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I. INTRODUCTION

Usually a physical system has a definite number of
physical degrees of freedom. However it sometimes hap-
pens that it has sectors, i.e., branches of phase spaces that
have different canonical structures, such as different physi-
cal degrees of freedom, or gauge symmetries. Generically,
these sectors appear for dynamical systems when the rank
of the matrix of Poisson brackets of primary constraints is
not constant, in other words when the regularity conditions
are not verified; see for example [1]. In these cases there are
nonunique solutions of the stabilization condition in the
Dirac’s algorithm of constraints. The presence of sectors
was also analyzed in other contexts, for example, when the
Legendre transformation and the Hamiltonian are multi-
valued [2–5].
A model of the Zwei-Dreibein gravity has been pro-

posed in a very recent paper [6]. The presence or absence
of the Boulware-Deser mode in the model has been
reanalyzed in [7]; the Hamiltonian analysis shows in
general the existence of sectors, and, in each sector,
the system has different number of degrees of freedom.
For a suitable choice of the parameters there appears
only one sector where the Boulware-Deser mode is
absent.1 In the case of four dimensions, bigravity contains

also sectors; see for example [8]. For other models with
sectors see [9–12].
In order to have a better understanding of how to deal

with dynamical systems with sectors at classical and
quantum levels, we consider a simple model of two
relativistic particles [13–16]. The model is described by
a sum of two relativistic particle Lagrangians in which the
interaction is introduced by replacing their rest masses with
potentials that depend on the Minkowskian distance of the
two particles,2

L ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

10 − Vðr2ÞÞ_x21
q

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

20 − Vðr2ÞÞ_x22
q

¼ −X
j¼1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

jðr2Þ_x2j
q

; (1)

where xjðτÞ, (j ¼ 1, 2) are the space-time coordinates of
the two particles. Vðr2Þ is any Poincaré invariant function
of the squared relative distance r2 ¼ ðx2 − x1Þ2. mj0’s are
the rest masses of the particles and m2

jðr2Þ ¼ m2
j0 − Vðr2Þ

are the effective masses of the particles. The interaction
breaks the individual invariance under diffeomorphism
(Diff) of the action of two free particles, leaving a universal
Diff invariance.
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1We acknowledge Eric Bergshoeff and Paul Townsend for
discussions on this point.

2Here the metric is ðþ;− − −Þ.
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The canonical action is given by

S ¼
Z

dτ
X
j¼1;2

�
pj _xj − ej

2
ðp2

j −m2
jðr2ÞÞ

�

¼
Z

dτ
X
j¼1;2

ðpj _xj − ejφjÞ; (2)

where ej are Lagrangian multipliers that we can interpret as
two einbein variables, and ϕj ¼ 1=2ðp2

j −m2
jðr2ÞÞ are the

mass-shell constraints.
The matrix of the Poisson brackets of the primary

constraints reads�fφ1;φ1g fφ1;φ2g
fφ2;φ1g fφ2;φ2g

�
¼
�

0 −V 0ðr2ÞðP · rÞ
V 0ðr2ÞðP · rÞ 0

�
;

(3)

where P ¼ p1 þ p2 is the total momenta of the system and
V 0ðr2Þ ¼ d

dr2 Vðr2Þ and has not constant rank. The rank is 2
if V 0ðr2ÞðP · rÞ ≠ 0 and it is 0 if V 0ðr2ÞðP · rÞ ¼ 0; there-
fore, the model has sectors.3 The detailed structure of the
sectors will be studied in the next section for the case of the
harmonic oscillator.
If we eliminate the momenta pi by using their equations

of motion we get

L ¼
X
j¼1;2

�
_x2j
2ej

þ ej
2
m2

jðr2Þ
�
: (4)

