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Abstract

Animal olfactory systems have a critical role for the survival and reproduction of individuals. In insects, the odorant-binding proteins

(OBPs) are encoded by a moderately sized gene family, and mediate the first steps of the olfactory processing. Most OBPs are

organized in clusters of a few paralogs, which are conserved over time. Currently, the biological mechanism explaining the close

physical proximity among OBPs is not yet established. Here, we conducted a comprehensive study aiming to gain insights into the

mechanisms underlying the OBP genomic organization. We found that the OBP clusters are embedded within large conserved

arrangements. These organizations also include other non-OBP genes, which often encode proteins integral to plasma membrane.

Moreover, the conservation degree of such large clusters is related to the following: 1) the promoter architecture of the confined

genes, 2) a characteristic transcriptional environment, and 3) the chromatin conformation of the chromosomal region. Our results

suggest that chromatin domains may restrict the location of OBP genes to regions having the appropriate transcriptional environ-

ment, leading to the OBP cluster structure. However, the appropriate transcriptional environment for OBP and the other neighbor

genes isnotdominatedby reduced levelsofexpressionnoise. Indeed, thestochasticfluctuations in theOBPtranscriptabundancemay

have a critical role in the combinatorial nature of the olfactory coding process.

Key words: chemosensory system, olfactory reception, gene cluster constraint, expression noise, chromatin domain.

Introduction

Animal olfactory systems allow for the detection of food,

predators, and mates, and thus demonstrating a critical role

for the survival and reproduction of individuals (Krieger and

Ross 2002; Matsuo et al. 2007). In Drosophila, the early steps

of odor processing occur in chemosensory hairs (i.e., the sen-

silla), which are located in the third antennal segment and the

maxillary palp. The main biochemical events include the

uptake of volatile molecules through the cuticle pores, trans-

port across the sensilla lymph, and interaction with olfactory

receptors. The latter steps are mediated by the odorant-bind-

ing proteins (OBPs), which may have an active role in olfactory

coding such as contributing to odor discrimination (Swarup

et al. 2011) and receptor activation (Laughlin et al. 2008;

Biessmann et al. 2010). OBPs are small (10–30 kDa; 130–

220 aa long), highly abundant, globular, and water-soluble

proteins (Kruse et al. 2003; Tegoni et al. 2004). These mole-

cules are encoded by a moderately sized multigene family (in

the 12 Drosophila species, the number of OBP members range

from 41 to 62), with an evolution that is consistent with the

birth-and-death model (Vieira et al. 2007).

In arthropods, most OBP genes are organized in clusters of

a few paralogs (Hekmat-Scafe et al. 2002; Foret and Maleszka

2006), an arrangement that is moreover conserved over time

(Vieira and Rozas 2011). Nevertheless, it is not well established

whether the conservation of these OBP clusters represent the

outcome of an uneven distribution of chromosomal rearran-

gement breakpoints, or rather they are constrained by natural

selection for some functional meaning (Zhou et al. 2009;

Sanchez-Gracia and Rozas 2011; Vieira and Rozas 2011).

For example, functionally linked genes, such as those encod-

ing subunits of the same complex (Chamaon et al. 2002),

proteins of the same pathway (Lee and Sonnhammer 2003),

or genes with expression patterns restricted to the head,

embryo, or testes (Boutanaev et al. 2002) are often clustered

in the Drosophila melanogaster genome. As clusters of func-

tionally linked genes may include nonhomologous members,

the OBP gene organization may be preserved by functional

constraints imposed from neighboring genes.

The presence of shared cis-regulatory elements, such as

bidirectional promoters or pleiotropic enhancers, may explain

the OBP gene organization (Li et al. 2006; Yang and Yu 2009).
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For example, central regions of some Drosophila syntenic clus-

ters are enriched for highly conserved noncoding elements

that regulate the transcription of genes with the appropriate

composition of core promoter elements (CPEs) (Engstrom

et al. 2007). Notably, the CPE composition and expression

pattern are two features characterizing the broad and peaked

promoter architectures (a classification based on the distribu-

tion of transcription start sites) (Hoskins et al. 2011). Although

genes with peaked promoters are often expressed in specific

tissues or developmental stages, those with broad promoters

usually have constitutive transcription (Kharchenko et al.

2011; Rach et al. 2011). Therefore, shared cis-regulatory ele-

ments may differentially restrict the movement of genes with

particular promoter architectures or transcriptional patterns.

Chromatin conformation (Filion et al. 2010; Kharchenko

et al. 2011) could also affect gene organization given its role

in the regulation of gene expression (i.e., the so-called position

effect). For example, human unfolded chromatin (30-nm

chromatin fibers) encompasses high-density gene regions

(Gilbert et al. 2004), which usually exhibit elevated expression

breadth (EB) (Caron et al. 2001; Lercher et al. 2002).

Interestingly, transcriptional activation after chromatin unfold-

ing induces stochastic fluctuations in transcript abundance

(i.e., expression noise [EN]) (Becskei et al. 2005). Such EN is

often deleterious, particularly for broadly expressed genes,

because it yields imbalances in the stoichiometry of proteins

(Fraser et al. 2004). These features led Batada and Hurst

(2007) to hypothesize that broadly expressed genes are clus-

tered in regions of constitutively unfolded chromatin to min-

imize EN. Several lines of thought support this model. For

example, as head-to-head gene pairs share their promoter

regions, a chromatin unfolding event can facilitate the tran-

scriptional activation of both genes. Therefore, chromatin un-

folding events will be less frequent in head-to-head than other

gene pair arrangements, leading to reduced levels of EN

(Wang et al. 2010). Because EN is often deleterious, natural

selection may favor the maintenance of the head-to-head

gene pair organization in clusters.

