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1. Introduction

Life is complicated. In order to survive, living systems need to keep the out of

equilibrium condition that allows them to maintain their internal structures and

the gradients in concentration, temperature and other intensive quantities nec-

essary to their survival. Therefore, when look from the outside living systems

look complicated. Even when looking at monocellular organisms, such as bac-

teria, several internal structures are involved in many mechano-electro-chemical

processes that happen at the same time leading to a quite entangled scenario.

However, “life is complex but not as complicated as we make it1“, and a pos-

sible route to gain insight into the underlying mechanisms keeping living systems

alive is provided by disentangling the overall dynamics into subparts and to look

at them separately. For example, one the the most streaking feature performed

by living beings is the generation of local mechanical forces. Such an ability al-

lows living beings to perform several tasks such as displacing themselves and to

remodel their internal structure by displacing the subunits that compose the cell.

The latter process, called intracellular transport, involves the active displacement

of molecules, proteins, organelles as well other internal cellular structures. Such

an active and directional transport relies on the mechano-chemical energy trans-

duction of molecular motors that actively displace along actin filaments or mi-

crotubules involved in the cytoskeleton2. The energy supply of such nano-metric

motors3 relies on the hydrolization of ATP that provide & 10kBT of energy for

every hydrolyzed ATP.

Even though a single molecular motor can generate mechanical work by itself,

1Quote from www.soulseeds.com
2The cytoskeleton is composed by different filaments in between those actin filaments and

microtubules and it contributes in the mechanical properties of the cell, including cell shape
3The typical size of the molecular motors active site is of the order of ∼ 10nm
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1. INTRODUCTION

cellular tasks are generally performed by teams of motors. Thus, much effort

has been done to understand the behavior of motors ensembles. Experimental

data [32] as well theoretical models [40] have shown that bunches of motors can

give rise to dynamical regimes such as clustering [17], bidirectional motion [8]

and even jamming [57], [23]. However, up to now few attention has been given

to the environment motors move in. Due to motor reduced dimensions, ≃ nm,

velocity, ≃ µm/sec and the high viscosity of the cytoplasm ≃ 0.1Pa · sec molec-

ular motors move in the low Reynolds regime that allows for the onset of long

range interactions between motors provided by the fluid flow they generate by

displacing. On the other hand cytoplasm is a quite crowded fluid due to the high

concentration of suspended particles. Proteins, molecules, vesicles and organelles

are suspended in the cytoplasm and heterogeneities in their concentration locally

affects the local properties of the cytoplasm that alter the transport properties

of molecular motors as it happens for tracers diffusing in porous media.

1.1 Molecular motors

Due to their ability of generating mechanical forces, molecular motors are quite

spread in living systems and they have been found in both animal and plant,

Prokaryotic as well Eukariotic cells [46]. Tens of different molecular motors has

been identified up to now. In order to distinguish between their main character-

istics molecular motors are divided into families according to the filament they

move on and to their displacing direction. In fact, molecular motors can actively

displace only when they are bound to specific filaments namely, microtubules

and actin filaments. While microtubules are characterized by a larger persis-

tence length, λ = 6mm, and, generally, are involved in the long-range transport,

actin filaments are more flexible, λ = 15µm, and are responsible for the local

transport [46]. Despite the many differences in their chemical composition micro-

tubules and actin filaments share two properties quite relevant for the dynamics

of molecular motors. Both of them are made by smaller building blocks, actin

monomers for actin filaments, and tubuline dimers, for microtubules, that pro-

vide actin filaments as well microtubules with a periodic structure, see fig 1.1.

Moreover, actin monomers as well tubulin dimer have an intrinsic polarity that,

2



Figure 1.1: actin filaments (left) and microtubules (right) structure and dynamics.

on one hand leads to the onset of an overall polarity of both actin filaments

and microtubules, and on the other it guides the binding of molecular motors

hence enforcing their motion on a determined direction as compared to the fila-

ment intrinsic polarity. Therefore motors are grouped according to the direction

the displace along filaments: Kinesins displace towards the microtubule fast-

polymerizing (plus) end while Dyneins moves to the slow polymerizing (minus)

end. Myosins move preferentially towards the “plus” end of actin filaments [46].

Single motor experiments have shed light on motors trajectories. Optically

trapped beds bound to molecular motors have shown a saltatory trajectory where

very quick steps, whose length is determined by the spatial periodicity of the fil-

ament motor displace on, are performed interspersed between longer pauses, as

3



1. INTRODUCTION

Figure 1.2: schematic view of an optical trapping set up (left) used to track
molecular motor. Right: typical trajectory of a molecular motor

shown in fig. 1.2. In particular molecular motors are grouped in two classes

according to the number of subsequent steps they can perform subsequently be-

fore detaching form the filament: processive motors can perform several steps,

≃ 10 − 100, before detaching while non-processive motors can perform just a

few steps, ∼ 1, before detaching. The processivity of the motors determines

which tasks motors are involved in. In general, processive motors are involved in

the intracellular transport where smaller teams of motors are responsible for the

transport of cargoes over typical distances that can reach the cell size. On the

contrary non processive motors are more suited for tasks involving massive num-

ber of motors such as muscle contraction. Such distinction of function is not strict

and there are several counterexamples such as mitotic spindle where processive

motors are massively involved in the onset and displacement of the mitotic spin-

dle [95] or cytoplasmic streaming where nonprocessive motors are responsible for

the transport of organelles and vesicles leading to a strong cytoplasmic flux [85].

When molecular motors act in teams the overall dynamics strongly depends

on how motors are coupled together. For example, when motors are rigidly bound

to a common backbone, the very long range interactions provided by the rigid

coupling enhance the overall processivity [58; 82], or to lead to oscillations when

an harmonic spring is linking the backbone motors pull on to a static wall [50].

Alternatively, when rigidly coupled motors pull on opposite directions they give

4



rise to an overall bidirectional motion of the cargo [8; 38]. On the other extreme,

motor-motor interaction can be very short-ranged as is for steric interactions. Mo-

tors pulling on membranes, where only the motors at the tip experience the load

provided by the membrane, tend to clusterize at the tip [17] and therefore steric

interaction will be relevant in determining the overall dynamics of the motors.

Alternatively molecular motors can interact through the fluid flow they generate

by displacing. In fact, by moving in the low Reynolds regime molecular motors

will experience the fluid flow generated due to displacement of near-by motors.

Such an interaction will decay algebraically, ∝ 1/r, with the distance therefore

leading to correlation on longer scale than the steric interaction but shorter than

the rigid coupling. Recently the hydrodynamic coupling between motors as been

characterized for motors moving according to a lattice gas scheme [44] where a net

velocity enhancement has been observed upon increasing the density of motors

on the filament.

1.2 Outline

In this thesis we characterize the behavior of molecular motors when the prop-

erties of the cytoplasm they displace through are not homogeneous or isotropic.

Anisotropies in the cytoplasm can be induced, for example, by net fluxes that

can be generated by the displacement of motors themselves [85] as well by other

mechanism such as remodeling of the overall cell shape [67]. In the cytoplasm

there are many molecules, proteins, vesicles and organelles in suspension. Such a

crowded environment develop inhomogeneities in the local properties of the cyto-

plasm. The different length scales that characterize such inhomogeneities might

led to different interplays according to the size of the cargo pulled by motors. For

example, suspended particles whose size is much smaller than the cargo size will

be experienced by the cargo as an enhancement in the effective viscosity [27; 76].

On the other hand, suspended particles of the same size or bigger than cargoes

will develop local structures that affect the space the cargo can explore and will

act like a porous medium.

In the first chapter we characterize the hydrodynamic coupling generated

by an ensemble of molecular motors displacing along a filament. By numerical

5



1. INTRODUCTION

simulations we show how such a coupling develops. The hydrodynamic coupling

between motor relies on the fluid flow generated by motors displacement. We dis-

cuss how the hydrodynamic coupling between motors depends upon the boundary

conditions provided by different geometries.

Motors do not always displace in the same direction, rather cargoes pulled by

teams of motors pulling on opposite directions has been observed to undergo a

bidirectional motion where the cargo moves back and forth due to the reorganiza-

tion of the force generated by the motors. In many cases the cargoes motors pull

on are vesicles or membrane-embedded organelles. In these cases motors exert

force on the cargo by pulling on molecular linkers embedded in the membrane

that link the tail of the motors to the membrane. Therefore, the displacement

of the linkers in the membrane will lead to a local flow of membrane that can

lead to an overall coupling between motors that will sum up to the one generated

by the displacement of the motors in the cytoplasm. In the second chapter we

develop a coarse grained description of a team of motors pulling on opposite di-

rections that are hydrodynamically coupled. Thanks to our coarse grained model

we characterize the overall dynamics of the system and we discuss the peculiar

features induced by the hydrodynamic coupling by comparing them against those

obtained in the case of rigidly coupled motors.

In the third chapter we characterize the dynamics of a single molecular motor

displacing in an inhomogeneous environment modeled as a varying section chan-

nel. In the limit in which the channel section is smoothly varying it is possible

to reduce the overall dynamics to that of a particle moving in a 1D effective

potential where the varying confinement enters as an entropic contribution to the

overall potential. Using this framework we characterize the dynamics of molec-

ular motors moving according to different schemes. The comparison between

the results obtained with the different models allows us to distinguish between

general behaviors and model dependent features.

6



2. Hydrodynamically-coupled

molecular motors

2.1 Introduction

When several motors are walking along the same biofilament they will experience

their mutual influence. For example, motors ahead and/or motors behind can

prevent or enhance forward as well backward stepping hence modulating the

overall motor velocity. Several experimental [32] as well theoretical [40] efforts

have clarified some of the possible scenarios. For example, it has been shown

that increasing the concentration of conventional kinesin motors on microtubules,

traffic jams will develop [23; 57]. On the other hand, pairs of conventional kinesin

rigidly coupled either via DNA strands, in motility assay1, or by microtubules,

in gliding assay2, have been observed to increase cargo processivity by reducing

the overall unbinding rate of the cargo [58; 82]. In the same experimental setup

an increase in the stall force was observed but motors didn’t show coordination:

no speed up has been observed.

Up to now, much attention has been payed to the case of rigidly coupled

motors. However, in many situations motors are weakly coupled. For example,

when motors are pulling on vesicles or organelles they are linked to the membrane

by binding to membrane-embedded molecules. Therefore, the coupling between

1Motility assay is an experimental setup where motors are attached to micrometric beads.
By an optical trap technique it is possible to track beads trajectory and gain insight into motors
dynamics when motors are walking on filaments [46].

2Gliding assay is an experimental setup where motors are anchored to a substrate with
their heads pointing upwards. Looking at microtubule dynamics on such a carpet of motors it
is possible to study motor properties [46].
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2. HYDRODYNAMICALLY-COUPLED MOLECULAR MOTORS

motors provided by the membrane is not rigid, rather due to the liquid nature of

the membrane, it will be a soft-hydrodynamic coupling. Moreover, when motors

are moving along filaments they will displace the fluid surrounding them, hence

generating local fluxes of cytoplasm that can affect the dynamics of near-by mo-

tors. In both situations motor-motor coupling us provided by the fluid they move

in.

In order to characterize the role of such interactions, we focus our attention on

the characterization of fluid flow generated by molecular motors and the, possible,

collective effects provided by the hydrodynamic coupling. The Reynolds number

fixes the character of the fluid flow motors will develop and so the coupling

provided by the fluid. For smaller Reynolds, Re ≪ 1, the flow is laminar, hence

allowing for the onset of the long-range, ∝ 1/r, interaction typical of the Stokes

regime. For larger Reynolds, Re≫ 1, the nonlinear terms dominate, breaking the

laminar character of the flow and so the onset of long-range interactions. Due to

the small motor size, ≃ nm, velocity, ≃ 1µm and cytoplasmic high viscosity due

to molecular crowding [27], 0.1Pa ·sec, motors dynamics is characterized by a low

Reynolds number, Re ≃ 10−8 that allows for long range, ∝ 1/r, hydrodynamic

coupling between motors. In such a scenario, we expect hydrodynamic coupling

between motors to be relevant up to distances of the order of several microns1.

Such a long-range interaction will affect motor-motor interaction as well as the

dynamics of suspended particles.

2.2 Physical modeling

In order to characterize the motion of ensembles of molecular motors walking

along a common filament we model molecular motors according to the two-state-

model [50]. According to this model, motors are regarded as spherical particles,

1An approximate estimate of the distance up to which the hydrodynamic coupling is relevant
can be obtained by studing the case of a couple of identical sphere of radius R kept at distance
r when a force f0 applied on one fo those and the force is measured on the other. When the
spheres are far apart, r ≫ R, the first term (Oseen tensor) of the multipole expansion of the
Stokes equation capture the dynamics and the force is given by f(r) = f0R/r. Comparing
the last term with the thermal force acting in a ratchet period kBT/L we obtain that the two
forces equal each other for r = f0LR/kBT ≃ 2R · 103. For cargoes of the same size as motors,
R = 5nm we get r = 10µm while larger distances are obtained for larger cargoes.

8



with radius a, characterized by two internal states. While in the bound state,

the motors dynamics is governed by a periodic potential, of period l, mimicking

the motor-filament interaction. With rate, ω1,2 motors jump to the weakly bound

state where they undergo a free diffusion and with rate ω2,1 motors jump back

to the bound state. The dynamics in the weakly bound state determines the

processivity of the motor. For processive motors, hence capable to perform several

steps before detaching from the filament, the weakly bound state allows for a

diffusion “along” the filament, meaning that motors, due to the weak bounding,

are not leaving the filament, rather diffusing along its surface. On the contrary,

non processive motors lack the weakly bound state and they detach from the

filament after each steps they freely diffuse in the cytoplasm. Here, we focus

our attention on processive motors and we assume their distance from the center

of filament to be independent form the bound/unbound state motors are in. A

proper choice of the hopping rates between the two states jointly to a periodic

asymmetric potential leads to net currents even for a single motor [50]. The

single motor velocity will depend upon many parameters, as shown in fig. 2.1.

In our study we fix these parameters to δ = 0.2/l, ǫ = 0.1/l and the depth of

the potential as ∆V/kBT = 200. For the hopping rates we choose ω1,2 → ∞,

i.e. when motors enter in the hopping region, ǫ, they jump with no waiting

time and ω2,1 = δ2/D, being D the diffusion coefficient of the motors. Such a

choice of the hooping rate maximizes the single motor velocity [50]. To account

for hydrodynamics, the cytoplasmic fluid surrounding filaments and motors is

modeled as an ideal dissipative fluid. In this view, the fluid is coarse-grained

ad it is modeled by point-like particle that represents “infinitesimal” volumes

of the real fluid. Particle-particle interaction is modeled in the following way.

When two particles are closer than a cut-off distance rc then, with probability

P (r) they interchange momentum between themselves and with a thermal bath.

In particular we use the Lowe-Andersen thermostat 2.1 that conserves linear

and angular 1 momentum and, at the same time, ensures a Maxwell-Boltzmann

velocity distribution. All these features make the Lowe-Andersen thermostat a

good candidate for simulating fluids since, on length scales l ≫ rc we expect to

recover the behavior predicted by Navier-Stokes equation. Our tests have shown

1momentum is exchanged only along the radial direction

9



2. HYDRODYNAMICALLY-COUPLED MOLECULAR MOTORS

Figure 2.1: Left: typical trajectory generated by a two-state ratchet model [50]
for a single molecular motor. Right: free-energy landscape. In the γ region of
state 1 (power stroke phase) motors experience the potential V1. In region ǫ
motors can jump to the state 2 with a rate p12. In state 2 (diffusive phase)
motors diffuse and can revert to state 1 with a rate p21. Parameter values used
in the simulations: γ = 0.75, ε = 0.01, δ = 0.2, ∆V1 = 200 (maximum energy
difference) where lengths are in units of the ratchet period l and energy in units
of kBT .

that, by forcing the fluid with two opposed volume forces acting on near-by slices

of the simulation box, we are able to recover the typical double Poiseuille profile

predicted by Navier-Stokes for systems as small as 8 rc. The inetarction rules of

the Lowe-andersen thermostat are the following:

~v′i|| =
1

2

(

~vi|| + ~vj||

)

+ ~∆ij||

~v′j|| =
1

2

(

~vi|| + ~vj||

)

− ~∆ij||

2~∆ij|| = r̂ij(ξij
√

2kBT/m)~rij

~v′i⊥ = ~vi⊥

~v′j⊥ = ~vj⊥

〈ξij〉 = 0

〈ξ2
ij〉 = 1

(2.1)

where vi,j stands for velocity pre-collision, v′i,j for post-collision velocities, m is

the the particle mass, kB the Boltzmann constant, T the absolute temperature

and ξ is a white noise.
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Figure 2.2: Schematic view of the Lowe-

Andersen thermostat and of its extension

accounting for the interaction between

fluid and solid objects in suspension

In order to couple such a coarse-

grained fluid to solid rigid objects we

have extended eqs. 2.1 in order to take

into account fluid-motors interactions.

Following the same protocol described

for the fluid we have assumed motors

and fluid to interchange momentum

between themselves when their center-

to-center distance is smaller than a

cut-off distance, rc + a. Eqs. 2.1 ac-

counts for the thermalization of point-

like particles while motors are rigid ex-

tended objects with a non vanishing

moment of inertia. Then we have ex-

tended eqs. 2.1 to account for the intrinsic angular momentum carried by the

motors, as other rigid objects with different shapes. As for the fluid-fluid inter-

action linear and angular momenta are locally conserved while the dispersions of

the velocities still obey a Maxwell-Boltzmann distribution.

2.3 Characterization of the motor-motor Hydro-

dynamic interactions

In order to characterize the relevance of motor-motor hydrodynamic coupling

we have studied the collective motion of molecular motors that move at a fixed

distance r0 from the surface of a straight, fixed, filament of cross-section πr2
0.

The filament is aligned parallel to one of the edges of our simulation box, of

length L ∼ 100 l and square section with edge Lx = Ly = 24 l and periodic

boundary conditions are applied. For simplicity, we assume that motors are

infinitely processive (i.e. they never detach from the filament). Starting from a

random distribution of motors along the filament, we monitor the average velocity

v of the motors, and its dispersion on time scales during which motors can cross

the periodic unit box (t ≤ L/v0), v0 being the average velocity of an isolated

11



2. HYDRODYNAMICALLY-COUPLED MOLECULAR MOTORS
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Figure 2.3: Excluded volume interactions. Average velocity of stepping motors
as a function of the motor filament coverage, φ1D for different ratios R = a/l of
the motor radius and ratchet period.

motor. In order to distinguish hydrodynamic (HI) from excluded volume (EV)

interactions between motors, we first briefly consider the role of excluded-volume

interactions between the motors.

2.3.1 Excluded volume

When motors are interacting only through excluded volume, we can simplify

our numerical scheme and solve N coupled Langevin equations each of which

describe the dynamics of a single motor. Figure 2.3 shows the variation of v with

the filament coverage by molecular motors. The motor velocity is sensitive to

the precise value of the ratio R. A monotonic increase of the average velocity

with filament coverage (φ1D = 2aN/L) is observed for incommensurate motors,

12



opposed to what is observed for passive diffusion. This surprising behavior is

due to the step-like nature of molecular motors trajectories: when the range of

particle-particle repulsion is not commensurate with the ratchet period, a motor

in the diffusive state may be pushed toward the ratchet maximum (i.e. to the

right into δ in the inset of Fig. 2.1) by a neighbor staying on its left (in region γ).

Hence, motors speed up due to the decrease in the time it takes them to move

to the next ratchet minimum. When the particle size is commensurate with

the ratchet period, R = 1, v depends only weakly on filament coverage, except

at very high concentrations where many-particle ratchet motion becomes less

efficient than isolated motor motion [12; 37]. The relation between the velocity

and the occupancy of the filament is typical for continuous models that take

into account in more detail nearby motors interactions. On the contrary, for

more coarse-grained discrete models, it is well known that the velocity of motors

ensemble decreases with filament occupancy [20]. Such a discrepancy underlines

the relevance of the microscopic motors dynamic in the development of collective

effects.

2.3.2 Hydrodynamic coupling: motors on a 1D track

Since we are interested in the effect of HI on collective motor motion, we con-

sider independent, processive motors of size R = 1, where EV are unimportant 1.

Fig. 2.4 shows the dependence of v for motors walking along a filament, as a

function of the fractional motor coverage of the filament, φ1D. For φ̄1D ≤ 0.1, the

average motor velocity does not depend on concentration but at higher concentra-

tions, we observe a fairly linear dependence of v on φ1D. The velocity increase is

significantly larger than that observed for hydrodynamically coupled motors that

move on a surface under the influence of a constant external force that has been

chosen such that it reproduces the average velocity of isolated motors (referred

to as“sliders” in Fig. 2.4) [44]. The key difference between sliders and ratchet

motion is that sliders move smoothly, rather than in bursts.

A simple mean-field argument can be used to estimate the motor density at

which hydrodynamic speed-up becomes significant. The average fraction ρp↓ of

1An example of such a system is the microtubule-bound KIF1A-kinesin motor [74]
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Figure 2.4: Average velocity of stepping motors as a function of the motor fila-
ment coverage, φ1D. For comparison the corresponding results for “sliders” (see
text) are also shown: open and filled down-triangles. Inset: comparison between
R=1 (triangles) and R=0.8 (squares) motors including HI.

bound motors which move under the influence of the ratchet force, f , ( bound

state ) induces a mean drift velocity v ≃ 2 f
6πηa

ρp↓
l−δ

l

∫ L/2

2R
dr 3a

2r
on the diffusing

motors (weakly bound state) over the characteristic time ∆t ≃ l−δ
2

6πηa
f

in which

bound motor displace along the filament. Hydrodynamic correlated motion plays

a role when the mean displacement felt by the diffusing motors due to the forced

ones allows them to surmount the characteristic ratchet barrier, i.e. v∆t ≥ δ.

Hence, hydrodynamic speedup becomes significant for φ1D ≥ φ̄1D ≡ 2δ/(l −

d)2 lnL/4a, which corresponds to φ̄1D ≃ 0.1 for δ = 0.2, R = 1, L̃ = 100 and

p↓ ∼ 1.

When φ1D approaches one, EV lead to a substantial decrease of the mean

motor velocity. Fig. 2.4 also shows that collective motor motion induces a net

average flow of the fluid in which the microtubule and motors are embedded.

Hence, active motor motion favors also the transport of suspended, passive parti-

cles. This transport scenario is likely to be relevant for cargo motion in elongated
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Figure 2.5: Left: Correlated (uncorrelated) motion of adjacent stepping motors
with HI (EV). Right: probability distribution of the dwell time, δt, between the
consecutive stepping of neighbor motors.

geometries such as neurons and in plant cells. If the motor size is not com-

mensurate with the ratchet period, R < 1, the average motor velocity is further

enhanced, as shown in the inset of Fig. 2.4.

The distribution of dwell times (δt) between subsequent stepping events of

nearby motors provides insight into the mechanism of hydrodynamic velocity

enhancement. Fig. 2.5 shows the probability distribution function (pdf) of dwell

times with and without HI. The curve corresponding to the absence of HI and

EV provides the reference behavior for non interacting motors. Next, we consider

the case with EV. Commensurate motors, R = 1, can arrange in registry with

the ratchet period and the distribution of dwell times does not differ significantly

from that of non-interacting motors in the φ1D-range studied. For smaller R,

the short-ranged interactions between motors hinder their relative displacements,

which favors shorter dwell times. The situation is qualitatively different when

hydrodynamic coupling is taken into account. Fig. 2.5 shows an enhancement of

the pdf for small δt, indicating that HI favors the correlated motion of subsequent

motors. When a motor steps, it generates a transient flow that pushes (pulls) the

motors that are in front (behind) it, thus facilitating their crossing of the ratchet

barrier, provided that they diffuse within a distance δ from top of the potential

barrier. A similar speedup has been described for colloids moving in a saw-tooth
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potential, under the influence of a constant, external force [61]. The properties of

the pdf in the presence of HI are robust to changes in filament coverage and motor

radius; the pdf always exhibits a maximum at small δt indicating that generically

hydrodynamics favors barrier crossing in the neighborhood of a stepping motor.

The left panels of Fig. 2.5 display typical trajectories of three nearby motors. In

the presence of HI (top), jumps are strongly correlated, while no correlated jumps

are observed in the absence of HI (bottom).

2.3.3 Hydrodynamic coupling: motors on a 2D filament

surface

Motors are not necessarily restricted to move along a single 1D-like track. Mi-

crotubules indeed are composed by a number of polarized tracks arranged in a

cylindrical filament. To mimic the latter scenario we allowed motors to displace

freely on the filament surface while subject to the same filament interaction, V (x).