In this form the Lagrangian can be reinterpreted as the
Lagrangian of a model of bigravity in one dimension. Note
that for this Lagrangian the primary constraints ϕi of (1)
appear as secondary constraints. If we restrict the Vðr2Þ to a
harmonic potential, it can be shown that, in the case of
equal rest masses (m10 ¼ m20 ≡m0), the model has a new
extra Noether gauge symmetry, in addition to Diff. The
existence of two gauge symmetries depending on the phase
space regions, P2 ¼ 0 or P2 > 0, is a consequence of the
fact that the model has sectors, with different degrees of
freedom in each sector.
In this paper we study in detail the appearance of sectors

at the Hamiltonian level. As we will see for unequal rest
masses there is only one sector. It is a massive sector in the
sense that P2 ≠ 0. This sector contains first and second
class constraints. The physical degrees of freedom are those
of a system of two massive particles. If the rest masses are
equal, we have three sectors: one with P2 ≠ 0 like in the
previous case and two sectors with P2 ¼ 0 with different
numbers of first and second class constraints. Although the
massless sectors are empty (no classical solution) for

positive rest mass square (m2
0 > 0), they are not so for

tachyonic rest masses (m2
0 < 0).

We perform the canonical quantization of the two
sectors. For the massive sector it is useful to consider first
a canonical transformation at the classical level [14,16]
such that the second class constraints become a pair of
canonical variables [17,18]. This allows one to impose the
second class constraints on the physical states, by consid-
ering a non-Hermitean combination of them. We get a
spectrum of increasing masses for higher internal spins. In
the case of unequal rest masses there is a branch of the mass
spectrum that contains ghosts. Instead, for the massless
sector, there are no physical states for physical particles
with a positive rest mass square corresponding to the fact
that there are no classical solutions. If we consider tachyons
this sector is not empty; there are states with helicities
depending on the value of the tachyonic mass.
The organization of this paper is as follows. In Sec. 2 we

introduce the model and perform the Hamiltonian analysis.
In Sec. 3 we give the gauge transformations. Section 4 is
devoted to the canonical quantization and finally in Sec. 5
we give some conclusions and an outlook.

II. SECTORS OF AN INTERACTING
RELATIVISTIC TWO PARTICLE MODEL

We reconsider a model of two relativistic interacting
particles via a multiplicative potential introduced in
[13–16]. The Lagrangian is given in (1). We rewrite the
Lagrangian by introducing two einbein variables ej (see for
example [19,20])

L ¼
X
j¼1;2

�
_x2j
2ej

þ ej
2
m2

jðr2Þ
�
: (5)

In order to have a well-defined Lagrangian we will assume
ej ≠ 0. In addition e1, e2 should have the same sign in order
to reproduce (1), so e1 þ e2 ≠ 0. In this form the model can
be reinterpreted as a bigravity in one dimension. In this
paper we will consider a special case of harmonic potential
m2

jðr2Þ ¼ m2
j0 − κ2r2 with the parameters, the rest masses

m2
j0 and κ. The Lagrange equations of motion are

½L�xj ¼
∂L
∂xj −

d
dτ

∂L
∂ _xj

¼ ð−Þjþ1κ2ðe1 þ e2Þrþ
_ej _xj
e2j

− ẍj
ej

¼ 0; (6)

½L�ej ¼
∂L
∂ej −

d
dτ

∂L
∂ _ej ¼

1

2

�
_x2j
e2j

−m2
j

�
¼ 0: (7)

In the Hamiltonian formalism the canonical momenta are

pj ¼
∂L
∂ _xj ¼

_xj
ej
; πj ¼

∂L
∂ _ej ¼ 0 (8)3The presence of sectors was already noticed in [13–16] but

only one sector was studied in detail.
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and we have two primary constraints

πj ¼ 0; ðj ¼ 1; 2Þ: (9)

