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ABSTRACT 

 

Different heme proteins such as hemoglobin (Hb) have been proposed to be 

major prooxidants in raw and cooked meats. Despite the fact that the content of 

Hb in meat is considerable, little attention has been devoted to Hb in comparison 

to myoglobin. To understand the mechanisms and differentiate between the 

prooxidant and antioxidant potential of oxyhemoglobin (OxyHb) and 

methemoglobin (MetHb), their prooxidant activity, protein solubility, radical 

scavenging capacity, iron content and the relative weight of non-chelatable iron 

on lipid oxidation were determined as a function of thermal treatments. The ability 

of native OxyHb and MetHb to promote lipid oxidation was similar and higher 

than those Hb heated at 68 and 90 C but not different from that at 45 C. 

However, the prooxidant activity of MetHb heated at 68 and 90 C were similar 

whereas OxyHb heated at 68 C was higher than that heated at 90 C. The 

decreased prooxidant activity of heat denatured Hb was associated with a 

decrease in the solubility of heme iron while free iron showed little impact on the 

lipid oxidation onset.   
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INTRODUCTION 

 

Iron, copper and heme species such as hemoglobin (Hb) and myoglobin (Mb) 

contribute to lipid oxidation in different muscle-based foods (Rhee, Ziprin et al. 

1987, Monahan, Crackel et al. 1993, Kanner, German et al. 1987).  However, the 

pathways and relative importance by which all these compounds are able to 

initiate and propagate lipid oxidation in raw and cooked meats is still not 

completely understood (Baron, Andersen 2002, Johns, Birkinshaw et al. 1989, 

Min, Ahn 2005, Decker, Hultin 1992, Kanner 1994, Carlsen, Moller et al. 2005). 

 

Hb is the major heme compound found in muscle foods from several fish species 

(Richards, Hultin 2002).  In chicken breast, Hb has been reported to be the major 

(Kranen, Van Kuppevelt et al. 1999) or almost the unique heme pigment present 

(Hazell 1982) whereas in dark meat and in other different poultry species the 

ratio between Hb and Mb varies from 20% to 40% (Niewiarowicz, Pikul et al. 

1986).  In mammal species, this ratio has been reported to range from 7% to 

35% (Hazell 1982, Oellingrath, Iversen et al. 1990, Han, Mcmillin et al. 1994).  

Therefore, even though the Hb content can vary a lot among animal species and 

muscle types, it is clear that the Hb levels present in muscle-based foods have 

the potential to substantially contribute to lipid oxidation (Alvarado, Richards et al. 

2007). 

 

Hb consists of four globular protein subunits and each contains one heme group. 

Heme groups consist of an iron atom contained in the center of a large 

heterocyclic organic ring called porphyrin which can be bound tightly to heme 

proteins like Hb.  Hb can be in the ferrous form with (OxyHb) or without 

(DeoxyHb) the presence of oxygen and can autooxidize to the ferric form 

(MetHb).  The presence of oxygen and other ligands in the Hb cause 

conformational changes that have been reported to promote oxidation differently 

(Richards, Dettmann 2003).  
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The formation of ferryl and/or perferryl species upon reaction with hydrogen 

peroxide or lipid hydropexides has been reported to be either truly initiators or 

important catalysts of lipid oxidation in raw muscle meat products (Kanner, 

German et al. 1987, Baron, Andersen 2002, Kanner, Harel 1985).  Various 

factors such as the ability of the Hb to autoxidize and release of hematin, the 

heme-iron moiety non-bound to the protein, have also been reported to be crucial 

in promoting lipid oxidation (Richards, Dettmann 2003, Grunwald, Richards 

2006a, Richards, Dettmann et al. 2005).  

 

Upon cooking, there is an increased susceptibility to oxidation, however; the 

explanation for that phenomenon has not been completely elucidated.  Several 

factors such as the release of hematin from Hb and iron from the porphyrin 

moiety and from other proteins such as ferritin and transferrin have been 

reported in meats (Monahan, Crackel et al. 1993, Grunwald, Richards 2006a, 

Han, Mcmillin et al. 1995).  However, heating treatments provoke protein 

precipitation an this loss of solubility has been reported to be determinant for Mb 

in inhibiting oxidation (Bou, Guardiola et al. 2008).  In addition, denaturation may 

cause conformational changes increasing or decreasing the exposure of different 

amino acids. This different exposure can influence the ability of proteins to 

chelate prooxidants and scavenge free radicals thus affecting the antioxidant-

prooxidant balance of food products (Elias, Kellerby et al. 2008).  

 

Therefore, in proteins like Hb, which has been reported to promote oxidation, it is 

important to study the possible mechanisms by which native and denatured Hb 

are able to promote oxidation in order to develop strategies to efficiently inhibit 

oxidative rancidity.  In this frame, the aim of this work was to determine how 

denaturation of Hb at different temperatures changes its prooxidative activity and 

antioxidative properties in a muscle microsome membrane model system. 

 

 

MATERIAL AND METHODS 
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Reagents and standards.  Hb from bovine blood, fluorescein sodium salt, 

ethylenediaminetetraacetic acid (EDTA) disodium salt dihydrate, 2-thiobarbituric 

acid (TBA), 1,1,3,3-Tetraethoxypropane (TEP), L-ascorbic acid, ferrous sulfate 

heptahydrate, 2,2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH), 

nitrilotriacetate, hydroxylamine hydrochloride, butylated hydroxytoluene (BHT) 

and 3-(2-pyridyl)-5,6-bis(4-phenylsulfonic acid)-1,2,4-triazine (ferrozine) were 

from Sigma-Aldrich Co (St. Louis, MO).  Potassium chloride, sodium nitrite, 

sodium phosphate dibasic and monobasic, hydrochloric acid, ammonium acetate 

and sodium hydrosulfite were obtained form Fisher-Scientific (Pittsburgh, PA).  

