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Abstract

Background: The presence of lipid besides muscle fibres facili-
tates the energy supply for exercise, but it is also indicative of in-
sulin resistance in the untrained. Muscle lipid is associated with 
increased dietary energy: hyperlipidic diets induce an increase in 
intramyocellular lipid deposition in skeletal muscle.

Methods: In the present study we analyzed the changes in soleus 
(a red-fibre muscle) intracellular muscle content under a hyperli-
pidic (cafeteria) diet in Wistar rats. We also analyzed in parallel the 
mitochondrial content a relative index of energy output capability.

Results: Cafeteria diet-fed rats contained more lipid and mitochon-
dria per unit of muscle section area than controls.

Conclusions: The correlation found in the increases of muscle lipid 
and mitochondria hit at this increase as an adaptation of muscle to 
oxidize excess energy substrates under conditions of excess energy 
availability, probably contributing to adaptive thermogenesis.
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Introduction

Muscle accounts for about 40 % of body weight, both in rats 
[1] and humans [2], thus constituting the largest organ/tissue 
of normal weight individuals. Muscle contains both struc-
tural lipids (mainly membrane phospholipid and cholester-
ol), and reserve-related lipids (mainly triacylglycerols). The 
latter include two different compartments: intramyocellular 
lipid (IMCL) and white adipose tissue cells. Muscle adipose 
tissue is often interspersed between muscle bundles and in 
contact with its surface and vessels [3].

Muscle reserve lipid supplies energy to sustain the mus-
cle needs, especially during endurance exercise [4], a role 
largely sustained by IMCL. The content of IMCL (and mi-
tochondria) in white-fibre glycolytic muscle is lower than 
in red-fibre oxidative muscle; since the main energy supply 
comes from glycolysis in white- and fatty acids in red-mus-
cle fibres. The amount of lipid present in muscle is a critical 
factor for the duration of exercise endurance activity because 
it supplies a large part of the energy used in red-fibre muscles 
[5].

Hyperenergetic diets, i.e. hyperlipidic diets, tend to over-
come the ability of the ponderostat system to maintain the 
mass of body energy reserves [6] when administered for long 
periods of time. This helps increase muscle fat deposition in 
both compartments IMCL and adipose tissue cells. Cafeteria 
diet, a self-selected highly palatable diet [7], is hyperener-
getic because it contains a high proportion of lipid, selected 
in excess by the rats, whilst the proportions of protein and 
carbohydrate ingested are better regulated and comparable 
to those of controls fed rat chow pellets [8]. Rats with ac-
cess to a cafeteria diet accumulate a high amount of body fat 
[9], primarily found in large white adipose tissue masses, but 
also in disperse or small anatomically distinct masses [10]. 
In general, hyperlipidic diets increase the storage of fat in 
other organs such as liver and muscle [11], increasing IMCL 
[12].

The actual meaning of increased IMCL by hyperlipidic 
diets is unclear, since excess lipid may hamper the normal 
operation of muscle, as found in some cardiomyopathies 
[13] in which heart muscle function is affected by deposits 
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of very long-chain fatty acids in triacylglycerols [14]. It may 
be speculated that excess muscle lipid accumulation is a con-
sequence of high fatty acids availability, and their use as fuel 
for muscle contraction in insulin resistance [15]. However, 
under standard conditions blood-carried glucose, and lipo-
protein triacylglycerols (supplying fatty acids in addition to 
those carried bound to albumin) seem enough to maintain the 
muscle in full operative conditions.

In the present study we intended to analyze the IMCL 
content of the soleus, a red-fibre muscle, and its modula-
tion by a limited exposure to a hyperlipidic cafeteria diet. 
We limited the extension of dietary lipid exposure to ob-
tain a sizeable overweight, but not full-blown obesity [16] 
characterized by massive metabolic derangement. This par-
ticular muscle was selected because its isolation allows for 
a “clean” extraction, free of perimuscular and interspersed 
adipose tissue.

 
Materials and Methods

Animals and diets

Wistar 60-day old male rats (Harlan-Interfauna, Sant Feliu 
de Codines, Spain) were used. They were maintained under 
standard conditions (21 - 22 °C, 50 - 60 % relative humidity, 
and 12 h light/dark cycle) in two-rat cages. A 6-rat control 
group was maintained under these conditions, and fed ad 
libitum with standard rat chow (maintenance type, Panlab, 
Barcelona, Spain) for 30 days. A second group was given a 
simplified cafeteria diet [17] in addition to the standard chow 
for 30 days, when the cafeteria-fed rats were already over-
weight [18].

