. The density of states is then given by
the inverse Laplace transform of the partition function

ωE =
∫ i∞

−i∞

dβ

2πi
Z(β)eβE. (21)

From (6) one gets

∂

∂E
�(E) =

∫ i∞

−i∞

dβ

2πi
eJ (β)eβE. (22)

Therefore, the comparison of both expressions (21) and (22)
leads to the identification Z(β) = eJ (β) and thus one sees
that the function J (β) defined in (5) is the Massieu function
related to the Helmholtz free energy via J (β) = −βA(β).
Since the canonical partition function is given by (7), the
major part of the work has already been done in writing
down the microcanonical description. It is clear that the
extremal condition (δn; ∂α)Ĵ [n; α,β] = (0; 0) allows one to
get an approximate expression for the Massieu function as

J (β) ≈ Ĵ [n; α,β], where, as before, n(x) and α are given
by the saddle point equations. The saddle point equation
associated with the parameter α constrains the number of
particles leading to the condition (11). Of course, in the
canonical description only the temperature is fixed and there
is no second Lagrange multiplier enforcing the condition (12).
Instead, according to the saddle point approximation and
using (8), one sees that the mean value of the Hamiltonian
〈E〉 = −∂β ln Z ≈ −∂βĴ ≡ Ē becomes

Ē = d

2β

∫
n(x)dd x + W [n]. (23)

In order to obtain the relation between the number den-
sity and the interaction potential, variations with respect to
the number density of Ĵ [n] have to be computed. This task
has also been done in the previous section and δĴ [n] is given
by expression (14). As a result, the distribution of particles
that maximizes the microcanonical entropy also maximizes
the Massieu function in the canonical ensemble and the
number density is then given by (17). Hence, using (8), (11),
and (16), the saddle point approximation allows one to write
the canonical MF Helmholtz free energy A = −T J as an
integral over the volume:

A =
∫

n(x)

(
T

{
ln

[
n(x)λd

T

] − 1
} + 1

2
�(x)

)
dd x. (24)

Therefore, the MF local Helmholtz free energy is readily
identified,

a(x) = T
{

ln
[
n(x)λd

T

] − 1
} + 1

2�(x), (25)

since

A =
∫

n(x)a(x)dd x. (26)

The canonical MF entropy can be obtained via a Legendre
transformation of the canonical MF free energy S = β(Ē − A)
and, as a consequence of the saddle point approximation [6],
it coincides with the microcanonical MF entropy (18) only
when both ensembles lead to the same description of the
state of the system. To the contrary, Legendre transformations
cannot be applied to relate thermodynamic potentials from
different ensembles if the ensembles are not equivalent. It
must be stressed that the inequivalence of ensembles arises
because the thermodynamic potentials become convex in
a certain region of parameter space. If the entropy-energy
curve presents a convex intruder, the microcanonical and the
canonical ensembles are not equivalent [10].

The MF solution in the canonical ensemble is valid only in
the range of parameters where Ĵ is maximum. Turning back
to the example given in the previous section, self-gravitating
isothermal spheres are well described with the MF in the
canonical ensemble, providedR < 32.1 [17,22,23]. For values
of the density contrast larger than 32.1, Ĵ is not a maximum
and hence the MF description in the canonical ensemble breaks
down at the critical value R = 32.1. At this critical point the
system undergoes a gravitational collapse and this collapse
cannot be described with the MF approach. What happens is
that in the range in parameter space such that 32.1 < R < 709,
the heat capacity is negative in the microcanonical ensemble.
Configurations with negative heat capacity may be stable in
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the microcanonical ensemble, but are never realized in the
canonical ensemble leading to a collapse or gravitational phase
transition. Thus, for 32.1 < R < 709, the microcanonical and
the canonical ensembles are not equivalent.