Trichloroacetic (TCA) anhydride, ferric chloride and acetone were from Acros 

Organics (Fair Lawn, NJ).  The chemicals used for the Lowry method (Lowry, 

Rosebrough et al. 1951) were of ACS grade. 

 

Preparation of microsomes.  Pork tenderloin muscle microsomes were isolated 

according to the method of Brannan and Decker (Brannan, Decker 2001).  

Frozen pork was diced into approximately 0.5 mm cubes and then chopped in a 

stainless steel blender for 1 min, and the resulting paste (25 g) was homogenized 

in 90 mL of 0.12 M KCl / 25 mM phosphate buffer, pH 7.2, in a tissuemizer 

(20000 rpm; Tekmar, Cincinnati, OH) for 2 min, followed by centrifugation for 30 

min at 10000 g at 4 C (Sorvall Ultra 80, DuPont, Wilmington, DE).  The resulting 

supernatant was ultracentrifuged for 60 min at 100000 g to pellet insoluble 

muscle components including the microsomes. Myofibrillar proteins were then 

solubilized from the pellet in 0.6 M KCl / 25 mM phosphate buffer, pH 7.2, and a 

microsome-containing pellet was isolated by centrifugation for 60 min at 100000 

g.  Isolated microsomes were standardized to 30 mg of protein / mL of 0.12 M / 

25 mM phosphate buffer, pH 7.2, and stored at -80 C until use.  Protein in the 

microsomal fraction was determined by using the method of Lowry et al. (Lowry, 

Rosebrough et al. 1951). 
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Preparation of Oxy and Methemoglobin.  A commercial Hb stock solution was 

prepared by weighing 0.16 g of Hb standard dissolved in 3 mL cold phosphate 

buffer (50 mM, pH = 7.3) and kept at 4 C.  

 

The stock solution of Hb was chemically reduced to OxyHb by mixing with 

sodium hydrosulfite (ratio 1:0.9 w/w) and allowed to react for 10 min at 4 C.  

Another Hb stock solution was fully oxidized to MetHb by mixing potassium 

ferricyanide (2.3 %) and allowed to react for 5 min at 4 C.  Then, the excess of 

sodium hydrosulfite or potassium ferricyanide were removed by passing each 

solution through an Econo-Pac 10 DG disposable desalting column (Bio-Rad 

Laboratories, Hercules, CA; exclusion limit 6000 Da) as follows. Each Hb solution 

(3 mL) was layered onto the column and allowed to pass into the column bed.  

Then, 4 mL of phosphate buffer was passed into the stationary phase to elute the 

respectively Hb out of the column.  In a 1:50 dilution kept at 4 C the DeoxyHb, 

OxyHb and MetHb ratios were calculated as reported elsewhere (Benesch, 

Benesch et al. 1973) by measuring the absorbance at 560, 576 and 630 nm 

using a Shimadzu UV-visible scanning spectrophotometer model UV-2101PC 

(Shimadzu Scientific Instruments, Columbia, MD).  Only those solutions 

containing a minimum yield of 90% of OxyHb or MetHb conversion were used.  

 

Then, the freshly prepared OxyHb and MetHb desalted solutions were adjusted 

to pH = 5.6 and diluted to the final Hb required concentration according to the 

Snell-Marini equation (Snell, Marini 1988) by measuring the absorbance at 523 

nm (isobestic point). Those fresh solutions were capped and placed in a water 

bath set at 25 C, and water bath was set to 90 C. When the temperature of the 

water bath reached 45, 68 and 90 C tubes were immediately taken out and kept 

on ice. Samples were used the same day as preparation except for samples 

used for ORAC assay and heme and nonheme iron analyses which were 

immediately stored at -80 C until use. 
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Measurement of lipid oxidation.  A solution containing Hb and microsomes 

(final concentrations 0.08 g/dL and 9 mg protein/mL, respectively) dissolved in 50 

mM phosphate buffer, pH = 5.6 were mixed and incubated for different periods at 

37 C in a water bath under gentle agitation.   

 

Lipid oxidation was monitored by measuring thiobarbituric acid reactive 

substances (TBARS) by means of a modified procedure described elsewhere 

(Bou, Guardiola et al. 2008).  Briefly, at each incubation time, 1 mL of the mixture 

of microsomes plus Hb was mixed with 1 mL of a TBA solution containing 20% 

TCA, 0.5% TBA, 0.2% EDTA and 30 mM HCl in screw capped tubes.  

Immediately after, 30 µL of 3% BHT in ethanol was added and tubes were then 

closed and vortexed.  Subsequently, samples were heated in a boiling water bath 

for 15 min, cooled at room temperature, and centrifuged at 1750 g for 20 min.  

The absorbance of the supernatant was measured at 532 nm, and the results 

were reported as micromoles of malondialdehyde (MDA) per kg of microsomal 

protein.  Concentrations were determined from a MDA standard curve produced 

from TEP.  

 

UV-Visible spectrophotometry of heated myoglobin.  Samples of 

appropriately diluted Hb solutions (50 mM phosphate buffer, pH 5.6) were placed 

in the thermoblock of an Ultrospec 3000 Pro model spectrophotometer (Biochrom 

Ltd., Cambridge, UK).  The thermoblock was equilibrated at 25 C and 

programmed at a heating rate of 0.8 C / min up to 97 C.  The absorbance was 

recorded at 290 nm, to monitor changes in tryptophan (Trp) absorbance.  