An even stronger increase in v is observed now as a function of the surface mo-

tor coverage, φ2D = Na2/(2rL), as shown in Fig. 2.6. The more homogeneous

filament coverage with respect to single track motion leads to average motor ve-

locities that are one order of magnitude larger and it results in a stronger coupling

to the surrounding fluid; the average flow velocity is comparable to that of the

motors. This implies that collective active motion of molecular motors can also

induce efficient passive intracellular transport. As in the purely 1D case, there is

a characteristic threshold coverage, φ̄2D, above which hydrodynamic speed up of

v is observed.

The fact that the mean motor velocity depends on the motor concentration

leads to “bunching”. A group of motors with a higher than average concentration

will move faster than the rest, thus leading to the build up of larger clusters. This

clustering results in heterogeneous filament coverage. We have analyzed cluster

formation of motor aggregates on long time scales, t ≫ L/v0. Using a robust

distance criterion to identify clusters 1, we find that at intermediate and high

filament coverage motors aggregate into a single cluster that survives for the rest

1Two motors belong to the same cluster if their distance along the filament is smaller that
3R.
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Figure 2.6: HI-induced clustering of motors moving on a filament surface. Filled
symbols show the average velocity of motors (triangles) and fluid (circles) before
clustering. The corresponding open symbols show the velocity after clustering.
“Sliders” (downward triangles) clustering does not affect the mean velocity.

of the simulation up to twice the time needed to form the aggregate (see panel

A of Fig. 2.7). At longer times, the average motor speed and the coupling with

the embedding fluid decrease slightly, as shown in Fig. 2.6, underlining that the

heterogeneous coverage of the filament jointly with an increased effective volume

fraction caused by clustering affect the collective motion of motors. As the mean

filament coverage increases, the aggregate percolates along the filament. At low

filament coverages, φ2D < 0.15, we do not observe large aggregates. Rather,

motors organize into small clusters that form and dissolve. However, we cannot

rule out that clusters develop at longer times.

The hydrodynamic speed up of groups of motors increases transport efficiency.

To estimate this increase, we assume that the transition rate between the two in-

ternal states of a motor is independent of filament coverage. It then follows that

the energy consumption of non-interacting motors is independent of coverage.

A good measure of motor efficiency is then the average number of cycles, NJ ,

between the two internal energy states of the motor that are required to make a

motor move one period in the saw-tooth potential. Panel B of Fig. 2.7 shows that

NJ decreases sharply when the motors speed up due to HI. For EV the decrease

in NJ is much more gradual and it is essentially absent if the size of the motor is

commensurate with the sawtooth period. The sharp decrease of NJ with coverage
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Figure 2.7: Left: fraction of motors belonging to the largest cluster, as a func-
tion of time. The time unit τ ≡ L/v0. Right: Average number of motor power
strokes to displace one ratchet period. The energy consumption is proportional
to the number of power strokes. Up (Down) triangles stands for motors inter-
acting through EV and R=0.8 (R=1) while filled (open) circles stand for motors
interacting through HI for the 1D (2D) case.

shown in Fig. 2.7 illustrates that, as a result of hydrodynamic coupling, many mo-

tors “surf along” on the flow field generated by the power stroke of a single motor.

2.3.4 Radial confinement

The hydrodynamic coupling between motors leads to the onset of very strong fluid

flows, as shown in fig. 2.6, that will be strongly affected by boundary conditions.

The results shown so far are obtained for periodic boundary conditions, i.e. for

a crystal of filaments aligned with the same polarity. However, in biological

situations such as pollen tubes, cytoplasmic strands and neuronal axons, this is

not the case, rather the system has a cylindrical symmetry where the filament

motors walk on is in the middle of a pipe-like membrane. The presence of such

a radial confinement will strongly affect both motor-motor dynamics as well the

onset of the fluid flux. The vanishing condition on the confining surface forces

the fluid velocity field to adjust. Then, since the motor-motor hydrodynamic

coupling relies on the fluid flow, motors collective dynamics might be affected as

well. Moreover, the confinement introduces a new typical length scale, possibly

screening the hydrodynamic coupling on larger distances. Fig. 2.8.A shows the
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average motor velocity and the corresponding fluid flow for two different sizes of

the radial confinement, as compared to the case of periodic boundary conditions.

Interestingly we notice that the radial confinement is not affecting much the

overall dynamics and motor speed is quite insensitive to radial confinement. On

the contrary the fluid flow is quite reduced, as we expected, due to the no-slip

condition imposed on the outer boundary. It is remarkable to notice that, even

though the fluid flux is quite reduced on average, in the vicinity of the motors

the fluid net flow is still comparable to motor velocity, as shown in fig. 2.8.B.

The persistence of such a strong local flux even for more restrictive confinement

is responsible for the weak dependence of motors net velocity upon variation of

the outer boundary. Finally we remark that the fluid velocity profile shown in

fig. 2.8.B adjusts very well to the logarithmic behavior predicted by the Navier-

Stokes equation (dashed lines in fig. 2.8.B) typical of a Couette-like flow.

2.4 Convection of suspended particles

Several molecules, proteins, vesicles and organelles are suspended in the cyto-

plasm. Therefore, the cytoplasmic streaming generated by the collective dis-
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placement of molecular motors will affect the transport properties of suspended

particles. On the other hand, the presence of suspended particles might change

the local effective transport properties of the cytoplasm hence affecting motors

displacement, and so the onset of the hydrodynamically driven speed up observed

in the previous sections. In order to characterize the effect of suspended particles

on the collective motion of hydrodynamically coupled molecular motors we have

studied the dependence of motor velocity on the concentration of suspended par-

ticles in the case of motors walking along a common filament. Suspended particles

are constrained by a radial confinement similar to that studied in the previous

section. In this way the free space suspended particles can access is a cylindrical

shell whose external radius is R− a, being R the radius if the radial confinement

and a the radius of suspended particles, and an inner radius, r+2a, characterized

by the presence of the inner filament, with radius r, and of the walking motors.

As we have discussed in the previous section, the radial confinement acts also as

a sink of momentum since, on its boundaries, no-slip condition for fluid velocity

apply. We study the motion of motors varying the volume fraction of suspended

particles, φ3D defined as, φ3D = 4a3N
3[(R−a)2−(r+2a)2]L

where N is the number of sus-

pended particles, L the length of the simulation box and π[(R−a)2 − (r+2a)2]L

is the free amount of space the center of mass of suspended particles can explore.

The dependence of motor velocity upon variation in the suspended particles vol-

ume fraction, φ3D, as well in motors occupancy, φ2D, is shown in fig. 2.9. For

smaller values of φ3D the overall velocity of walking motors is not much affected

by the presence of suspended particles. Interestingly we find that, for interme-

diate values of φ2D, the presence of suspended particles enhances the velocity of

walking motors as compared to the case in the absence of suspended particles.

This is due to the fact that suspended particles enhances the onset of large clus-

ters that, for φ2D ≃ 0.1, lead to an overall speed up. We do not exclude the

formation of those clusters on longer times scales, even in the absence of sus-

pended particles, however such a characterization has not been possible yet due

to our reduced computational resources. For increasing values of φ3D the overall

effect of the presence of suspended particles is to reduce motor velocity. We can

gain insight into such a dependence by analyzing the fluid flow. Increasing the

density of suspended particles the fluid flow is quite affected, as shown in fig. 2.9,
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Figure 2.9: Suspended particles. A: Average velocity, normalized by the single
motor velocity v0, of fluid particles (triangles) and of motors (circles) walking
on the inner filament as a function of motors occupancy for different densities of
suspended particles: φ3D = 0.017, 0.051, 0.085 (color code: lighter colors stands
for larger values of φ3D). The velocity of motors walking in the absence of sus-
pended particles as been drawn as a reference (open points). B,C,D: average
longitudinal fluid velocity (solid lines) as a function of the radial distance for
different walking motor occupancies (color scheme: lighter colors stand for larger
values of φ2D) and for different values of suspended particles volume fraction,
φ3D = 0.017, 0.051, 0.085 respectively for panel B,C and D. The fluid velocity
profile, in the absence of suspended particles, for the same walking motors occu-
pancies as been reported as a reference (dashed lines).
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Figure 2.10: Radial distribution of suspended particles for different values of
φ2D (color scheme: lighter colors stands for larger values of φ2D) and for φ3D =
0.017, 0.051, 0.085 respectively for panel A,B and C.

leading to an enhanced fluid velocity and larger gradients of fluid velocity close to

the external surface. Interestingly, the presence of suspended particles promotes

larger values of fluid flow, Q, as compared to the case of φ3D = 0, as shown in

fig. 2.9.A. The increase in Q does not lead to an increase of motorvelocity with

φ3D, rather motor velocity is hampered with increasing φ3D. We gain insight in

this behavior by looking at the radial distribution of suspend particles. As shown

in fig. 2.10 the density of suspended particles around the walking motors increases

while increasing the value of φ3D. Such an accumulation of suspended particles in

the near of walking motors can affect their motion either by increasing the local

effective viscosity either due to excluded volume interactions. For larger values

of φ3D, for which the velocity reduction is more prominent also a reduction in

the peak of the radial distribution function appears, compare panels B,C and

D of fig. 2.9, remarking the strong interplay between the radial distribution of
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Figure 2.11: Different topologies of filament involved in the cytoplasmic stream-
ing. (Image from reference [19])

suspended particles and walking motors dynamics.

2.5 Cytoplasmic streaming in confined geome-

tries

In the previous section we have characterized the interplay between the dynamics

of molecular motors and the presence of suspended particles when molecular mo-

tors are walking along a common filament. Here we extend our previous analysis

to the case in which molecular motors are walking on opposite directions. In

particular we focus on the case in which motors moving in opposite direction are

confined to different filaments, namely on the inner filament, as in the previous

case, and on the inner surface of the radial confinement. This configuration is

quite common in plant cells like pollen tubes [19]. Fig. 2.11 shows the typical

bidirectional cytoplasmic flow responsible for pollen tube growth [29; 92; 98].

As a preliminary study we have characterized the dynamics of two teams of

motors: one is walking on the inner filament and the other on the outer surface.

The two teams of motors displace on opposite directions. Fig. 2.12 shows the

average velocity of motors walking on the inner filament ans well motors walk-
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Figure 2.12: A: average velocity of motors ensembles walking on the inner filament
(circles) and on inner surface of the radial confinement (squares) as a function
of the occupancy, normalized by single motor velocity. The velocity of motors
walking solely either on the inner or on the outer filaments are shown as a reference
(open points). B: fluid velocity profile for the same values of the parameters as
in panel A, where lighter curves stands for larger values of the walking motors
occupancy φ2D. The fluid velocity profile for motors walking exclusively on one
of the two filaments with the same φ2D of the cases in panel A, are reported
(dashed) lines for comparison.

ing on the inner surface of the radial confinement as a function of the common

coverage, φ2D. Fig. 2.12 shows that the presence of counter-propagating motors

is not affecting much the onset of the collective behavior. If we look at the fluid

velocity profile we notice that large gradients develop close to the motors walking

on the inner filament due to the presence of the opposite flux generated by motors

walking on the inner surface of the radial confinement. Surprisingly, we notice

that for intermediate values of φ2D, namely φ2D = 0.1, the velocity of motors on

the inner filament is significantly reduced. On the contrary, for φ2D < 0.1 and

φ2D > 0.1 the velocity of motors on the inner filament is comparable to the case

of the absence of counter propagating motors.

When we add suspended particles the behavior of the system is strongly af-

fected. Fig. 2.13.A shows that the velocity of motors walking on the inner surface

of the radial confinement are not much affected by the presence of suspended

particles and displace at velocities comparable to those obtained for φ3D = 0.

On the constrary, the dynamics of motors walking on the inner filament is more

involved. As in the previous section, see fig. 2.9.A, for smaller values of φ3D the
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Figure 2.13: Suspended particles convected by a fountain flow. A: average velocity
of motors ensembles walking on the inner filament (circles) and on inner surface
of the radial confinement (squares) and average fluid velocity (triangles) as a
function of φ2D, normalized by the single motor velocity, for different density
of suspended particles: φ3D = 0.025, 0.05, 0.075 where lighter colors stand for
higher suspended particles densities. The velocities in the case of absence of
suspended particles are reported (open points) for comparison. B,C,D: average
longitudinal fluid velocity (solid lines) as a function of the radial distance for
different walking motor occupancies (color scheme: lighter colors stand for larger
values of φ2D) and for three different values of suspended particles volume fraction,
φ3D = 0.025, 0.05, 0.075 respectively for panel B,C and D.
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Figure 2.14: Radial distribution function of suspended particles upon variation
of the pulling motors occupancy, phi2D, (color code: lighter color stand for higher
occupancy) and for different suspended particle density: φ3D = 0.025, 0.05, 0.075
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velocity of motors walking on the inner filament is not much affected by sus-

pended particles, rather it can be enhanced for intermediate values of φ2D due to

the enhancement of the formation of larger clusters. When increasing the value

of φ3D the dependence of the velocity of motors on the inner filament on φ2D be-

comes more involved and for φ2D = 0.1 inner motors stops while for larger values

of φ2D their velocity is non-vanishing again. Interestingly when the motors on the

central filament stop we observe a sharp peak in the concentration of suspended

particles around the inner filament, as shown in fig. 2.14.B, hence enforcing the

correlation between the onset of large accumulation of suspended particles in the

near of the inner filament and the reduction of the velocity of motors walking

on the inner filament. For larger values of φ2D the peak develops a bit further

away from the inner filament. When increasing the values of φ3D, i.e. φ3D ≃ 0.1

the large accumulation around the central filament prevent the displacement of

motors walking on the inner filament irrespectively from the value of φ2D. As we

discussed in the previous section, the presence of suspended particles affects the

fluid velocity profile. While in the previous case we have observed an enhance-

ment of the fluid flow, Q, for the present case we find that the overall fluid flow is

reduced by the presence of suspended particles. In particular, for φ3D, where the

motion on the inner filament is hindered, the fluid profile is still quite affected by

suspended particles and the overall fluid flow quite reduced.

2.6 Conclusions

We have shown the the coupling between the motors and the fluid they move

through leads to novel dynamical regimes.

The coupling between the step-like motion of the motors with the surrounding

fluid leads to a positive feedback that enhances motors ensemble velocity up to

two orders of magnitude as compared to the single motor velocity. Interestingly

such a large speed-up is absent for particles under a constant force, underlining

the relevance of motors stepping trajectory in the onset of collective effects. The

steric interactions between motors leads to velocity enhancements, comparable to

those obtained by hydrodynamic coupling, when the motors size and the ratchet

potential are not in registry. However, the underlying physical mechanism leads
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to different dynamical regimes. We have characterized the signature of the hydro-

dynamic coupling, as compared to the case of steric interactions, by looking at the

distribution of the dwell time between the overcome of the barrier of two nearby

motors. The dwell time between near-by motors barrier overcome is, on average,

much shorter, for hydrodynamically coupled motors than that for motors under

solely steric interactions. Such a difference relies on fact that hydrodynamically

coupled motors can both attract and repel each other while for steric interaction

provides only repulsion. Therefore, in the case of hydrodynamic coupling the

front motor can enhance the barrier crossing of the rear motor, while this feature

is absent for the case of solely steric interactions. Finally we have shown that

the steric interactions and hydrodynamic coupling can couple positively leading

to even larger velocity speeds-up.

The geometry of motors distribution play a relevant role. Comparing the data

of the 1D case with the 2D case we notice that the more uniform coverage of the

filament, as is for the 2D case, leads to a quite larger velocity enhancement as

compared to the 1D case where motors are confined along a single lane. Moreover,

for motors dispersed on the 2D surface of the filament we observe clustering

at intermediate volume fractions. The structures we observe are quite robust

and they are stable when in contact with a more diluted phase. The onset of

large clusters provides a less uniform distribution of motors along the filament.

Accordingly, we observe a reduction in the overall motor velocity once clustered

as compared to the velocity of the uniform density phase, in agreement with

our previous observation on the relation between filament coverage and motors

ensemble velocity.

Cells are not unbound systems and the presence of the no-slip condition for

fluid velocity on cell membrane might affect the overall dynamics. Our results

show that the hydrodynamic coupling between motors is quite robust. Even for

quite severe radial confinement characterized by an aspect ratio d = L/R ≃ 10,

being L the length of the filament and R the radius of the outer confinement, the

average speed of motors keeps quite similar to that of weaker confinement, d = 5,

or periodic boundary conditions.

The displacement of several motors along the same filament will develop local

cytoplasmic fluxes that will affect the dynamics of suspended particle. Therefore,
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the flux generated by displacing motors provides an alternative means for active

transport. Due to convection, not only vesicles or organelles can be actively

transported, but also suspended molecule and proteins without the need to collect

them into membrane embedded cargoes. Surprisingly, we have observed that

the presence of suspended particles affects significantly the overall dynamics.

By increasing the overall dissipation, suspended particles enhance the effective

viscosity experienced by motors. Hence motors walking on opposite directions,

even though quite far apart, will experience an enhanced interaction that can lead

to different regimes according to the concentration of motors on both filaments.

Since the relation between the overall velocity and motors occupancy is highly

non linear then it is not possible to identify the ratio between the occupancies

on the two filaments as a dimensionless number governing the overall dynamics.

Rather, the steady state will be determined by both values and increasing or

reducing both of them at the same time will change the dynamical regime of the

system. feedback loop.

The relevance of convection will decrease with the distance from the filament

motors are displacing on. Therefore, convection will be particularly relevant for

those particles undergoing a 1D diffusion along filaments. In fact it has been ex-

perimentally observed that microtubule-ends depolymerizing motors MKAC [42],

Myosin V [97] and synthetic charged beads [68] as well as many other micro-

tubule binding proteins [24] undergo 1D diffusion along microtubules when they

are weakly bound to the filament. Hence, the distribution of such particles along

the microtubule as well their transport properties will be strongly affected by flux

generated by bound motors. In particular the onset of a net flux brakes the left

right symmetry along the filament possibly leading to the formation of density

gradients.

The motor-motor interaction provided by hydrodynamic coupling relies on

the convection of weakly-bound motors by means of the flux generated by pulling

motors in bound state. Therefore the relevance of the motor-motor hydrody-

namic coupling relies on the time motors spend in the weakly bound state. Such

a quantity is captured by the duty ratio [45], i.e. the ratio between the time

motors spend in the bound state over the time of a full cycle. We expect motors

characterized by higher duty ratios to experience a weaker velocity speed up while
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2. HYDRODYNAMICALLY-COUPLED MOLECULAR MOTORS

motors with smaller duty ratio to take more advantage by the collective motion.

Interestingly, it has been shown that the value of the duty ratio reflects, for the

majority of the cases, motor processivity [11; 46]. Processive motors, hence ca-

pable to perform many steps before detaching, have a large duty ratio, ≃ 1/2,

while non processive motors have a very small duty ratio, ≃ 0.01 [11; 46]. There-

fore, non processive motors such as Myosin XI in Chara algae, are more suited

to exploit the flux generated by other motors. In this view, it is not surprising

that the fastest cytoplasmic streaming, ≃ 100µm, observed in Chara algae [35] is

generated by non-processive motors.

Non-processive motors are not the only motors that can experience veloc-

ity speed-up while collectively displacing. Recently some processive motors,such

as KIF1A [74], single-headed Myosin VI [47], microtubule cross-shifting motor

Eg5 [52; 95], Kinesin-8 [49], kinesin-1 [60] and cytoplasmic Dynein [5; 88; 94]

have been found to switch from 1D diffusion along the filament and stepping1.

These motors are characterized by three states, namely bound to the filament,

unbound and weakly bound. When motors are in the weakly bound state, they

undergo 1D diffusion along the filament. In particular KIF1A has been observed

to clusterize [36] and clusters of KIF1A has been observed to undergo net dis-

placements only when the density of KIF1A bound to the cargo has overcome a

threshold[53]. Such a feature somehow reminds the behavior shown in figs.2.4,2.6

where the collective effect arise for densities larger than a non vanishing threshold.

1For a more comprehensive yet not exhaustive review see ref. [24]
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3. Bidirectional cargo transport

3.1 Introduction

In this chapter we characterize the bistable motion of cargoes pulled by teams of

motors pulling in opposite directions. It has been observed in several experiments

that cargoes move back and forth under the action of teams of motors moving on

opposite directions [32; 40; 56]. The underlying mechanisms are still unclear, and

two different scenarios have been proposed. The chemical mechanism assumes a

chemical that regulates the direction of the moving motors [31; 55; 56]. According

to the mechanical mechanism, motors act as if they were in a tug of war game [2;

54; 69]. In this scenario the direction of motion is determined by the strongest

team. While the first scenario requires a fine chemical tuning of the activity of

such regulator, the second scenario relies on the fluctuation in teams population as

well motor activity typical for small system and relatively small motor teams, as

is for biologically relevant situations. A recent work [38] has investigated the role

of the intrinsic motors stepping dynamics in the onset of bistable cargo transport.

In particular, it has been shown that a collection of molecular motors pulling on

opposite direction can lead to spontaneous symmetry breaking when they are

rigidly coupled [38]. However, when motors are pulling on membrane embedded

cargoes they are not rigidly coupled. Rather they do interact through both the

fluid-like membrane their tails are embedded in and the cytoplasm motors move

through. The different coupling mechanism, depending on the nature of the

cargo motors are pulling on, can strongly affect the overall dynamics. As we have

seen in the previous chapter, hydrodynamically coupled motors exhibit collective

dynamics quite different from those obtained by rigidly coupled motors [50; 58;

82].
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3. BIDIRECTIONAL CARGO TRANSPORT

Here we are going to study how the hydrodynamic coupling between motors

pulling in the same cargo affects the overall cargo motion. As compared to the

previous chapter we will adopt a more coarse-grained representation that, on one

hand, allow us to capture the underlying dynamics, and on the other to explore

different regimes without the need of more expensive numerical simulations. In

the following sections we are going to perform a systematic study in which we will

introduce one by one all the ingredients needed to study the overall behavior of

bunches of motors moving in opposite directions pulling on membrane embedded

cargoes. Instead of presenting at first the final result including all the ingredients

we preferred to discuss few intermediate steps that, on one hand, can be interest-

ing per se, and on the other allow us to characterize the different nature of the

hydrodynamic coupling as compared to the rigid coupling.

3.2 Physical modeling

if motors are quite diluted, i.e. for NR/Λ ≪ 1 where R is the motor linear size

and Λ the size of the motor ensemble,

In order to study the collective motion of cargoes transported by opposite-

pulling motors, as in the previous chapter, we model molecular motors according

to a two state model. We assume motors to jump between two states a bound

state, in which they strongly interact with the filament and a weakly bind state

in which motors can diffuse along the filament, if they are processive, or in the

cytoplasm if motors are non processive. In this case, the bound-state potential

is assumed to be periodic and symmetric [50]. Such an assumption allows us to

characterize the motion of non-polar motors [28] as well as bunches of positive and

negative polar motors randomly distributed along the cargo. Displacing motors

generate a net flow that will affect the dynamics of other motors. Therefore,

in order to characterize the hydrodynamic coupling between motors pulling on

a common cargo we need to solve the time evolution of motors dynamics that

is described, in the overdamped regime, by N coupled Smoluchowski equations.

Such a representation does not provide much insight since no analytical solution of

such a system exists and the numerical solution becomes hard as N is larger then

a few tens of motors. Alternatively, we can describe the dynamics of the system in
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terms of the density of bound, ρ̃(x) = 2R/lR(x), and unbound, σ̃(x) = 2R/lS(x)

motors, where R is the motor linear size and lR(x) and lS(x), respectively, are

the size of the 1D Voronoi cell along the filament for bound and weakly bound

motors1.

In order to write down the functional Smoluchowski equation geoverning the

time evolution of the probability density, P{ρ̃,σ̃}, we discretize the system into M

cells, i = 1, ...,M , each of which is characterized by a constant length ∆x = Λ/M

where Λ is the system size. r̃i = ρ̃(xi)∆x and s̃i = σ̃(xi)∆x represent the, con-

stant, value that the descrete densities take on cell i. The dynamics of bound and

weakly bound motors differ. When motors are weakly bound they do not generate

any force by the interaction with the filament, hence their net displacement will

be affected by diffusion and by the collective hydrodynamic coupling generated

by pulling motors. Motors in the bound state will experience the force generated

by the interaction with the filament as well as the hydrodynamic coupling. In

the next section we will discuss the functional shape of those rates. Here we just

assume bound motors move to subsequent cell with rate αi, encoding for the local

as well collective forces acting on the motors, and weakly bound motors to move

with rate βi, accounting for the solely collective effect. Accordingly we define the

master equation for the joint probability P{r̃,s̃} of having a distribution of bound

motors, r̃i and a distribution of weakly bound motors, s̃i as:

Ṗr,s =
∑

i

1

2

{

(

W
−1
r̃i

Wr̃i−1
− 1

)

αi−1r̃i−1 +
(

W
−1
r̃i+1

Wr̃i
− 1

)

αir̃i +

+
(

W
−1
s̃i

Ws̃i−1
− 1

)

βi−1s̃i−1 +
(

W
−1
s̃i+1

Ws̃i
− 1

)

βis̃i + (3.1)

(

Er̃i
E

−1
s̃i

− 1
)

ωoff,ir̃i +
(

Es̃i
E

−1
r̃i

− 1
)

ωon,is̃i

}

Pr̃,s̃.