Chromosomal proteins determining the chromatin state,

such as nuclear membrane (Capelson et al. 2010;

Vaquerizas et al. 2010), insulators (Maeda and Karch 2007;

Wallace et al. 2009; Negre et al. 2010), and chromatin remo-

deling (Kalmykova et al. 2005; Li and Reinberg 2011) proteins,

may therefore play a relevant role in maintaining gene clus-

ters. In this regard, the function of the JIL-1 protein kinase

deserves special attention for its role in defining the decon-

densed interbands of polytene chromosomes, which charac-

terize active and unfolded chromatin (Jin et al. 1999; Regnard

et al. 2011; Kellner et al. 2012). Moreover, JIL-1 kinase, which

phosphorylates Serine 10 and 28 at Histone 3, physically in-

teracts with the lamin Dm0 (a structural nuclear membrane

protein) (Bao et al. 2005) and Chromator (localized in the

spindle matrix of the nucleosketeleton) (Gan et al. 2011) pro-

teins. Recently, the lamin Dm0 protein has been shown to

colocalize with conserved microsynteny in Drosophila (Ranz

et al. 2011), whereas Chromator changes the chromatin fold-

ing state (Rath et al. 2006). Therefore, high-order regulatory

mechanisms involving chromatin conformation may underlie

the conservation of some gene clusters.

Here, we analyzed the mechanisms underlying the OBP

genomic organization. We found that the OBP clusters are

embedded within large arrangements, which also include

other non-OBP genes. The conservation degree of such

large arrangements is moreover related to a number of func-

tional and expression features, such as a transcriptional envi-

ronment not dominated by reduced levels of EN. Indeed, the

stochastic fluctuations in the OBP transcript abundance may

have a critical role in the combinatorial nature of the olfactory

coding process.

Materials and Methods

DNA Sequence Data and Assignment of Orthologous
Groups

We downloaded the D. melanogaster gene and protein

sequences and their orthologous relationships (release

fb_2011_04) with the additional 11 Drosophila species

(Drosophila 12 Genomes 2007) from FlyBase (release 5.40).

The orthology data set contains predicted and curated pair-

wise relationships between the Drosophila species (i.e., one-

to-one, one-to-many, and many-to-many relationships). We

clustered these ortholog pairs into groups with multiple spe-

cies using the Markov Clustering Algorithm software with

default parameters (inflation¼2 and scheme¼7).

Gene Clustering

We define a conserved cluster as a group of neighbor genes

maintained over time; this definition allowed us to study clus-

ters of linked genes, regardless whether they are homologous.

To infer such conserved gene clusters, we used the MCMuSeC

software (Ling et al. 2009), which permits that clusters can

undergo internal rearrangement events (Luc et al. 2003), as

well as tandem gene duplications (recent duplicates originated

from members of the same cluster). For each inferred cluster,

we measured the conservation level as the branch length

score (BLS), that is, the total divergence time (Tamura et al.

2004) since the cluster origin. The larger the BLS value, the

more ancient the gene cluster.

We evaluated the significance of each BLS value separately

for each cluster size (n). Indeed, small-sized clusters (with a low

number of genes) have a lower probability to be disrupted by

chromosomal rearrangements than larger ones. For each clus-

ter size, we generated an empirical null distribution of the

expected BLS value by randomly sampling 10,000 groups of

n contiguous D. melanogaster genes, and the BLS values were

computed across the information of the 12 Drosophila spe-

cies. We defined the probability of an observed BLS value
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(pBLS) as the fraction of sampled clusters with a BLS value

lower than or equal to the observed (supplementary table

S1, Supplementary Material online).

We also used computer simulations to examine whether

the chromatin and expression factors that correlate with the

pBLS value (e.g., JIL-1 binding intensity or EN) are specific

constraints of the OBP gene organization, or correspond to

genome-wide characteristics. We generated null empirical dis-

tributions by randomly sampling 10,000 replicates of 31

D. melanogaster clusters without OBP genes, but with the

same number of genes and similar pBLS (�0.01) as that ob-

served for clusters including OBP genes. For each replicate, we

calculated the correlation between the characteristic chroma-

tin and expression factors and the pBLS value. The probability

of an observed correlation (P value) was estimated as the pro-

portion of samples with correlation values higher than the

observed. A low probability (i.e., P< 0.05) value indicates

that the surveyed factor is not as common among the

genome-wide Drosophila gene clusters as it is in the clusters

including OBP genes.

Expression Data

We obtained gene expression data for all of the D. melano-

gaster genes from FlyAtlas (Chintapalli et al. 2007). We used

the whole fly expression intensity (EI) information, and all of

the 26 conditions incorporated in FlyAtlas, including larval and

adult tissues. We considered that a gene is transcribed if the

present call value was greater than zero. In addition to the EI

value, we also computed the EB as the fraction of tissues

where the gene is transcribed (regardless of the expression

level in a given tissue), the sex-specific expression (SSE)

as the transcription in sexual tissues (i.e., testis, ovary, male

accessory glands, virgin spermateca, and mated spermateca)

relative to the rest of tissues, and the EN as the coefficient

of variation (COV) of the EI values. As the FlyAtlas expres-

sion data were determined from highly inbred flies

(the Canton-S stock) reared at homogeneous conditions

(22 �C with a 12 h:12 h light regime), the COV values are

not explained by differences in the genetic or environmental

background, but rather represent an excellent proxy to

evaluate the stochastic fluctuations in transcript abundance

(EN). The mean expression measures for each cluster were

calculated as the average expression values of the spanned

genes.