All animal handling procedures were carried out fol-
lowing the guidelines established by the EU, and the Span-
ish and Catalan Governments. The Ethics Committee of the 
University of Barcelona approved the experimental setup 
and procedures. 

Muscle dissection and lipid analysis

At the end of the 30-day diet exposure period, the rats were 
killed by decapitation. The left leg soleus muscle was im-
mediately exposed and bathed (first in situ and later 24 h 
in an container placed in ice, until processed) with chilled 
fixing solution (25 g/L gluraraldehyde and 20 g/L parafor-
maldehyde in 100 mM phosphate buffer pH 7.2) [19] dur-
ing the process of dissection and later storage. The right leg 
muscle was dissected and weighed, then frozen in liquid N, 
and kept at -80 ºC. Right-leg muscles were homogenized in 
trichloromethane-methanol (2:1 v/v) in the cold using a Pot-
ter-Elvejhem type all-glass homogenizer. The clear organic 
supernatant was used for the gravimetric estimation of total 
sample lipid [20].

Microphotographic analysis of intramyocellular lipid

The fixed tissues were treated with 10 g/L osmium tetrox-
ide [21] for 1 hour. Then the muscles were dehydrated with 
acetone and included in an epoxy resin (Eponate 12, Ted 
Pella Inc., Redding CA, USA). The hardened pieces were 
cut longitudinally in a microtome (Leica Ultracut, Wetzler, 
Germany) obtaining 60 nm thick sections. The cuts were ob-
served at 30,000 × magnification using a JEOL JEM-1010 
(Akishima, Japan) transmission electronic microscope. We 
obtained 45 microphotographs from each sample following 
an aleatory protocol for the selection of the cuts and fields. 
The resulting images were processed with the AnalySIS (Soft 
Imaging Systems, Munster, Germany) program after manual 
delimitation of both lipid vacuoles and mitochondria.

Statistical analyses were carried out using the paired 
Student’s t test.

 
Results

Total lipid content in soleus did not shown differences be-

Figure 1. Transmission electronic microscope photographs 
of soleus muscles of male Wistar rats fed control (A, top) or 
cafeteria diet (B, bottom).The cuts were stained with OsO4. M: 
mitochondria; L: lipid droplet. Magnification: the bar represents 
1000 nm.
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tween groups (3.77 ± 0.28 mg in control rats and 4.59 ± 0.39 
mg in cafeteria-fed rats. Figure 1 shows representative mi-
crophotographs of the soleus muscles of Wistar male rats fed 
control or cafeteria diets. The number/size of lipid droplets 
and mitochondria were more abundant in the cafeteria diet-
fed animals. The quantitative data are summarized in Table 
1, where the number of lipid droplets and their size (as well 
as those of mitochondria) are presented referred to the stan-
dardized microphotograph field. In spite of the means being 
higher for both series of parameters in cafeteria than in con-
trol rats, the differences were not significant. However, when 
comparing the combined lipid or mitochondrial areas per 
field between both dietary groups, the differences became 
significant, i.e. cafeteria diet-fed rats contained more lipid 
and mitochondria per unit of muscle section area than con-
trols. The correlation between the numbers of lipid droplets 
per field versus the number of mitochondria per field resulted 
in P values of 0.144 (not significant) for controls, 0.021 for 
cafeteria and 0.008 for all animals (control + cafeteria) com-
bined. This shows that the counts for mitochondria and lipid 
droplets are correlated, irrespective of diet, since the sizes 
of both mitochondria and lipid droplets were similar in both 
dietary groups (albeit slightly larger, but not significantly, in 
cafeteria muscles) we can safely assume that the number of 
lipid droplets and mitochondria in the muscle were corre-
lated, increasing in parallel with cafeteria feeding, since the 
total amount of lipid in the (right leg) muscles of cafeteria-
fed rats were higher than in controls.

Discussion

The increase in lipid content of the whole body and indi-

vidual tissues under a hyperlipidic diet has been repeatedly 
described in the literature [22], comprising increases in total 
muscle lipid [23], and even in IMCL [24]. This increase is 
currently attributed to an excessive availability of lipid, and 
the need to store it somehow/somewhere, both as reserve 
and as a way to minimize, in the short term, its potentially 
lipotoxic effects. However, muscle lipid has a well-defined 
function, that of supplying red-fiber muscles with a reliable 
source of fuel for sustained activity; thus, an excess of lipid 
deposition may induce a loss of efficiency by hampering 
muscle function [25]. It may be construed that lipid accumu-
lation in muscle intracellular space may result in the equiva-
lent of hepatic steatosis, in that excess lipid storage impairs 
liver function [26]. In addition, the special fibrous nature of 
muscle leaves little space for lipid storage, which in some 
way must “compete” for space with other cell organelles 
such as mitochondria, endoplasmic reticulum, sarcolemma 
sacs and glycogen granules.