The operators Wr̃i
,Ws̃i

account for the change in the discrete densities r̃i and s̃i

due to the displacing of the motors. In particular due to the discretization the

operators Wr̃i
,Ws̃i

are non local. In fact, as shown in fig. 3.1, the displacement of

a motor will affect the values of the densities between the motor and its nearest

neighborn. Such non locality, that lead to a non-trivial functional shape of the

1The Voronoi cell is defined as the free space motor at position x can access along the
filament before getting in touch with their nearest-neighbor motors
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3. BIDIRECTIONAL CARGO TRANSPORT

Figure 3.1: Schematic view of the Voronoi tessellation of the filament. The
inverse Voronoi size is represented on the vertical axis for a typical configuration
of motors. Variation in the density field due to convection (black dashed curve)
or to hopping (orange dashed curve) are shown.

operators Wr̃i
,Ws̃i

, will be lost in the continuum limit. The operators Er̃i
,Es̃i

are responsible for the hopping between the bound and weakly bound state. As

for the operators Wr̃i
,Ws̃i

, the operators Er̃i
,Es̃i

are non local. In order to study

the average behavior of the eq. 3.1 it is insightful to expand the operators W and

E assuming that their action will lead to “small” perturbation. The definition of

what “small“ is require a more detailed analysis of the processes the operators

W and E represent. While the displacement of the motors along the filament

leads to a smooth change in the density field, r̃i or s̃i, as shown by the black

dashed curve in fig. 3.1, the hopping between the bound and weakly bound state

will generate larger modification in both fields, as shown by the orange dashed

curve in fig. 3.1. Due to this intrinsic difference we prefer to treat the two terms

separately.

When motors are convected along the filament the change in the density field

is smooth if αidt ≪ ∆x i.e. if the displacement of the motor, αidt, is much

smaller that typical motor-motor distance captured by ∆x. Therefore, for small

enough dt, we can assume that the change in the densities will be much smaller

that the local value of the densites and so we can represent the operators Wr,s as

W
±
r̃i,s̃i

= 1 ± ∂r̃i,s̃i
(3.2)

where we stop the expansion for the operators W at the first order since, here we
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assume diffusion to be subdominant1 Collecting the terms involving ∂r̃i,s̃i
we get:

Ṗ{r,s} =
∑

i

{

∂r̃i
(αi−1r̃i−1 − αir̃i) + ∂s̃i

(βi−1s̃i−1 − βis̃i)
}

Pr,s (3.3)

In order to perform the continuum limit [39] we remind that ρ̃(xi)∆x = r̃i and

σ̃(xi)∆x = s̃i and we assume ρ̃ and σ̃ to be independent variable, that leads to

∂r̃i
s̃j = ∂s̃i

r̃j = 0,∀i,j. In this way the continuum limit of eq. 3.7 reads:

Ṗ =

∫

dx
δ

δρ̃(x)
∂x (ρ̃(x)α(x))P +

∫

dx
δ

δσ̃(x)
∂x (σ̃(x)β(x))P (3.4)

The case of the hopping is quiet different. As shown in fig. 3.1 when motors

jump between the two states leads to an abrupt change in the fields ri and si.

Therefore it is not possible to expand the operators Er̃i
,Es̃i

as we did for the

operators Wr̃i
,Ws̃i

. In order to perform the continuum limit, we exploit the

periodicity of the hopping rates ωon,off . In fact, defining

rj =
M

∑

i=1

r̃iδ(i|L− j), sj =
M

∑

i=1

s̃iδ(i|L− j) (3.5)

we have that
M

∑

i=1

ωir̃i =

ML/Λ
∑

i=1

ωiri,

M
∑

i=1

ωis̃i =

ML/Λ
∑

i=1

ωisi

where with i|L we mean the module function. Exploiting the linearity of the

operators Ei we can rewrite the hopping contribution to the master equation as:

M
∑

i=1

{

(

Er̃i
E

−1
s̃i

− 1
)

ωoff,ir̃i +
(

Es̃i
E

−1
r̃i

− 1
)

ωon,is̃i

}

Pr̃,s̃ =

=
{

(

Eri
E

−1
si

− 1
)

ML/Λ
∑

i=1

ωoff,iri +
(

Esi
E

−1
ri

− 1
)

ML/Λ
∑

i=1

ωon,is̃i

}

Pr,s.

1Here, we regard diffusion of motors as subdominant in the motor current for both the
bound, as well weakly bound state, since we assume that both the local, ∼ 5pN (5pN is the
typical force for Kinesins), as well the collective hydrodynamic force overwhelms the thermal
contribution kBT/R ∼ 0.4pN , being R ∼ 10nm the typical motor linear size as well the
periodicity of the microtubule potential
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3. BIDIRECTIONAL CARGO TRANSPORT

For small enough dt, the probability of having two, or more, hopping events in

the same time interval dt is vanishing small. Therefore, since both Ri and Si grow

linearly with system size, their relative variations, δRi/Ri and δSi/Si caused by

the action of the operators Ei will be vanishing small for increasing system sizes.

Hence, we can expand the operators Ei getting:

E
±
r̃i,s̃i

= 1 ± ∂r̃i,s̃i
+

1

2
∂2

r̃i,s̃i
(3.6)

As we did for the convection term we collect the terms involving ∂ri,si
getting:

Ṗ{r,s} =
∑

i

{

ωoff,i (∂r̃i
− ∂s̃i

) r̃i + ωon,i (∂s̃i
− ∂r̃i

) s̃i

}

Pr,s (3.7)

and the continuum limit reads:

Ṗ =

∫

dx
δ

δρ̃(x)
[ωoff (x)ρ̃(x) − ωon(x)σ̃(x)]P +

∫

dx
δ

δσ(x)
[−ωoff (x)ρ(x) + ωon(x)σ(x)]P + (3.8)

+
1

2N

∫

dy

∫

dxδ(x− y)

{

δ2ωoff (x)ρ(x)

δρ(x)δρ(y)
+
δ2ωon(x)σ(x)

δσ(x)δσ(y)

}

P

Finally, comparing eq. 3.8 with eq. 3.4 we notice that the different dynamics

involved in the hopping and in the transport along the filament have led to func-

tional equations for different variables. While the locally smooth displacement

of motors along the filament lead to an expansion of the operators for the local

fields ρ̃(x) and σ̃(x) the more abrupt hopping dynamics becomes smooth only

when the densities are integrated over system size and expreesed in term of the

position relative to the hopping rates:

ρ(x) =
1

Λ

∫

Λ

dzρ̃(z)δ(z|L− x)

σ(x) =
1

Λ

∫

Λ

dzσ̃(z)δ(z|L− x)

(3.9)

In order to build up a consistent continuum limit we need to express the two

contributions as a function of the same fields. Accordingly, in the following we

36



will develop a set of systematic approximations that will allow us to recast eq. 3.4

as a function of ρ(x) and σ(x).

3.3 Approximate hydrodynamic coupling

In order to rewrite eq. 3.4 as a function of ρ(x) and σ(x) we need to clarify the

role and the functional shape of the velocities α(x) and β(x). In fact, α(x) and

β(x) respectively encode the physical forces acting on bound and weakly bound

motors. Motors in the bound state move due to the force f(x) provided by

their strong interaction with the filament and due to the collective contribution

coming from the motor-motor coupling. Due to their weaker interaction with

the filament, motors in the weakly bound states are not affected by the local

force term f(x) and their displacement relies only on the collective coupling. The

functional shape of collective coupling involved in the displacement of both bound

and weakly bound motors depends on the physical forces involved. In general the

collective coupling has the shape:

β(x) =
1

γ

1

Λ

∫

Λ

dzf(z)ρ̃(z)G(x, z) (3.10)

where Λ is the system size, γ is the single motor friction coefficient and G(x, z) is

the Green function encoding the force responsible of the motor-motor interactions.

For example, in the case of rigid coupling we have G(x, z) = 1 and for non-

interacting motors G(x, z) = 0. In the case of hydrodynamically coupled motors

we perform a multipole expansion of the Green function of the Navier-Stokes

equation in the limit of vanishing Reynolds number. In the asimptotic limit

of large motror-motor distances the first order of the expansion captures the

dynamics1. In the asimptotic regime, the Green function (Oseen tensor) evaluated

at distance |z−x| along the direction of application of a force applied at x reads:

G(x, z) =
1

4η

1

|z − x|
(3.11)

1Contribution coming form higher order will affect quantitatively the results and might lead
to substantial variation for larger values of bound motors density.
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3. BIDIRECTIONAL CARGO TRANSPORT

where η is the dynamic viscosity of the fluid. For vanishing Reynolds the Stokes

equation is linear, hence contributions in the velocity field coming from different

motors will sum up. In the case of hydrodynamic coupling the collective coupling

has the physical nature of a drag force generated by the field ρ̃ of bound motors:

β(x) =
1

γ

3

2
π
R

Λ

[

∫ x−2R

−Λ/2

f(y)ρ̃(y)

|y − x|
dy +

∫ Λ/2

x+2R

f(y)ρ̃(y)

|y − x|
dy

]

(3.12)

where we have assumed motors to be spherical (γ = 6πηR). Using eq. 3.12 we

can write the velocity of bound motors as

α(x) =
1

γ

{

f(x) +
3

2
π
R

Λ

[

∫ x−2R

−Λ/2

f(y)ρ̃(y)

|y − x|
dy +

∫ Λ/2

x+2R

f(y)ρ̃(y)

|y − x|
dy

]}

(3.13)

Looking at eq. 3.13 we see that it involves two terms: the local term, f(x) due to

the interaction between bound motors and the filament, and the collective term

provided by the hydrodynamic coupling. The presence of two distinct contribu-

tions, namely the local term f(x) and the collective coupling is typical of soft

interactions such as hydrodynamic coupling. In fact, for stronger interactions,

like rigid coupling, the local term is absent and all motors undergo the same,

collective force. For weakly bound motors, lacking the local forcing f(x), the

displacement is governed by β(x) = α(x) − 1
γ
f(x).

Once we have clarified how the coupling affects the velocities α(x) and β(x) we

will develop some systematic approximation that will allow us to recast eq. 3.13,

expressed in terms of ˜ρ(x) and ˜σ(x), in terms of the ”projected“ densities ρ(x),

σ(x) as given by eq. 3.9.

3.3.1 Mean field approximation

Looking at eqs. 3.12 3.13 we notice that they encode different length scales. On

one hand eq. 3.13 depends on the force f(x) that is periodic with period L.

On the other it depends on the Oseen tensor characterized by algebraic decay,

∝ 1/r that leads to a Logarithmic divergence of α for increasing system size Λ.

Therefore, even motors several periods apart will affect each other. However, for
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large distances we can assume the Green function almost constant over the period

of the force, L. Accordingly we propose the following mean field approximation:

3

2
πR

∫

f(y)ρ̃(y)

|y − x|
dy ≃

(

1

Λ

∫

f(y)ρ̃(y)dy

)(

3

2
πR

∫

dy

y

)

. (3.14)

Eq. 3.14, that is correct if f(x) = f0 and ρ(x) = ρ0, exploits the ∝ 1/r decay

typical of hydrodynamic coupling. In order to discuss the validity regime of

eq. 3.14 and the order of magnitude of the error it introduces it is insightful to

express both f(x) and ρ̃(x) in Fourier series. For the sake of simplicity, we assume

that the length of the system, Λ, is a finite integer multiple of the period of the

potential L. The Fourier representation is given by:

f(x) = f0 + δf (x)

δf (x) =
∞

∑

n=1

{

fn cos
(πnx

Λ

)

+ f̄n sin
(πnx

Λ

)}

ρ̃(x) = ρ0 + δρ̃(x)

δρ(x) =
∞

∑

n=1

{

ρn cos
(πnx

Λ

)

+ ρ̄n sin
(πnx

Λ

)}

and the integral in eq.3.14, becomes:

∫

f(y)ρ̃(y)

|y − x|
dy = f0ρ0

∫

1

|y − x|
dy+f0

∫

δρ̃(y)

|y − x|
dy+ρ0

∫

δf (y)

|y − x|
dy+

∫

δρ̃(y)δf (y)

|y − x|
dy.

(3.15)

Remembering that the limits of integration, as given by eq. 3.13, are [−Λ/2, x− 2R]

and [x+ 2R,Λ/2], the first term yields:

f0ρ0

∫

1

|y − x|
dy = f0ρ0 ln

(

Λ − 2x

4R

)

(3.16)

while the second two terms in eq.3.15 are composed by terms like:

∫ Λ/2

R

cos
(

πnx
Λ

)

|y − x|
dy,

∫ Λ/2

R

sin
(

πnx
Λ

)

|y − x|
dy. (3.17)
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While terms involving sin
(

πnx
Λ

)

are of order O(1), terms involving cos
(

πnx
Λ

)

have

a logarithmic divergence for vanishing small motors linear size, R → 0. However,

fixing the motor size the latter terms lead to O(1) contribution for growing system

size N . The last term in eq. 3.15 reads:

∫

δρ(y)δf (y)

|y − x|
dy = (3.18)

=
∑

i,j

∫

fiρj

cos2
(

πnx
Λ

)

|y − x|
+ f̄iρ̄j

sin2
(

πnx
Λ

)

|y − x|
+

(

fiρ̄j + f̄iρj

) cos
(

πnx
Λ

)

sin
(

πnx
Λ

)

|y − x|
dy

(3.19)

where, for smoothly varying ρ̃(x), finite R and N → ∞ the leading order is:

∫

δρ̃(y)δf (y)

|y − x|
dy = k

∞
∑

i,j=1

δi,j
(

fiρj + f̄iρ̄j

)

k +O(1) (3.20)

with

k(x) .















3R
2

ln
(

Λ2−4x2

16R2

)

2R < x < Λ − 2R

3R
2

ln
(

Λ−2x
4R

)

x < −Λ
2

+ 2R
3R
2

ln
(

Λ+2x
4R

)

x > Λ
2
− 2R

(3.21)

Collecting all terms we get the expression for the total velocity field:

α(x) =
1

γ

[

f(x) +

{

f0ρ0 + k
∞

∑

i,j=1

δi,j
(

fiρj + f̄iρ̄j

)

}

k +O(1)

]

(3.22)

Looking at eq. 3.22 we notice that, execpt for of term of order O(1), the integral of

the Green function and that of the density factorize. Therefore, the information

regarding the physical nature of the coupling, encoded in the Green function,

is constant during the evolution of motor density and affect the evolution of ρ̃

only as multiplicative, mean, factor. This factorization relies on the diverging

nature of the hydrodynamic coupling that overweights the contribution coming

from motors at larger distances, for which eq. 3.14 is a good approximation, as

compared to contributions coming from nearby motors. This feature is quite

remarkable since it means that systems characterized by different microscopic
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interactions but sharing the same value of k will undergo similar dynamics when

they are driven by the same force f(x). Therefore, with a single solution we will

able to discuss the dynamics of motors ensemble whose motor-motor coupling

have different physical nature. Finally, we notice that, in the absence of constant

forces f0 = 0, the velocity field, α(x), does not depend on the average density, ρ0,

rather only on its dispersion captured by higher Fourier modes. Accordingly, the

velocity field results to be proportional to the total force acting on the system,

k
∑∞

i,j=1 δi,j
(

fiρj + f̄iρ̄j

)

.

3.3.2 Periodic boundary conditions

In order to recast eq. 3.4 in terms of the projected densities ρ and σ we need an

approximated expression of α and β as a function of ρ and σ. The key idea is that

for larger system sizes the density of motor in the bulk can be assumed to depend

very mildly upon its relative position with respect to the boundaries of motor

ensemble. Then, the local dependence of motor density on length scales smaller

than the period of the potential will be mainly governed by the hopping between

bound and unbound states rather than on the boundary conditions. Following

this idea, we approximate eq. 3.22 by considering only Fourier modes of motor

density with wavelength smaller or equal to the period of the potential. In this

way we can map our system made by N = Λ/L potential wells into a system

made by a single well by projecting the density of all the wells on a single one.

As already shown in eqs. 3.9 we get:

ρ(x) =
1

Λ

∫

Λ

dzρ̃(z)δ(z|L− x)

σ(x) =
1

Λ

∫

Λ

dzσ̃(z)δ(z|L− x)

then the densities ρ(x) and σ(x) represent respectively the density of bound and

weakly bound motors at position x, relative to the period L of the force and

the hopping rates, averaged over all the wells. Substituting ρ(x) in eq. 3.22 and
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remembering that in the case we are studying f(x) = f1 cos(2πx/L) we get:

α(x) ≃
1

γ

[

Γf1 cos

(

2πnx

L

)

+ k 〈f(x)ρ(x)〉x

]

(3.23)

with

〈f(x)ρ(x)〉x = ρ1f1 =
1

NL

∫ Λ/2

−Λ/2

f1 cos

(

2πnx

L

)

ρ(x)dx (3.24)

Looking at eq. 3.23, 3.24 we notice that ρ1 is responsible for the contribution

to the force coming from the hydrodynamic coupling. If ρ1 = 0 no coupling

develops. Then, due to the symmetry of the ratchet potential, no current sets.

On the contrary, for ρ1 6= 0, collective effects develop and we might observe the

onset of a net current that breaks the symmetry. All in all the condition ρ1 6= 0

is a necessary condition for symmetry breaking.

3.4 Definition of the evolution equations

Collecting the contribution coming from eq. 3.4 and that provided by the hopping

rate, eq. 3.8 we can write the functional Smoluchowski equation encoding both

contributions as:

Ṗ =

∫

dx
δ

δρ(x)
[∂x (ρ(x)α(x)) + ωoff (x)ρ̃(x) − ωon(x)σ(x)]P +

∫

dx
δ

δσ(x)
[∂x (σ(x)β(x)) − ωoff (x)ρ(x) + ωon(x)σ(x)]P + (3.25)

+
1

2N

∫

dy

∫

dxδ(x− y)

{

δ2ωoff (x)ρ(x)

δρ(x)δρ(y)
+
δ2ωon(x)σ(x)

δσ(x)δσ(y)

}

P

Eq. 3.25 governs the time evolution of the probability distribution of the density

fields. Then we can integrate it in order to calculate the behavior of the expecta-

tion values of the fields ρ(x) and σ(x). Under the assumption that the two fields

ρ(x) and σ(x) are independent, i.e. δ
δρ
σ δ

δσ
ρ = 0 and using eqs. 3.23, 3.24 we get:

〈ρ̇(x)〉ρ,σ = −∂xλ 〈ρ(x) (Γf(x) + k 〈f(x)ρ(x)〉x)〉ρ,σ
− 〈ωoff (x)ρ(x) − ωon(x)σ(x)〉ρ,σ

〈σ̇(x)〉ρ,σ = −∂xλ 〈σ(x)k 〈f(x)ρ(x)〉x〉ρ,σ
+ 〈ωoff (x)ρ(x) − ωon(x)σ(x)〉ρ,σ (3.26)
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where with 〈...〉ρ we mean the average over all possible density distribution ρ(x)

each of which weighted with probability Pρ and with 〈...〉x the average over all

positions x, x ∈ [0, L] weighted with constant probability p(x) = dx/L. In

eq. 3.26 we have introduced the auxiliary parameter Γ = 0, 1. Such a parameter

has no physical meaning and it has been introduced to identify those terms that

appear for soft interactions, as hydrodynamic coupling, but that are absent in

the case of rigid coupling. Accordingly we will assume Γ = 1 when considering

soft-hydrodynamic coupling and Γ = 0 in the case of rigid coupling.

Eqs. 3.26 are expressed in term of dimensionless variables that, for the sake of

simplicity in the notation, have the same symbols of their dimensional counter-

parts. Eqs. 3.26 identify two main parameters, namely the dimensionless forcing

λ = f1

Lωγ
, defined via the average hopping rate

ω = 〈ωoff + ωon〉/2 (3.27)

and the coupling parameter k.

Eq. 3.25 allows us to study the system in different regimes. Here we focus

our attention on two main situations. As a first case, we assume the total local

density, i.e. the density of bound plus weakly bound motors, to be constant. This

constraint will lead to a simplified dynamics in which we will be able to disregard

weakly bound motors dynamics. Such a strong assumption allows for a more

analytical insight and so it sheds light on the underlying dynamics. On the other

hand, the latter assumption leads to dynamics equivalent to those of a collection

of non-processive motors in contact with a reservoir of suspended motors. This

analogy relies on the fact that when motors unbind from the filament they diffuse

in the 3D cytoplasm that act as a reservoir of motors. Motors rebind with a

probability that depends on the free space available on the filament. Therefore,

looking at a single system, we gain insight into two different physical situations:

the dynamics of oppositely pulling motors on a common cargo and that of an

ensemble of, oppositely moving, non-processive motors. We remark that due, to

the presence of a reservoir of suspended motors, such an assumption reminds the

Gran Canonical ensemble for equilibrium systems.

As an alternative scenario we relax the constraint on the local density. This
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scenario accounts for the typical biological scenarios as well micro- nano- synthetic

systems, where the reduced size of the system leads to intrinsic fluctuations in

the density of motors that can affect the overall dynamics. By comparing this

case with the previous one we will be able to discuss the role played by the local

reorganization of motors density. Due to the conservation of total number of

motors such a regime reminds the Canonical ensemble in the case of equilibrium

systems.

Finally, in order to characterize the role played by the soft-hydrodynamic

coupling we will compare the case of hydrodynamically coupled motors against

the case of rigidly-coupled motors. This comparison has a twofold outcome: on

one hand it allows us to identify the peculiar properties of hydrodynamic coupled

motors, as compared to the rigid case, on the other hand we will complete prior

studies on rigidly coupled motors [38] extending them to regimes that have not

yet been explored.

3.5 Homogeneous total motor density

Here we study the behavior of a collection of motors pulling on opposite directions

under the assumption of that the total motor density is constant. The constraint

ρ(x) + σ(x) == ρ̄ decouples eqs. 3.26 therefore we can study a single equation

for the bound motor density:

〈ρ̇(x)〉ρ = −∂xλ 〈ρ(x) (Γf(x) + k 〈f(x)ρ(x)〉x)〉ρ−〈ωoff (x)ρ(x) − ωon(x)(ρ̄− ρ(x)〉ρ
(3.28)

Looking at eq. 3.28 we can see that, as we discussed before, the shape of eq. 3.28 is

the same as that of the equation governing the dynamics of non-processive motors

that, by detaching from the filament after every step, will rebind according to

the bulk density ρ̄ and to the filament occupancy ρ(x). In order to get an insight

in the underlying dynamics governing eq. 3.28 we perform a Fourier analysis

expanding both the density field ρ(x) as well the hopping rates ωon,off . In order

to simplify the notation from now on we will omit the brackets 〈...〉. In this way
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we get:

ρ(x) = ρ0 +
∞

∑

n=1

{

ρn cos

(

2πn

L
x

)

+ ρ̄n sin

(

2πn

L
x

)}

ωoff (x) =
∞

∑

n=0

φn

(

1 + cos

(

2πn

L
x

))

+ φ̄n

(

1 + sin

(

2πn

L
x

))

ωon(x) =
∞

∑

n=0

ψn

(

1 + cos

(

2πn

L
x

))

+ ψ̄n

(

1 + sin

(

2πn

L
x

))

while for the force we assume:

f(x) = f1 cos(2πx/L)

Then we obtain:

ρ̇0 = ρ̃
∞

∑

m=0

(

ψm + ψ̄m

)

− ρ0

∞
∑

m=0

(

φm + φ̄m + ψm + ψ̄m

)

+

−
1

2

∞
∑

m=0

∞
∑

r=1

δm,r

(

φmρr + φ̄mρ̄r + ψmρr + ψ̄mρ̄r

)

ρ̇n = −
1

2
nπλkρ̄nρ1 −

1

2
nΓπλρ̄n+1 −

1

2
nΓπλρ̄n−1 +

1

2
ρ̃

∞
∑

m=0

δm,nψm +

−
1

2

∞
∑

r=1

δn,rρr

∞
∑

m=0

(

φm + φ̄m + ψm + ψ̄m

)

(3.29)

−
1

4

∞
∑

m=0

∞
∑

r=1

(

δm+r,n + δ|m−r|,n

) (

φmρr + φ̄mρ̄r + ψmρr + ψ̄mρ̄r

)

˙̄ρn =
1

2
nπλkρnρ1 +

1

2
nΓπλρn+2 +

1

2
nΓπλρn−2 +

1

2
ρ̃

∞
∑

m=0

δm,nψ̄m +

−
1

2

∑

r

δn,rρ̄r

∞
∑

m=0

(

φm + φ̄m + ψm + ψ̄m

)

−
1

4

∞
∑

m=0

∞
∑

r=1

(δm+r,n + δm−r,n − δr−m,n)
(

φmρ̄r + φ̄mρr + ψmρ̄r + ψ̄mρr

)
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The shape of eqs. 3.29 shows the coupling cascade between different Fourier

modes. In particular we notice that all modes are coupled to ρ1 that is the

mode coupled to the interaction for bound motors. On the other hand the hop-

ping rates play the role of enhancing the coupling between modes leading to a

quite involved coupling between different modes.