Functional Genomic Data

The ChIP-chip binding intensity for the JIL-1 protein and the

nine chromatin states defined in Kharchenko et al. (2011)

were downloaded from the modENCODE project database

(BG3 D. melanogaster cell line). The nine-state chromatin

model classifies each D. melanogaster nucleotide position

into one out of nine chromatin states (i.e., Promoter and

TSS, Transcription elongation [TE], Regulatory regions, Open

chromatin, Active genes on the male X chromosome,

Polycomb-mediated repression, Pericentromeric heterochro-

matin, Heterochromatin-like embedded in euchromatin, and

Transcriptionally silent, intergenic) on the basis of the combi-

natorial profile of 18 histone marks (Kharchenko et al. 2011).

The promoter architecture information, which integrates cap

analysis of gene expression (CAGE), RNA ligase mediated

rapid amplification of cDNA ends (RLM-RACE) and cap-

trapped expressed sequence tags data, was obtained from

Hoskins et al. (2011). We performed the promoter analysis

using all promoter annotations, but also confirmed the results

by restricting the analysis to promoters with only validated

support (evidence from two or more data types; e.g., CAGE

and RLM-RACE).

We used the FlyBase Gene Ontology (GO) annotation (re-

lease fb_2011_04) to gauge whether genes clustered with

OBP genes are functionally related. We analyzed the GO over-

representation using the Topology-Elim algorithm (Grossmann

et al. 2007), which considers the hierarchical dependencies of

the GO terms, and was implemented in the Ontologizer 2.0

software (Bauer et al. 2008).

Phylogeny-Based Analysis

The age of the genes (the divergence time since its origin) is a

relevant factor to be considered when analyzing the mecha-

nisms involved in gene cluster conservation. For example,

recent gene duplications usually evolve faster than older

ones (Luz et al. 2006) and often exhibit an SSE pattern.

Moreover, the maximum BLS value of a particular cluster de-

pends on the age of the encompassed genes. We inferred the

maximum BLS cluster value as the minimum age of the en-

compassed genes, using the topological dating approach

(Huerta-Cepas and Gabaldon 2011) with the BadiRate soft-

ware (Librado et al. 2012).

Statistical Multivariate Analysis

We examined the relationships among the pBLS and a

number of genomic and gene expression factors by different

association tests (supplementary table S2, Supplementary

Material online). On the one hand, we analyzed bivariate as-

sociations by using the following: 1) the Wilcoxon exact test,

2) the Pearson correlation coefficient, 3) the Spearman’s rank

correlation coefficient, and 4) the maximal information coef-

ficient (MIC) (Reshef et al. 2011). We used the Wilcoxon exact

test to compare clusters with low (<0.90) and high (>0.99)

pBLS values. As this test requires a categorization of a contin-

uous variable (the pBLS value), it is often conservative. For this

reason, we also computed the Pearson correlation coefficient,

which captures the linear continuous dependence between

variables. Nevertheless, the Pearson correlation coefficient is

very sensitive to outliers and skewed distributions, which may

generate spurious associations between variables. Indeed, the

assumptions required to calculate the probability associated to

Librado and Rozas GBE
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the Pearson correlation coefficient may not hold in our data;

for instance, the pBLS values are not normally distributed

(Kolmogorov–Smirnov test: P< 2.2e�16). In such case, the

Spearman’s rank correlation coefficient is recommendable.

This test, however, is not without problems, such as the use

of the midrank approach for handling ties. The MIC-based test

does not assume normality of the data and allows detecting a

wide range of bivariate associations, including monotonic

(e.g., linear, exponential) and nonmonotonic (e.g., sinusoidal)

relationships. However, the P value of the MIC score can only

be obtained by simulations. Currently only a few precomputed

tables are available, which precludes computing exact

P values, especially for our genome-wide data set (sample

size of 3,434). Given these pros and cons, we reported the

Spearman’s rank correlation coefficient throughout the man-

uscript. In addition, it is worth noting that all conclusions ex-

tracted from the Spearman’s rank correlation coefficient were

also supported by other tests, especially the main findings

(supplementary table S2, Supplementary Material online).

On the other hand, as the examined variables are clearly inter-

correlated, we also conducted a partial correlation and a path

analysis. We assessed the goodness of fit of our empirical data

to the underlying path model by evaluating the chi-squared

significance.

The Wilcoxon exact test, the Pearson, and the Spearman’s

correlation coefficients, as well as the partial correlation and

the path analysis were performed using the R programming

language (version 2.7.2). The MIC score was computed using

the Java binary provided by the authors, and its P values were

determined using the precomputed tables available at the

MINE web site. We conducted the multiple testing correction

using the Benjamini–Hochberg procedure (Benjamini and

Hochberg 1995) at a 5% of false discovery rate (FDR),

which was implemented in the multtest package of the R

programming language. We also used in-house developed

Perl scripts for handling all genomic and expression data files.

Results

Gene Cluster Identification

We inferred a total of 31 conserved clusters that include both

OBP and other nonhomologous genes (see Materials and

Methods; table 1). These 31 clusters are maintained, on aver-

age, in 5.9 Drosophila species, comprise a mean of 8.3 genes

and, more importantly, recover most of the OBP clusters de-

fined in Vieira et al. (2007). For example, the cluster with

highest gene density comprises four OBP genes (Obp19a,

Obp19b, Obp19c, and Obp19d; cluster 1 in Vieira et al.