 

Protein solubility.  Solubility of native Hb and heated Hb was determined after 

centrifugation of samples at 1750 g for 10 min and then determining the protein 

content of the supernatant fraction by the Lowry method (Lowry, Rosebrough et 

al. 1951). 
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Iron content.  The content of heme and non-heme iron was determined in the 

whole Hb solutions and in the Hb supernatant fractions which were obtained after 

centrifugation at 1750 g for 10 min.   

 

Heme concentrations were determined using the acidified acetone extraction 

method of Hornsey (Hornsey 1956) with slight modifications.  Five hundred µL of 

the samples were added to 2.5 mL of acetone and 125 µL of 3 N HCl.  After 1 hr 

at room temperature samples were centrifuged at 1750 g for 20 min.  The 

absorbance of this supernantant was measured and heme content was 

calculated using a molar extinction coefficient of 4800 M-1cm-1 at 640 nm for 

chlorohemin. 

 

A slightly modified method described by Rhee and Ziprin (Rhee, Ziprin 1987) was 

used to measure non-heme iron.  One hundred µL of sodium nitrite (0.16% w/v) 

and 1.5 mL of extraction solution (6N HCl plus 40% TCA in equal volumes) were 

added to screw-cap tubes containing 500 µL of Mb samples.  The tubes were 

closed, mixed and incubated in a water bath at 65 C for 20 hr.  After cooling, the 

mixtures were centrifuged at 1750 g for 10 min and the supernatants were 

passed through 0.45 µm filters.  To one mL of each filtrate, 1 mL of 0.8% 

ascorbic acid was added and the samples were allowed to stand for 15 min.  

Then, 1 mL of 16% ammonium acetate and 1 mL of 0.8 mM ferrozine were 

added and the absorbance at 562 nm was measured after 10 minutes.  

Concentrations were obtained using a standard curve from 0 to 2 mg of iron / L 

produced from ferric chloride.  

 

Oxidative capacity of non-chelatable iron.  Native or heated Hb solutions 

(0.16 g/dL) with or without added EDTA (1.8 mM) dissolved in 50 mM phosphate 

buffer (pH = 5.6) were mixed with equal volumes of microsomes (10 mg 

protein/mL, pH = 5.6) and incubated for 8 hr at 37 C in a water bath under gentle 

agitation. Subsequently, the lipid oxidation was monitored by measuring TBARS 

as described previously and results were expressed as follows:  
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where xi are the different TBARS amounts found in samples without added 

EDTA, ξEDTA is the average of TBARS amounts from those samples in which 

EDTA has been added and ξno EDTA is the average of TBARS amounts from those 

samples in which EDTA has not been added. All TBARS amounts were 

expressed as micromoles of MDA per kg of microsomal protein. 

 

Oxygen Radical Absorbance Capacity (ORAC).  A 500 mM solution of AAPH 

in 75 mM potassium phosphate buffer at pH 7.0 was prepared for each 

experiment and kept on ice.  Fluorescein was dissolved to a concentration of 50 

nM in phosphate buffer containing 0.1 mM EDTA before each set of experiments.  

For each run, fluorescein was equilibrated to 37 °C in a water bath for 15 min.  

Reagents were added in the order of native Hb or heated Hb in 75 mM 

phosphate buffer (pH 7.0), fluorescein and AAPH at a final concentration of 6 µM, 

45 nM and 20 mM, respectively.  Fluorescence was recorded from 0 to 50 min 

every 10 min by taking 4 mL aliquots in which 40 µL of 500 mM ascorbic acid 

was added to stop the reaction followed by centrifugation for 10 min at 1750 g.  

The fluorescence (excitation = 493 nm, emission = 515 nm; Hitachi F-2000 

flourometer, Tokyo, Japan) of the supernatants were measured at 37 C.  The 

ORAC values of the Hb or heated Hb were calculated using the area under the 

curve (AUC) which was calculated as follows:  

∑
=

=

=
ni

0i 0

i

F

F
AUC  

where F0 is the initial fluorescence reading and Fi is the fluorescence reading at 

time i.  

 

Statistical analyses.  All samples were measured in triplicate.  A 1-way analysis 

of variance (ANOVA) was used to determine whether the heating temperature 

affect protein solubility, the different iron contents, the AUC values obtained from 

the ORAC assay and the oxidative capacity of non-chelatable iron of each Hb.  
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By taking into consideration each incubation time, a 1-way ANOVA was carried 

out to study whether the heating temperatures affected the pro-oxidant activity of 

OxyHb and MetHb.  When ANOVAs indicated temperature effects, means were 

separated by the Scheffé’s test.  In all cases, P ≤ 0.05 was considered 

significant. 

 

RESULTS 

 

Changes in protein properties as a result of heating.  The Tryp band 

absorbance (290 nm) of OxyHb and MetHb showed similar profiles with the 

difference that the profile of OxyHb was slightly shifted to higher temperatures 

(Figure 1) which is in agreement with the reported lower thermal stability of 

oxidized heme forms (Wittung-Stafshede 1999).  In both cases, conformational 

changes started to occur at temperatures higher than 55 C.  The Tryp 

absorbance increased rapidly in OxyHb and MetHb at temperatures higher than 

60 C indicating that both Hb were unfolded at these temperatures. 

 

The maximum unfold for MetHb occurred at 69 C whereas the maximum for 

OxyHb was reached at 72.5 C.  After their respectively maximums, the 

absorbance rapidly decreased until both Hb were completely denatured.  Several 

authors reported differences in the prooxidant capacity of Mb heated at several 

temperatures (Kristensen, Andersen 1997, Berisha, Endo et al. 2000) thus, 

according to these profiles, we decided to compare the prooxidant and 

antioxidant activity of OxyHb and MetHb at 4 temperatures according to their 

conformational changes (native, 45 C, 68 C and 90 C). 