Lipid accumulation in soleus muscle is detectable and 
statistically significant under conditions of excess lipid 
availability and enhanced storage elsewhere; however not 
to the extent observed in other tissues such as liver or, spe-
cially, adipose tissue [27]. The parallel rise in the number of 
mitochondria marks another important difference, unparal-
leled in other lipid-storing tissues, since its function is clear-
ly oxidative and counterpoised to the storage of “excess” 
energy. An increased number of (normal-size) mitochondria 
hints to an increased capability of ATP synthesis for muscle 
operation.

However, both control and cafeteria diet-fed rats were 
kept in limited spaces (cages) in which no sustained exercise 
was practically possible (neither observed), which does not 
justify any increase in power output (ATP) capability that 

Parameter units 30 day-control diet 30 day-cafeteria diet P

Mean lipid droplet area μm2 0.014 ± 0.001 0.016 ± 0.001 NS

Number of lipid droplets per field 19.1 ± 3.71 23.1 ± 5.11 NS

Lipid droplet area per field
μm2 0.171 ± 0.083 0.244 ± 0.012 < 0.001

% of FSA 1.24 ± 0.06 1.77 ± 0.09 < 0.001

Mean mitochondria area µm2 0.057 ± 0.003 0.064 ± 0.003 NS

Number of mitochondria per field 10.3 ± 1.91 11.1 ± 1.01 NS

Mitochondrial area per field
µm2 0.530 ± 0.018 0.682 ± 0.029 < 0.001

% of FSA 3.84 ± 0.14 4.94 ± 0.212 < 0.001

% of FSA = percentage of the observed field = s surface area (13.82 μm2).

Table 1. Lipid and Mitochondria Content of Soleus Muscle of Control and Cafeteria Diet-Fed Male Rats
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a higher number of mitochondria represent [28]. Continued 
exercise increases muscle mass, mitochondria and power 
output; but here we observe this potential increase in power 
output without the previous stimulus of exercise. It may be, 
thus, postulated, that the higher accumulation of lipid in 
muscle triggers mitochondriogenesis, but the ultimate rea-
son for this increase remains obscure.

Thermogenesis is the main mechanism for adjusting en-
ergy availability and energy needs in mammals (in higher 
proportion in the smaller ones) by converting excess nu-
trients into heat. This role is usually carried out, at least in 
rodents, mainly by brown adipose tissue [29], which uncou-
pling mechanism is nowadays widely known [30]. Howev-
er, brown adipose tissue thermogenesis does not explain a 
significant part of whole body adaptive thermogenesis, in-
cluding the possible role of liver [31], overall inefficiency 
elicited by thyroid hormones [32], and muscle activity [33]. 
A higher energy wasting by muscle has been attributed to 
increased expenditure in maintaining muscle tone [34], but 
no “chemical” mechanisms have been advanced to explain 
the role of muscle in wasting energy in thermogenic process-
es. The usual way of heating muscle up to fully functional 
temperature remains shivering thermogenesis [35], directly 
related to cold exposure.

Recent studies have shown that muscle thermogenesis 
may represent a significant proportion of total body heat 
production, especially because of its large proportion versus 
body weight [36]. Analysis of muscle mitochondria opera-
tion in obese rodents has shown an increase in inefficiency 
[37] which may result in permanent metabolic damages in 
severe obesity [38]. 

The role of muscle as wasting energy organ for excess 
available energy has not been sufficiently explored, prob-
ably because of its dispersion, different structure, fibre com-
position and interspersed conjunctive and adipose tissues. In 
addition a small contribution of mitochondrial inefficiency 
may account for a significant proportion of thermogenesis 
in small animals [39] because of their total muscle large 
weight, an effect probably magnified in humans because of 
less significant contributions of brown adipose tissue [40]. 

In this context, the parallel increase in muscle lipid and 
mitochondria makes sense, and may help explain the oxi-
dation of excess energy in muscle to produce heat. So far, 
we don’t know precisely the mechanism of energy wasting 
[41], but the machinery is in place, responds to a clear meta-
bolic challenge and may explain the postulated implication 
of muscle in “chemical” thermogenesis.
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