3.5.1 Approximate bifurcation analysis

The set of eqs. 3.29 allows to study the steady states of the system and, possi-

bly their stability. However, since the entanglement between modes is intricate,

deriving the corresponding steady states is rather involed. Since the hopping

rates are the responsible of the majority of the coupling between modes, a more

restrictive condition on the hopping rates might lead to a weaker coupled system

of equation that possibly allows for deeper insight. Then, we assume the hopping

rate to be described by a single Fourier mode, i.e. the same mode characterizing

the force. In this way, both the energy injection due to the hopping between

states and the mechanical forcing are accounted for by the largest wavelength

mode. In particular, we assume φn = ψn = 0∀n, φ̄n = ψ̄n = 0∀n > 1, φ̄0 =

ω̄off , φ̄1 = −1
2
ω̄off , ψ̄0 = ω̄on, ψ̄1 = 1

2
ω̄on getting

ωoff (x) = 1 −
1

2
sin

(

2πx

L

)

(3.30)

ωon(x) = 1 +
1

2
sin

(

2πx

L

)

(3.31)

Such assumptions leads to the following mode cascade:

ρ0 =
1

2
ρ̃

ρ̇1 = −
1

2
πλkρ̄1ρ1 −

1

2
Γπλρ̄2 − ρ1

˙̄ρ1 = Γπλρ0 +
1

2
πλkρ2

1 +
1

2
Γπλρ2 − ρ̄1 −

1

4
ρ̃ (3.32)

ρ̇n = −
1

2
nπλkρ̄nρ1 −

1

2
nΓπλρ̄n+1 −

1

2
nΓπλρ̄n−1 − ρn

˙̄ρn =
1

2
nπλkρnρ1 +

1

2
nΓπλρn+1 +

1

2
nΓπλρn−1 − ρ̄n
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Looking at eqs.3.32, we notice that all modes are coupled to the largest wavelength

mode, ρ1 that is also responsible for the coupling with the force. Moreover, ρ1

is also responsible for the onset of a non vanishing collective term. As shown by

eq. 3.23, when ρ1 = 0 the collective term is vanishing small while, for ρ1 6= 0 the

collective term is non zero hence possibly leading to the development of a net

motor current. Even if the proposed hopping rates lead to a simpler couopling

between modes, still we obtain an infinite hierarchy. However, since the coupling

between motors is forced through ρ1, it is reasonable to assume that the longest

wavelength modes will evolve more slowly and the rest of the modes will follow

them adiabatically. In order to keep finite the amount of equation we are going

to solve we introduce a cut-off mode that we assume to adiabatically adapt to

the variations induced by longer wavelength modes. Then for the cut-off mode

we have:

ρ̇nmax
= −

1

2
n̄πλkρ̄nmax

ρ1 −
1

2
n̄Γπλρ̄nmax−1 − ρnmax

(3.33)

˙̄ρnmax
=

1

2
n̄πλkρnmax

ρ1 +
1

2
n̄Γπλρnmax−1 − ρ̄nmax

(3.34)

Since eqs.3.33 are a second-order recurrence we can express all the terms as a

function of two of them. The choice of the cut-off mode, n̄, is arbitrary and

will affect the linear stability analysis. Then, instead of performing a stability

analysis, we look for the necessary (and possibly sufficient) condition in order to

have three real roots out of eqs. 3.32. In fact, the existence of three real solution

of eqs. 3.32 is the necessary conditions for the bifurcation to occur. Again we will

focus on the larger wavelength mode amplitudes, namely ρ1, ρ̄1, and we assume

ρ2, ρ̄2 to be parameters that we will determine through the numerical solutions

of eq. 3.28. In this way we get a closed system for ρ1, ρ̄1 that has a zero-velocity

solution:

ρ1 = 0, ρ̄2 = 0 (3.35)

ρ̄1 =
1

ω0

(

Γπλρ0 +
1

2
Γπλρ2 −

1

4
ρ̃

)

(3.36)
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and, for ρ1 6= 0 a, possibly, moving solution characterized by

ρ̄1 =
−2

πλkρ1

(

1

2
Γπλρ̄2 + ρ1

)

(3.37)

where ρ1 is obtained by solving:

2 (πλk)2 ρ3
1 +

(

4kΓ (πλ)2

(

ρ0 +
1

2
ρ2

)

+ 8 − πλkρ̃

)

ρ1 + 4Γπλρ̄2 = 0 (3.38)

The necessary condition in order to have three real solutions is given by:

4π2kΓλ2

(

ρ0 +
1

2
ρ2

)

+ 8 − kπλρ̃ < 0. (3.39)

For rigidly coupled motors, characterized by Γ = 0, eq. 3.39 is also a sufficient

condition [38] for the onset of a moving solution. In this case, by rearranging

eq. 3.39, the necessary and sufficient condition for symmetry breaking is:

kλ ≥
8

πρ̃
(3.40)

Then by increasing the dimensionless forcing λ we can decrease the minimum

value of the coupling above which symmetry breaking occurs, as shown in fig. 3.2.

For soft-hydrodynamic coupled motors, for which the local term in the force

cannot be disregarded (Γ = 1), the necessary, but not sufficient, condition for

symmetry breaking is

k ≥
8

πλ (ρ̃− 2πλ(2ρ0 + ρ2))
. (3.41)

Since k is positive then λ is constrained to:

0 ≤ λ ≤
1

2π
. (3.42)

This behavior is rather different from the one obtained for rigidly coupled motors,

as shown in fig. 3.2. For rigidly-coupled motors we found an inverse proportion-

ality relation between the coupling k and the dimensionless forcing λ, as given
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Figure 3.2: Necessary (and sufficient for Γ = 0) condition for the existence of
the three real solutions of Eq. 3.39 for rigidly-coupled motors, characterized by
Γ = 0, (left) and for soft-hydrodynamic coupled motors, characterized by Γ = 1,
(right). Three real solutions exists when the parameters λ and k (shown on the
y-axis and x-axis respectively) are inside the lighter region.

by eq. 3.40. For soft-hydrodynamic coupled motors the situation is rather dif-

ferent and symmetry breaking can occur only for a smaller set of values of λ, as

shown by eq. 3.42. Moreover eq. 3.41 identify a critical value of the dimensionless

coupling

λc =
ρ̃

2π(2ρ0 + ρ2) − ρ̃
(3.43)

for which the value of coupling parameter k leading to symmetry breaking is min-

imum. Such a difference between rigid and soft-hydrodynamic coupled motors is

rather relevant and should be detected in experiments. In fact for rigid coupled

motor we expect a reduction of the minimum value of k above which symmetry

breaking occurs by enlarging λ for example by increasing motor force, or decreas-

ing the hopping rates ω. On the contrary, for soft-hydrodynamic couped motors

the dependence of k on λ strongly depends on λc. If λ < λc an increase of λ

leads to a decrease in k as for rigidly coupled motors. However, for λ > λc the

situation is reversed and enlarging λ requires larger values of k in order to break

the symmetry.
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3.5.2 Numerical solution

The previous theoretical analysis, although approximate, has showed the scenar-

ios that lead to the destabilization of a homogenoeus motor state and how a

transition leading to a net motor current develops. However, in order to have a

more quantitative insight on the typical velocity the system can reach and, more-

over, on the typical system sizes, encoded in the coupling constant k, required for

symmetry breaking, we need to solve numerically eq. 3.28. Looking at the func-

tional shape of eq. 3.28 it is clear that an exact (i.e. up to numerical precision)

solution is not trivial since it requires to calculate the average non-linear flux:

〈ρ(x) (Γf(x) + k 〈f(x)ρ(x)〉x)〉ρ (3.44)

mediated over all possible density distribution ρ(x), each of which weighted with

probability Pρ. Then, we are forced to perform an additional mean field approx-

imation assuming:

〈ρ(x) (Γf(x) + k 〈f(x)ρ(x)〉x)〉ρ = 〈ρ(x)Γf(x)〉ρ + 〈ρ(x)〉ρk〈f(x)ρ(x)〉x,ρ (3.45)

Tacking advantage of a second order Lax-Wendroff [77] scheme, we solve eq. 3.28

for different values of the dimensionless parameters λ and k. In particular we will

study different hopping scenarios. Defining the hopping rates as:

ωoff (x) = max

(

∆ωon − δωon sin

(

2πx

L

)

, 0

)

(3.46)

ωon(x) = max

(

∆ωoff + δωoff sin

(

2πx

L

)

, 0

)

(3.47)

we can define three main regimes. In the first one we assume δωon,off ≤ ∆ωon,off ,

where the hopping rates are always non vanishing and are smoothly varying

along the period of the potential. Alternatively we can consider δωon = 0 and

δωoff > ∆ωoff ≫ 1 that leads to a constant binding rate and an unbinding rate

localized at the bottom of the potential. This choice of the hopping rates makes

our linear stability analysis about the rest state more complex since now the

hopping rates are leadong to a more intricate coupling beteen the Fourier modes
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Figure 3.3: Smoothly-varying hopping rates for homogeneous local density. Ve-
locity, normalized by the single motor velocity while sliding along the steepest
part of the potential, v0 = f1/γ, as a function of the dimensionless coupling k as
obtained from Eq. 3.28. Panel A, B refers to the case of hydrodynamic (Panel
A) and rigid (Panel B) coupling, both characterized by ∆ωon = ∆ωoff = 1 and
δωon = δωoff = 1/2 while λ = 0.015, 0.05, 0.1, λ = 0.017, 0.033, 0.066 for panel
A, B respectively. Bigger points stands for larger values of λ.

as shown, for the general case, in eq. 3.32, for which the adiabatic assumtpion,

even valid in principle, might require to solve more modes in order to capture the

symmetry breaking. Finally we will consider the case, δωoff,on > ∆ωoff,on ≫ 1,

in which both binding and unbinding rates are localized at the top and at the

bottom of the potential respectively.

3.5.2.1 Smoothly-varying hopping rates

The numerical solutions of eq. 3.28 for δωon,off ≤ ∆ωon,off , are shown in fig. 3.3

for both soft hydrodynamically coupled as well as rigidly coupled motors. In the

former case, shown in fig. 3.3.A the rest solution, stable for for k < k1, becomes

unstable for k > k1 and a net motors current, breaking the left-right symmetry,

sets for k > k1. Such a symmetry breaking reminds the one observed [38] for

rigidly coupled motors. Despite the apparent similarity, there are significantly

differences between the behavior of soft and rigidly coupled motors. Fig. 3.3.B

displays the spontaneous symmetry breaking for rigidly coupled motors (disre-

garding the dependence of k on system size). While Fig. 3.3.A shows a non

monotonous dependence of k on λ, the opposite holds in Fig. 3.3.B. This differ-
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ent behavior confirms what we have already found in our approximate bifurcation

analysis. For rigidly coupled motors the dynamics is governed by a single dimen-

sionless force kλ. In order to break the symmetry kλ should overcome a threshold,

kλ ≥ 8/(πρ̃) (as given by eq. 3.40), leading to an inverse proportionality relation

between k and λ. For soft-hydrodynamic coupled motors this is not the case since,

as given by eq. 3.41, two competing forces are governing the dynamics, namely

the dimensionless force provided by the ratchet, λ, and the collective force coming

from the hydrodynamic coupling k. The interplay between these two forces give

rise to the non monotonic behavior as captured by eq. 3.41, and by fig. 3.3.A. In-

terestingly our approximated bifurcation analysis captures quite well the value of

k for which we observe symmetry breaking and the onset of net currents. In fact

for the parameters used in Fig. 3.3.A the stability analysis predicts λc ∼ 8 · 10−2

and kc . 70 in good agreement with numerical results. The different behavior we

observe for rigid and soft-hydrodynamic coupling has significant implication for

experimental situations. For example, while a reduction of λ will decrease the net

flux or even prevent the onset of net currents for rigidly coupled motors, for the

soft hydrodynamic case the situation is more involved. If λ > λc a reduction in

λ will favor the onset of net fluxes while for λ < λc we recover the same behavior

obtained for rigidly coupled motors.

3.5.2.2 Localized hopping rates

In the previous section we have assumed the hopping rates to have a singular

Fourier representation, i.e. being concentrated on a single mode. This has lead

to a simplified bifurcation analysis, eq. 3.32, that has allowed us to have an insight

in the mechanism responsible for symmetry breaking. Now we want to relax that

approximation and to study the dynamics of the system in the case in which the

unbinding rate is localized about the minimum of the potential and the binding

rate is either constant or localized at the top of the potential. The choice of

the shape of the hopping rates has a twofold aim. On one hand, it allows us to

characterize how the different coupling cascades between modes affect the overall

dynamics, on the other it sheds light on how the symmetry breaking is affected

by motors actuating in different regimes. In fact, the localization of the hoping
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rates deals with the intrinsic “efficiency” of motors, as has been shown in ref. [50].

Then this study will allow us to clarify the relevance of such “efficiency” in the

symmetry breaking.

Localized unbinding rate and constant binding rate In this case, we

assume the unbinding rate to be localized at the bottom of the ratchet potential

and a constant binding rate, namely δωon = 0 and δωoff > ∆ωoff ≫ 1. For

both soft-hydrodynamic and rigid coupling, we observe a dramatic change in the

nature of the symmetry breaking. In fact, while for smoothly varying hopping

rates, we observe a supercritical pitchfork bifurcation, as shown in fig. 3.3, in this

case we observe a subcritical pitchfork bifurcation, as shown in fig. 3.4. Such

difference is remarkable since in the case of a supercritical bifurcation the order

parameter (ensemble velocity) changes smoothly with the control parameter (the

coupling parameter k) while for a subcritical bifurcation the order parameter

changes abruptly as the control parameter overcome the bifurcation point. On

the other hand, for a supercritical bifurcation the number of stable states jumps

from one (the rest state) to the two moving states (one per direction). Then, for

k > k1 if the system is affected by random fluctuation in the hopping rates it will,

randomly, jump between the two moving states leading to a bistable behavior as

has been previously reported [38]. In the case of a subcritical bifurcation, the

situation is rather different since for k1 < k < k2 there are three stable states,

namely the two moving states and the rest state. Then, in the presence of noise,

the overall system dynamics will differ from the one previously described since

now the system can, randomly, set in the rest state than alternating the bistable

behavior with long pauses. Such a behavior has been observed experimentally

in the transport of Golgi apparatus [70], Acto-Myosin systems [2] and Kinesin-

Dynein ensembles [56].

When the hopping rates are not represented by a single Fourier mode, the

coupling between modes become more involved. Then, in principle, we need

more than 2 parameters, namely λ and k, to describe the system. However, if we

vary only the amplitude of the the ratchet force, f1, then we observe, for soft-

hydrodynamic coupling, a non-monotonous behavior identifying an optimal value

of the dimensionless forcing λ for which we can break the symmetry similarly to
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Figure 3.4: Localized unbinding rate and delocalized binding rate for homoge-
neous local density. A,B: velocity, normalized by the single motor velocity while
sliding along the steepest part of the potential, v0 = f0/γ, as a function of the
dimensionless coupling k as obtained from Eq. 3.28. A: hydrodynamic coupling
characterized by λ = 1 · 10−2, 2 · 10−2, 4 · 10−2 with bigger points standing for
larger values of λ and with ∆ωoff = −4 and δωon = 5. B: rigidly coupled motors,
characterized by the parameter values given in table 3.1, a bigger bright points,
b intermediate points, c smaller dark points. C,D: average density of motors as a
function of the coupling parameter k for the same values of the parameters as in
panel A,B respectively for C,D.

∆ωoff δωoff ∆ωon δωon ω f/γ λ

a −400 500 1 0 10−2 10−2 10−1

b −40 50 1 0 10−1 10−2 1/2 · 10−1

c −4 5 1 0 10−1 10−2 10−1

Table 3.1: Sets of parameters used for the data about localized unbinding rate
and delocalized binding rate shown in fig. 3.4.B.
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what observed for smoothly-varying hopping rates. On the other hand, if we

vary both the force and the amplitude of the hopping ω (defined in eq. 3.27) the

situation is rather different, as shown in fig. 3.4.B and table 3.1, and the relation

between k and λ becomes not trivial even for rigidly-coupled motors (Γ = 0).

Another feature linked with the higher number of modes involved in the

Fourier representation of the hopping rates deals with the average motor den-

sity. For smoothly varying hopping rates the average density is conserved during

the dynamics, independently of the value of k, as given by the first equation of

eqs. 3.32. However, for more involved hopping rates, we should look at the more

general expansion as given by eqs. 3.29. Fig. 3.4.C,D show a counterintuitive

scenario for which while decreasing the coupling (hence the velocity) the density

increases until it reaches the maximum for the state characterized by zero net

velocity. Hence, the velocity enhancement shown in fig. 3.4.A,B is not due to an

increase of the pushing motors, rather to a better reorganization of a more dilute

ensemble of motors.

As shown in the panels in fig. 3.4, both rigid and hydrodynamic coupling lead

more diluted clusters to move at higher velocities. Then, in this scenario a reduc-

tion in the number of pulling motors, and therefore of the energy consumption,

leads to an improvement of cluster performances. Interestingly such a behavior

is typical for this choice of the hpping rates. For smoothly varying hopping rates

the density is fixed by the initial condition ans it does not depend neither on time

neither on the coupling parameter k. An increase in the motors performance upon

reduction of the enrgy consumption reminds what we have already discussed in

the previous chapter where the energy cost per unit step was strongly reduced

by the hydrodynamic coupling between motors. As in the previous case, motors

are not pulling against a load so it is not possible to define a thermodynamic

efficiency since all the energy injected in the system is dissipated in the fluid.

Localized unbinding and binding rate In this case, we assume that both

binding and unbinding rates are localized at the top and the bottom of the ratchet

potential respectively. In this case, we find that the supercritical pitchfork bifur-

cation happens for vanishing small values of the coupling parameter k for both

rigid and soft-hydrodynamic coupling, as shown in both panels of fig. 3.5. The
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Figure 3.5: Both localized unbinding and binding rate for homogeneous local
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the steepest part of the potential, v0 = f0/γ, as a function of the dimensionless
coupling k as obtained from Eq. 3.28. A: hydrodynamic coupling characterized by
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parameter k for the same values of the parameters as in panel A.

56



scenario we have just described has not been found in experiments and it predicts

the lack of stable rest state. In order to understand weather this regime is exper-

imentally achievable or not we should discuss the role played by the noise in the

dynamics. In fact, in the absence of noise, our study predicts that the rest state

is always unstable. However, for real systems, noise (possibly due to thermal

fluctuations) will be present and possibly play a relevant role. In fact, the system

size decrease with the coupling parameter k. Therefore for vanishing k the sys-

tem size will decrease and fluctuations in the dynamics will be relevant. In this

regime, the system will hop continuously between the two moving steady states

therefore leading to an overall vanishing velocity. An high frequency sampling of

such trajectories should show an enhanced dispersion in the center of mass posi-

tion, reminder of the quick jumps the system does between the two moving stable

steady states. Interestingly, we find that while for the soft-hydrodynamic case

the density decreases upon increase of the coupling and lead to a density-velocity

relation similar to that obtained in the previous case, for rigid coupled motors

the density does not show an evolutions and sticks to its initial value.

3.6 Inhomogeneous total motors density

In previous sections, we have characterized the dynamics of ensembles of opposite-

displacing motors pulling on a common cargo under the constraint of homoge-

neous total motor density. However, such a constraint is quite restrictive since

real systems, characterized by finite number of motors, will be characterized by

inhomogeneities in the local density. In particular, for rigidly bound motors such

inhomogeneity can be regarded as a quenched disorder since, due to the common

force acting an all motors, the density inhomogeneities in the initial conditions

will never relax. On the contrary, for soft-hydrodynamic motors inhomogeneities

in the density might lead to novel dynamics prevented in the case of homoge-

neous distributions. When we relax the local density constraint and we allow the

local total density ρ(x) + σ(x) as well the single densities ρ(x) and σ(x) to vary,

eqs. 3.26 do not decouple and we have to solve both of them at the same time.
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3.6.1 Approximate bifurcation analysis

In order to gain insight in the underlying dynamics we expand both densities, ρ

and σ in their Fourier series:

ρ(x) = ρ0 +
∞

∑

n=1

ρn cos

(

2πnx

L

)

+ ρ̄n sin

(

2πnx

L

)

(3.48)

σ(x) = σ0 +
∞

∑

n=1

σn cos

(

2πnx

L

)

+ σ̄n sin

(

2πnx

L

)

(3.49)

In the case of homogeneous total motors density we have gained insight by as-

suming that both the hopping rates and the force are represented by a single

Fourier mode. Therefore, here we make the same assumption:

f(x) = f1 cos (2πx)

ωoff (x) = 1 + ω1 sin (2πx)

ωon(x) = 1 − ω1 sin (2πx)

getting:

ρ̇0 = −2 (ρ0 − σ0) − ω1 (ρ̄1 − σ̄1)

ρ̇1 = −πλkρ̄1ρ1 − πλΓρ̄2 − (ρ1 − σ1) +
1

2
ω1 (ρ̄2 + σ̄2)

˙̄ρ1 = 2Γπλρ0 + πλkρ2
1 + πλΓρ2 − (ρ̄1 − σ̄1) +

1

2
ω1 (ρ2 − 2ρ0 + σ2 − 2σ0)

σ̇0 = 2 (ρ0 − σ0) + ω1 (ρ̄1 − σ̄1)

σ̇1 = −πλkσ̄1ρ1 + (ρ1 − σ1) −
1

2
ω1 (ρ̄2 + σ̄2)

˙̄σ1 = πλkσ1ρ1 + (ρ̄1 − σ̄1) −
1

2
ω1 (ρ2 − 2ρ0 + σ2 − 2σ0)

(3.50)

where we have truncated our expansion at the longest wavelength mode i.e. the

period of the potential L. In the case of rigidly coupled motors, Γ = 0, we

can solve the system of eqs. 3.50 considering ρ2, ρ̄2 and σ2, σ̄2 as parameters.
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Substituting:

ai = ρi + σi

āi = ρ̄i + σ̄i

bi = ρi − σi

b̄i = ρ̄i − σ̄i

and doing some algebra we have been able to solve the system and, after lineariz-

ing it about the rest steady state, to calculate the eigenvalues and eigenvectors.

The conservation of the total mass, ρ0 + σ0 = ρ̄, already provide an eigenvalue

ξ0 = 0. For the other eigenvalues we find:

ξ1 = 0

ξ2 = −2

ξ3 = −4

ξ4 = −
1

8

(

2ā1λkπ + ψ +

√

−64ā1λkπ + (2ā1λkπ + ψ)2

)

ξ5 = −
1

8

(

2ā1λkπ + ψ −

√

−64ā1λkπ + (2ā1λkπ + ψ)2

)

(3.51)

with

ψ = 8 + λkπω1(a2 − 2a0) (3.52)

The first eigenvalue vanishes, identifying an additional conserved quantity, on the

top of total mass, leading to ā1(t) = ω1

ω0
b0(t). Looking at the shape of the eigen-

values ξ4, ξ5, we expect a first bifurcation when 2ā0λkπ+ψ ≥ 0 that, substituting

eq. 3.52 in the expression for ξ4 and ξ5, leads to:

kλ >
8

π(2ā1 + ω1(a2 − 2a1))
(3.53)

and a second bifurcation might1 arise depending on the sign of the argument

of the square root. Eq. 3.53 is the condition for the onset of a net current.

1Strinctly pseaking our approximate bifurcation analysis is valid only close to the first
bifurcation point since we have linearized the sisyem bout the rest steady state
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Comparing eq. 3.53 with the equivalent expression obtained for homogeneous

motor total density, eq. 3.40, we notice that the two conditions share the same

structure. However, while for eq. 3.40 the relation between k and λ is an explicit

expression of the parameters, for eq. 3.53 this is not the case since the system of

eqs. 3.50 is underdetermined due to the linear dependence between the equation

for ρ̇0 and σ̇0. Then the amplitudes of the modes involved in eq.3.53 need to

be calculated from the numerical solution of eqs. 3.26. For the case of soft-

hydrodynamic coupling, Γ = 1, the situation is more involved and we have not

been able to solve analytically the system of equations 3.50 and so to perform

the linear stability analysis.