 

Changes in protein solubility provide valuable information occurred on 

conformational changes.  OxyHb and MetHb either native or heated at 45 C 

showed no differences whereas those heated at 68 C showed lower solubility 

confirming that some denaturation had occurred at this temperature (Table 1).  

Heating at higher temperatures led to much lower protein solubility which 
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indicated extensive protein aggregation and precipitation.  This explains the 

lowered absorbance recorded at 290 nm when Hb was heated at high 

temperatures.  

 

OxyHb and MetHb on microsomes oxidation. To study the pro-oxidant activity 

of Hb, this was added into microsomes to an Hb / protein ratio similar to that 

found in meats.  The ability of OxyHb in the presence of microsomes to promote 

oxidation showed no differences after 2 hr of incubation whereas the blank 

containing only OxyHb showed lower and steady TBARS values over time 

(Figure 2).  After 4 hr of incubation, OxyHb heated at 90 C recorded lower 

TBARS values than native OxyHb whereas the other heating treatments showed 

no differences on microsomes lipid oxidation when compared with native Hb or 

Hb heated at 90 C (Figure 2).  Native OxyHb and OxyHb heated at 45 C showed 

the same capacity in promoting oxidation after ≥ 8hr of incubation whereas the 

prooxidant activity of OxyHb heated at 68 C was significantly lower.  With the 

exception of the blank, OxyHb heated at 90 C showed the lowest prooxidant 

activity. 

   

As for MetHb, TBARS values of the blank were lower than those containing 

microsomes over time (Figure 3).  Differences between heating treatments were 

observed after 6 hr of incubation.  At this time, MetHb heated at 90 C showed 

lower TBARS values than the other MetHb heated below this temperature 

(Figure 3).  Native MetHb and that heated at 45 C showed higher oxidation 

values after ≥ 8 hr of incubation whereas MetHb heated at 68 C and 90 C, which 

had a similar ability to oxidation, recorded lower TBARS values. 

 

Some controversy exists about whether the heme or free iron from both Mb and 

Hb is the major responsible for lipid oxidation in cooked meats (Johns, 

Birkinshaw et al. 1989, Grunwald, Richards 2006a, Han, Mcmillin et al. 1995, 

Schricker, Miller 1983).  In order to a better understanding we conducted a trial in 

which OxyHb and MetHb either native or heated were incubated for 8 hr at 37 C 



 12

in the presence of microsomes with or without added EDTA. The relative 

percentage of the microsomes oxidation caused by non-chelatable iron is shown 

in Table 1.  Results indicated that the addition of EDTA provoked a relative 

decrease in TBARS values (10-12 %) when OxyHb was heated at temperatures 

≥ 68 C.  However, the addition of the chelator almost had no effect when heated 

at lower temperatures.  

 

The ability to promote oxidation of native MetHb was almost unaffected by the 

addition of EDTA which indicated that the chelatable iron almost had no effect on 

microsomes oxidation (Table 1).  However, when MetHb was heated at any 

studied temperature, TBARS values were decreased (11-17%).  This reduction 

indicates that, in heated MetHb, chelatable but especially non-chelatable iron 

participated on microsomes oxidation. 

 

Iron and heme content as a result of heating. The heme content was 

measured in the whole sample and in the supernatant fraction obtained after 

centrifugation. Therefore, results provided valuable information about the 

destruction of the porphyrin ring as a consequence of the thermal treatments and 

the distribution of the heme iron.  In the whole samples, OxyHb and MetHb heme 

iron content showed no significant differences between treatments (Table 1).  

However, differences in the heme iron content were recorded in the supernatant 

fraction.  OxyHb heated at 45 C showed no differences for the heme content in 

the supernatant fraction in comparison to native OxyHb but above this 

temperature the heme content was lowered as temperature increased (Table 1).  

Similar trends were observed for MetHb although MetHb heated at 68 C did not 

show a different heme content in the supernatant fraction compared with MetHb 

heated at 45 C or at 90 C (Table 1). 

 

The non-heme iron content indicates those changes in the free iron fraction that 

can occur for instance because of the iron release from Hb.  In the whole sample, 

no differences were recorded as a consequence of heating for OxyHb and MetHb 
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(Table 1) which was in agreement with the fact that the porphyrin ring structure 

had not been destroyed.  In the supernatant fraction, OxyHb showed no changes 

in the non-heme iron content with temperature.  Conversely, the non-heme iron 

content in the supernatant fraction of MetHb heated at 90 C and 68 C was 

decreased in comparison to native and that heated at 45 C (Table 1). This 

decrease in the water soluble nonheme iron content suggests that the pool of 

free iron was bound to Hb and thus removed upon precipitation of the protein.   

 

OxyHb and MetHb antioxidant capacity.  The ORAC assay showed that native 

OxyHb and that heated at 45 C had a higher antioxidant activity than OxyHb 

heated at 68 C which in turn was higher than that heated at 90 C (Table 1).  

Likewise, MetHb heated at 90 C showed lower antioxidant capacity than the 

other MetHb treatments.  The overall decrease of the antioxidant capacity of the 

Hb as a consequence of heating was likely due to a lower exposure of amino 

acids with radical scavenging capacity (Elias, Kellerby et al. 2008). 