[2007]) and one non-OBP gene in 7,330 bp. This cluster has

been detected in 11 species, having a pBLS (cluster constraint

probability) value of 0.995, and an adjusted pBLS (after

correcting for the FDR [Benjamini and Hochberg 1995]) of

0.977 (table 1). In total, 14 of these clusters are significant

(pBLS>0.95), although only 10 remain after correcting for

multiple testing (adjusted pBLS> 0.95). Therefore, these clus-

ters are likely to be under functional constraints.

To determine specific features of the OBP gene organiza-

tion, we compared clusters including OBP genes with all clus-

ters identified in the Drosophila genomes. We inferred a total

of 3,434 clusters (supplementary table S1, Supplementary

Material online) that, on average, are conserved in 5.9

Drosophila species and encompass 6.4 genes (fig. 1). A total

of 1,290 of the 3,434 clusters have a pBLS higher than 0.95,

although only 58 remain significant after controlling for FDR.

Because the FDR correction constitutes a conservative criterion

(i.e., FDR methodologies reduce its statistical power as the

number of tests increases [Carvajal-Rodriguez et al. 2009]),

the actual number of clusters under functional constraint is

likely to be higher than these 58 cases. Given that the raw

pBLS value, which is not adjusted for multiple testing, is a

continuous estimate of the cluster constraint strength, classi-

fying clusters into significant and nonsignificant unbalanced

categories will yield a further loss of statistical power (Pearson

1913). To avoid the negative effects of categorization, we

analyzed the effect of competing factors on raw pBLS esti-

mates using different association measures (supplementary

table S2, Supplementary Material online), although only

the values of the Spearman’s rank correlation coefficient are

reported throughout the manuscript.

Genes Clustered with OBP Genes Encode Plasma
Membrane Proteins

We studied the existence of functional relationships among

the genes clustered with OBPs by GO enrichment analysis (in

total, 198 non-OBP genes). We compared the functionally

annotated non-OBP genes in the 31 focal clusters (162 out

of the 198 genes have GO annotations) with those present in

all of the 3,434 Drosophila clusters (9,353 out of 11,811

genes). We found that the most characteristic GO terms

among the genes clustered with OBPs are regulation of neu-

rotransmitter transport, sodium channel activity, axon, neuro-

transmitter receptor activity, and integral to plasma

membrane. After multiple testing correction (Benjamini and

Hochberg 1995), only the latter category remained significant

(hypergeometric test, P¼1.34e�15; table 2). As this analysis

does not take into account the pBLS value of the clusters, we

also separately reanalyzed the data from three different pBLS

bins, each containing a similar number of genes. Notably, we

found that the integral to plasma membrane GO term is en-

riched among the genes most conserving their neighborhood

with the OBP genes.

The Cluster Conservation Correlates with the Type of
Cis-Regulatory Elements

We analyzed the relevance of cis-regulatory elements in main-

taining clusters including OBP genes. In particular, we

Functional Constraints Underlying the OBP Genomic Organization GBE
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examined whether the pBLS value of such clusters is associated

with the promoter architecture of the confined genes (i.e., the

peaked or broad promoters as a proxy for the type of CPEs

[Hoskins et al. 2011]). We found a significant correlation

(Spearman’s rank correlation coefficient: r¼ 0.415,

P¼0.044; table 3), that is, the higher the pBLS value, the

higher the proportion of broad-type promoters. Remarkably,

this trend is also observed for all of the 3,434 Drosophila clus-

ters (Spearman’s rank correlation coefficient: r¼ 0.044,

P¼0.016), indicating that gene clusters may have distinctive

cis-regulatory elements.

The presence of the cis-regulatory elements shared among

genes can restrict the movement of the target genes. For ex-

ample, genes transcribed from shared promoters are common

in many species, resulting in an excess of head-to-head gene

pair arrangements (Trinklein et al. 2004; Kensche et al. 2008;

Xu et al. 2009). We analyzed whether clusters including OBP

genes have distinctive head-to-head, tail-to-tail, or head-to-tail

gene pair organizations, but we detected no significant cor-

relation with their pBLS value (Spearman’s rank correlation

coefficient, P> 0.05; supplementary fig. S1A–C, Supplemen-

tary Material online). In contrast, the results of the genome-

wide analysis (including all 3,434 Drosophila clusters) were all

significant (Spearman’s rank correlation coefficient:

r¼�0.095, P¼ 4.85e�8; r¼ 0.214, P<2e�16;

r¼0.110, P<2.92e�10 for the head-to-tail, tail-to-tail and

head-to-head gene pair arrangements, respectively).

Therefore, the sharing of cis-regulatory elements between

contiguous genes is not a major factor in explaining the main-

tenance of OBP gene organization.

EB and EN Are Associated with the Conservation of
Clusters That Include OBP Genes