3.6.2 Numerical solution

As for the constant local density case we are not able to directly numerically

solve eqs. 3.26 since they involve an integration in the functional space of ρ and

σ. Hence we need to do an additional mean field approximation, as we did in the

case of homogeneous density, according to which we will consider:

〈ρ(x) (Γf(x) + k 〈f(x)ρ(x)〉x)〉ρ,σ = 〈ρ(x)Γf(x)〉ρ,σ + k 〈ρ(x)〉ρ,σ 〈〈f(x)ρ(x)〉x〉ρ,σ

〈σ(x)k 〈f(x)ρ(x)〉x〉ρ,σ = k 〈σ(x)〉ρ,σ 〈〈f(x)ρ(x)〉x〉ρ,σ (3.54)

The numerical solution1 of eqs. 3.26, under the approximation provided by eqs. 3.54,

has led to very different behavior for rigidly coupled, Γ = 0, or soft-hydrodynamic

coupled, Γ = 1, motors. Due to the relevant differences, even in the qualitative

behavior between the rigid and the hydrodynamic coupling, we prefer to discuss

the two cases separately.

3.6.2.1 Rigid coupling

For rigidly coupled motors, Γ = 0, we observe two subsequent bifurcations, as

shown in fig. 3.6. Above the first bifurcation point, k1 the system undergoes

sustained oscillations with vanishing average velocity, while above the second

bifurcation point, k2 the system breaks the longitudinal symmetry and it acquires

1we have used a second order Lax-Wendroff [77] scheme extended to the case of two fields
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Figure 3.6: Smoothly-varying hopping rates for rigidly coupled motors and in-
homogeneous motors total density. A: bifurcation and onset of net current as a
function of the coupling parameter k; solid (red) dots represent the average ve-
locity, empty (orange) circles represent the second moment of the velocity while
triangles (brown) the frequency of the velocity oscillations. B: bifurcation sce-
nario for larger range of coupling parameter k, all other parameters take the
same values as in panel A. C: real part of the eigenvalues ξ4 and ξ5, as given by
eqs. 3.51, as a function of k. The values of the higher modes amplitude are token
from the numerical solutions of eqs. 3.26 under the mean field approximation
given by 3.54. D: average velocity (squares), variance of the velocity (circles) and
frequency of velocity oscillations (triangles) as a function of the amplitude of the
quench disorder δρ/ρ0 for k = 65.7 (empty points) and k = 80 (solid points).
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a net motion characterized by a non vanishing average velocity modulated by

small amplitude oscillations. Such a behavior is consistent with the approximate

linear stability analysis we performed, see eqs. 3.51. Fig. 3.6.B shows the behavior

of the relevant eigenvalues upon variation of the coupling k, where the value of

a0, ā1 and a2 are token from the numerical solution of eqs.3.26. For k < k1

the relevant eigenvalues are negative, ensuring the stability of the rest state.

When k1 < k < k2 the eigenvalues have an imaginary part, see eqs. 3.51, hence

leading to oscillations. At k = k2 a second bifurcation occurs and the system

acquires a net velocity modulated by small oscillations. For k > k2, the linear

stability analysis predicts the absence of oscillations in disagreement with our

numerical results that show a net average velocity modulated by small amplitude

oscillations. Therefore, in this regime, our approximate linear stability analysis

fail to capture the oscillating behavior, possibly induced by higher modes that

we have disregard in our approximated analysis.

The conservation of total mass, togheter with the rigid coupling lead to a

quenching of the disorder provided by initial conditions. In fact, since the same

collective force is acting on all motors their mutual position are frozen, therefore

density heterogeneities in the initial condition will be frozen along the time evo-

lution of the the system dynamics. We have studied how the overall dynamics is

affected by the amplitude of the quench disorder, δρ/ρ0, quantified by the ratio

between the amplitude of the noise in the initial conditions, δρ =
∫

(ρ(x)−ρ0)
2dx,

and the average density, ρ0. For k > k2 the effect of the amplitude of the quench

disorder is neglegible and a net velocity modulated by small amplitude oscillation

is obtained for all the cases we have analyzed. On the contrary, for k1 < k < k2,

the system is quite sensitive to the amplitude of the quench disorder. Fig. 3.6.C

shows that reducing the value of the quench disorder the system acquires a net

motion with nonvanishing average velocity modulated by small amplitude oscil-

lations. Fig. 3.6.C shows as well that by reducing the amplitude of the quench

disorder leads to a reduction of the amplitude of the oscillations modulation the

average velocity, while the frequency of such oscillations is quite insensitive to

variations in δρ/ρ0.
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3.6.2.2 Soft-hydrodynamic coupling

In the numerical analysis of eqs. 3.26, we observe, in some regimes, the develop-

ment of large densities that correspond to a tendency of motors to accumulate.

As we have discussed in the previous chapter, motors ensembles can develop clus-

ters [62], or shock waves [1], when the total number of motors is conserved. In

these situations the motion of motors is controlled by short range interactions and

excluded volume, absent in eqs. 3.26. Interestingly when weakly bound motors

are in contact with a reservoir and eqs. 3.26 reduces to eqs. 3.28, no accumulation

is observed, showing that, in this scenario, short range interaction play a minor

role as compared to the long range hydrodynamic interactions governing the be-

havior shown in Fig. 3.6. On the contrary, when the total number of motors is

conserved and motors keep track of the position where they jump to the weakly

bound state, we observe the onset of large accumulation of motors.

However, we have seen that motor accumulation remains finite if both binding

and unbinding rates are sharply peaked (∆ωon,off < δωon,off) at the maximum

or minimum of the potential respectively, see Fig. 3.7.A. Numerical solution of

eqs. 3.26 is shown in Fig. 3.7.A. For smaller values of the coupling k the rest state

is the only stable solution. When k & 60 a saddle-node bifurcation of cycles [87]

occurs and new stable solution characterized by a net velocity whose value oscil-

lates, with frequency ωv, about a non vanishing average. The amplitude of the

oscillations is smaller than the average value, see Fig. 3.7.A, hence the system

always moves in the same direction with speed modulated by small amplitude

oscillations. The time evolution of the densities ρ̃(x) and σ̃(x) is characterized

by traveling waves for both motor densities.

The traveling wave regime can be understood as follows. When moving under

the action of the driving potential, motors in the bound state push through

hydrodynamic interactions, motors in the diffusive state. As motors reach the

bottom of the potential they jump, with rate ωoff , to the diffusive state. Now

the remaining motors in the bound state push, the majority of the motors in the

unbound state untill they reach the hopping region and they rebind, with rate

ωon, to the filament and a new cycle starts.

Increasing the value of k, at fixed λ, or reducing the value of λ at fixed k,
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Figure 3.7: Soft-hydrodynamic coupling and inhomogeneous motors total den-
sity. A: average velocity (red solid dots), velocity variance (open blue dots),
normalized by the single motor velocity while sliding along the steepest part
of the potential, v0 = f0/γ, sustained oscillations frequency, ωv (yellow upside
triangles) and frequency of inversion in the bistable regime Ωv (brown downside
triangles), normalized the hopping rate ω0 as obtained by the solution of eqs. 3.26
as function of k. Ωv has been magnified by a factor of 10 for sake of clearness.
Hopping rates are characterized by ∆ωon,off = −1, δωon,off = 2. Inset: number
of oscillation between subsequent velocity switch, Nω = 2ωv/Ωv, in the bistable
regime B: dimensionless time τ = 2vρ/ω0δ governing the stability of the sustained
oscillation (see text), and effective dimensionless forcing, λv = v/ω0L, as a func-
tion of the dimensionless coupling k. Bigger points stands for larger values of
λ = f0/ω0Lγ = 4 ·10−3, 6.7 ·10−3, 10−2 while point type emphasizes the sustained
oscillation (circles) or bistable (triangles) regime.
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we observe the onset of larger accumulations of motors about the region of non-

vanishing hopping rates breaking the dilute motor regime assumed in eqs. 3.26.

To have an insight in this regime we have introduced a, local, regularization that

allows to redistribute locally the excess of motors1. Exploiting this regularization

we can explore a wider range of values of k and λ. Interestingly we observe a

second bifurcation at k ≃ 180 above which the system becomes bistable. In the

bistable phase we observe that the velocity still oscillates with frequency ωv about

a non vanishing average value, v, and the sign of v switches with frequency Ωv.

Hence, for time scales larger than Ω−1
v the average velocity of the system van-

ishes and the bistable behavior, similar to the one experimentally observed [40],

develops. The parameter governing this transition is the dimensionless time,

τ = 2vρ/ω0δ, defined as the ratio between the, average, hopping time 1
2
ω−1

0 where

the factor 1
2

accounts for the non-constant shape of the hopping rate, and the

time a particle spends in the region in which the hopping rate is non vanishing, δ,

being pushed at a speed vρ
2 by the other motors. As shown in Fig. 3.7.B, when

τ ≪ 1 the time needed to jump between the two states ω−1
0 is much smaller than

the time particle spends in crossing the hopping region, hence the majority of the

motors rebind and the system undergoes sustained oscillations. On the contrary,

when τ & 1 the two time scales are comparable and part of the motors in the

unbound state cannot jump back to the bound state and will not contribute to

the next cycle. Such loss of active motors affects subsequent oscillations. These

effects sum up until the system switches the sign of the average velocity on time

scales of the order of Ωv. The number of oscillations between two subsequent

switching events, Nω = 2ωv/Ωv, decreases for increasing k, as shown in the inset

of Fog. 3.7.A. For increasing k the two time scales approach, Nω → 1, and the

bistability disappears leaving the rest state as the only steady state.3

This bistable regime just described is typical of soft hydrodynamically coupled

motors. In this scenario motors oscillations develop due to fluctuation in the local

1When the density exceeds the maximum value, ρ̃max, the excess of motors are redistributed
in the first-neighbor sites along the lattice used for the numerical solution of eqs. 3.26.

2vρ is the average velocity provided that the majority of the motors are in the bound state.
For values of k close to the second bifurcation, k ≃ k2, we have vρ ∼ 3 · v

3This bifurcation scenario, that includes subcritical Hopf-like bifurcation, is typical of sce-
narios where the bifurcation is not governed by the neighborhood of the steady fix point rather
by larger regions of the phase space [87].
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Figure 3.8: 2D hydrodynamic coupling. Minimum system size, calculated from
Eq. 3.56 for symmetry breaking (solid lines) and for bistable onset (dashed lines)
as a function of l for motor pulling on membranes. R is of the order of the
membrane thickness ∼ 4nm leading to R ∼ 1/2L. Thicker lines stands for larger
values of k. k = 75, 60, 50 and k = 60, 50 for the solid (dashed) lines respectively.

density that allows for, local, reorganization of motor densities. Such feature is

absent when we disregard unbound motor dynamics, as is when weakly bound

motors are in contact with a reservoir, see fig. 3.6, or when density fluctuation are

suppressed by rigidly coupled motors, as in [38]. Bistability can be recovered in

the latter regime [38], as well in the former (data not shown), when the hopping

dynamics is affected by a weak noise. Hence, in these regimes, bistability sets for

intermediate motors ensemble sizes and it vanishes for increasing system sizes, for

which the noise becomes negligible. On the contrary, for hydrodynamic coupling

the bistability arises by increasing the system size, encoded in k, and persists for

a finite range of values of k before the rest state becomes the only stable steady

state.

3.7 Hydrodynamic coupling and biological sce-

narios

The hydrodynamic coupling has an intrisic diverging nature that leads the over-

all coupling betwee particles in a system to grow with system size. therefore, for
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hydordynamic coupling, the coupling parameter k and the system size Λ show

a monotonous relation. In particular, for the case of hydrodynamically-induced

bidirectional cargo transport, in principle, it is possible to identify two means

responsible for the onset hydrodynamic coupling. On one hand motors pulling

on the same cargo are hydrodynamically coupled through the local fluxes of cy-

toplasm they generate as they displace. On the other hand, when motors are

pulling on membrane-covered cargoes, such as organelles or vesicles, the liquid

nature of the membrane on which motors pull can lead to an additional hydro-

dynamic coupling. In particular the latter will develop in the lipid bilayer that

act as a thin sheet of fluid 1 for which the green function of the Navier-Stokes

equation will be the 2D Oseen tensor. In this view motors are coupled by two

means at the same time and, we should take both of them into account when cal-

culating α(x) and β(x). The ratio, l = η2D,mem/η3D,cyt, between the membrane

2D viscosity, η2D,mem and the cytoplasmic 3D viscosity, η3D,cyt defines the typical

length, l, above which the 3D contribution will be the dominant, while vice-versa

stands for distances shorter than l. In the following we assume that motors and

the membrane-embedded molecules bridging them to the membrane are rigidly

coupled. In this view eqs. 3.25 are describe the overall motion of motors and

molecules provided we take into account both 2D and 3D contributions in the

velocity fields α(x) and β(x) = α(x)−µf(x). For r < l the relevant contribution

is the 2D and the 2D Oseen tensor reads [26]:

G(r) = ln
l

r
(3.55)

where l = η2D,mem/η3D,cyt. Such an interaction leads to the coupling parameter

k2D = 2

[

M + ln
l

M
−R− ln

l

R

]

(3.56)

For the 3D contribution coming from the coupling provided by the cytoplasm,

the hydrodynamic coupling is accounted for, at first order, by the 3D Oseen’s

tensor:

G(r) =
3

2
R

1

r
(3.57)

1The bilipidic membrane thickness is typically ≃ 4nm
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that leads to the coupling parameter

k3D = 3R ln
Λ

2R
(3.58)

where Λ is the system size.

Once we know the relation between the system size, Λ, and the coupling

parameter, k, we can recast the dependence of the motors ensemble state of

motion in terms of the size of the ensemble. The interactoin between motors

strongly depedns on the ratio, l, between the cytoplasm and the membrane den-

sity. Assuming the cytoplasm viscosity to be η3D,cyt ∈ [10−1; 10−2]Pa · sec [65]

and membrane viscosity to be η2D,mem ∈ [5 · 10−7, 10−8]Pa · sec · m [21] we

obtain l ∈ [10−1, 10]µm that is the typical range in biological situations for

which the typical velocity is v ∼ 0.1µm [17]. The hopping rate can be assumed

ω0 ≃ α102 sec−1, being α the inverse of the efficiency 1. We can define an ef-

fective dimensionless forcing λv = v
ω0L

= 5 · 10−2 for α = 2 i.e. 50% efficiency.

The same parameter calculated for the curve in Fig. 3.7.A gives λv = 2.8 · 10−2

underling the biological relevance of the regime shown. Fig. 3.8 shows that for

l ∼ 1µm, systems as small as Λ ∼ 0.2µm will undergo hydrodynamically-induced

symmetry breaking, while slightly larger systems Λ ∼ 0.5µm will develop bista-

bility. Eq. 3.58 gives a non monotonous dependence of Λ on R, Λ = 4Re
2kL

3R

whose minimum value grows as Λmin = 4eR. In the latter case, motors pulling

cargoes of ∼ 0.1 − 1µm size will undergo symmetry breaking for systems of the

order of 10−100µm underling the relevance of the 3D hydrodynamic coupling for

larger systems such as neurons, or in technological applications as in microfluidic

devices.

3.8 Conclusions

We have shown that the hydrodynamic coupling between molecular motors can

be responsible for the experimentally observed bidirectional transport of cargoes.

1ω0 has been calculated assuming that the hopping is instantaneous and that the velocity
of the motor is v = 1µm/sec the time spent to move one period L = 10nm is τ = 10−2 sec
for 100% efficiency and the typical length is L ∼ 10nm. For smaller efficiencies, 1/α, we get
τ = 1/α10−2 sec
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Due to the hydrodynamic nature of the coupling the system size plays a relevant

role in the onset of motion. Moreover the presence of local forcing term in addi-

tion to the collective coupling leads to unexpected dynamics such as oscillations

and bistability absent in the case of rigid coupling. In order to characterize the

peculiarity of the hydrodynamic coupling, we have compared the dynamics of hy-

drodynamically coupled motors against those arising for rigidly coupled motors

in different scenarios.

In the case of constant density, where the overall mobility is governed by

bound motor dynamics, allows for a more analytical insight. In this scenario, we

have identified the dimensionless motor-filament forcing term λ, as the parameter

controlling the difference between hydrodynamically and rigidly coupled motors.

In fact, while the dynamics of hydrodynamically coupled motors is affected by

both the hydrodynamic coupling, captured by k, and the local forcing, captured

by λ, for rigidly coupled motors the local forcing is absent since all motors move

according to the collective force k. The competition between two contribution,

namely Λ and k, to the local force leads hydrodynamically coupled motors to

undergo quite different dynamical regimes as rigidly coupled motors whose overall

dynamics is governed by the collective force, k. In particular, while for rigidly

coupled motors increasing the dimensionless local forcing λ decreases the value of

k at which bifurcation occurs, for hydrodynamically coupled motors it appears a

critical value of λ for which the value of k is minimum. Such a difference can lead

to different routes to regulate the onset of net currents and should be detectable

experimentally.

When relaxing the constraint on the local density, we have observed novel dy-

namical regimes for both, rigidly as well hydrodynamically coupled motors. For

rigidly coupled motors density inhomogeneities are quenched since, due to the

rigid coupling, the inhomogeneity in the density provided by the initial condi-

tion cannot be relaxed. Hence, the amplitude of the intial inhomogeneties in the

density is a relevant parameter and it controls the onset of sustained oscillations

about a vanishing velocity. For larger values of the quenched disorder we observe

oscillations of motors velocity about a vanishing average, while reducing the am-

plitude of the quenched disorder leads to the onset of sustained oscillations about

a non vanishing average velocity. In the case of hydrodynamic coupling density
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3. BIDIRECTIONAL CARGO TRANSPORT

inhomogeneities are not quenched, rather we have observed several regimes in-

cluding large accumulations, that reminds those reported in ref. [1] or the clusters

we have observed in the previous chapter, traveling waves and bistability.

Interestingly we found that not only the physical nature of the interaction

(hydrodynamic or rigid bound) but also the details of motor intrinsic dynamics,

encoded in the functional shape of the hopping rates, leads to different, unex-

pected, dynamical regimes. In fact, different shapes of the hopping rates leads to

quite diverse bifurcation scenarios for both, rigid and soft-hydrodynamical cou-

pling. In the case of constant local density, for unbinding rates localized at the

bottom of the potential and unlocalized bounding rate the bifurcation becomes

subcritical as compared to the supercritical observed for smoother hopping rates.

The change in the nature of the bifurcation remarks a dramatic variation in the

underlying dynamics. For example we have observed that for intermediate values

of the coupling parameter k an extended region of bistability develops. In such

a scenario the presence of fluctuation will induce the system to switch between

two moving states (one per direction along the filament) and a rest state. Inter-

estingly similar dynamics has been reported in recent experiments where Golgi

apparatus [70], Acto-Myosin systems [2] and Kinesin-Dynein ensembles [56] have

been observed to alternate bidirectional motion interspersed with long pauses.

For rigidly coupled motors the dependence of the nature of the bifurcation on

the functional shape of the hopping rates is not sensitive to the constraint on the

homogeneity of the density. Similar functional shape of the hopping rates has

given similar bifurcation scenarios for both homogeneous as well quenched inho-

mogeneous density profiles. On the contrary, hydrodynamically coupled motors

are strongly affected by the homogeneity of the density. While for homogeneous

density we have observed the onset of net currents for different functional shape

of the hopping rates, relaxing such a constraint leads to large accumulation of

motors whenever the hopping rates are not sharply localized at the extrema of

the potential.

The difference between rigid and soft-hydrodynamic coupling is encoded in the

role played by the local forcing term λ. Thanks to our coarse-grained appriach we

have been able to capture the essential parameters, namely λ and k governing the

dynamics. Therefore different soft-potentials leading to the same value of k and λ
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will undergo the same dynamics. For motors pulling on cargo the hydrodynamic

coupling can have two origins. In fact, motor-motor hydrodynamic coupling can

be provided by both the 3D cytoplasm and by the 2D membrane motors are

pulling on. Interestingly when accounting for the 2D contribution we observed

symmetry breaking or even bistability for typical system sizes of the order of tens

of motors, ≃ 10−1µm, hence underlying that hydrodynamic coupling can open a

new, biologically feasible, route for bidirectional transport.
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4. Confinement-induced

rectification

4.1 Introduction

In this chapter we study the dynamics of a single molecular motor displacing in the

presence of geometrical constraints that will enter in the overall dynamics as an

additional contribution to the overall potential whose physical origin relies on the

modulation of the free space available for the motor, and that can be introduced as

an effective entropic barrier. In this view such contribution has been addressed

as an entropic barrier [48; 99]. The relevance of entropic barriers to promote

transport [13; 79] in confined environments has been recognized in a variety of

situations that include molecular transport in zeolites [9], ionic channels [16],

or in microfluidic devices [3; 25], where their shape explains, for example, the

magnitude of the rectifying electric signal observed experimentally [66]. In fact,

spatially varying geometric constraints provide themselves an alternative means

to rectify thermal fluctuations [83]. Modulations in the available explored region

lead to gradients in the system effective free energy, by inducing a local bias in

its diffusion that can promote a macroscopic net velocity for aperiodic channel

profiles [83] or due to applied alternating fields [93].

The out of equilibrium condition characterizing molecular motors affect their

dynamics, when geometrically confined, in a different way as compared to passive

particles. In fact, it has been shown that breaking detailed balance due to the

presence of unbalanced forces acting on a system causes rectification of thermal

fluctuations and leads to new dynamical behaviors, very different from those
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4. CONFINEMENT-INDUCED RECTIFICATION

observed in equilibrium situations [6; 41].

We will study the dynamics of single molecular motors embedded in a varying

section channel. We will exploit the two state model to characterize the dynamics

of the motor. However, the coupling between the energy injected in the system by

the motor and the geometrical confinement is not peculiar of molecular motors,

rather it can apply also to synthetic particles that are brought out of equilibrium

by other means. Therefore, in order to extend our study to more general situations

we will analyze different ratcheting schemes leading to rectification. All these

schemes deal with Brownian particles in a periodic potential in an overall out of

equilibrium state. Such systems are generally called Brownian Ratchet referring

to the thought experiment introduced by Smoluchowski [86] and later reproposed

by Feynman [30]. In this more general view, we will analyze the interplay between

rectification and confinement, and will characterize the new features associated

with confined Brownian ratchets (CBR). We show that the presence of strong

cooperative rectification [63; 64] between the ratchet and the confinement may

lead to rectification even when none of them can rectify the particle current on

their own. Such an interplay strongly affects particle motion. To understand the

mutual influence between both rectifying sources, we will analyze three different

ratchet models, namely the flashing ratchet, the two-level ratchet and a thermal

ratchet. In the first two cases, the equilibrium is broken by the energy injected in

the system through the intrinsic ratchet mechanism as it happens in the case of

molecular motors. In the third one, the driving force is a thermal gradient that

couples to the probability current, hence inducing a, local, Soret effect.

4.2 Physical modeling

A Brownian ratchet, with diffusion constant D, under the action of a potential,

V (r, t), moving in a confined environment characterized by a varying cross-section

channel of width, h(x, z), such as the one depicted in Fig. 4.1, can be characterized

in terms of the probability distribution function (pdf), P (r, t), which obeys the

Smoluchowski equation

∂

∂t
P (r, t) = ∇ · [βD∇W (r)P (r, t) +D∇P (r, t)] (4.1)
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where β−1 = kBT is the inverse of the temperature, T , at which the particle

diffuses, while kB stands for Boltzmann constant. Instead of being regarded

as an explicit boundary condition, the geometrical constraint can be included,

alongside any additional potential the diffusing particle may be subject to, as an

effective potential

W (r) =







V (x), |y| ≤ h(x),& |z| ≤ Lz

∞, |y| > h(x) or |z| > Lz

(4.2)

where we have considered, without lack of generality, that the long axis of the

channel coincides with the axis x, that particles cannot penetrate the confining

channel walls, and that the channel is periodic, W (r) = W (r+Lex), of length L,

as shown in Fig. 4.1, and has a finite section. If the channel width varies slowly,

∂xh ≪ 1, one can assume that the particle equilibrates in the transverse section

on time scales smaller than the ones when the particle experiences the variations

in channel section. It is then possible to factorize the pdf

P (r, t) = p(x, t)
e−βW (r)

e−βA(x)
(4.3)

e−βA(x) =

∫ Lz

−Lz

∫ h(x)

−h(x)

e−βW (r)dydz. (4.4)

By integration over the channel section one arrives at

∂

∂t
p(x, t) = ∂x {D [βp(x, t)∂xA(x) + ∂xp(x, t)]} , (4.5)

the Fick-Jacobs equation [48; 78; 99], an effective one-dimensional Smoluchowski

equation that determines the particle diffusion along the channel. Such motion

is characterized by the local effective free energy

A(x) = V (x) − kBT ln[2h(x)] (4.6)
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4. CONFINEMENT-INDUCED RECTIFICATION

∆ φ

kBTS(x)

A(x)

V(x)

Figure 4.1: Brownian ratchet and entropic barriers. A Brownian motor moving
in a confined environment will be sensitive to the free energy A(x) (solid) gener-
ated by the ratchet potential V (x) (dotted) and the entropic potential (dashed),
−kBTS(x), induced by the channel shape.

where S(x) = ln(2h(x)) accounts for the entropic contribution due to confine-

ment. One can identify an entropy barrier,

∆S = ln

(

hmax

hmin

)

(4.7)

in terms of the maximum, hmax, and minimum, hmin channel apertures. There-

fore, ∂xA(x) is the driving force that contains entropic, ∂xS(x), and enthalpic,

∂xV (x), contributions. The range of validity of the Fick-Jacobs equation has been

analyzed [14; 79], and it has been found that introducing the varying diffusion

coefficient [78]

D(x) =
D0

[

1 +
(

∂h
∂x

)2
]α (4.8)

with α = 1/3, 1/2 for 3D, 2D respectively, with the reference diffusion D0 =

kBT/γ(R) and γ(R) ∝ R, enhances the range of validity of the factorization

assumption, Eq. (4.4). Although we will keep D(x) for completeness, the results

do not change qualitatively if a constant diffusion coefficient, D0, is considered

instead.