 

 

  

DISCUSSION 
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Mb and Hb have been reported to promote lipid oxidation in muscle based foods 

(Baron, Andersen 2002, Kanner, Harel 1985, Grunwald, Richards 2006a, 

Richards, Dettmann et al. 2005).  The ability of Mb and Hb to promote oxidation 

is attributed to their heme group so the oxidation mechanisms are common 

although subject to several conditions that may result in enhancement or 

decrease of their prooxidative activity (Carlsen, Moller et al. 2005).  

 

A faster autooxidation rate and low hematin affinity, which is increased in ferric 

heme forms, have been related with the increase of the lipid oxidation onset 

(Richards, Dettmann et al. 2005, Grunwald, Richards 2006b, Richards, Nelson et 

al. 2007).  As for autoxidation, a series of reactions can be set (Carlsen, Moller et 

al. 2005, Richards, Dettmann 2003, Gorelik, Kanner 2001, Yusa, Shikama 1987): 

 

OxyHb(II)O2 → DeoxyHb(II) + O2   [1] 

DeoxyHb(II) + O2 → MetHb(III) + O2
•− [2] 

O2
•− + O2

•− → H2O2 + O2   [3] 

 

The reaction [1] is not favorable since the OxyHb is more stable than DeoxyHb 

but once it is formed it autoxidizes rapidly in the presence of oxygen (Richards, 

Dettmann 2003).  Therefore, that limited reaction may explain the delayed 

pattern in microsomes oxidation when comparing native OxyHb and MetHb 

(Figures 2 and 3) whereas the formation of hydrogen peroxide [3] and the 

presence of lipid hydroperoxides led to the formation of ferryl (Hb(IV)=O) and 

perferryl (Hb•(IV)=O) species which are efficient promoters of lipid oxidation 

(Baron, Andersen 2002, Kanner, Harel 1985).  This hydrogen peroxide formation 

might explain why the oxidation values found in microsomes were slightly higher 

in the presence of OxyHb.  In addition, the allosterism of Hb upon deoxygenation 

and reduction may provoke that the catalytically active heme groups in the 

OxyHb were less exposed to their surroundings or more loosely in comparison to 

MetHb thus explaining those differences in the prooxidant activity. 
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Heating can also favor hematin release from Hb which is insoluble in water. 

Because of that and unless it remained attached to the protein while this is 

soluble, this fact should provoke a decrease of the heme iron content in the 

supernatant fraction. Heating Hb at 45 C seemed to have no effect on heme 

group insolubilization or destruction although a slight decrease was observed for 

MetHb (Table 1).  This temperature is just before some changes in the Tryp band 

were observed (Figure 1) which was in agreement with the lack of effect on 

protein solubility and antioxidant capacity measured through ORAC values.  All 

these observations were in agreement with the recorded lack of effect on the 

susceptibility to oxidation after heating Hb at 45 C in comparison with their 

respective native Hb (Figures 2 and 3).   

  

The increased heme moiety exposure reported after protein unfolding as a 

consequence of heating at a moderate/high temperatures (60-70 C) (Kristensen, 

Andersen 1997) and the release of hematin (Grunwald, Richards 2006a) and iron 

(Decker, Hultin 1992) from Mb and Hb at higher temperatures have been 

indicated as major causes of the increased susceptibility to oxidation in cooked 

meats.  In our conditions, heme and non-heme iron content results indicated that 

the iron-porphyrin moiety was quite resistant to thermal treatments even when 

heated at 90 C (Table 1) which was also in agreement with other works (Bou, 

Guardiola et al. 2008, Kristensen, Andersen 1997, Han, Mcmillin et al. 1993).  

However, heme iron contents were decreased in the supernatant fractions as 

thermal treatment increased (Table 1).  Unfortunately, from our results it is not 

possible to know whether the heme moiety is completely released, in the form of 

hematin, or not since heme iron precipitation was concomitant with the protein 

solubility.  

 

By looking at TBARS values and heme iron content in the supernatant fraction it 

was observed that they were related since the addition of OxyHb heated at 68 C 

into microsomes led to intermediate values for both susceptibility to oxidation and 

heme content (Table 1 and Figure 2).  Similarly, there were no differences 
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between MetHb heated at 68 and that heated at 90 C for both parameters (Table 

1 and Figure 3).  This fact supports the hypothesis that Hb, which precipitated 

and aggregated upon heating, cocooned the catalitically active heme iron since 

both the heme moiety and heme crevice are hydrophobic.  Therefore, in case 

that the heme moiety was located inside the aggregate, it could only interact with 

the denatured Hb and would explain the poor prooxidant effect when different 

heated Hb were added into the microsomes mixture.  This relationship between 

heme iron loss of solubility and prooxidant activity has been reported previously 

in Mb (Bou, Guardiola et al. 2008, Berisha, Endo et al. 2000).  

 

Because of the low affinity to water, hematin easily associates to different 

components present in the media such as bovine serum albumin and membrane 

components (Ledward 1971, Everse, Hsia 1997, Avissar, Shaklai et al. 1984).  

Therefore, either the direct interaction with membranes rich in polyunsatured 

lipids or through other proteins present in media will likely serve to shuttle 

hematin to membranes and, in consequence, favor the increased susceptibility to 

oxidation in cooked meats.  Grunwald et al. (Grunwald, Richards 2006a) also 

suggested this hypothesis after they observed that lipid oxidation was promoted 

in washed cod muscle when hematin was added together with bovine serum 

albumin. However, this mechanism was impeded in our model system since Hb 

was precipitated before adding to microsomes thus explaining the differences in 

the prooxidative activity of heated heme proteins among studies. 