As genes with broad-type promoters are often broadly ex-

pressed (Hoskins et al. 2011), we examined expression pattern

Table 1

The Drosophila melanogaster Clusters Including OBP Genes

D. melanogaster Gene

Cluster Region

No. of

Genes

No. of OBPs No. of Genomes

Conserved

pBLS Adjusted pBLS

Obp8a X:9100153 . . . 9111401 4 1 8 0.925719 0.872071

Obp18a X:19029114 . . . 19064675 3 1 2 0.733075 0.714666

Obp19a-d X:20284679 . . . 20292009 5 4 11 0.995459 0.976539*

Obp22a 2L:1991705 . . . 2008966 4 1 4 0.734812 0.714666

Obp28a 2L:7426866 . . . 7497360 10 1 3 0.930950 0.874085

Obp44a 2R:4018938 . . . 4022588 2 1 12 0.921412 0.871778

Obp46a 2R:6194535 . . . 6209405 4 1 9 0.945767 0.887918

Obp47a 2R:6785747 . . . 6829206 4 1 5 0.893760 0.843170

Obp47b 2R:7189426 . . . 7197334 4 1 12 0.992088 0.964959*

Obp49a 2R:8574114 . . . 8645028 10 1 7 0.997471 0.983415*

Obp50a-c 2R:10257836 . . . 10260511 3 3 6 0.799992 0.753622

Obp50d 2R:10257836 . . . 10261264 4 1 5 0.793360 0.753622

Obp50e 2R:10262077 . . . 10299077 5 1 5 0.834610 0.786371

Obp51a 2R:10911880 . . . 10943746 2 1 4 0.603538 0.603538

Obp56a-c 2R:15585228 . . . 15588573 3 3 11 0.937764 0.879417

Obp56d-f 2R:15573111 . . . 15602373 9 3 3 0.895767 0.843170

Obp56g 2R:15656966 . . . 15671525 2 1 9 0.747767 0.714666

Obp56h 2R:15703059 . . . 15720473 2 1 10 0.840740 0.786371

Obp56i 2R:15703059 . . . 15768425 4 1 3 0.687717 0.676687

Obp57a-c 2R:16391061 . . . 16426819 10 3 4 0.951438 0.892469

Obp57d-e 2R:16413832 . . . 16449834 15 2 2 0.959350 0.903065

Obp58b-d; Obp59a 2R:18554661 . . . 18595219 11 4 5 0.988070 0.958908*

Obp69a 3L:12332216 . . . 12410803 7 1 9 0.990356 0.962628*

Obp73a 2R:5950890 . . . 6004962 6 1 9 0.986228 0.957306*

Obp76a 3L:19561538 . . . 19683092 20 1 3 0.999983 0.999483*

Obp83a-b 3R:1786045 . . . 1852962 6 2 4 0.839688 0.786371

Obp83cd; Obp83ef; Obp83g 3R:1880432 . . . 2129375 29 3 3 0.999967 0.999483*

Obp84a 3R:3050136 . . . 3113354 12 1 6 0.998575 0.985275*

Obp93a 3R:16774436 . . . 16966087 33 1 2 0.997325 0.983415*

Obp99a 3R:25456026 . . . 25501141 7 4 5 0.976460 0.933660

Obp99b-d 3R:25444756 . . . 25548111 17 3 2 0.97025 0.923146

Average 8.3 1.7 5.9

NOTE.—The “no. of genes” and “no. of OBPs” columns indicate the total number of protein coding and OBP genes in the clusters, respectively. The “no. of genomes
conserved” column represents the number of Drosophila species where the gene cluster region is identified.

*Significant clusters (adjusted pBLS> 0.95).
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FIG. 1.—Frequency distribution of the 3,434 Drosophila clusters. Frequency distribution of the 3,434 Drosophila clusters, which is conditioned on the

cluster size (i.e., number of genes per cluster) and the BLS value (total time of cluster conservation in million years ago). The 58 significant clusters after

correcting for multiple testing are depicted in red.

Table 2

The 15 GO Terms Most Overrepresented among Genes Clustered with OBPs

GO Term No. of Population

Count

No. of Sample

Count

P Value Adjusted P Value

Integral to plasma membrane 180 22 6.78e�14 1.06e�10*

Sodium channel activity 35 4 0.0022 0.4634

GTPase activator activity 62 5 0.0030 0.4634

Retinal binding 6 2 0.0036 0.4634

Phototransduction 41 4 0.0040 0.4634

Metal ion transport 130 7 0.0047 0.4634

Monovalent inorganic cation transport 137 7 0.0062 0.4634

Locomotion 253 10 0.0071 0.4634

Neurotransmitter receptor activity 49 4 0.0075 0.4634

Locomotory behavior 144 7 0.0081 0.4634

Axon 52 4 0.0093 0.4634

Regulation of neurotransmitter secretion 10 2 0.0104 0.4634

Regulation of neurotransmitter transport 10 2 0.0104 0.4634

Sodium ion transport 56 4 0.0120 0.4634

Calcium-dependent phospholipid binding 11 2 0.0126 0.4634

NOTE.—The “Population Count” and “Sample Count” columns indicate the number of genes with GO annotation in the population (9,353
genes in the 3,434 Drosophila clusters) and sample (162 in genes clustered with OBPs), respectively. The “P value” column indicates the proba-
bility of observing such number of genes in the sample, given the number of genes in the population. *Overrepresented GO terms (adjusted
P< 0.05).
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effects on cluster conservation. We found that the pBLS value

of the clusters including OBP genes significantly correlates

with EB (Spearman’s rank correlation coefficient: r¼ 0.548,

P¼0.001) and EN (Spearman’s rank correlation coefficient:

r¼0.403, P¼0.024), but not with EI (Spearman’s rank

correlation coefficient: r¼ 0.087, P¼0.641) (table 3).

Nevertheless, these variables are highly intercorrelated:

broadly expressed genes often exhibit high EI (Newman

et al. 2006) and low EN (Lehner 2008). In addition, other

factors, such as gene age (GA), may also hinder the causes

of cluster conservation. For example, newly arising genes

exhibit low EI and high gene loss rates (Wolf et al. 2009).

We determined the causal relationships among the factors

involved in the OBP gene organization using path analysis

(fig. 2), and assigning GA as the exogenous variable (i.e.,

not affected by factors of the underlying model). After factor-

ing out the intercorrelated variables, EB (b¼0.423, P¼ 0.004)

and EN (b¼0.290, P¼0.043) remained significant, that is,

clusters including OBP genes are expressed in many tissues,

exhibiting high stochastic fluctuations in transcript abun-

dance, regardless of their EI (b¼�0.032, P¼0.821).