The canonical Hamiltonian is given by

Hc ¼ ejϕj; ϕj ≡ 1

2
ðp2

j −m2
jðr2ÞÞ; (10)

and the Dirac Hamiltonian, that includes the primary
constraints, is

H ¼ Hc þ πjΛj; (11)

where Λj’s are arbitrary functions of τ that work as
Lagrangian multipliers. The Hamilton equations of motion
are

_ej ¼ Λj; _xj ¼ ejpj; _πj ¼ −ϕj;

_pj ¼ ð−1Þjþ1ðe1 þ e2Þκ2r; (12)

which imply that the total momentum P ¼ p1 þ p2 is
conserved.
The Dirac’s algorithm starts to examine the stability

condition of the primary constraints πj ¼ 0. It produces the
secondary constraints

ϕj ¼ 0 (13)

and the stability of these constraints gives

_ϕ1 ¼ κ2ðP · rÞe2 ¼ 0; _ϕ2 ¼ −κ2ðP · rÞe1 ¼ 0: (14)

Note that the matrix Poisson brackets of the secondary
constraints has no constant rank, in fact fϕ1;ϕ2g ¼
κ2ðP · rÞ.
Since ej’s are not vanishing by initial hypothesis of the

Lagrangian (5), in addition e1 ¼ e2 ¼ 0 only gives trivial
system H ≡ 0, we have a tertiary constraint

Θ≡ ðP · rÞ ¼ 0: (15)

Now we compute the Poisson bracket of Θ with ϕi

ðfΘ;ϕ1g;fΘ;ϕ2gÞ

¼
�
−1

2
P2−1

2
ðm2

10−m2
20Þ;−1

2
P2þ1

2
ðm2

10−m2
20Þ

�
; (16)

where the constraints ϕi ¼ 0 have been used. The above
rectangular matrix does not have a constants rank. It has

rank 0 for P2 ¼ m2
10 −m2

20 ¼ 0 and rank 1 for others;
therefore, the model has further ramifications.
The stability of the tertiary constraint requires the

relation

χ ¼ _Θ ¼ P · ðe2p2 − e1p1Þ

¼ − ðe1 − e2Þ
2

P2

− ðe1 þ e2Þ
�
ϕ1 − ϕ2 þ

1

2
ðm2

1ðr2Þ −m2
2ðr2ÞÞ

�

¼ − 1

2
ðe−P2 þ eþΔ−Þ ¼ 0; (17)

where we have used the secondary constraints ϕj ¼ 0 and
defined

e� ¼ e1 � e2; Δ− ¼ ðm2
10 −m2

20Þ: (18)

Now we study the different sectors of this constraint
depending on the values ofΔ−. For the model with different
rest masses Δ− ≠ 0, since eþ ≠ 0, (17) implies P2 ≠ 0.
Solving it for e−, the quaternary constraint takes the form

e− þ Δ−
P2

eþ ¼ 0 ðmassive sectorÞ: (19)

The stability of this constraint gives a relation between the
arbitrary functions,

Λ− þ Δ−
P2

Λþ ¼ 0: (20)

There is only one sector for Δ− ¼ ðm2
10 −m2

20Þ ≠ 0. The
first class combinations of constraints are

πþ − Δ−
P2

π− ¼ 0; ϕþ − Δ−
P2

ϕ− ¼ 0; (21)

with ϕ� ¼ ϕ1 � ϕ2, and

π− ¼ 0; e− þ Δ−
P2

eþ ¼ 0;

ϕ− ¼ −ðP · qÞ − Δ−
2

¼ 0; Θ ¼ ðP · rÞ ¼ 0

(22)

are the second class constraints, where q ¼ 1
2
ðp2 − p1Þ is

the relative momentum.
For the case of equal rest masses Δ− ¼

ðm2
10 −m2

20Þ ¼ 0, (17) requires either

case 1∶ e− ¼ 0; P2 ≠ 0; then Λ− ¼ 0 ðmassive sectorÞ; (23)

case 2∶ P2 ¼ 0; e− ≠ 0 ðno more cond:∶massless sectorÞ; (24)

case 3∶ P2 ¼ 0 and e− ¼ 0; then Λ− ¼ 0 ðmassless sectorÞ: (25)