 

Amino acids, peptides and proteins have been reported to act as antioxidants 

due to its ability in scavenging free radicals and chelating prooxidative metals 

(Elias, Kellerby et al. 2008, Chan, Decker 1994).  Changes in the exposure of 

some amino acids could be related with the more maintained antioxidant capacity 

of MetHb in comparison to OxyHb when they were heated (Table 1).  This effect 

was correlated with the overall poor prooxidant activity of heated Hb.  Protein 

denaturation could also have increased the exposure of amino acid residues 

such as histidine, glutamic acid and aspartic acid known to bind metals and/or 
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hinder iron from the surface (Elias, Kellerby et al. 2008).  The likely decreased 

exposure of some amino acid residues of the MetHb might explain the lowered 

non-heme iron content in the supernatant found in MetHb heated at 68 C and 90 

C (Table 1).  This explanation about iron encapsulation is in agreement with a 

previous work that reported a lowered iron release after dialysis when Mb was at 

heated at 100 C in comparison to that heated at 74 C (Berisha, Yasushi et al. 

2003). 

 

Regardless of the heating temperature, the latter authors also found that the 

released iron was responsible for only 20% of the prooxidant activity compared 

with the Mb itself when after heating this was added to a media containing 

linoleic acid (Berisha, Yasushi et al. 2003).  In order to evaluate the impact of 

free iron versus heme on lipid oxidation, we added to the microsome solution 

native and heated Hb either with or without added EDTA.  Results showed that 

chelatable iron had a low impact in the promotion of lipid oxidation in native Hb 

proteins thus indicating that oxidation was only due to its catalytic activity rather 

than free iron (Table 1).  In heated OxyHb, the non-heme content in the 

supernatant was constant with temperature but only about 10-12% of the 

oxidation could be attributed to the effect of the free iron.  This indicated that 

heme iron, in the native form or as in other heat-denatured heme forms, was the 

main responsible of the oxidation.  MetHb heated at 90 C showed the maximum 

percent (17%) of lipid oxidation reduction which could be due to the low net 

prooxidant activity and low heme content in the supernatant of this heated MetHb 

rather than the free iron release since this was decreased in comparison to 

native MetHb.  

 

Collectively, these results indicated that the content in heme iron in the 

supernatant largely influenced the susceptibility to oxidation whereas the free 

iron content had little effect. Because of its hydrophobicity, the porphyrin group 

seemed to be hidden inside the Hb denatured aggregate thus provoking the 

reduced susceptibility to oxidation in our system. Future works should approach 



 18

those factors that can affect the delivery of heme groups to different targets 

susceptible to oxidize.  Nevertheless, other factors such the ability of the different 

denatured Hb to chelate iron and the free radical scavenging capacity also 

determine the overall antioxidant pro-oxidant balance. 
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Figure 1. Absorbance changes of oxyhemoglobin (solid line) and methemoglobin 

(dashed line) solutions (0.04 g/dL; pH = 5.6) at 290 nm with a heating rate of 0.8 

C/min. 
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Figure 2. Effect of oxyhemoglobin (final concentration 0.08 g/dL) heated at 

different temperatures on the formation of thiobarbituric acid reactive substances 

(TBA; µmols MDA/kg protein) in the presence of muscle microsomes (final 

concentration 9 mg/mL) at 37 C for different incubation times. Blank correspond 

to samples made with native oxyhemoglobin. For each incubation time, values 

corresponding to a certain variable with different letter differ significantly (P ≤ 

0.05). 
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Figure 3. Effect of methemoglobin (final concentration 0.08 g/dL) heated at 

different temperatures on the formation of thiobarbituric acid reactive substances 

(TBA; µmols MDA/kg protein) in the presence of muscle microsomes (final 

concentration 9 mg/mL) at 37 C for different incubation times. Blank correspond 

to samples made with native methemoglobin. For each incubation time, values 

corresponding to a certain variable with different letter differ significantly (P ≤ 

0.05). 
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Table 1. Effect of heating oxyhemoglobin and methemoglobin on protein 

solubility, radical scavenging capacity, oxidative capacity of non-chelatable iron, 

heme and non-heme content in either the whole sample or in the supernatant 

after centrifugation1. 

Heating 

temperature 

(C) 

Protein 

solubility 

(mg/L) 

Radical 

scavenging 

capacity 

(AUC)
2
 

Heme in 

whole 

sample 

(microM) 

Heme in the 

supernatant 

(microM) 

Non-

heme in 

whole 

sample 

(microM) 

Non-heme 

in the 

supernatant 

(microM) 

Oxidative 

capacity 

of non-

chelatable 

iron 

(%) 

 OxyHemoglobin 

Native 

45  

68 

90 

SE
3
 

971 a 

956 a 

515 b 

12 c 

9.9 

3.61 a 

3.67 a 

2.59 b 

1.82 c 

0.089 

35 a 

31 a 

32 a 

33 a 

1.7 

35 a 

34 a 

20 b 

6 c 

2.4 

105 a 

106 a 

86 a 

93 a 

9.5 

64 a 

78 a 

63 a 

50 a 

9.4 

0.3 a 

3.9 a 

10.5 b 

11.9 b 

0.74 

 MetHemoglobin 

Native 

45 

68 

90 

SE 

868 a 

864 a 

468 b 

10 c 

10.0 

3.49 a 

3.81 a 

3.38 a 

2.35 b 

0.15 

30 a 

30 a 

26 a 

26 a 

3.1 

31 a 

26 ab 

13 bc 

0.4 c 

2.7 

112 a 

89 a 

108 a 

92 a 

6.4 

94 ab 

124 a 

69 b 

58 b 

7.2 

3.3 a 

11.7 b 

14.5 b 

17.1 b 

1.4 

1
 Values correspond to means obtained from an ANOVA (n = 12). Means corresponding to a 

certain variable and for each level of certain hemoglobin bearing no common letters are 

statistically different (P ≤ 0.05). 