C. Local grand potential: Grand canonical ensemble

Consider the canonical partition function as a function of
the number of particles and its Laplace transform:

L[Z](α) =
∫ ∞

0
dN Z(N )e−αN . (27)

Taking N as a continuous variable, the canonical partition
function is constant with value Z(N ) for all N in the interval
[N,N + 1). Therefore, the integral in (27) can be written as a
sum of integrals over the intervals [N,N + 1] and subsequently
integrated:

L[Z](α) =
∞∑

N=0

Z(N )
∫ N+1

N

dÑ e−αÑ (28)

= 1 − e−α

α

∞∑
N=0

e−αNZ(N ). (29)

From here, since α = −βμ, one recognizes the grand canoni-
cal partition function

Z(α) =
∞∑

N=0

e−αNZ(N ), (30)

which we will take as the starting point to derive the thermo-
dynamics of the system. Introducing ζ (α) = [1 − exp(−α)]/α
and applying the inverse Laplace transform to (29) one gets

Z(N ) = L−1[ζZ](N ) =
∫ i∞

−i∞

dα

2πi
ζ (α)Z(α)eαN . (31)

Since in the previous section we obtained

Z(N ) =
∫ i∞

−i∞

dα

2πi

∫
Dn exp(Ĵ [n; α,β]), (32)

the grand canonical partition function reads

Z =
∫

Dn exp{Ĵ [n; α,β] − αN − ln ζ (α)}. (33)

The term ln ζ (α) in the exponential above, which is a correction
due to the discreteness of N , can be safely neglected in the large
N limit. As before, we shall evaluate the integral (33) using the
saddle point approximation and hence Z ≈ exp(Ĵ − αN ). In
this case, only the number density such that δn(Ĵ [n] − αN ) =
δnĴ [n] = 0 is required. Thus one more time the number
density is given by (17). Furthermore, the mean value of
the number of particles can be written as 〈N〉 = −∂α lnZ ≈
−∂α(Ĵ − αN ) ≡ N̄ and using (8) one gets

N̄ =
∫

n(x)dd x. (34)

Analogously, the mean value of the energy takes the
form 〈E〉 = −∂β lnZ ≈ −∂β(Ĵ − αN ) = Ē, where, as in the
canonical case, Ē is given by (23). Introducing the grand
potential

� = −T lnZ, (35)

the saddle point approximation yields −β� ≈ Ĵ − αN , which
by using (8) and (16) leads to

� =
∫

n(x)

(
T

{
ln

[
n(x)λd

T

] − 1
} − μ + 1

2
�(x)

)
dd x.

(36)

Consequently, the MF local grand potential per particle reads

ω(x) = T
{

ln
[
n(x)λd

T

] − 1
} − μ + 1

2�(x) (37)

such that

� =
∫

n(x)ω(x)dd x. (38)

The grand canonical MF Helmholtz free energy is obtained
by a Legendre transformation of the form A = � + μN̄ , which
turns out to be equal to the MF Helmholtz free energy in
the canonical ensemble (24) in the region of parameter space
where both ensembles coincide. With a subsequent Legendre
transformation, we would obtain the same MF entropy as
in the microcanonical ensemble S = β(Ē − μN̄ − �) only
when the grand canonical and the microcanonical ensembles
are equivalent. As mentioned before, this is a consequence of
the saddle point approximation and these Legendre relations
cease to be valid when the ensembles are not equivalent.
Although each ensemble has its own range of validity in the
corresponding space of parameters, the thermodynamic po-
tentials computed in the different ensembles have all the same
form in the MF approach. In the grand canonical ensemble the
MF solution is valid only in the range of parameters such that
Ĵ − αN is maximum. For self-gravitating isothermal spheres,
the critical point where the MF description ceases to be valid
in the grand canonical ensemble is R = 1.58 [22,23]. At this
critical point the system undergoes gravitational collapse in the
grand canonical ensemble, which cannot be described by the
MF. We see again that the stability of the system depends on
the control parameters used to specify the state of the system. In
addition, in this case the grand canonical MF entropy coincides
with the microcanonical MF entropy only for R < 1.58.