DYNAMICAL SECTORS OF A RELATIVISTIC TWO … PHYSICAL REVIEW D 89, 045001 (2014)

045001-3



Case 1 is just Δ− ¼ 0 of the previous case (19). The
constraints appearing here

πþ ¼ 0; ϕþ ¼ 0 (26)

are first class while

π− ¼ 0; e− ¼ 0; ϕ− ¼ −ðP · qÞ ¼ 0; ðP · rÞ ¼ 0

(27)

are second class. The constraint ϕþ ¼ 0 determines the
mass of the system, while the last two kill the longitudinal
relative coordinate rμ and momentum qμ. The physical
degrees of freedom are given by

2 × 2þ 8 × 2 − 2 × 2 − 4 ¼ 12; (28)

which is the physical dimension of a system of two massive
particles.
In case 2 all the constraints

π� ¼ 0; ϕ� ¼ 0; ðP · rÞ ¼ 0; P2 ¼ 0 (29)

are first class and the dimension of the physical phase
space is

2 × 2þ 8 × 2 − 2 × 6 ¼ 8; (30)

which is the physical phase space of a system with two
massless particles.
In the case 3 the constraints

πþ ¼ 0; ϕ� ¼ 0; ðP · rÞ ¼ 0; P2 ¼ 0 (31)

are first class and

π− ¼ 0; e− ¼ 0 (32)

are second class. In this case the dimension of the physical
phase space is

2 × 2þ 8 × 2 − 2 × 5 − 2 ¼ 8; (33)

which is the same as in the (above) case 2. Despite the
fact that counting of degrees of freedom is eight, as we
will see in the next section, the constraints have no solution
for positive rest mass case, m2

0 > 0, thus these sectors
are empty.
Now we would like to see which is the evolution of the

Lagrangian multipliers in the different sectors. If e− ¼ 0 at
τ ¼ 0, integrating (12) the evolution in τ is given by

e− ¼
Z

τ

0

Λ−ðτ0Þdτ; (34)

which, for generic Λ−, gives e− ≠ 0. However since in the
case 1 and 3 Λ− ¼ 0, e− will remain zero during the

evolution of the system. Instead, if we are in case 2, P2 ¼ 0,
e− ≠ 0. If e−ð0Þ ¼ a at τ ¼ 0, the evolution in this case is
given by

e− ¼
Z

τ

0

Λ−ðτ0Þdτ0 þ a: (35)

We always can choose Λ− such that at given τ we have
e−ðτÞ ¼ 0 and we are no longer in case 2. However we are
not in case 3, since in this case too Λ− ¼ 0. The system will
evolve and it could move again to e− ≠ 0. It seems that
from the point of view of the true degrees of freedom the
evolution among sectors does not matter since the space-
time variables are unaffected by this phenomenon.
Evolution among sectors occurs in the model studied
in [11].4

III. GAUGE SYMMETRIES

Let us now study the gauge symmetries in these sectors.
In the massive sector with equal or different rest masses we
have only one gauge transformation in agreement with the
presence of only one primary first class constraint. The
transformation is given by

δej ¼
d
dτ

ðϵejÞ; δxj ¼ ðϵejÞpj ¼ ϵ_xj; (36)

where ϵ ¼ ϵðτÞ is an arbitrary function. It is a Noether
symmetry since

δL ¼ _xj
ej

d
dτ

ðϵ_xjÞ − _x2j
2e2j

d
dτ

ðϵejÞ þ
m2

2

d
dτ

ðϵejÞ − ejκ2rðϵ_rÞ

¼ d
dτ

ðϵLÞ: (37)