The free energy difference over a channel period, as calulate by integrating

eq. 4.6 is given by

∆F =

∫ L

0

∂xA(x)dx (4.9)

and it governs the particle current onset. Looking for the steady solution of
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eq. 4.5 in a periodic system, pst(0) = pst(L), we find that a net current, J 6= 0,

arises only when ∆F 6= 0, which can have both an enthalpic,
∫ L

0
V (x)dx 6= 0,

and entropic, kBT
∫ L

0
ln(h(x))dx 6= 0, origin. Indeed the picture of A(x) as a free

energy is suggestive: a net current sets only when the difference in free energy

along the period is not vanishing. Clearly, at equilibrium, periodic potentials,

V (x), in periodic channels, h(x), do not give rise to any difference in the free

energy and consequently no current. The relative performance of a ratchet in an

uniform channel can be quantified in terms of the dimensionless parameter

µ0 =
Lv̄

µ̃∆F0

(4.10)

defined as the ratio between the Brownian ratchet average speed, v̄ = 1
L

∫ L

0
J(x)dx

with J(x) = D [βp(x, t)∂xA(x) + ∂xp(x, t)] derived from eq. 4.5, and the average

speed of a particle with mobility µ̃ ≡ βD0 under the action of a uniform effective

force, f0 ≡ ∆F0/L. In the absence of intrinsic ratchet rectification, ∆F0 = 0

and µ0 remains 1. If the ratchet leads to an intrinsic rectification, the interplay

between ratcheting and confinement can be alternatively quantified interns of the

dimensionless parameter

µ =
Lv̄

µ̃∆F
(4.11)

that accounts for the overall free energy drop ∆F . For a uniform channel, when

rectification is purely enthalpic, µ/µ0 = 1. Therefore, deviations of µ/µ0 from 1

constitute a convenient means to address the role of entropic constraints to par-

ticle rectification; µ/µ0 > 1 indicates that the geometrical constraints cooperate

with the force associated to the Brownian ratchet to induce an efficient coopera-

tive rectification, larger than the one obtained in an unstructured environment,

while the opposite holds for µ/µ0 < 1. The absolute value of µ gives additional

information. When µ > 1 the performance of the cooperative rectification beats

the one obtained under a constant force f ≡ ∆F/L. µ also easily identifies the

non-linear rectifying regime, when ∂fµ 6= 0.

To analyze the interplay between the Brownian ratchet and confinement, we

will consider that all Brownian ratchets are subject to the same underlying, driv-
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4. CONFINEMENT-INDUCED RECTIFICATION

ing periodic potential,

V0(r) = V0

[

sin
2π

L
x+ λ sin

4π

L
x

]

(4.12)

This is a simple potential, explored in detail previously in which rectification is

controlled by a single parameter, λ [81]. We will consider a channel width that

varies with the same periodicity as V0 and with a similar functional dependence

h(x) = h0 −R + h1 sin

[

2π

L
(x+ φ0)

]

+ h2 sin

[

4π

L
(x+ φ0)

]

(4.13)

where h0 is the average channel section and h1 and h2 determine its modulation.

In particular h2 is responsible for the symmetry of the channel along its transverse

axis. When h2 6= 0 the left-right symmetry along the channel longitudinal axis is

broken while, for h2 = 0, the left-right symmetry of channel along its longitudinal

axis is restored. hmax and hmin depend both on h1 and h2 and the dephasing, φ0.

The latter will be useful to displace the geometrical and potential modulations,

as discussed in the next Sections. The particle radius, R, affects the available

transverse section and will hence contribute to the entropic barrier, Eq.( 4.7).

4.3 Ratchet models

In order to characterize the impact of confinement in the rectification of a Brown-

ian particle, we will consider three different types of complementary, well-established

ratchet models that have the same periodicity that the geometric confinement.

4.3.1 Flashing ratchet

A colloidal particle subject to a periodic external potential

V (x) = V1V0(x) (4.14)

behaves as a flashing ratchet when the random force breaks detailed balance [59].

The parameter V allows to modify he amplitude of the potential V keeping fixed
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V0. This can be simply achieved with a Gaussian white noise with a second mo-

ment amplitude g(x) =
√

D(x) +Q (∂xV0(x))
2 [80], where Q controls Brownian

rectification. The Fick-Jacobs equation for such a flashing ratchet in a varying-

section channel reads

∂

∂t
p(x) =

∂

∂x

{

g(x)
∂[p(x)g(x)]

∂x
+D(x)p(x)

∂βA(x)

∂x

}

, (4.15)

which reduces to equilibrium diffusion for Q = 0. For Q > 0 detailed balance is

broken and net fluxes arise when

β∆F =

∫ L

0

[

D(x)∂xA(x)

g(x)2
+

∂

∂x

ln g(x)

]

dx 6= 0. (4.16)

Since
∫ L

0
∂x ln g(x)dx = 0 for a periodic channel, particle currents emerge from

the interplay between both the entropic and enthalpic forces, encoded in A(x)

and the position-dependent noise, g(x). Three dimensionless parameters governs

the Brownian ratchet performance: βV1 and ∆S quantify the relevance of the

enthalpic and entropic contributions, respectively, whileQ/(L2D0(R)) determines

rectification.

4.3.2 Two state molecular motor

The two-state ratchet model constitutes a standard, simple framework to describe

molecular motor motion. A Brownian particle jumps between two states, i = 1, 2,

(strongly and weakly bound) that determine under which potential, Vi=1,2, it dis-

places [51]. A choice of the jumping rates ω12,21 that break detailed balance,

jointly with an asymmetric potential of the bound sate, V1(x), determines the

average molecular motor velocity v0 6= 0. The conformational changes of the

molecular motors introduce an additional scale that will compete with rectifica-

tion and geometrical confinement. Infinitely-processive molecular motors remain

always attached to the filament along which they displace and are affected by

the geometrical restrictions only while displacing along the filament; accordingly,

we choose channel-independent binding rates ω21,p(x) = k21. On the contrary,

highly non-processive molecular motors detach frequently from the biofilament
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4. CONFINEMENT-INDUCED RECTIFICATION

and diffuse away; an effect we account for considering a channel-driven binding

rate, ω21,np(x) = k21/h(x). Motors jump to the weakly bound state only in a

region of width δ around the minima of V1(x), with rate ω12 = k12. Accordingly,

the motor densities in the strong(weak) states, p1(2) along the channel follow [51]

∂tp1(x) + ∂xJ1 = −ω12(x)p1(x) + ω21(x)p2(x)

∂tp2(x) + ∂xJ2 = ω12(x)p1(x) − ω21(x)p2(x) (4.17)

where J1,2(x) = −D(x)
[

∂xp1,2(x)+p1,2(x)∂xβA1,2(x)
]

stands for the current den-

sities in each of the two states in which motor displaces. Depending on the motor

internal state, two free energies, A1,2(x) = V1,2(x) − kBTS(x), account for the

interplay between the biofilament interaction and the channel constraints. Since

molecular motors can jump between two internal states, the corresponding ex-

pression for the overall free energy drop, ∆F , must be generalized to account for

these internal changes where, the overall free energy drop is identified from a two

dimensional particle flux. This system is also characterized by three dimension-

less parameters: βV1 and ∆S control the amplitude of the enthalpic and entropic

contribution, respectively, while ω1/ω2 quantifies the departure from detailed bal-

ance.

4.3.3 Thermal ratchet

As a last example, we will consider a Brownian particle moving in a varying-

section channel under the influence of a local temperature gradient. In the absence

of entropic barriers, the transport induced by the imposed temperature gradient

has been analyzed previously [15; 90]. By assuming local equilibrium along the

radial directions the probability distribution function obeys [99]:

P (r, t) = p(x, t)
e

−W (r)
KBT (x)

e
−A(x)

kBT (x)

(4.18)
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and the corresponding Fick-Jacobs equation reads

∂
∂t
p(x, t) = ∂

∂x

{

µ(x)p(x, t)

(

T (x) ∂
∂x

A(x)
T (x)

+

+ V (x) ∂
∂x

lnT (x)

)

+ µ(x) ∂
∂x

[T (x)p(x, t)]

}

, (4.19)

where we keep the phenomenological dependence of the diffusion on the channel

width through the local mobility µ(x) = βD(x). The overall free energy drop can

be expressed as

∆F =

∫ L

0

[

∂

∂x

A(x)

T (x)
+

(

V (x)

T (x)
+ 1

)

∂

∂x
lnT (x)

]

dx. (4.20)

which differs qualitatively from the one obtained for the flashing ratchet, eq. 4.16.

For a periodic thermal ratchet under a periodic temperature gradient, the entropic

contribution,
∫ L

0
∂
∂x

A(x)
T (x)

dx, vanishes and does not contribute to ∆F . Therefore,

rectification in a periodic thermal ratchet, quantified by ∆F =
∫ L

0
V (x)
T (x)

∂x lnT (x)dx,

can only develop from an interplay between the enthalpic and temperature vari-

ations [15; 75]. Although both the flashing and the thermal ratchet are char-

acterized by a multiplicative noise, their different physical origin is at the basis

of this different response. For the thermal ratchet the spatial inhomogeneity

affects both the amplitude of the fluctuations and the local equilibrium distribu-

tion while for the flashing ratchet the noise amplitude is regarded as an effective

coarse-graining of a molecular mechanism that is decoupled from the underlying

equilibrium properties of the Brownian particle. In fact, if we would (incon-

sistently) neglect the spatial dependence of the temperature in the equilibrium

distribution of the thermal ratchet that appears in Eq. (4.18), we would derive

an ∆FT ,

∆FT =

∫ L

0

∂xA(x)

T (x)
+ ∂x lnT (x)dx (4.21)

qualitatively analogous to the one obtained for the flashing ratchet, Eq. 4.16. A

similar result, and hence the possibility of constrained-controlled rectification, is

obtained if one assumes that the temperature becomes anisotropic. This cor-

responds to situations where the equilibration transverse to the channel is de-
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termined by a temperature that differs from the one characterizing the particle

diffusion along the channel. Such situations can develop if there is an intrinsic

mechanism for energy dissipation, as has been reported. e.g. in vibrated granular

gases [89].

4.4 Fully symmetric case

We will first consider the case of symmetric ratchet and entropic potentials, im-

plemented for h2 = λ = 0. Under these conditions, current rectification is not

possible when entropic and enthalpic forces act separately. We will show in this

Section that rectification may arise due to the interplay between both drivings,

when they are phase shifted by an amount φ0.

Flashing Ratchet Fig. 4.2.a shows the particle current obtained by solving

eq. 4.15 under the steady-state condition ṗ(x) = 0. As shown in fig. 4.2.a, a

net particle current develops when the phase shift, φ0, is not a multiple of π.

Such a particle flux is the result of the interplay between confinement and the

potential leading to particle rectification. In fact, eq. 4.16 together with eq. 4.6

clearly show that, if the channel and the ratchet are not in phase, φ0 6= 0, the

overall free energy drop, eq. 4.16, is finite and a net current develops. The Fick-

Jacobs equation identifies φ0 and ∆S as the relevant parameters that control

rectification. φ0 is responsible for the spatial symmetry breaking for any finite

channel modulation, ∆S. As shown in Fig.4.2.b, ∆S, quantifies the changes in

the system geometrical properties by tuning the particle radius, R, or the channel

corrugation, h1.

Particle current varies smoothly with the other dimensionless parameters, V1

and Q. For example, the value of ∆S providing the maximum current is only

weakly affected by a drop of Q of two orders of magnitude, as shown in Fig. 4.2.b.

For small values of Q, the particle velocity does not increase monotonously with

V1. While Fig. 4.2.c indicates that there exists a finite value of V1 at which particle

flux is optimal, Fig. 4.2.d shows that the particle current increases monotonously

with Q. Since both the channel corrugation and the ratchet potential are sym-

metric, Fig. 4.2.a is symmetric under inversion of the velocity and dephasing
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angle. Therefore, a uniform distribution of φ0 will not induce any net current,

but any asymmetric distribution will.

The insets of Fig. 4.2 display the changes of the dimensionless velocity, µ

(Eq. (4.15)), as a function of the relevant dimensionless parameters. They show

that there are regimes where confinement and the ratchet potential cooperate to

induce an efficient particle rectification, µ > 1, and regimes where they compete

with each other, partially hindering rectification, µ < 1. Both regimes depend

weakly on confinement, as shown in the top panels of fig. 4.2, while µ is signif-

icantly affected by the magnitude both of the ratcheting potential, V1, and the

noise amplitude, Q. In particular, µ < 1 is typical for small values of V1 and Q

while, upon increasing both V1, and Q, the µ > 1 regime arises. As the magnitude

of V1 increases, µ decreases drastically and the net current eventually vanishes.

Two state model Fig. 4.3.a shows that a net particle current develops when

the ratchet and the channel corrugation are out of registry. The symmetry of the

channel and rectifying potentials imply that the velocity profile is invariant if both

axis of the figure are inverted; hence a uniform distribution of φ0 will not induce

a net current, but any asymmetric distribution will. The internal reorganization

of the molecular motor as it moves along the channel allows for qualitatively

new scenarios with respect to the rectification features observed for the flashing

ratchet. For example, Figs. 4.3.b and 4.3.c show that the particle flux can reverse

its direction as ∆S and V1 increase, respectively, although flux reversal is more

sensitive to channel corrugation. This flux reversal can be exploited to induce

particle separation according to their size (due to the implicit dependence of ∆S

on particle radius, R), or the differential particle response to V1.

Although ∆S captures the essential features of net molecular motor motion,

Fig. 4.3.b shows separate sensitivity to the rest of the geometrical channel pa-

rameters, h0, h1, as well as motor size R. Such sensitivity is remarkable at

smaller entropic barrier magnitudes where the confining-tuned diffusion coeffi-

cient, eq.( 4.8), plays a relevant role. If h1 → 0 then both the entropic barrier

and the modulation of the diffusion coefficient vanish. On the contrary if R or h0

decrease at fixed h1, then ∆S → 0 but the modulation of the diffusion coefficient

persists, allowing for rectification. As ∆S increases, the sensitivity to the sepa-
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Figure 4.2: Rectification of a Brownian motor moving due to a symmetric flashing
ratchet in a symmetric channel. (a): particle velocity, in units of D0/L, being
D0 = D0(R = 1), as a function of the phase shift φ0 for different values of the
parameter ∆S = 1.73, 2.19, 2.94 (the larger the symbol size, the larger ∆S), being
V1 = 0.2 and Q = 2. Inset: µ as a function of φ0 for the same parameters. (b):
particle velocity as a function of ∆S upon variation of particle radius R (solid
lines, with h0 = 1.25, h1 = 0.2), h0 (solid points, with R = 1, h1 = 0.2) or h1 (open
points, with R = 1, h0 = 1.25) for φ0 = 0.1, 0.2 and V1 = 0.2, Q = 2 (the larger
the symbol the larger φ0). As a comparison the case with V1 = 0.2, Q = 0.02 and
φ0 = 0.1, 0.2, (the larger the symbol the larger φ0)., is shown (blue diamonds).
Inset: µ as a function of ∆S for the same parameters. (c): particle velocity as a
function of the ratchet potential amplitude V1 for Q = 0.02, 0.2, 2 (the larger the
symbol the larger Q), while ∆S = 2.94, φ0 = 0.1. Inset: µ as a function of φ0 for
the same parameters. (d): particle velocity as a function of Q for V1 = 0.02, 0.2, 2
and ∆S = 2.94, φ0 = 0.1, (the larger the symbol the larger V1).
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Figure 4.3: Rectification of a processive (circles), non-processive (triangles) Brow-
nian particle moving due to the two state model in a symmetric channel. (a):
particle velocity, in units of D0/L, with D0 = D0(R = 1), as a function of the
phase shift φ0 for different values of the parameter ∆S = 1.73, 2.19, 2.94 (the
larger the symbol size, the larger ∆S), for V1 = 0.2 and ω2,1/ω1,2 = 0.01. (b):
Processive (circles), non-processive (triangles) Brownian motor velocity, in units
of D0/L, as a function of ∆S upon variation of particle radius R (solid lines, for
h0 = 1.25, h1 = 0.2), h0 (solid points, for R = 1, h1 = 0.2) or h1 (open points, for
R = 1, h0 = 1.25) for φ0 = 0.1, 0.2(larger symbols correspond to larger φ0). As
a comparison, the case for φ0 = 0.1, 0.2 and V1 = 0.2 is shown (green diamonds)
(the larger the symbol the larger φ0) with ω2,1/ω1,2 = 0.01. (The curves for
V1 = 1 have been magnified by a factor of 5 for the sake of clarity.) (c): Proces-
sive (circles), non-processive (triangles) Brownian motor velocity as a function of
the ratchet potential amplitude V1 for ∆S = 1.73, 2.19, 2.94 (the larger the sym-
bol the larger ∆S) with ω2,1/ω1,2 = 0.01. (d): Processive (circles), non-processive
(triangles) Brownian motor velocity, in units of D0/L, as a function of ω1,2/ω2,1

for φ0 = 0.1 (0.3), open (solid) points and ∆S = 0.4, 7.6 (the larger the symbol
the larger ∆S), with V1 = 2.
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4. CONFINEMENT-INDUCED RECTIFICATION

rate variation of h0, h1 and R for the case of non-processive motors intensifies.

These deviation from the geometrical dependence only through ∆S arise because

the binding rate, ω2,1, depends on the probability that the motor is close to the

filament, which depends indirectly on the channel section. Hence, different chan-

nel amplitudes h0, h1, R, even if leading to the same ∆S, give rise to different

binding rates that modulate the molecular motor velocity. This sensitivity is not

present for processive motors, as observed in Fig. 4.3.c.

Molecular motors show a maximum current for an optimal ∆S that depends

weakly on V1, as displayed in Fig. 4.3.b, while Fig. 4.3.d shows that an optimum

velocity, sensitive both to φ0 and ∆S, can also be achieved on increasing the ratio

of binding and unbinding rates, ω2,1/ω1,2 .

4.5 Symmetric potential and asymmetric chan-

nel

The channel asymmetry wit respect to its transverse axis, h2 6= 0, breaks the left-

right spatial symmetry along the channel longitudinal axis. Such an asymmetry

leads to substantial changes in rectification with respect to the symmetric channel

described earlier because now there exists a geometrically-induced preferential

direction for particle rectification. As in the previous case, rectification here is

induced by the asymmetric confinement.

Flashing ratchet Fig. 4.4.a shows that the channel asymmetry leads to asym-

metric net particle current as a function of the phase shift, φ0. Non-vanishing

average velocities develop even when the channel and the ratchet are in registry,

φ0 = 0, 1/2, 1. Hence now a mean, non-vanishing velocity can persist for a uni-

form distribution of φ0 as shown in the inset of Fig. 4.4.b. The average particle

velocity in the case of a broader distribution of φ0 is significantly reduced with

respect to the values obtained for a single fixed value of φ0, see fig.4.4.b. More-

over, the average velocity in the former case in not significantly affected by the

channel corrugation, while the dimensionless mobility, µ, takes values comparable

to those obtained in the case of a fixed φ0. The channel asymmetry also enhances
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Figure 4.4: Rectification of a Brownian motor moving due to a symmetric flashing
ratchet in an asymmetric channel, for h2/h1 = 0.25. (a): Particle velocity, in units
of D0/L, D0 = D0(R = 1), as a function of the phase shift φ0 for different values
of the parameter ∆S = 0.84, 2.19, 2.94 (the larger the symbol size, the larger
∆S), with V1 = 0.2 and Q = 2. Inset: µ as a function of φ0 for the same
parameters. (b): Particle velocity as a function of ∆S, varied increasing h1 (with
R = 1, h0 = 1.25) at constant ratio h2/h1 = 0.1 (open points) and h2/h1 = 0.25
(solid points), for φ0 = 0.1, 0.5 and V1 = 0.2, Q = 2 (the larger the symbol
size, the larger φ0) . Cyan open circles represent the average velocity obtained
by a uniform distribution of φ0 as a function of ∆S. Inset: µ as a function of
∆S for the same parameters. (c): Particle velocity as a function of the channel
asymmetry parameter h2, with φ0 = 0 and ∆S = 1.09, 2.19 (the larger the symbol
size, the larger ∆S), for R = 1, h0 = 1.25,V1 = 0.2, Q = 2. Inset: µ as a function
of h2 for the same parameters.
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Figure 4.5: Rectification of a processive (circles), non-processive (triangles) Brow-
nian motor moving according to the two state model in symmetric ratchet and
asymmetric channel, for h2/h1 = 0.25. (a): Particle velocity, in units of D0/L,
D0 = D0(R = 1), as a function of the phase shift φ0 for different values of
the parameter ∆S = 1.73, 2.19, 2.94 (the larger the symbol size, the larger ∆S),
with V1 = 0.2 and ω2,1/ω1,2 = 0.01. (b): Processive (circles), non-processive
(triangles) Brownian motor velocity, in units of D0/L, as a function of ∆S as a
function of particle radius R (solid lines, with h0 = 1.25, h1 = 0.2) or h1 (open
points, with R = 1, h0 = 1.25) for φ0 = 0.1, 0.4 (the larger the symbol size, the
larger φ0) for V1 = 1 and ω2,1/ω1,2 = 0.01. Green open circles (triangles) rep-
resent the average velocity of processive (non-processive) motors obtained by a
uniform distribution of φ0 as a function of ∆S. (c): processive (circles), non-
processive (triangles) Brownian motor velocity as a function of h2, being φ0 = 0,
with h0 = 1.25,V1 = 0.2, ω2,1/ω1,2 = 0.01. The larger the symbol size, the larger
the value of h1 (h1 = 0.125, 0.2).
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the rectifying velocity magnitude, which is almost two fold larger than the one

obtained for the symmetric channel (Fig. 4.2.a). The net velocity also shows a

strong dependence on the channel asymmetry, ∆S. The insets of Fig. 4.4 show

that µ > 1 for all regimes considered, underlying the strong cooperative regime

between the symmetric ratchet and the geometric confinement. Finally, we ob-

serve a linear dependence of the particle velocity upon increasing h2 at fixed h1.

As also shown in fig. 4.4.b, the slope of the linear relation between h2 and v̄

depends on ∆S: increasing the entropic barrier leads to a steeper slope.

Two-state model As for the flashing ratchet, the channel asymmetry leads

to an asymmetric velocity profile upon variation of φ0, as shown in Fig. 4.5.a.

In particular, we notice that for φ0 = 0 the net velocity of processive or non-

processive motors are very similar as ∆S varies (fig. 4.3.a). The asymmetric

channel profile leads to an overall non vanishing flux when averaged over the,

equally weighted, values of φ0. Hence, as for the flashing ratchet, we expect

the channel asymmetry to provide the onset of net currents even in the case of a

broader distribution of phase shifts φ0. The dependence of the particle velocity on

∆S, shown in fig. 4.5.b, is similar to the one obtained for the symmetric channel,

fig. 4.3.b, where an optimal value of ∆S is observed for both processive and non

processive motors. As in the symmetric configuration, the dependence of motors’

velocity on the different geometric parameters (h1 and R) is quite well captured

by the entropic barrier ∆S, although a separate sensitivity on h1 and R persists

for both processive and non-processive motors. Particle current depends linearly

on h2, as shown in fig. 4.5.c. increasing the slope for larger values of ∆S.

4.6 Asymmetric potential and symmetric chan-

nel

An asymmetric ratchet potential, λ 6= 0, in the presence of a symmetric peri-

odic channel, h2 = 0, allows us to address the impact that an inhomogeneous

environment has on an intrinsically rectifying Brownian ratchet. In particular,

cooperative rectification modulates the particle velocity allowing for the emer-
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4. CONFINEMENT-INDUCED RECTIFICATION

gence of effective particle fluxes opposing the direction of motion of the intrinsic

Brownian ratchet.

Flashing ratchet Fig. 4.6.a shows that the intrinsic Brownian ratchet net ve-

locity, v0, is strongly modulated by the channel corrugation. CBR in this case

can exhibit both regimes where the average velocities exceed v0, showing strong

velocity enhancements, as well as conditions where the velocity changes sign, in-

dicating confinement-induced flow reversal. In the latter case, particles moving

against the direction imposed by the ratchet can display speeds larger than v0.