III. LOCAL RELATIONS AND THE LOCAL
EQUATION OF STATE

The formulation of thermodynamics in terms of local
variables is well known (see, for instance, [32,33]) and
here we implement this formalism to systems with long-
range interactions. In the previous sections we wrote the
thermodynamic potentials as integrals over the volume of the
system, which leads to a natural definition of local quantities
per particle. Analogously, using (12) and (16), the local energy
per particle takes the form

e(x) = e0 + 1
2�(x), (39)

where e0 = d
2 T is the local kinetic energy per particle, such

that the total energy and kinetic energy are given by E =∫
n(x)e(x)dd x and E0 = ∫

n(x)e0d
d x, respectively. We also

introduce the local volume per particle v(x) = 1/n(x), which
obviously leads to V = ∫

n(x)v(x)dd x.
Once local variables are defined, the local equation of state

can be obtained. In order to do that, it is useful to write the
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local entropy per particle in a more convenient way. From (19)
one obtains

s(x) = ln

[
v(x)

(
m

dπh̄2 e0

)d/2
]

+ 2 + d

2
, (40)

which is a Sackur-Tetrode-like equation in d dimensions
formulated in terms of local variables. Long-range interactions
are included in the local volume through its dependence
on the interaction potential, thus leading also to an implicit
dependence of the local entropy on the interaction potential.
The local entropy per particle is therefore explicitly obtained
as a function of the local variables e0 and v, s = s(e0,v). Thus,
in the equilibrium framework, one infers that the local internal
energy only has contributions coming from kinetic degrees of
freedom while self-interactions play the role of an external
field that perturbs the gas. In addition, local thermodynamic
equilibrium implies the relations [32,33]

1

T
=

(
∂s

∂e0

)
v

,
p

T
=

(
∂s

∂v

)
e0

, (41)

where the second of these relations is the local equation of
state of the system. In our case, this local equation of state is
indeed the one corresponding to an ideal gas,

p(x) = n(x)T , (42)

which is valid for any long-range pair interaction potential that
can be suitably represented with the MF approach. Since the
MF local entropy per particle takes the same functional form in
the microcanonical, canonical, and grand canonical ensembles,
the above equation of state is valid in the three ensembles.
Note that the condition of local thermodynamic equilibrium
together with expressions (41) are formulated as a hypothesis
in the framework of nonequilibrium thermodynamics, but here
they are trivially satisfied provided the whole system is in
equilibrium. We emphasize that the local equation of state (42)
is usually derived by considering the condition of hydrostatic
equilibrium [19,29]; here it is derived on pure thermodynamic
grounds from the local entropy.

To get more insight in the relation between local thermody-
namic variables, we use (17) and write the chemical potential
as

μ = μ0(x) + �(x), (43)

where μ0(x) = T ln[λd
T n(x)] possesses the same functional

dependence on the number density as the chemical potential
of the ideal gas, but with the density given by (17). Also
using (17), (43), and the local equation of state, one obtains

T s(x) = [e0 + �(x)] + p(x)v(x) − μ. (44)

The term in square brackets is the total energy of a particle
at the point x; locally the potential �(x) acts like an
external field. However, the difference between �(x) and an
authentic external field becomes manifest when one sums the
contribution of the whole system: Multiplying [e0 + �(x)]
by the density and integrating over the volume does not give
the total energy. In order to obtain the total energy one must
take into account that the total potential energy is due to
self-interactions and this is the reason why one defines the
local energy per particle according to (39) (the total potential

energy is a functional quadratic in the density). In this respect,
using (39), Eq. (44) can be alternatively written in the form

T s(x) = e(x) + p(x)v(x) − μ + 1
2�(x), (45)

where the last term highlights the fact that self-interactions are
actually considered.

The local Helmholtz free energy per particle a(x) can be
obtained by the Legendre transformation

a(x) = e(x) − T s(x) = μ − p(x)v(x) − 1
2�(x). (46)

It can be checked that (46) coincides with (25). The local
Helmholtz free energy per particle can also be written in the
form a(x) = a0(x) + 1

2�(x), where a0(x) has the form of
the local Helmholtz free energy per particle of an ideal gas
at the point x and it is given by

a0(x) = −T
{

ln
[
v(x)λ−d

T

] + 1
}
. (47)

Hence it also satisfies a0(x) = e0 − T s(x) = μ0(x) −
p(x)v(x). We emphasize that a0(x) is a function of the
local volume and hence depends on the interaction potential.
Moreover, the local grand potential (37) is equivalent to the
Legendre transformation ω(x) = a(x) − μ and with elemen-
tary manipulations it can be rewritten as

ω(x) = −p(x)v(x) − 1
2�(x). (48)