Interestingly, this result differs from the genome-wide analy-

ses (3,434 clusters), where the pBLS value is affected by the EI

(b¼ 0.201, P<2e�16) and EB (b¼ 0.114, P¼2e�9), but

not by the EN (b¼ 0.011, P¼0.489). However, the transcrip-

tional effects on both data sets (including or not OBP genes)

are not directly comparable, because they contain a different

number and type of clusters. To evaluate whether EI and EN

are specific features of the OBP gene organization, we thus

performed computer simulations. We found that the EN effect

(path coefficient from EN to pBLS) is higher for clusters includ-

ing OBP genes than for random samples of 31 comparable

clusters (P¼0.035), whereas the EI effect is lower (P¼0.034).

Unlike comparable genome-wide clusters, clusters with OBP

genes are not only influenced by EB but also by the EN, which

does not support the clustering model of EN minimization.

OBP Genes in Conserved Clusters Also Exhibit Elevated
Levels of EN

We analyzed whether the positive relationship between EN

and cluster conservation remains significant after excluding

non-OBP genes from the 31 conserved clusters. For that,

we controlled for intercorrelated expression features.

For example, we found that OBP genes in clusters with low

pBLS, such as the Obp22a and Obp50a genes, are often tran-

scribed in sexual tissues, which may suggest that the OBP

gene organization has an SSE component (Spearman’s rank

correlation coefficient: r¼�0.420, P¼ 0.017; fig. 3A).

However, we found that this association is just a by-product

of the OBP GA (partial correlation analysis, t¼�1.262,

P¼0.219; fig. 3B), supporting the observation that newly

arising genes often exhibit an SSE pattern (Yeh et al. 2012).

Actually, only the EI and EN of the OBP genes are directly

associated with cluster conservation (partial correlation analy-

sis, t¼�2.831 and t¼2.382, P¼0.009 and P¼0.025, re-

spectively). Overall, it supports the idea that EN may play a

major role in shaping the OBP gene organization.

Clusters Including OBP Genes Exhibit Distinctive
Transcriptional Regulation by High-Order Chromatin
Structures

We studied the effect of high-order chromatin structures (i.e.,

the nine specific chromatin states defined in Kharchenko et al.

[2011]) on the conservation of clusters including OBP genes.

We found a significant positive relationship between the pBLS

Table 3

Summary of the Associations between pBLS and EB, EI, and EN

OBP Clusters Clusters with OBPs All Clusters

BC PC BC PA PA

EB r¼0.099 (P¼ 0.596) t¼ 1.770 (P¼0.089) r¼ 0.548 (P¼ 0.001) b¼ 0.423 (P¼0.004) b¼ 0.114 (P¼ 2.3e�9)

EI r¼�0.197 (P¼ 0.288) t¼�2.831 (P¼0.009) r¼ 0.087 (P¼ 0.641) b¼�0.032 (P¼0.821) b¼ 0.201 (P< 2e�16)

EN r¼0.138 (P¼ 0.458) t¼ 2.382 (P¼0.025) r¼ 0.403 (P¼ 0.024) b¼ 0.290 (P¼0.043) b¼ 0.011 (P¼ 0.489)

NOTE.—Relationship between pBLS and the EB, EI, and EN. The “OBP clusters,” “Clusters with OBPs” and “All clusters” columns show results for clusters of OBP genes,
for clusters including OBP genes, and for all 3,434 Drosophila clusters, respectively. “BC,” “PC,” and “PA” stand for bivariate correlation, partial correlation, and path analysis,
respectively.
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FIG. 2.—Transcriptional environment in clusters that include OBP

genes. Path analysis model for the causal relationships among cluster con-

straint probability (pBLS), the minimum age of a gene in the cluster (GA),

the EB, the EI, and the EN. The GA is the exogenous variable. The numbers

on the lines indicate the path coefficients. Solid and dashed arrows

represent significant and nonsignificant relationships.
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value of these clusters and the proportion of nucleotides in the

TE chromatin state (Spearman’s rank correlation coefficient:

r¼0.480, P¼0.006; fig. 4A). This chromatin state exhibits a

distinct composition of proteins and histone marks

(Kharchenko et al. 2011). As JIL-1 kinase is preferentially lo-

calized at the coding (Regnard et al. 2011) and promoter

(Kellner et al. 2012) regions of the regulated genes, we ana-

lyzed its binding intensity separately for the coding, untrans-

lated region, intergenic and intronic regions of the 31 focal

clusters. We observed a strong positive correlation between

the pBLS value and the JIL-1 binding intensity, though, after

correcting by multiple testing, only remains statistically signif-

icant for the coding regions (Spearman’s rank correlation

coefficient: r¼0.617; P¼ 2e�4; fig. 4B). Taken together,

these results suggest that the transcriptional regulation by

high-order chromatin structures maintains the OBP gene orga-

nization to chromatin domains with the appropriate transcrip-

tional environment (supplementary fig. S2, Supplementary

Material online).

We further examined whether the high JIL-1 binding inten-

sity and TE chromatin state represent particular features of

clusters including OBP genes. Remarkably, the genome-wide

cluster data set also shows significant correlation between the

pBLS values and the JIL-1 binding intensities (Spearman’s rank

correlation coefficient: r¼ 0.305; P< 2e�16) and TE chroma-

tin state (Spearman’s rank correlation coefficient: r¼ 0.312;

P<2e�16). However, our computer simulations show that

the correlation strengths are much higher for clusters includ-

ing OBP than for random groups of 31 comparable clusters

(P< 1e�5 and P¼0.010; fig. 4C and D for the TE chromatin

state and for JIL-1), which suggests that the JIL-1 binding in-

tensity and TE chromatin state are relevant factors explaining

the conservation of clusters including OBP genes.