As in the case of symmetric ratchet, these effects are magnified when rising the

entropy barrier ∆S, as shown in Fig. 4.6.b. In the presence of flux reversal, geo-

metrical confinement leads to a mechanism for particle separation based on their

size because ∆S depends both on the channel geometry and the particle size. As

shown in fig. 4.6.b, modulating particles size one can control and switch their

velocities, offering new venues to manipulate particles and even trap them. The

average particle current obtained in a disordered channel, i.e. with a uniform

distribution of φ0, is not significantly affected by the geometrical constraint.

The absolute value of particle current (not shown) is also very sensitive to V1

and Q , analogously to the results obtained for the symmetric channel (Fig. 4.2.c-

4.2.d). Figs. 4.6.c-4.6.d display strong enhancements of the net particle velocity,

up to two orders of magnitude larger than v0. These large enhancements are

observed when V1/∆S ≪ 1, indicating that cooperativity relies mostly on the

interplay between the geometrical confinement and the position-dependent noise

amplitude rather than on the asymmetric potential V (x) itself.

Since the Brownian ratchet is characterized by an intrinsic rectifying velocity,

v0, it is useful to study the ratio µ/µ0 in order to quantify the relative variation

in the mobility of a CBR due to the geometrical constraints. In Figs. 4.6.a-

4.6.b µ0 = 6.1, hence the system takes advantage of the x-dependent free energy

gradient induced by the intrinsic ratchet mechanism. The dependence of µ on V1

and Q is quite similar to the one observed in symmetric channels (Fig. 4.2): larger

values of the mobility are observeed for small and moderate values of V1 and mild

and large values of Q, while for larger values of V1 µ drops. On the contrary,

µ/µ0 increases monotonously with V1 irrespectively of Q, while the dependence
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Figure 4.6: Rectification of a Brownian motor moving due to a asymmetric
flashing ratchet in symmetric channel. (a): particle velocity, in units of v0, for
∆S = 0, as a function of the phase shift φ0 for different values of the parameter
∆S = 0.84, 2.19, 2.94 (the larger the symbol size, the larger ∆S), for V1 = 0.2
and Q = 2. Inset: µ, in units of the dimensionless mobility, µ0, as a function
of φ0 for the same parameters. (b): particle velocity as a function of ∆S as a
function of particle radius R (solid lines, with h1 = 1.25, h2 = 0.2), h1 (solid
points, with R = 1, h2 = 0.2) or h2 (open points, with R = 1, h1 = 1.25) for
φ0 = 0.2, 0.3, 0.5, 0.6 and V1 = 0.2, Q = 2 (the larger the symbol size, the larger
φ0). Cyan open circles represent the average velocity obtained by a uniform dis-
tribution of φ0 as a function of ∆S. Inset: µ/µ0 as a function of φ0 for the
same parameters. (c): particle velocity as a function of the ratchet potential
amplitude, V1, for Q = 0.02, 0.2, 2 (the larger the symbol size, the larger Q),
for ∆S = 2.94, φ0 = 0.1. Insets: µ and µ/µ0 as a function of φ0 for the same
parameters. (d): particle velocity as a function of Q. Squares for V1 = 0.1, 1, 10
and ∆S = 2.94, φ0 = 0.1, (the larger the symbol size, the larger V1); triangles:
Q = 1, ∆S = 1.1, φ0 = 0.5 and V1 = 1. Insets: µ and µ/µ0 as a function of φ0

for the same parameters.

91



4. CONFINEMENT-INDUCED RECTIFICATION

-1

 0

 1

 2

 0  0.2  0.4  0.6  0.8  1

v
/v

0

φ0

(a)

-1

 0

 1

 2

 1  10

v
/v

0

∆S

(b)

 0

 1

 2

 3

10
-2

10
-1

10
0

v
/v

0

βV1

(c)

-2

-1

 0

 1

 2

10
-4

10
-3

10
-2

10
-1

10
0

v
/v

0

ω21/ω12

(d)

Figure 4.7: Rectification of a processive (circles), non-processive (triangles) Brow-
nian motor moving due to the two state model in symmetric channel. (a): particle
velocity, in units of v0 as a function of the phase shift φ0 for different values of
the parameter ∆S = 1.73, 2.19, 2.94 (the larger the symbol size, the larger ∆S),
for ∆V1 = 0.2 and ω2,1/ω1,2 = 0.01. (b): processive (circles), non-processive
(triangles) Brownian motor velocity, in units of D0/L, as a function of ∆S and
particle radius R (solid lines, with h0 = 1.25, h1 = 0.2), h0 (solid points, with
R = 1, h1 = 0.2) or h1 (open points, with R = 1, h0 = 1.25) for φ0 = 0.1, 0.9
(the larger the symbol size, the larger φ0) for V1 = 1 and ω2,1/ω1,2 = 0.01.
Green open circles (triangles) represent the average velocity of processive (non-
processive) motors obtained by a uniform distribution of φ0 as a function of ∆S.
(c): processive ( circles), non-processive (triangles) Brownian motor velocity as
a function of the ratchet potential amplitude V1 for ∆S = 0.4, 2, 7.6 (the larger
the symbol size, the larger ∆S) with ω2,1/ω1,2 = 0.01. (d): processive (circles),
non-processive (triangles) Brownian motor velocity as a function of ω1,2/ω2,1 for
φ0 = 0.1, 0.3, open (solid) points and ∆S = 0.4, 7.6(the larger the symbol size,
the larger ∆S) for V1 = 10.
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on Q at fixed V is more involved as shown in fig. 4.6.d.

Two state model Fig. 4.7.a displays the net velocity as a function of the de-

phasing between the geometric confinement and the underlying ratchet potential.

Cooperative rectification now shows a strong dependence on the phase shift, φ0,

leading to large velocity amplification and also to flux reversal, a feature that was

not possible for symmetric channels. In fact, both processive and non-processive

motors show velocity enhancement and reversal when varying the channel cor-

rugation, ∆S, as shown in Fig. 4.7.b. Hence, even symmetric channels offer the

possibility to control molecular motor motion according to their size, allowing

for segregation and particle trapping. Interestingly, for asymmetric ratchets the

entropic barrier ∆S captures even better the dynamics, as compared to the case

of symmetric ratchets, and only at smaller ∆S the different behavior upon vari-

ation of h0, h1 and R becomes appreciable. Looking at the velocity dependence

as a function of V1, shown in fig. 4.7.c, we find a behavior similar to the one

obtained for the symmetric ratchet. On the contrary, the velocity dependence

upon variation of ω21/ω12, shown in fig. 4.7.d, is very mild for smaller ∆S while

for larger ∆S velocity inversion happens for smaller values of ω21/ω12.

4.7 Fully Asymmetric case

When both the ratchet as well the channel left-right symmetry are broken, λ 6= 0

and h2 6= 0, all the features we have discussed previously are now present. Rather

than attempting a systematic analysis of the performance of CBR in this regime,

that is very rich, we will point out the basic differences with the previous cases.

Flashing ratchet As shown in Fig. 4.8.a, the asymmetry in both channel shape

and ratchet potential leads to non-intuitive velocity variations with φ0; one can

identify a velocity enhancement/reduction as well as velocity inversion as a func-

tion of φ0. Moreover, different values of ∆S strongly modulate the velocity de-

pendence on φ0 as shown in fig. 4.8.a. Looking at the dependence of the velocity

on ∆S, fig. 4.8.b, we observe a strong non-monotonic response where the motor

velocity, initially enhanced, is reduced by increasing ∆S until it is inverted for
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Figure 4.8: Rectification of a Brownian motor moving according to an asymmetric
flashing ratchet in an asymmetric channel. (a): particle velocity, in units of the
velocity,v0, provided by the ratchet for ∆S = 0, as a function of the phase shift φ0

for different values of the parameter ∆S = 0.84, 2.19, 2.94 (the larger the symbol
size, the larger ∆S), for V1 = 0.2, h2/h1 = 0.25 and Q = 2. Inset: µ, in units
of the dimensionless mobility µ0 as a function of φ0 for the same parameters.
(b): particle velocity as a function of ∆S and h1 (with R = 1, h0 = 0.25) for
φ0 = 0.1, 0.4, h2/h1 = 0.25 and V1 = 0.2, Q = 2 (the larger the symbol size,
the larger φ0). Cyan open circles represent the average velocity obtained by a
uniform distribution of φ0 as a function of ∆S. Inset: µ/µ0 as a function of φ0

for the same parameters.

larger values of ∆S. As in the previous cases, we find a wide range of values of

µ as well as of µ/µ0 underlying that the sensitivity of CBRs in this scenario as a

function of the changes in the geometrical constraints and ratchet parameters.

Two state model As for the flashing ratchet case, the presence of both channel

and ratchet asymmetries leads to a non trivial velocity profile upon variation of

φ0. Again we find here the presence of velocity enhancement, reduction or even

inversion, see fig. 4.9.a. Surprisingly, the velocity dependence on ∆S reminds

the one obtained in the case of asymmetric ratchet in a symmetric channel. The

entropic barrier, ∆S, captures the essential response of the confined molecular

motors, even better than in the cases for which the ratchet is symmetric. Finally,

also the net motors flux in a disordered channel, i.e. with equally distributed φ0,

has a behavior similar to the one obtained in the case of symmetric channel.
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Figure 4.9: Rectification of a processive (circles), non-processive (triangles)
Brownian motor moving due to the two state model in an asymmetric chan-
nel. (a): particle velocity, in units of v0, for ∆S = 0, as a function of the
phase shift φ0 for different values of the parameter ∆S = 1.73, 2.19, 2.94 (the
larger the symbol size, the larger ∆S), for ∆V1 = 0.2, h2/h1 = 0.25 and
ω2,1/ω1,2 = 0.01. (b): processive (circles), non-processive (triangles) Brownian
motor velocity, in units of D0/L, as a function of ∆S and particle radius R
(solid lines, with h0 = 1.25, h1 = 0.2, H2/h1 = 0.25) or h1 (open points, with
R = 1, h1 = 1.25, h2/h1 = 0.25) for φ0 = 0.1, 0.9 (the larger the symbol size,
the larger φ0) for V1 = 1 and ω2,1/ω1,2 = 0.01. Green open circles (triangles)
represent the average velocity of processive (non-processive) motors obtained by
a uniform distribution of φ0 as a function of ∆S.
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4.8 Conclusions

We have analyzed the motion of Brownian ratchets in confined media. We

have shown that the interplay between the intrinsic ratchet motion and the

geometrically-induced rectification gives rise to a variety of dynamical behav-

iors not observed in the absence of the geometrical confinement. A novel effect,

named cooperative rectification, arises as the net result of the overlap between

the dynamic induced by the ratchet and the confinement and it is responsible

for the onset of net currents even when neither the ratchet nor the geometrical

constraint can rectify per se. The dynamics of the particles can be analyzed by

means of the Fick-Jacobs equation. Such an approach has allowed to identify two

parameters, namely the entropic barrier ∆S an the free energy drop ∆F , that

govern the overall dynamics of CBRs. On one hand, ∆F controls the onset of the

cooperative rectification when ∆F 6= 0. Then, cooperative rectification leads to

a net current whose sign is determined by ∆F . On the other hand, ∆S accounts

for the relevance of confinement in the overall dynamics when ∆S 6= 0.

We have discussed when entropic confinement affects the rectification of a

Brownian ratchet by contrasting physically different ratchet mechanisms. In par-

ticular, in the analysis of Brownian rectification induced by an inhomogeneous

temperature profile we have clarified the relevance of the underlying mechanism

breaking detailed balance. For a flashing ratchet the second moment of the lon-

gitudinal velocity of a CBR differs from the second moment associated to its

transverse velocity while such an intrinsic anisotropy is lacking for the thermal

ratchet. As a result, confined thermal ratchets can rectify only if there is an in-

terplay between the asymmetric enthalpic potential and temperature gradients.

Comparing the cases of a flashing ratchet and a two-state model of a molecular

motor we conclude that the novel mechanism we describe is qualitatively robust

with respect to the details of the Brownian ratchet. However, the specificity of

the rectification can affect both the quantitative response of a Brownian ratchet

to confinement and, in some cases, even affect the qualitative behavior observed;

e.g. velocity inversion can be observed increasing ∆S for processive molecular

motors in a symmetric channel while velocity inversion is never observed for non-

processive motors. The Fick-Jacobs approach has provided insight to understand
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these qualitative differences.

We have always assumed that the confining channel and the ratchet potential

have the same period. If both components have different periodicities, or if one

of them show irregularities (that can emerge, for example, from experimental

defects in the channel build up), one can still account for the mismatch between

the ratchet potential and the channel corrugation by considering that the phase

shift φ0, rather than having a well defined value, is characterized by a uniform

distribution. The results reported show that, in this situation a net current

persists except for the fully symmetric geometry.

For asymmetric, intrinsically rectifying ratchets, we have seen that CBRs

are very sensitive to corrugation and that the geometrical constraints strongly

affect their motion. Controlling the corrugation of the channel one can enhance

significantly the net Brownian ratchet velocity or can induce velocity inversion

for all the Brownian ratchet models considered. Therefore, confinement provides

a means to control particle motion at small scales. Since particles with different

sizes show a differential sensitivity to the geometrical constraints, it is possible

to use channel corrugation to segregate Brownian ratchets of different sizes, or

even trap particles. Therefore, CBRs offer new venues to particle control at small

scales.
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5. Conclusions and perspectives

The aim of this thesis has been the characterization of the interplay between

molecular motors internal dynamics and the environment motors move in. In

particular we have characterized two different scenarios for which the local prop-

erties of the fluid significantly affect the overall motors dynamics.

As a first scenario we studied the case of several molecular motors walking

along a common filament. While displacing, molecular motors generate local fluid

fluxes that affect the local velocity of the fluid. As a result, the intrinsic dynam-

ics of molecular motors is affected by the displacement of nearby motors leading

to a hydrodynamic coupling between motors. We have characterized the hydro-

dynamic coupling between molecular motors in two different scenarios. On one

hand we have found that the hydrodynamic coupling between motors provided by

the fluid can strongly affect the overall motor velocity. Local variations in motor

density, due to thermal fluctuation, might grow up and lead to the formation of

clusters that, as an outcome, speed up the velocity of the motors leading to the

onset of stable structures. On the other hand, when several motors are pulling

on a membraine enveloped common cargo, the liquid nature of the membrane

provide an alternative mean to couple motors. In this scenario we have seen that

the hydrodynamic coupling between motors pulling on opposite directions can

lead to symmetry breaking as well to bistability even for system sizes comparable

to relevant biological situations, hence allowing for an alternative mean to control

cargo dynamics.

As a second scenario we studied the dynamics of a single motor moving in an

intrinsically inhomogeneous fluid where, the heterogeneity in the fluid is induced

by the presence of geometrical confinements. In fact, if the local available space is

modulated, additional forces of entropic nature arise. The interplay between the
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stepping motion of the motor and such a modulation can lead to novel dynam-

ical regime unreachable for particles under constant forces or molecular motors

displacing in an homogeneous environment.

This study points out two main results. On one hand the step-like nature

of molecular motors makes them particularly suited for the onset of collective

behavior. The presence of different length and time scales in their single-particle

displacement give rise to novel collective behavior absent for particles pulled by

constant forces. In particular we have shown that when molecular motors can

switch between a strong and weakly bound state, as it has been observed for

KIF1A [74], single-headed Myosin VI [47], Kinesin-8 [49], Kinesin-1 [60], cyto-

plasmic Dynein [5; 88; 94], microtubule cross-shifting motor Eg5 [52; 95] and

non-processive Myosin XI[7], their collective behavior can be strongly affected by

motor-motor interactions. As a confirmation of this statement, more processive

motors, hence always strongly bound to the filament, such as conventional Kinesin

or Myosin V do not display such an intriguing collective behavior, at least when

they are rigidly coupled[58; 82]. In fact, motility assay experiments [82] as well

gliding assay [58] have not observed velocity speed up of rigidly coupled motors.

Therefore it seems that motors that, when displacing alone, are more perform-

ing, such as conventional Kinesin or Myosin V, are less suited to be tuned by

collective interactions. On the contrary, less performant motors, such as KIF1A,

single-headed Myosin VI and even more non-processive Myosin XI might lead to

more intriguing collective behavior.

The second main result coming from this study deals with the properties of

the environment. When the environment is intrinsically inhomogeneous, as is for

motors displacing under geometrical constraints, or the environment state varies

locally, as is the velocity profile induced in the fluid by molecular motors, the

overall motor dynamics strongly deviates from that of a single motor displacing

in an homogeneous environment. Therefore, the transport performance of mo-

tors in in-vivo situations can strongly be affected by the environment conditions.

As we have seen in chapter 2, variations in the fluid effective viscosity due to

modulation in the density of suspended particles can lead to different transport

regimes along filaments. On the other hand suspended particles will modulate

locally the transport coefficients hence affecting the internal mechano-chemical
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dynamics of motors.

All in all the environment properties affect intracellular transport. Both hy-

drodynamic coupling as well intrinsic inhomogeneities, such as those induced by

geometrical confinement, can open new routes to control intracellular transport.

Such an additional control might be relevant for the onset of diseases caused

by alteration in the intracellular trafficking such as Alzheimer or Charcot-Marie-

Tooth [33; 34; 43].

In the following we will resume the conclusions chapter by chapter as we will

also discuss some possible future works.

5.1 Hydrodynamically-coupled molecular motors

In the first chapter we have analyzed the collective behavior of several motors

walking in the same direction along a common filament. We have observed a non

linear relation between the density of the motors on the filament and the overall

displacing velocity. This coupling leads to mean velocities up to two orders of

magnitude larger than the mean velocity of isolated motors. Such a huge speed up

relies on the stepping nature of molecular motors trajectories. In fact, particles

under constant force does not undergo such a huge speed upTherefore, our results

show that the stepping nature of molecular motors allow for a new route to control

motors ensembles velocity.

In particular hydrodynamic coupling will lead to huge speed up for those

motors switching between 1D diffusion along filaments and stepping as it has been

observed for processive motors like KIF1A [74], single-headed Myosin VI [47],

Kinesin-8 [49], Kinesin-1 [60], cytoplasmic Dynein [5; 88; 94] and microtubule

cross-shifting motor Eg5 [52; 95].

Kinesins and Dyneins both walk along microtubules on opposite directions

at the same time. The presence of motors displacing in opposite directions, like

Kinesins and Dyneins on microtubules, can lead to different dynamical scenarios.

Local clusters of Kinesins or Dyneins are likely to occur due to fluctuation in the

local motor density and can be stabilized the, local, hydrodynamic coupling. In

this view, it would be interesting to study how the onset of these local structures
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affects the overall transport along microtubules. In particular the long-range

hydrodynamic coupling between motors might lead to a spatial organization of

the microtubule into lanes characterized by a large density of Kinesins/Dyneins

hence enhancing the overall transport along microtubules.

Other motors like Myosin V [97] or microtubule-ends depolymerizing motors

MKAC [42] as well many microtubule binding proteins[24] and synthetic charged

beads [68] undergo 1D diffusion along microtubules. The presence of passive par-

ticles weakly bound to the microtubule affects the propagation of the momentum

through the fluid and so the coupling between motors. Therefore, it would be

interesting to study how the presence of passive particles weakly bound to the

microtubule affect the overall motor dynamics.

Molecular motors are pulling on cargoes while displacing along filaments. If

we disregard the internal dynamics of motors tail linking motors active site with

the cargo, we can regard our results as the overall displacement of identical car-

goes each of which pulled by a single motor. In this framework it would be

interesting to relax the constraint on the cargo size and study the case of a more

disperse distribution of cargo sizes pulled by several motors. Such an extension

will introduce heterogeneities in the system that might trigger the onset of novel

dynamical regimes. For example, polydisperse cargoes will lead to an additional

heterogeneity in the onset of hydrodynamic coupling between motors since larger

and smaller cargoes will affect each other in different ways. The distribution of

the size of cargoes transported along a common filament might affect transport

properties according to their size. For example, smaller cargoes can benefit from

the flux generated by larger cargoes, or, on the contrary, the larger cargoes might

act as obstacles for smaller cargoes. Alternatively heterogeneities in the number

of pulling motors per cargo will lead to faster and slower cargoes that can promote

the onset of larger clusters as it has been observed for sliders [96]. Therefore it

would be interesting to study the possibility of a size- and/or motors number-

dependent control of the transport properties of cargoes of different size and/or

pulled by different motors teams.

Suspended particles distribution is affected by gradients in the velocity pro-

file [91]. Since our results show that the presence of suspended particles enhances

the onset of larger velocity gradients, it would be interesting to study how a
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polydisperse suspension of particles will be affected by such a velocity profile

and, vice-versa, how the new distribution of suspended particles will affect motor

dynamics.

Up to know we have dealt with a cylindrical geometry. However, in many plant

cells the cytoplasmic streaming occurs in the thin layer of cytoplasm embedded

between cell membrane and the central vacuole that occupy almost the ∼ 90% of

the cell volume. An ongoing project in collaboration with Prof. D. Marenduzzo

and Dr. K. Wolff aims to characterize the dynamics of motors on sheets of

filaments. In such a geometry we have already observed the formation of clusters

that, by percolating along the transverse direction form band-like structures. It

would be interesting to characterize the stability of these structures as well as

the net transport of motors and suspended particles. Such a characterization

can provide insight on the organization of motors and cargoes in plant cells as

well it will provide a characterization for a realization of biomimetic microfluidic

devices.

For more isotropic geometries, is more isotropic, as it happens in animal cells,

the onset of macroscopic fluxes is hampered and only local fluxes will be induced

by pulling motors. For such configuration it would be interesting to study how

the local flux surrounding each filament affect the transport of suspended par-

ticles. Recent works have already characterized the dynamics of motors on a

network of filaments [72; 73] In particular, when filaments intersect rearrange-

ments in suspended particle density might occur according to the geometry of

the fluxes. Therefore, centrosomes or other microtubule polymerizing organelles

might experience a depletion or accumulation of suspended particles according to

the arrangement of the biofilaments that possibly can affect their dynamics.

5.2 Bidirectional transport

In the second chapter we have characterized the role of the hydrodynamic cou-

pling between oppositely displacing motors pulling on a common cargo. We have

observed that spontaneous symmetry breaking can occur due to the hydrody-

namic coupling for large enough system sizes. In particular, the minimum size at
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which symmetry breaking occurs depends on the kind of coupling: if the ratio of

the cytoplasm and membrane viscosity is large enough then the coupling induced

by the membrane will be dominant and symmetry breaking will occur for smaller

system sizes, while larger system sizes are required if the coupling is mainly pro-

vided by the cytoplasm. Our analysis has identified the local reorganization of

motors density as the most relevant ingredient in leading to those regimes, such

as bistability, absent for rigidly coupled motors.

In order to perform our analysis we have done some approximations that

allowed us to grasp the underlying dynamics without the need of more intense

numerical efforts. Our main approximations consist in assuming the dynamics

to be local, i.e. not affectd by the boundary conditions and, by exploiting this

idea, to assume the hydrodynamic coupling to be equal for all motors. While

we are quite confident that the underlying dynamics we have described is robust,

relaxing those hypothesis can lead to novel dynamical regime we haven’t explored

yet.

First of all, relaxing the periodic boundary condition will allow us to study

the influence of the edges of motors ensemble on the overall dynamics. If the

motor density is smoothly varying on length scales larger than the period of the

potential but smaller than the size of the ensemble we can perform the master

equation expansion on these larger regions in order to capture, still in a coarse-

grained way, the role of density inhomogeneities on length scales of the order

of the system size. Since motors on the edges will experience a different collec-

tive force that those in the bulk, density reorganization can be driven by such

an heterogeneous collective force leading to motor structures. In particular, we

expect such structures to happen at the boundaries of motors ensembles where

the collective hydrodynamics force is weaker. The onset of such structures can

prevent the onset of the bistable regime and can stabilize the direction of average

displacement. Again such a behavior will be typical of hydrodynamically coupled

motors as compared to the rigid case. Moreover, such accumulations have already

been observed experimentally due to the non homogeneous load motors experi-

ence along the cargo [12; 17; 18]. It has been shown that motors at tip of the

cargo will experience a larger force than motors in the bulk leading to clustering

at the edge of the cargo. In this view it would be interesting to study how the flux
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generated by motors in the bulk affect the dynamics at the tip. We can extend

the present framework to the case of motors extracting membrane tubes out of

Giant Vesicles. Recently, it has bee claimed [84] that also non-processive motors

can perform such a task. Since for non-processive motors the hydrodynamic cou-

pling is expected to quite relevant, as we discussed in chapter 4, then it would

be interesting to analyze how the flux generated by motors along the membrane

affect the dynamics at the tip.