The local grand potential per particle of an ideal gas takes the
form

ω0 = a0(x) − μ0(x) = −p(x)v(x) = −T , (49)

so it is related to ω(x) through ω(x) = ω0 − 1
2�(x). By

substituting (48) in (38) and using the local equation of state
one sees that the total grand potential is closely related to the
kinetic and potential energies

� = −
∫

p(x)dd x − W = − 2

d
E0 − W. (50)

The discussion in Sec. II about the correctness of Leg-
endre transformations for global variables in connection
with ensemble inequivalence is also valid here for local
variables. Furthermore, it is worth noting that the Legendre
transformation of a local variable with respect to the local
volume, in general, does not agree with the corresponding
Legendre transformation of the global variable with respect to
the total volume. The reason is that, in general, the pressure is
not uniform.

IV. GLOBAL MAGNITUDES AND THE GENERALIZED
GIBBS-DUHEM EQUATION

Useful relations between global quantities can be obtained
by integration of the local equations. Multiplying both sides
of (45) by n(x) and integrating over the volume yields

T S = E + 2

d
E0 − μN + W. (51)

However, it would be desirable that the quantity PV appears
explicitly related to the other thermodynamic quantities. In
order to do that, the form of the pair interaction potential has
to be taken into account and the global equation of state has
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to be considered. To derive this equation of state we follow
Ref. [18].

We will consider that the container is a d − 1 sphere of
radius R in such a way that particles are confined by the
boundary condition (q1

i )2 + (q2
i )2 + · · · + (qd

i )2 � R2, 1 �
i � N . The zero sphere is the pair of end points of the line
segment of length 2R. In addition, the volume of the system
reads V = πd/2Rd [�(d/2 + 1)]−1.

Thus, from (3), using coordinates defined according to r i =
qi/R and rescaling energies by introducing [18,25]

� ≡ ERν

|κ|N2
= E

|κ|N2

(
�(d/2 + 1)

πd/2
V

)ν/d

, (52)

ϕij ≡ Rν

|κ|N2
φ(qi ,qj ) = 1

N2

κ

|κ| |r i − rj |−ν, (53)

the entropy takes the form

S = ln
V N(2−ν)/2

ϑ
+ ln �̃(�). (54)

Here

ϑ =
(

2πh̄2

N2|κ|m
)dN/2 (

πd/2

�(d/2 + 1)

)N(2−ν)/2

(55)

and

�̃(�) = 1

N !�(dN/2 + 1)

∫
D

ddN r

⎛
⎝� −

N∑
i>j

ϕij

⎞
⎠

dN/2

× θ

⎛
⎝� −

N∑
i>j

ϕij

⎞
⎠ . (56)

Note that we assume that energy scales as N2, as is well known
in this kind of system [34]. Note also that �̃(�) depends on
the volume only through � since in the r i coordinates, which
belong to a certain domain D, the limits of the integrals in (56)
are pure numbers. Taking into account that (∂E�)V = �/E

and (∂V �)E = ν�/(dV ), one has

1

T
=

(
∂S

∂E

)
V

= �

E

∂ ln �̃(�)

∂�
, (57)

P

T
=

(
∂S

∂V

)
E

= N

V

(
1 − ν

2

)
+ ν�

dV

∂ ln �̃(�)

∂�
, (58)

where P = p(x)|x ∈∂V is the pressure evaluated at the bound-
ary of the system. From the above equations and using that
E = E0 + W one gets

PV

NT
= 1 + ν

W

dNT
, (59)

which is the exact microcanonical equation of state of the
system. However, in the MF limit this equation holds also in
the canonical and grand canonical ensembles if mean values
are taken such that Ē = E and N̄ = N . Of course, the last
statement is only valid in the domain of the space of parameters
where the canonical and grand canonical ensembles are well
defined and coincide with the microcanonical ensemble. If the
equivalence of ensembles does not hold, the corresponding
equation of state has to be derived for each ensemble
separately. With this in mind, for simplicity, in what follows
we will not distinguish between E and Ē or N and N̄ .