2
 The radical scavenging capacity was calculated using the area under the curve of the oxygen 

radical absorbance capacity (ORAC) assay. 

3 
SE means the standard error which is formed by dividing the pooled standard deviation by the 

square root of the number of observations at each level.   

 

 

 

 

 

 



 23

 

REFERENCES 

 
 

 
ALVARADO, C.Z., RICHARDS, M.P., O'KEEFE, S.F. and WANG, H., 2007. The 
effect of blood removal on oxidation and shelf life of broiler breast meat. Poultry 
science, 86(1), pp. 156-161. 
AVISSAR, N., SHAKLAI, M. and SHAKLAI, N., 1984. The Interaction of Hemin 
with Skeletal-Muscle Actin. Biochimica et biophysica acta, 786(3), pp. 179-187. 
BARON, C.P. and ANDERSEN, H.J., 2002. Myoglobin-induced lipid oxidation. A 
review. J.Agric.Food Chem., 50(14), pp. 3887-3897. 
BENESCH, R.E., BENESCH, R. and YUNG, S., 1973. Equations for the 
spectrophotometric analysis of hemoglobin mixtures. Analytical Biochemistry, 
55(1), pp. 245-248. 
BERISHA, A., ENDO, Y. and FUJIMOTO, K., 2000. The effect of heating 
temperature on the prooxidant and hydroperoxide decomposition activity of 
myoglobin. Food science and technology research, 6(4; 4), pp. 257-262. 
BERISHA, A., YASUSHI, E. and FUJIMOTO, K., 2003. The effect of heat-
induced structural changes on the prooxidant activity of myoglobin. Italian 
Journal of Food Science, 15(1), pp. 85-94. 
BOU, R., GUARDIOLA, F., CODONY, R., FAUSTMAN, C., ELIAS, R.J. and 
DECKER, E.A., 2008. Effect of Heating Oxymyoglobin and Metmyoglobin on the 
Oxidation of Muscle Microsomes. Journal of Agricultural and Food Chemistry, 
56(20), pp. 9612-9620. 
BRANNAN, R.G. and DECKER, E.A., 2001. Peroxynitrite-induced oxidation of 
lipids: Implications for muscle foods. J.Agric.Food Chem., 49(6), pp. 3074-3079. 
CARLSEN, C.U., MOLLER, J.K.S. and SKIBSTED, L.H., 2005. Heme-iron in lipid 
oxidation. Coordination Chemistry Reviews, 249(3-4), pp. 485-498. 
CHAN, K.N. and DECKER, E.A., 1994. Endogenous skeletal muscle 
antioxidants. Crit.Rev.Food Sci.Nutr., 34(4), pp. 403-426. 
DECKER, E.A. and HULTIN, H.O., 1992. Lipid Oxidation in Muscle Foods Via 
Redox Iron. ACS Symp.Ser., 500, pp. 33-54. 
ELIAS, R.J., KELLERBY, S.S. and DECKER, E.A., 2008. Antioxidant activity of 
proteins and peptides. Crit.Rev.Food Sci.Nutr., 48, pp. 1-13. 
EVERSE, J. and HSIA, N., 1997. The toxicities of native and modified 
hemoglobins. Free Radical Biology and Medicine, 22(6), pp. 1075-1099. 
GORELIK, S. and KANNER, J., 2001. Oxymyoglobin oxidation and membranal 
lipid peroxidation initiated by iron redox cycle. J.Agric.Food Chem., 49(12), pp. 
5939-5944. 
GRUNWALD, E.W. and RICHARDS, M.P., 2006a. Mechanisms of heme protein-
mediated lipid oxidation using hemoglobin and myoglobin variants in raw and 
heated washed muscle. J.Agric.Food Chem., 54(21), pp. 8271-8280. 