Secondly, it would be interesting to study two distinct teams of motors lo-

calized at the two ends of the cargo and pulling on opposite direction. This

additional heterogeneity in the local forcing will affect the overall collective ef-

fect. In this case we will have an overlap of the heterogeneity in the collective

force coming from the position of the motors with respect to cargo’s edges and

that provided by the localization of teams pulling on opposite directions. More-

over, since motors can unbind more probably when they are under the action of a

load, the overall dynamics can be even affected by the load dependent unbinding

rate.

The membrane in which cargoes are enveloped is a closed sheet of fluid. Then,

mass conservation and the incompressibility of the membrane provide a strong

constraint that prevent the onset of net averaged fluxes along the membrane.

Therefore, the flux generated by pulling motors should be compensated by a

backward propagating flux ensuring a vanishing total flux. Recently, the interac-

tion between two dislocation on a 2D cylindrical lattice have been characterized

showing the analogy to third sound waves and to liquid Helium transport proper-

ties [4; 71]. Therefore, it would be interesting to characterize the hydrodynamic

coupling between molecular motors pulling on membranes. Due to the 2D nature

of the coupling jointly with the constraint of vanishing average flux quite different

dynamical regimes can show up.

5.3 Confinement-induced rectification

In the third chapter, we have characterized the interplay between the out of

equilibrium state of a molecular motor, or more in general of a Brownian ratchet,
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and the geometrical confinement the motor is exposed to. In our analysis, we

have shown that the interplay between the two rectifying mechanism strongly

affect the overall dynamics leading to dynamical regime unapproachable by the

two mechanisms separately. For example, cooperative rectification develops even

for cases in which the ratchet and the geometrical confinement would not lead

to any current per se. Moreover, even for rectifying Brownian ratchets, their

current can be enhanced, reduced or even inverted by the presence of entropic

barriers. Finally we have shown that such dynamical regimes are strongly affected

by particle size opening the possibility of an alternative mechanism for particle

separation at the micro- nano-scale.

In order to simplify our analysis and gain insight in the underlying dynam-

ics we have exploited periodic boundary conditions. However, for real systems,

this might not be the case. For example, the thickness of dendrites has been

found to shrink as the distance from the nucleus increases [10]. On the other

hand melanophores, that are responsible for the melanin control, have a radial

organization of microtubules that allow for a rapid concentration/dispersion of

melanin inside the cell. For those situations it would be interesting to study how

the geometrical confinement affect the overall dynamics.

In particular, for dendrites, whose cylindrical overall shape reminds the study

performed in the first chapter, it would be interesting to study how the varying

section of the dendrite affects the onset of the collective behavior and the cyto-

plasmic streaming discussed in the first chapter. The shrinking of the dendrite on

one hand will induced larger velocity gradients along the radial direction, hence

enhancing dissipation. Suspended particles will be affected by the reduction in

the section. As we have discussed in the first chapter the overall dynamics of mo-

tors on filaments can be strongly affected by the density of suspended particles.

Moreover, such an effect is particularly relevant for motors that can diffuse along

microtubules while in a weak-bound state as it happens for synaptic precursors

transporter KIF1A that is involved in cargo transport in neurons.

In the case of melanophores, the radial distribution of microtubules strongly

affects the dynamics of cargoes transported along microtubules. Recent experi-

ments have shown that the transport properties of cargoes pulled away or towards

the cell nucleus are quite different. In this case the radial geometry probably pre-
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vents the onset of net fluxes as characterized in the first chapter. Therefore,

in this case the increasing distances between nearby microtubules can induces

entropically-driven transport properties relying on mechanisms similar to those

shown in the last chapter. Moreover, the network of actin and intermediate fila-

ments have been shown to play a relevant role in determining the overall transport

properties. Since cargoes can move on both microtubules and actin filaments,

then it would be interesting to study how this asymmetric network of filaments

each of which characterized by different transport properties and/or polarity can

affect the overall transport of cargoes covered by both Kinesins Myosins and

Dyneins as it happens for real systems. The interplay between different means

of transport jointly with the asymmetric network topology can give a mechanical

insight into the dynamics of the system and possibly provide a reliable mechanism

that can be compared to the experimental data.

In our analysis we have considered geometrical constraints as the origin of

inhomogeneities in the host fluid motors move in. However, fluids properties

might be local due to the presence of suspended particles or density gradients.

By capturing such variations as a position-dependent diffusion coefficient we can

extend our results to the case of intrinsically inhomogeneous media. Moreover,

in this regime we can analyze larger deviations since we do not need to rely on

the Fick-Jacobs approximation.

Up to now we have considered the channel shape as fixed. However, channel

shape can vary in time either passively, due to fluctuations in the cell membrane,

or actively due to the trade-milling of actin filaments. Recent studies have char-

acterized the translocation of finite length polymers across flickering pores [22]

showing non trivial dynamical regimes according to the matching of the time and

length scales of the pore and the polymer. A similar situation arises for particles

transported by cilia inside a channel. The metachronal waves of cilia will induce a

net fluid flow inside the channel. This transport mechanism will compete with the

entropic one if the channel size is comparable to the length of cilia. In fact if the

length of the cilia is comparable to the channel with, their motion will affect the

free space available for particle sin suspension inside the channel. When cilia beat

together they generate a traveling wave, known as metachronal wave, that will

act as a time dependent geometrical confinement for suspended particles. More-
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over, the traveling nature of the metachronal wave brakes the symmetry along the

longitudinal axis inducing an additional, entropy-driven, means of transport that

will compete with convection. Since the entropy-driven transport is sensitive to

particle size we expect an enhanced particle separation according to their linear

dimension.
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6. Resumen en castellano

6.1 Introducción

Los seres vivos se caracterizan por su estado de fuera de equilibrio. Gracias a

este estado los seres vivos pueden generar fuerzas locales y trabajos mecánicos

que les permiten de desplazarse de manera activa aśı como modelar y mover

sus estructuras internas. En este marco se sitúa el transporte intracelular, es

decir el conjunto de fenómenos de transporte activo que ocurren en las células.

Este transporte se realiza a través de unas protéınas motrices, llamadas motores

moleculares. Mientras estén ligados a filamentos como actina o microtubulos,

los motores moleculares pueden generar trabajo mecánico gracias a la hidroliza-

cion de la ATP, que es la sorgente de enerǵıa mas común en la células. Los

filamentos de actina y los microtubulos sobre los cuales se desplazan los motores

moleculares tienen una estructura periódica y una polaridad local que gúıa a los

motores, una vez enganchados al filamento, a moverse siempre e la misma di-

rección. Aunque un motor molecular, una vez enganchado al filamento, puede

generar trabajo mecánico por si solo, en general los motores moleculares actúan

de manera colectiva. Por esta razón, la propiedades de transporte de conjuntos

de motores moleculares han sido estudiadas desde distintas perspectivas. por

ejemplo ha sido mostrado que conjunto de motores que se desplazan a lo largo

de un filamento pueden obstaculizarse y generar “jamming”o parejas de motores

ŕıgidamente acoplados a través de un filamento de ADN se desplazan por longi-

tudes mayores reduciendo su probabilidad de desengancharse desde el filamento

Hasta ahora el papel jugado por el entorno en que los motores se desplazan
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no ha sido estudiado de manera sistemática. Debidamente a sus reducidas di-

mensiones, a =≃ nm, velocidad, v0 ≃ µm/sec y a la presencia de part́ıculas en

suspensión que incrementan la viscosidad del citoplasma, η ≃ 0.1Pa ·sec, los mo-

tores moleculares se mueven en el régimen de bajos números de Reynolds donde

las interacciones hidrodinámicas generadas por el flujo desplazado por los motores

pueden general interacciones de largo alcance entre los motores. De otro lado, se

ha mostrado que el transporte de part́ıculas, incluso pasivas, queda afectado si las

propiedades locales del fluido en que se mueven vaŕıan en el espacio. Esta hetero-

geneidad genera una modulación en los coeficientes de transporte que los motores

experimentan a lo lago del filamento y posiblemente afectan a la dinámica del

motor.

6.2 Acoplamiento hidrodinámico entre motores

moleculares

Cuando un conjunto de motores se desplaza a lo largo de un filamento, el flujo

de citoplasma generado por el movimiento de los motores puede generar un

acoplamiento entre los motores. En particular se ha observado en células de

plantas que el movimiento de los motores puede generar flujos de citoplasma del

orden de ≃ 100µm/sec, es decir dos ordenes de magnitud mas rápido que la ve-

locidad t́ıpica de los motores, ≃ 1µm/sec. Los mecanismos subyacentes a este

flujo tan rápido quedan debatidos. Posiblemente, el acoplamiento entre motores

proporcionad por el citoplasma podŕıa ser la causa de un flujo tan rápido. Para

investigar la factibilidad de esta hipótesis hemos estudiado, a través de simula-

ciones numéricas, el movimiento de un conjunto de motores que se desplazan a lo

largo de un filamento. Para realizar este estudio hemos modelizado los motores

moleculares a través de un modelo a dos estados. Según este modelo, cuando

los motores se encuentran enganchado al filamento se mueven según un potencial

periódico y asimétrico. Cuando los motores alcanzan el mı́nimo del potencial

saltan a un estado levemente ligado en le que pueden difundir a lo largo del fila-

mento pero no pueden alejarse de el en la dirección radial. Con un ritmo constante
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los motores vuelven a engancharse. Esta selección de los ritmos de salto rompe

el balance detallado y, gracias a la asimetŕıa del potencial, genera una corriente

neta de motores.

Para estudiar las interacciones hidrodinámicas se precisa incorporar en el mod-

elo numérico el flujo generado por el desplazamiento de los motores. Siendo que

los motores se desplazan cerca de la superficie del filamento es importante incor-

porar en el modelo como la presencia de la pared del filamento, que impone una

velocidad nula al fluido en contacto, afecta a la propagación del campo de veloci-

dad generado por los motores. Entonces hemos utilizado un modelo de fluid a

grana gruesa que de un lado nos permite capturar el papel jugado por la pared del

filamento y de otro lado nos permite estudiar le sistema sobre escalas de tiempo lo

bastante grandes para caracterizar el transporte colectivo. En particular hemos

aprovechado del termostato de Lowen-Andersen que permite estudiar un fluido

a temperatura constante (es decir en contacto con un baño térmico) en el que

las interacciones locales conservan el momento. Para acoplar este fluido a grana

gruesa con part́ıculas solidas como los motores moleculares o los filamentos hemos

extendido el protocolo de interacción propio del termostato de Lowe-Andersen al

caso en que las part́ıculas de fluido interactúan con part́ıculas ŕıgidas, de tal

manera que la interacción solido-fluido conserve localmente el momento y que las

part́ıculas solidas se encuentren al equilibrio térmico también.

Antes de estudiar como el acoplamiento hidrodinámico entre los motores

afecta su velocidad necesitamos entender previamente como los efectos estericos

afectan a la dinámica. Este estudio nos permitirá reconocer las contribuciones de

los efectos estericos y identificar las contribuciones propiamente hidrodinámicas.

Para estudiar el papel de los efectos estericos, hemos solucionado las N ecuaciones

de Langevin acopladas que caracterizan el desplazamiento deN motores que inter-

actúan solamente por efectos estéricos en ausencia de interacciones hidrodinámicas.

Este estudio ha mostrado que, cuando el tamaño de los motores no es conmen-

surable al periodo del potencial, la velocidad de un conjunto de motores depende

de su densidad. Al revés, cuando el tamaño de los motores es un múltiplo en-

tero de la periodicidad del potencial, la velocidad de un conjunto de motores

que interactúan por efectos estéricos queda independiente de la densidad hasta

valores muy próximos al máximo por los que la velocidad decrece. Este ultimo
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caso resulta bastante útil para la caracterización del acoplamiento hidrodinámico

entre los motores. A la hora de estudia las interaccione hidrodinámicas, siendo

que los efectos estéricos no afecta a la velocidad de los motores, cualquier de-

pendencia de la velocidad de los motores en la densidad de motores mismos será

debida al acoplamiento entre los motores proporcionado por le fluido y no a un

solapamiento entre la contribución del efecto estéricos la de la hidrodinámica.

Hemos estudiado el acoplamiento hidrodinámico entre motores moleculares,

en distintas geometŕıas. Hemos observado que el acoplamiento hidrodinámico

induce un aumento considerable en la velocidad media de los motores con re-

specto a la velocidad de un motor singlo. En particular hemos observado que

la dinámica a saltos de los motores lleva a incrementos de velocidad mas rele-

vantes, si comparado a los que se obtienen en el caso de part́ıculas propulsadas

por fuerzas constantes. La razón de esta diferencia queda en la dinámica a saltos

de los motores: cunado los motores están levemente ligados al filamento pueden

ser empujado por el flujo de fluido generado por los demás motores, reduciendo de

manera relevante el tiempo de espera entre dos saltos. Esta dinámica es ausente

en el caso de part́ıculas propulsadas por fuerzas constantes las cuales benefician

solamente de la reducción de fricción debida al flujo de fluido. En particular

hemos observado que el desplazamiento de los motores genera un flujo de fluido

que puede alcanzar velocidades comparables a las de los motores mismos, y que

este flujo se mantiene incluso en el caso en que el fluido quede confinado por pare-

des ciĺındricas que imponen una condición de velocidad nula en sus superficies.

El flujo generado por los motores moleculares puede ser utilizado para trasportar

part́ıculas en suspensión. Hemos observado que la presencia de part́ıculas en sus-

pensión afecta, ligeramente, la dinámica de los motores mientras que, afectando

la viscosidad efectiva del fluid, altera de manera mas significativa el perfil de

velocidad del fluido, incrementando el caudal.

6.3 Transporte bidireccional

En este capitulo nos enfocamos en la caracterización del movimiento bidireccional

observado en el caso de cargas arrastradas por parte de motores que se desplazan
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en direcciones opuestas. En este marco las interacciones hidrodinámicas entre los

motores moleculares pueden tener una doble naturaleza. De un lado los motores

interactúan a través del flujo de fluido que generan al desplazarse. De otro lado, si

la carga es una veśıcula o mas bien esta cubierta de una membrana bilipidica, esta

actúa como una capa fina de liquido. Entonces, en estos casos, el desplazamiento

de los motores induce un flujo no solamente en el citoplasma sino también en la

membrana que recubre la carga o que compone la veśıcula sobre la cual actúa la

fuerza generada por los motores.

Estudios anteriores han mostrado que un conjunto de motores moleculares

que se displazan en direcciones opuestas puede romper la simetŕıa y generar cor-

rientes cunado están ŕıgidamente acoplados. En particular, cuando la constante

de acoplamiento entre los motores excede una cantidad umbral, el acoplamiento

entre los motores lleva a una rotura espontánea de la simetŕıa que proporciona a

la carga una velocidad neta.

Para caracterizar esta dinámica en el caso en que los motores están acoplados a

través de interacciones hidrodinámicas hemos utilizado un aproche mas anaĺıtico

que nos permite entender la origen f́ısica de las dinámicas subyacentes. Asum-

iendo que la dinámica de los motores que están lejos de las fronteras no tenga

una dependencia fuerte en la dinámica de los motores que se encuentran a los ex-

tremos de la carga, podemos limitarnos a estudiar un singlo periodo del potencial

de interacción entre los motores y el filamento. En este marco la dinámica de los

motores queda determinada solamente por sus posiciones relativas al potencial.

De esta manera podemos definir una densidad de motores cuya dinámica queda

gobernada por una ecuación de Smoluchowski. En particular hemos estudiado

dos distintas configuraciones. En la primera imponemos que la densidad local

de motores sea constante. Este vinculo de un lado nos permite un tratamiento

analitico mas ágil, de otro lado de comparar nuestros resultados con los de mo-

tores ŕıgidamente acoplados. En un segundo momento hemos relajado el vinculo

sobre la densidad y hemos permitido que la densidad local de motores se ajustara

debidamente a la dinámica de los motores mismos.

En el caso de densidad constante de motores hemos caracterizado la rup-

tura de la simetŕıa y la insurgencia de un movimiento neto debidamente a in-

teraccione hidrodinámicas. En particular hemos observado que las interacciones
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hidrodinámicas generan una ruptura de la simetŕıa que lleva el sistema a de-

splazarse con una velocidad neta. En particular hemos observado que el tamaño

de la carga es relevante en la ruptura de la simetŕıa. Comparando nuestros re-

sultados con los recién publicados podemos caracterizar la distinta origen f́ısica

de la ruptura de la simetŕıa. En particular hemos observado que, en el caso de

interacciones hidrodinámicas se puede identificar unos ritmos de saltos entre los

dos estados por los cuales se consigue minimizar el tamaño mı́nimo de la carga

necesario para la ruptura de la simetŕıa.

Cuando la densidad puede ajustarse según la dinámica de los motores nuevos

reǵımenes dinámicos aparecen. En este marco el caso de motores ŕıgidamente

acoplados no hab́ıa sido estudiado previamente aśı que, para mejor entender el

papel de las interacciones hidrodinámicas, hemos previamente estudiado el caso

de motores ŕıgidamente acoplados. Debidamente al fuerte acoplamiento que lleva

todos los motores a moverse en la misma dirección, los perfiles de densidad no

evolucionan en el tiempo y quedan congelados como un “quenched disorder”.

Entonces la amplitud de las modulaciones en la densidad es una constante del

moto y determina la naturaleza de la dinámica. Por pequeñas modulaciones en

la densidad observamos un comportamiento parecido al que hemos observado

en el caso de densidad constante. Cuando las desviaciones son mas relevantes

observamos que en lugar de una ruptura de la simetŕıa que lleva a una velocidad

neta, observamos que la velocidad del sistema oscilla la rededor de un valor nulo.

Este diferente comportamiento desaparece por cargas mas largas.

En el caso de interaccione hidrodinámicas las modulaciones en el perfil de den-

sidad pueden ajustarse según la dinámica y no hay un fenómeno de “quenched dis-

order”. Este diferencia conlleva diferencias mas profundas a la hora de estudiar la

dinámica del sistema. En particular cuando los motores están hidrodinámicamente

acoplados observamos distintos reǵımenes a segunda del tamaño de la carga. Por

carga de longitud por debajo de una longitud umbral el único estado estacionario

estable el que el sistema no se mueve. Cuando el tamaño de la carga es mayor

del valor umbral, la velocidad del sistema oscilla al rededor de un valor medio

no nulo. Incrementando el tamaño de la carga observamos un segundo umbral

pasado el cual el sistema se vuelve biestable, es decir que la velocidad invierte

su signo y el sistema se desplaza en las dos direcciones. Este régimen es muy
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parecido al que ha sido observado experimentalmente.

6.4 Rectification inducida por el confinamiento

En el citoplasma hay muchas moléculas, protéınas veśıculas y orgánulos en sus-

pensión. La presencia de estas part́ıculas afecta al desplazamiento del los motores

moleculares. En particular puede afectar localmente a la viscosidad efectivas del

citoplasma aśı como a escala mas grande, la presencia de veśıculas o orgánulos

puede obstaculizar o hasta impedir el desplazamiento de los motores. En este

capitulo nos enfocamos en la caracterización de la dinámica de motores molecu-

lares en le caso en que se desplazan en un canal cuya amplitud varia de manera

periódica. Este sistema es una representación simplificada de un medio poroso.

Cuando la amplitud del canal en que se desplazan los motores varia de man-

era suave es posible aproximar la dinámica del motor a una dinámica monodi-

mensional en la que la variación de amplitud del canal entra como un potencial

entropico. Esta aproximación, conocida como aproximación de Fick-Jacobs, ha

sido largamente explotada en el estudio de la dinámicas de part́ıculas bajo con-

finamiento. Como en los casos anteriores modelizamos lo motores a través del

modelo a dos estados. Para entender la dependencia de nuestro resultados en

el modelo elegido, hemos estudiado otro modelo de motor molecular en el que

el motor molecular se modela como una part́ıcula que se mueve en un potencial

periódico, igual al que usamos para el caso ligado del modelo a dos estados, y

donde la amplitud de las fluctuaciones depende de la posición (ruido multiplica-

tivo).

Hemos estudiado ambos modelos para el motor molecular en le caso en que

la amplitud del canal vaŕıe de manera periódica con periodicidad igual a la del

potencial. La dinámica del sistema, por ambos modelos, varia sensiblemente a

segunda que tanto el canal como el potencial sean simétrico o asimétricos. En

el caso de potencial y canal ambos simétrico no hay ruptura de la simetŕıa por

parte de ninguno de los dos por separado. Todav́ıa, si el canal y el potencial no

están en fase, interacción entre el confinamiento proporcionado por el canal y el

potencial generan un potencial efectivo no simétrico que da lugar a velocidades
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netas que rompen la simetŕıa. En el caso del modelo a dos estados, la presencia

de distintas longitudes y tiempos caracteŕısticos intŕınsecos en el modelo genera

una dinámica mas rica en la que el signo de la velocidad puede variar a segunda

de la processividad de los motores. En particular, siendo que no hay una ruptura

intŕınseca de la simetŕıa, al variar el desfase encontramos un perfil de velocidad

que es también simétrico, es decir que la velocidad media integrada sobre el desfase

es nula. En el caso en que la amplitud del canal vaŕıe de manera no simétrica, el

sistema adquiere una ruptura global de la simetŕıa y, aunque la variar el desfase

entre el potencial y el canal el signo de la velocidad varia, en promedio lo motores

tienen una dirección preferente.

Cuando el potencial no es simétrico los motores tienen una velocidad no nula

incluso por un canal llano. Igualmente la amplitud variable del canal afecta

de manera significativa la dinámica de los motores y puede amplificar aśı como

invertir la velocidad neta de los motores. En particular hemos observado que el

signo de la velocidad de los motores depende del tamaño de la carga arrastrada

aśı que, en principio, se puede explotar este mecanismo para separar part́ıculas.

Cuando ambos el canal y el potencial son asimétricos la dinámica se hace mas

rica y todos los reǵımenes que hemos encontrado en los anteriores caso se pueden

reproducir.

6.5 Conclusiones

El objetivo de esta tesis ha sido la caracterizacin de la interaccin entre la dinmica

interna de los motores moleculares y el entorno en que los motores se mueven.

En particular, hemos caracterizado dos escenarios diferentes para los cuales las

propiedades locales del fluido afectan significativamente a la dinmica general de

los motores.

En un primer caso hemos estudiado la dinamica de varios motores moleculares

que se deplazan a lo largo de un filamento comn. Mientras se desplazan, los mo-

tores moleculares generan flujos citoplasmticos locales que afectan el estado local

del fluido. Por lo tanto la dinmica interna de los motores moleculares se ve afec-

tada por el acoplamiento hidrodinmico entre los motores. Hemos caracterizado el
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acoplamiento hidrodinmico entre motore moleculares en dos escenarios diferentes.

Por un lado hemos encontrado que el acoplamiento hidrodinmico entre motores

proporcionadas por el citoplasma puede afectar fuertemente a la velocidad global

de los motores. Las variaciones locales en la densidad de motores pueden crecer

y llevar a la formacin de clusters que aceleran la velocidad de los motores y que

conducen a la aparicin de estructuras estables. Por otro lado, cuando varios mo-

tores estn empujando una carga comn, la naturaleza fluida de la membrana que

envolve la carga proporciona un acoplamiento hidrodinamico adicional entre los

motores. En este escenario, hemos observado que el acoplamiento hidrodinmico

entre los motores que tiran en direcciones opuestas, puede conducir a la ruptura

de la simetra as como a biestabilidad incluso para tamaos de sistemas comparables

con situaciones biolgicas relevantes. Por lo tanto, las interacciones hidrodiamicas

repesentan una alternativa para el control de la dinmica de la carga.

Como segundo caso hemos estudiado la dinmica de un motor molecular singlo

en movimiento en un fluido intrnsecamente inhomogneo en el cual, la inhomo-

geneidad del lquido se induce por la presencia de confinamientos geomtricos. Si

el espacio local disponible varia, surgen fuerzas adicionales de la naturaleza entr-

pica. La interaccin entre el movimiento a saltos del motor y la modulacin en el

confinamiento puede conducir a nuevos rgimenes dinmicos, distintos de los que

ocurren en el caso de partculas bajo fuerzas constantes o motores moleculares

desplazando en un entorno homogneo.

Este estudio seala dos resultados principales. Por una parte la trayectoria

a saltos de los motores moleculares los hace particularmente adecuados para la

formacion de comportamientos colectivos. La presencia de diferentes longitudes y

escalas de tiempo en la dinamica intrinseca de los motores moleculares da lugar a

nuevos comportamientos colectivos ausente por partculas arrastradas por fuerzas

constantes.

De otro lado, hemos mostrado que, cuando el entorno en que se desplazan los

motores es intrnsecamente inhomogneo, como es para motores desplazando bajo

restricciones geomtricas, o anisotropo, la dinmica general de los motores se desva

considerablemente de la de un singlo motor en medio homogneo. Por lo tanto,

la dinamica de los motores en situaciones in vivo puede ser fuertemente afectada

por las condiciones del citoplasma en que se desplazan.
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