From the equation of state (59) the virial theorem is
obtained,

2E0 + νW = dPV, (60)

which is particularly useful to express the relation between
global quantities. It is also useful to introduce the long-range
parameter σ defined as

σ ≡ d − ν

d
, 0 � σ � 1, (61)

which together with (60) enables us to rewrite (51) as the Euler
relation in the form

T S = E + PV − μN + σW. (62)

The marginal case ν = d corresponds to systems with long-
range parameter σ = 0, so the above equation and the thermo-
dynamic potentials obtained below reduce to the usual ones
in short-range interactions thermodynamics. The Helmholtz
free energy, the grand potential, and the Gibbs free energy are
readily obtained from (62) and take the form

A = E − T S = μN − PV − σW, (63)

� = A − μN = −PV − σW, (64)

G = A + PV = μN − σW. (65)

The above expressions generalize previous results for the self-
gravitating gas [18,19]. In addition, by differentiating (62) one
gets

TdS = dE + PdV − μdN + σdW − Ndμ − SdT + VdP

(66)

and since TdS = dE + PdV − μdN we must have

σdW = SdT − VdP + Ndμ, (67)

which is the generalized Gibbs-Duhem equation satisfied by
the long-range interacting systems we are considering here. For
systems with long-range parameter σ = 0, i.e., the marginal
case ν = d, the usual Gibbs-Duhem equation is recovered.
From (67) we infer that when long-range interactions are
present, T , P , and μ are independent. Moreover, in view
of (67), the following relations are obtained for σ �= 0:

S = σ

(
∂W

∂T

)
P,μ

, (68a)

V = −σ

(
∂W

∂P

)
T ,μ

, (68b)

N = σ

(
∂W

∂μ

)
P,T

. (68c)

The above expressions imply, for instance, that the entropy can
be obtained from a derivative of the potential energy. Since
such thermodynamic relations are lacking for systems with
long-range interactions, it would be interesting to check them
by considering some solvable examples. Next, we will consider
the case where the interaction potential is spatially uniform
and the case where the system is a self-gravitating gas. After
these two examples we will expose a common feature between
systems with long-range interactions and small systems.
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A. Spatially uniform interaction potentials in d dimensions

These systems are characterized by ν = 0 such that the
system is homogeneous and σ = 1. We simply have φ = κ ,
hence � = kN and W = κN2/2. In order to apply (68),
the potential energy must be written as a function of T , P ,
and μ. Using (17) and the equation of state (59), which in
this case reads PV = NT , one obtains n = N/V = P/T =
λ−d

T exp[−β(κN − μ)] and the number of particles becomes

N = 1

κ

[
μ − T ln

(
Pλd

T

T

)]
. (69)

The potential energy then takes the form

W (T ,P,μ) = 1

2κ

[
μ − T ln

(
Pλd

T

T

)]2

. (70)

Taking into account that the local entropy per particle (19) is
uniform in this case, whence S = Ns, it is straightforward to
see that

S =
(

∂W

∂T

)
P,μ

= 1

κ

[
μ − T ln

(
Pλd

T

T

)][
− ln

(
Pλd

T

T

)
+ 2 + d

2

]
. (71)

The remaining two relations (68) follow from V = NT/P

and (69).

B. Self-gravitating isothermal spheres in d = 3

The calculation of global thermodynamic quantities of self-
gravitating isothermal spheres is well understood and here we
will just consider it as an example to illustrate the relations
(68). In particular, the first of these relations will be used to
obtain the entropy of the self-gravitating gas. We will write
down only the necessary expressions to carry out our task and
refer the reader to [4,17,20] for details.

In the self-gravitating gas we have ν = 1, thus σ = 2/3,
and κ = −GNm2, where GN is Newton’s constant. Also,
Newtonian systems satisfy the Poisson-Boltzmann equation,
which, after introducing the dimensionless variables ξ =
[4π |κ|βn(0)]1/2x and ψ = β(�(x) − �(0)), becomes the
Emden equation

1

ξ 2

d

dξ

(
ξ 2 d

dξ
ψ

)
= e−ψ. (72)

Here x = |x| and β = 1/T while n(0) and �(0) are the
density and the potential at the origin. Global thermodynamic
magnitudes are expressed in terms of these functions evaluated
at the boundary of the system, thus, for convenience, one
introduces ξ0 = [4π |κ|βn(0)]1/2R, ψ0 = ψ(ξ0), and ψ ′