 24

GRUNWALD, E.W. and RICHARDS, M.P., 2006b. Studies with myoglobin 
variants indicate that released hemin is the primary promoter of lipid oxidation in 
washed fish muscle. J.Agric.Food Chem., 54(12), pp. 4452-4460. 
HAN, D., MCMILLIN, K.W. and GODBER, J.S., 1994. Hemoglobin, Myoglobin, 
and Total Pigments in Beef and Chicken Muscles - Chromatographic 
Determination. Journal of Food Science, 59(6), pp. 1279-1282. 
HAN, D., MCMILLIN, K.W., GODBER, J.S., BIDNER, T.D., YOUNATHAN, M.T. 
and HART, L.T., 1995. Lipid Stability of Beef Model Systems with Heating and 
Iron Fractions. Journal of Food Science, 60(3), pp. 599-603. 
HAN, D., MCMILLIN, K.W., GODBER, J.S., BIDNER, T.D., YOUNATHAN, M.T., 
MARSHALL, D.L. and HART, L.T., 1993. Iron Distribution in Heated Beef and 
Chicken Muscles. J.Food Sci., 58(4), pp. 697-700. 
HAZELL, T., 1982. Iron and Zinc-Compounds in the Muscle Meats of Beef, 
Lamb, Pork and Chicken. Journal of the science of food and agriculture, 33(10), 
pp. 1049-1056. 
HORNSEY, H.C., 1956. The color of cooked cured pork. I. Estimation of the nitric 
oxide/heme pigments. J.Sci.Food Agric., 7, pp. 534-540. 
JOHNS, A.M., BIRKINSHAW, L.H. and LEDWARD, D.A., 1989. Catalysts of Lipid 
Oxidation in Meat-Products. Meat Sci., 25(3), pp. 209-220. 
KANNER, J., 1994. Oxidative Processes in Meat and Meat-Products - Quality 
Implications. Meat Sci., 36(1-2), pp. 169-189. 
KANNER, J., GERMAN, J.B. and KINSELLA, J.E., 1987. Initiation of lipid 
peroxidation in biological systems. Critical reviews in food science and nutrition, 
25(4), pp. 317-364. 
KANNER, J. and HAREL, S., 1985. Initiation of Membranal Lipid-Peroxidation by 
Activated Metmyoglobin and Methemoglobin. Arch.Biochem.Biophys., 237(2), pp. 
314-321. 
KRANEN, R.W., VAN KUPPEVELT, T.H., GOEDHART, H.A., VEERKAMP, C.H., 
LAMBOOY, E. and VEERKAMP, J.H., 1999. Hemoglobin and myoglobin content 
in muscles of broiler chickens. Poultry science, 78(3), pp. 467-476. 
KRISTENSEN, L. and ANDERSEN, H.J., 1997. Effect of heat denaturation on 
the pro-oxidative activity of metmyoglobin in linoleic acid emulsions. J.Agric.Food 
Chem., 45(1), pp. 7-13. 
LEDWARD, D.A., 1971. Nature of Cooked Meat Hemoprotein. J.Food Sci., 36(6), 
pp. 883-&. 
LOWRY, O.H., ROSEBROUGH, N.J., FARR, A.L. and RANDALL, R.J., 1951. 
Protein measurement with the Folin phenol reagent. J.Biol.Chem., 193(1), pp. 
265-275. 
MIN, B. and AHN, D.U., 2005. Mechanism of lipid peroxidation in meat and meat 
products - A review. Food Sci.Biotechnol., 14(1), pp. 152-163. 
MONAHAN, F.J., CRACKEL, R.L., GRAY, J.I., BUCKLEY, D.J. and 
MORRISSEY, P.A., 1993. Catalysis of lipid oxidation in muscle model systems 
by haem and inorganic iron. Meat Science, 34(1), pp. 95-106. 
NIEWIAROWICZ, A., PIKUL, J. and CZAJKA, P., 1986. Myoglobin and 
haemoglobin content in the meat of different types of poultry. Fleischwinschaft, 
66(8), pp. 1281-1282. 



 25

OELLINGRATH, I.M., IVERSEN, A. and SKREDE, G., 1990. Quantitative 
determination of myoglobin and haemoglobin in beef by high-performance liquid 
chromatography. Meat Science, 28(4), pp. 313-320. 
RHEE, K.S. and ZIPRIN, Y.A., 1987. Modification of the Schricker Nonheme Iron 
Method to Minimize Pigment Effects for Red Meats. J.Food Sci., 52(5), pp. 1174-
1176. 
RHEE, K.S., ZIPRIN, Y.A. and ORDONEZ, G., 1987. Catalysis of Lipid Oxidation 
in Raw and Cooked Beef by Metmyoglobin-H2O2, Nonheme Iron, and Enzyme-
Systems. J.Agric.Food Chem., 35(6), pp. 1013-1017. 
RICHARDS, M.P. and DETTMANN, M.A., 2003. Comparative analysis of 
different hemoglobins: Autoxidation, reaction with peroxide, and lipid oxidation. 
Journal of Agricultural and Food Chemistry, 51(13), pp. 3886-3891. 
RICHARDS, M.P., DETTMANN, M.A. and GRUNWALD, E.W., 2005. Pro-
oxidative characteristics of trout hemoglobin and myoglobin: A role for released 
heme in oxidation of lipids. J.Agric.Food Chem., 53(26), pp. 10231-10238. 
RICHARDS, M.P. and HULTIN, H.O., 2002. Contributions of blood and blood 
components to lipid oxidation in fish muscle. Journal of Agricultural and Food 
Chemistry, 50(3), pp. 555-564. 
RICHARDS, M.P., NELSON, N.M., KRISTINSSON, H.G., MONY, S.S.J., PETTY, 
H.T. and OLIVEIRA, A.C.M., 2007. Effects of fish heme protein structure and lipid 
substrate composition on hemoglobin-mediated lipid oxidation. Journal of 
Agricultural and Food Chemistry, 55(9), pp. 3643-3654. 
SCHRICKER, B.R. and MILLER, D.D., 1983. Effects of Cooking and Chemical 
Treatment on Heme and Non-Heme Iron in Meat. J.Food Sci., 48(4), pp. 1340-&. 
SNELL, S.M. and MARINI, M.A., 1988. A convenient spectroscopic method for 
the estimation of hemoglobin concentrations in cell-free solutions. Journal of 
Biochemical and Biophysical Methods, 17(1), pp. 25-34. 
WITTUNG-STAFSHEDE, P., 1999. Effect of redox state on unfolding energetics 
of heme proteins. Biochimica Et Biophysica Acta-Protein Structure and Molecular 
Enzymology, 1432(2), pp. 401-405. 
YUSA, K. and SHIKAMA, K., 1987. Oxidation of oxymyoglobin to metmyoglobin 
with hydrogen peroxide: Involvement of ferryl intermediate. Biochemistry, 26(21), 
pp. 6684-6688. 
 