Discussion

Cluster Inference

Several methods have been developed to detect gene clusters

conserved across a phylogeny (Lathe et al. 2000; Tamames

2001; Zheng et al. 2005). These methods differ in their un-

derlying biological assumptions; therefore, their appropriate-

ness depends on the biological question to be addressed. For

example, the Synteny Database (Catchen et al. 2009) uses

synteny information (i.e., it requires the same gene order

and orientation across two genomes) to infer ortholog and

paralog relationships, whereas the original version of the

OperonDB algorithm (Ermolaeva et al. 2001) searches for clus-

ters of physically close gene pairs conserved across different

species to predict operons. The latter version of OperonDB

(Pertea et al. 2009) improves the sensibility of the method

by allowing rearrangement events inside the candidate cluster

regions. There is compelling evidence indicating that some

functional clusters can undergo internal rearrangements with-

out transcriptional consequences (Itoh et al. 1999; Lathe et al.

2000); this observation led to the formation of the gene team

model (Luc et al. 2003), which we applied here to infer

Drosophila clusters.

Nevertheless, the gene team model implemented in the

MCMuSeC software (Ling et al. 2009) also has some statistical

problems. First, the inferred clusters can contain overlapping

information, that is, a particular gene may be present in more

than one cluster. Because such a feature violates the indepen-

dence premise assumed for most statistical tests, we have

confirmed that all of our conclusions hold after excluding

overlapping clusters (1,634 out of 3,434 clusters have non-

overlapping information, and 25 of these encompass OBP

genes). Second, the statistical power to estimate conserved

gene clusters increases with the species divergence time.

Indeed, the 12 Drosophila species (Drosophila 12 Genomes

2007) used in this study are not divergent enough to detect

small clusters (i.e., up to three genes). To detect such small

clusters, it would be more appropriate to use more divergent

species. However, the 12 Drosophila genomes provide a rea-

sonable tradeoff between the quality of the assemblies and

annotations (e.g., identification of orthologous and low se-

quence fragmentation in scaffolds) and the statistical power.

This issue has important implications because two main classes

of clusters have been described (Weber and Hurst 2011): small

clusters of highly coexpressed genes (likely constrained by

shared CREs) and large clusters of housekeeping and unre-

lated (i.e., nonhomologous) genes. Despite using genome

data from 12 Drosophila species small-size clusters may be

underestimated, this bias should not be relevant for the

second cluster class. Thus, our results do not discard a relevant

role of shared CREs in shaping genome architecture, but

rather highlight the importance of high-order chromatin

coregulatory mechanisms in the OBP gene organization. We

mostly found large clusters (an average of 6.4 and 8.3 genes

for clusters with and without OBP genes, respectively), which

comprise a number of nonhomologous genes that exhibit

high gene EB; features that characterize housekeeping gene

clusters (i.e., the large-size cluster class).
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FIG. 3.—Genomic features of OBP genes. Relationship between pBLS

and the SSE value using (A) all OBP genes and (B) after removing the recent

OBP duplicates (red points).
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Clusters Including OBP Genes Are Conserved by
Functional Constraints

We identified 31 clusters including—at least—one OBP gene,

and ten remained significant after correcting for multiple test-

ing (table 1). Although natural selection may appear as the

most immediate explanation for the conservation of the OBP

genome organization, it could also represent a by-product of

the uneven distribution of rearrangements along chromo-

somes (Ranz et al. 2001; Pevzner and Tesler 2003; Ruiz-

Herrera et al. 2006; Bhutkar et al. 2008). Indeed, orthologous

chromosome regions affected by a reduced number of rear-

rangements may maintain their cluster-like structure in the

absence of functional constraints (von Grotthuss et al.

2010). However, such an explanation is unlikely to be the

main reason for the maintenance of clusters including OBP

genes. Indeed, homologous chromosome regions depleted

in rearrangement breakpoints (and hence in rearrangements)

are not common across Drosophila species (Ranz et al. 2001;

Bhutkar et al. 2008; Schaeffer et al. 2008). In fact, the recom-

bination rate, which is highly associated with the rearrange-

ment rate, widely varies among closely related species (True

et al. 1996). Consistently, we found no association between

the recombination rate (Comeron et al. 2012) and pBLS values

across the 31 focal clusters (Spearman’s rank correlation co-

efficient: r¼�0.14, P¼ 0.47), or across all 3,434 Drosophila

clusters (Spearman’s rank correlation coefficient: r¼0.02,

P¼0.16) (supplementary fig. S3, Supplementary Material

online). This lack of association results from the fact that we

evaluated the statistical significance of the clusters using the

observed divergence time of microsynteny conservation as null

distribution. As this empirical null distribution depends upon

the mode of chromosome evolution, it already captures the

information of the uneven rearrangement distribution ob-

served along Drosophila chromosomes. Therefore, it is unlikely

that the OBP gene organization was a by-product of the rear-

rangement rate heterogeneity. In contrast, it may be con-

strained by natural selection for some functional meaning.

As conserved clusters of functionally or transcriptionally

linked genes may include nonparalogous members, we de-

fined a cluster as a group of genes that maintain their neigh-

borhood across species regardless of whether they are

homologous. This approximation is different from that used

by Vieira and Rozas (2011) who only consider clusters of OBP

paralogs. These authors observed that OBP genes are found
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physically closer than expected by chance, although OR (odor-

ant receptors) are not. In contrast, we found that some ORs

are clustered with other nonhomologous genes (supplemen-

tary tables S1 and S3, Supplementary Material online).