0 =
ψ ′(ξ0), where primes denote the derivative with respect to
ξ and R is the radius of spherical container. Moreover, with
a suitable change of variables the Emden equation can be
transformed into a first-order differential equation [35]. When
such variables, usually denoted by (v,u), are evaluated at
ξ = ξ0 and ψ = ψ0, with ψ ′ = ψ ′

0, they read

v0 = ξ0ψ
′
0, u0 = ξ0e

−ψ0

ψ ′
0

(73)

and therefore satisfy

du0

dv0
= −u0(u0 + v0 − 3)

v0(u0 − 1)
. (74)

Furthermore, it can be shown [4,17] that the inverse
temperature and the potential energy can be written as

1

T
= R

|κ|N v0, (75)

W = NT (u0 − 3). (76)

What we need is to express the potential energy as a function
of T , P , and μ only. Since �(R) = κN/R, using (43) yields

N = R

|κ|
[
T ln

(
Pλ3

T

T

)
− μ

]
, (77)

where we have taken into account the local equation of state
so that P = n(R)T . From (77) and (75) one sees that

v0(T ,P,μ) = ln

(
Pλ3

T

T

)
− μ

T
(78)

and therefore (
∂v0

∂T

)
P,μ

= 1

T

(
μ

T
− 5

2

)
. (79)

Combining (76) and the global equation of state (59) one
obtains 3PV = NT u0 and hence, taking it into account and
using (75) to express N , the radius can be written as

R = T

(
v0u0

4π |κ|P
)1/2

. (80)

Using (75) and (80), the potential energy (76) takes the form

W (T ,P,μ) = T 3v
3/2
0

(4π |κ|3P )1/2

(
u

3/2
0 − 3u

1/2
0

)
, (81)

which depends only on the desired variables since u0 =
u0(v0(T ,P,μ)). We then have(

∂W

∂T

)
P,μ

= 3W

T
+ 3W

2v0

(
∂v0

∂T

)
P,μ

[
1 + v0(u0 − 1)

u0(u0 − 3)

du0

dv0

]
.

(82)

Therefore, according to (68) and using (74), (76), and (79),
from Eq. (82) the MF entropy is obtained,

S = −N

[
μ

T
− 2u0 + 7

2

]
. (83)

Using that the thermal wavelength can be expressed as λT =
(2πh̄2Rv0/N |κ|m)1/2 and that P/T = Nu0/3V , from (78)
one gets

μ

T
= 1

2
ln(v0) + ln(v0u0) − v0 − 1

2
ln

(
2NR3m3|κ|3

πh̄6

)
(84)

and thus the entropy becomes

S = N
[
v0 + 2u0 − 1

2 ln(v0) − ln(v0u0) − 3
] + S0, (85)

as given in [20], with S0 = N/2 ln(2NR3m3|κ|3/πeh̄6). This
verifies the first of the relations (68) for the self-gravitating gas
and the remaining two follow from an analogous procedure.
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As stated in the previous sections, the validity of the MF
depends on the ensemble considered. The density contrast can
be written in terms of the solution of the Emden equation,
yielding R = exp(ψ0). The stability in the microcanonical
ensemble is restricted to R < 709, in the canonical ensemble
these systems are stable for R < 32.1, and for R < 1.58 in
the grand canonical ensemble.

C. Small systems

Systems with a small number of constituents can be treated
from a thermodynamic point of view by considering them as
independent members of an ensemble. Since such an ensemble
of independent small systems is a macroscopic system itself
where the standard thermodynamics applies, thermodynamic
properties of a single small system can be derived. This is
the well known approach introduced by Hill [30]. The basic
idea is to consider a chemical potential, denoted by E , that
accounts for the energy gained by the system when the number
of members of the ensemble, N , varies. The energy, volume,
number of particles, and entropy of each small system are
E, V , N , and S, respectively, while the total magnitudes
corresponding to the whole ensemble are given by Et =
N E, Vt = N V , Nt = N N , and St = N S. Since the whole
ensemble is a macroscopic system, these magnitudes satisfy

T dSt = dEt + PdVt − μdNt − E dN (86)

and hence T St = Et + PVt − μNt − E N . Thus, for any
small system,

T S = E + PV − μN − E , (87a)

T dS = dE + PdV − μdN, (87b)

dE = −SdT + V dP − Ndμ. (87c)

Hill mentioned that the use of different environmental vari-
ables, i.e., control parameters, would lead to different descrip-
tions of the thermodynamic phenomena when small systems
are considered [30]. In this case, ensemble inequivalence
is due to the finite size of the systems. In fact, negative
heat capacity leading to ensemble inequivalence is a generic
feature of finite systems at phase coexistence [6]. More
specifically, a first-order phase transition in small systems
is associated with a convexity anomaly in the appropriate
thermodynamic potential [6]. This convexity anomaly is a
signal of ensemble inequivalence. In addition, systems with
long-range interactions can be regarded as finite systems as
well, in the sense that the range of the interaction is comparable
with the size of the system [6].

Our aim here is to point out another common feature be-
tween small systems and systems with long-range interactions.
From the beginning we have been considering thermodynamic
properties of a single system. Even so, if ones relates the energy
E to the potential energy such that E = −σW , Eqs. (87)
become the same equations we have found for systems with
long-range interactions. Although W and E are introduced for
different reasons, they formally play the same role. Therefore,
a small system such as a macromolecule and a system
with long-range interactions such as a star, both being finite
system, can be formally described by the same thermodynamic
relations.

V. DISCUSSION

We have studied the local thermodynamics of systems with
strong long-range interactions in d dimensions by computing
local thermodynamic potentials per particle. We have con-
sidered pair interaction potentials that decay as 1/rν , with
0 � ν � d. By computing the local entropy per particle and
using the condition of local thermodynamic equilibrium we
have obtained the local equation of state, which corresponds
to the isothermal ideal gas equation with the density depending
on the long-range interaction potential that couples the
constituents of the system. This result coincides with the results
that were obtained in previous works where the condition of
hydrostatic equilibrium was assumed [19,29]. Thus we have
shown that interactions locally play the role of an external field
that perturbs the gas and that the local entropy per particle is
a function of the local kinetic energy and local volume: It is
a Sackur-Tetrode-like entropy that implicitly depends on the
interaction potential trough the local volume.

Different ensemble representations possess, in general, dif-
ferent ranges of validity in the space of parameters specifying
the state of the system. Since any global thermodynamic
potential computed in different ensemble representations has
the same functional form in the MF limit, local thermodynamic
potentials also have the same functional form in the different
ensemble representations. We stress that the MF description
breaks down at certain critical points that are specific to each
ensemble. Beyond one of these critical points, the system can
no longer be described with the MF in the corresponding
ensemble, but still may be well described in a different
ensemble.

By volume integration of the relation satisfied by the
thermodynamic magnitudes at the local level, we have obtained
the equation satisfied by the set of global magnitudes.
Remarkably, the potential energy enters as a thermodynamic
variable that modifies the global thermodynamic potentials. In
the thermodynamics of systems with short-range interactions
the potential energy is obviously involved since it is included
in the total energy, but it does not appear as an additional
contribution that modifies the thermodynamic potentials. Such
a contribution is proportional to σ = (d − ν)/ν and hence, for
the marginal case ν = d, the usual thermodynamic relations
valid for short-range potentials are recovered.

As a consequence of this contribution coming from the total
potential energy, the Gibbs-Duhem equation is modified and
the variables T , P , and μ become independent if long-range
interactions are present in the system. By taking advantage of
the thermodynamic relations obtained from this generalized
Gibbs-Duhem equation, the entropies of a system with a
spatially uniform potential and of the self-gravitating gas have
been computed.