Similarly, clusters of OBP paralogs are conserved, but embed-

ded within large arrangements that also include other non-

OBP genes (table 1). For example, one of the most conserved

Drosophila clusters includes lush (table 1 and fig. 5), which

encodes an OBP involved in social aggregation and mating

behavior (Xu et al. 2005), but also Shal (a potassium channel),

ash1 (involved in the ovoposition and oogenesis), asf1 (den-

drite morphogenesis), and tey (synaptic target recognition).

Noticeably, the genes within this cluster also exhibit similar

patterns of transcription across different developmental

stages (fig. 5; Graveley et al. 2011). Overall, it suggests that

some functional and transcriptional links maintain the lush

genome cluster.

High-Order Chromatin Regulatory Mechanisms Provide
the Appropriate Transcriptional Environment for Cluster
Maintenance

Chromatin domains may restrict the location of genes to re-

gions having the appropriate transcriptional environment

(Noordermeer et al. 2011; Thomas et al. 2011), which may

maintain the OBP gene organization. Nonhistone chromatin

proteins regulating the chromatin state are therefore of par-

ticular interest. For example, lamin Dm0, which physically

interacts with JIL-1 kinase (Bao et al. 2005), binds to gene

clusters conserved across Drosophila species (Ranz et al.

2011). Remarkably, we found a strong association between

the JIL-1 binding intensity and the maintenance of clusters

including OBP genes (Spearman’s rank correlation coefficient:

r¼0.617, P¼0.010; fig. 4D). Moreover, genes regulated by

JIL-1 kinase exhibit elevated levels of EB (Regnard et al. 2011)

and EN (JIL-1 releases the paused RNA polymerase II at the

proximal-promoter (Kellner et al. 2012), favoring transcrip-

tional elongation bursts that increase EN [Becskei et al.

2005; Kaern et al. 2005; Rajala et al. 2010]). Consistent

with this idea, we have shown that the OBP gene organization

is associated with elevated levels of EB (P¼0.004) and EN

(P¼ 0.043).

It has been shown that housekeeping genes may be parti-

cularly confined to chromosome regions possessing the ap-

propriate transcriptional environment; indeed, mutations that

alter their location may exert important deleterious pleiotropic

effects in diverse tissues and developmental stages (Wang and

Zhang 2010). Batada and Hurst (2007) have suggested that

broadly expressed genes are located in chromosome regions

with low stochastic transcriptional fluctuations to minimize

the deleterious effects of EN. However, the functional con-

straints underlying the conservation of the OBP gene organi-

zation do not support this hypothesis. First, clusters with OBP

genes often exhibit a high proportion of broad-type pro-

moters, which yield elevated levels of EB. Although these

two features (broad-promoters and EB) are associated with

reduced levels of EN (Tirosh and Barkai 2008; Wang and

Zhang 2010; Xi et al. 2011), we detected a positive relation-

ship between the stochastic transcriptional fluctuation (EN)

FIG. 5.—The cluster including the lush (Obp76a) gene. The cluster (pBLS value of 0.999983) including lush (Obp76a) and other 19 non-OBP genes (blue

boxes). The coordinates (from 19,570k to 19,680 k) correspond to the 3L chromosome of Drosophila melanogaster. The intensity peaks below the genes

indicate the EI values across 30 developmental stages (in different colors).
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and the pBLS value of these clusters (table 3). Second, al-

though EN can be alleviated by increasing EI (Lehner 2008),

the most conserved clusters include OBP genes not only with

the highest EN (partial correlation analysis, P¼ 0.025) but

also with the lowest EI (partial correlation analysis;

P¼0.009; table 3). In fact, the EI effect on pBLS is lower for

clusters with OBP genes than for random samples of 31 com-

parable clusters (P¼ 0.034). Finally, even though head-to-

head gene pair arrangements can minimize EN (Wang et al.

2011), clusters with OBP genes do not exhibit a significant

correlation between the pBLS value and the proportion of

head-to-head gene pair frequency. Therefore, a suitable tran-

scriptional environment need not always have reduced levels

of EN; indeed, a clustering model based on elevated EN levels

may explain the OBP gene organization.

Some theoretical models predict that, under certain circum-

stances, EN can even be beneficial as a source for natural

variation, particularly for proteins acting in changing environ-

ments (e.g., stress response proteins such as oxidative kinases

[Dong et al. 2011]). Some empirical results are consistent with

this model. In yeast, for example, the elevated EN of plasma-

membrane transporters appears to be driven by positive se-

lection (Zhang et al. 2009). The genes clustered with OBPs also

encode membrane proteins and, interestingly, many of these

proteins have transporter activity (table 2). In fact, the exten-

sive transcriptional diversification of the OBPs suggests that,

apart from transporting odorants of the external environment,

some OBPs also act as general carriers of hydrophobic mole-

cules through the extracellular matrix (Arya et al. 2010).

Therefore, higher EN levels may allow for the detection of

wider ranges of concentrations of hydrophobic molecules.

Fluctuations in OBP transcript abundance may represent an

important mechanism to increase phenotypic plasticity.

Mutations affecting OBP mRNA stability (Wang et al. 2007)

and reduced OBP expression levels (Swarup et al. 2011) can

actually elicit different Drosophila behaviors to particular odor-

ants, that is, fluctuations in OBP transcript abundance can play

a key role in the combinatorial nature of the olfactory coding

process. Therefore, natural selection may have favored assem-

bling OBP genes in chromosomal regions with high EN, which

in turn may have led to the observed structure of OBP genes in

clusters of functionally and transcriptionally related genes.

Supplementary Material

Supplementary tables S1–S3 and figures S1–S3 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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