It is important to note that the Euler relation (62) reveals
that the energy E is not a linear homogeneous function of S, V ,
and N if interactions are long ranged. This was already stated
by Hill in his study of small systems [30], which, as noted
previously, satisfy the same kind of thermodynamic equations.
Long-range interactions introduce an extra degree of freedom
that causes this deviation from the usual scaling law of systems
with short-range interactions. This extra degree of freedom
appears in (62) as the term σW .
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To derive the relations between thermodynamic quantities
at the local level it is not necessary to make the form of the inter-
action potential explicit; it suffices to assume that the potential
is long ranged. At the global level, however, the interaction
potential determines the equation of state and hence all global
thermodynamic relations. Since we considered explicitly the
virial relation for a power-law interaction, the obtained results
are valid for this case only and other cases require individual
attention. In the framework of thermodynamics of systems
with short-range interactions, the Gibbs-Duhem equation plays
a central role in the sense that it provides a valuable tool to
derive useful relations that are implemented in the solution of
thermodynamic problems. In the general case of arbitrary long-
range interactions, the usual Gibbs-Duhem equation cannot be
taken for granted, but the analogous equation must be derived.

Succinctly, the Gibbs-Duhem equation and the Euler
relation we obtained are valid for systems with kinetic degrees
of freedom and interacting potentials of the form 1/rν ,
0 � ν � d. Therefore, the cases of gravity and Coulomb
interactions in two dimensions [16,36] are not included.
Trapped non-neutral plasmas are an important example of the
latter [36], which provide the possibility of testing long-range
interacting systems in a laboratory. Furthermore, confinement
in this case is accomplished by using an external field instead
of rigid walls, so another difference with the treatment given
here can be noted: We considered ensembles that all have the
volume as a control parameter. If fluctuations in V are allowed,
the corresponding ensemble with adequate control parameters
must be utilized.
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APPENDIX

In this Appendix we obtain (5) as a functional integral
over the number density. We employ a general method to
derive the MF description that was previously used in the
context of long-range interacting systems to treat Newtonian
gravity in d = 3 [3,18]. To implement this method, the d-
dimensional volume V is divided in M cells, 1 � M � N , of
volume va = V/M , so that

∑M
a=1 va = V . Each cell is located

at xa = (x1
a ,x

2
a , . . . ,x

d
a ) and contains na � 1 particles such

that
∑M

a=1 na = N . This construction is self-consistent if the
number of particles is large enough, i.e., the large N limit is
implicitly assumed. It is also assumed that the size of each cell
is small enough so that the potential can be considered constant
through the cell, but, of course, it varies from cell to cell. It
follows that the total potential energy can be approximated as
W ≈ ∑M

a>b naφ(xa,xb)nb.
Furthermore, with the help of the multinomial theorem it is

not difficult to derive the following identity:

1

N !

∫
ddN q
V N

=
∑

{n1,...,nM }
δ
N,

M∑
i=1

ni

M∏
i=1

1

ni!

(
vi

V

)ni

, (A1)

where {n1, . . . ,nM} means all possible values n1,n2, . . . ,nM of
the occupation numbers and the Kronecker δ restricts the total
number of particles to N . Equation (A1) can be seen as a way to
perform an integral in the dN-dimensional configuration space
by summing over all possible occupation number distributions
through the cells of a single-particle configuration space. Thus,
using the multinomial expansion, one approximates (5) by

eJ (β) ≈
∑

{n1,...,nM }
δ
N,

M∑
i=1

ni

M∏
i=1

1

ni!

(
vi

V

)ni

× exp

(
−β

M∑
a>b

nanbφ(xa,xb) − d

2
ln(εβ)

M∑
a=1

na

)
.

(A2)

The above approximation formulated in a discrete way allows
one to obtain a continuous field representation. This continuum
limit is obtained by introducing the number density, whose
value in each cell is given by n(x) = na/va . Consequently,
summations over the cells become spatial integrals and the
summation over occupation number distributions becomes a
functional integration in the number density:

M∑
a=1

→
∫

dd x
va

,
∑

{n1,...,nM }
→

∫
Dn(x).

With Stirling’s approximation we also have

M∏
i=1

1

ni!

(
vi

V

)ni

= exp

(
−

∫
n(x) ln

n(x)V

e
dd x

)
.

In addition, the Kronecker δ restricting the number of particles
becomes a Dirac δ in the continuum limit and thus can
be represented in the form δ(x) = (2πi)−1

∫ i∞
−i∞ dα e−αx .

Therefore, taking these prescriptions into account, Eq. (A2)
can be rewritten as Eq. (7) in the MF approximation.
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