It is the well-known diffeomorphism transformation that
has a closed algebra

½δϵ2 ; δϵ1 �ej ¼ δϵ3ej; ½δϵ2 ; δϵ1 �xj ¼ δϵ3xj;

ϵ3 ¼ ϵ1 _ϵ2 − ϵ2 _ϵ1:
(38)

For the massless sector (24), with equal masses, we have
two independent primary first class constraints. This is a
signal that we will have two gauge transformations, one
being the Diff as in the massive case (36) and the other one
a new transformation with gauge parameter λðτÞ,

4We acknowledge discussions with Jorge Zanelli on this point.
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δej ¼ ð−Þjþ1

�
d
dτ

�
1

κ2ðe1 þ e2Þ
d
dτ

� −1
ðe1 − e2Þ

_λ

��
− ðe1 þ e2Þ
ðe1 − e2Þ

_λ

�
;

δxj ¼ ð−Þjþ1

�
1

κ2ðe1 þ e2Þ
d
dτ

� −1
ðe1 − e2Þ

_λ

��
_xj
ej

þ 1

ðe1 − e2Þ
_λrþ λ

�
_x1
e1

þ _x2
e2

�
; (39)

which is also a Noether symmetry, indeed,

δL ¼ d
dτ

�
1

2

�
1

κ2ðe1 þ e2Þ
d
dτ

� −1
ðe1 − e2Þ

_λ

����
_x1
e1

�
2 −

�
_x2
e2

�
2
�
þ λ

2

�
_x1
e1

þ _x2
e2

�
2
�
: (40)

In this case the algebra of gauge transformation closes only on shell as

½δλ2 ; δλ1 �ei ¼ δλ3ei; ½δλ2 ; δλ1 �xi ¼ δλ3xi −
ϵij½L�xj
κ2e1e2

d
dτ

�ðλ1 _λ2 − λ2 _λ1Þ
ðe1 − e2Þ

�
; (41)

where ½L�x are the equations of motion for xj (6) and

λ3 ¼
2

κ2ðe1 þ e2Þðe1 − e2Þ2
ð_λ1 ̈λ2 − _λ2 ̈λ1Þ: (42)

The second gauge transformation (δλ) and diffeomor-
phism transformation (δϵ) close off shell as

½δϵ; δλ�ej ¼ δ~λej; ½δϵ; δλ�xj ¼ δ~λxj; ~λ ¼ −ϵ_λ:
(43)

Note that the second gauge transformation exists only when
e� are not vanishing. The gauge structure of a theory is
encoded in the BV formalism [21]. For a review, see for
example [22,23]. The construction of the classical master
equation and the BRST symmetry will be given else-
where [24].

IV. CANONICAL QUANTIZATION

Here we will discuss the canonical quantization of the
model for the massive and massless sectors.

A. Massive sector

The quantization of the massive sector of the model for
unequal rest masses (Δ− ≠ 0), and also for equal mass case
(Δ− ¼ 0), is performed following [16]. The constraints in
(21)–(22) are

πþ − Δ−
P2

π− ¼ 0; ϕþ − Δ−
P2

ϕ− ¼ 0; ð1 cl:Þ (44)

π− ¼ 0; e− þ Δ−
P2

eþ ¼ 0;

ϕ− ¼ −ðP · qÞ − Δ−
2

¼ 0;

Θ ¼ ðP · rÞ ¼ 0; ð2 cl:Þ: (45)

Since the latter four are the second class constraints, we
first perform a canonical transformation such that they
become new sets of canonical pairs.5 It is generated by

Wðπ; P; q; ē; x̄; uÞ ¼ 1

2
ēþ

�
πþ − Δ−

P2
π−

�
þ 1

2
ē−π−

þ x̄μPμ þ uðλÞϵðλÞμðPÞqμ
þ uð0Þ

Δ−
2

ffiffiffiffiffiffi
P2

p ; (46)

where the polarization vectors ϵðλÞμ, (λ ¼ 0, 1, 2, 3 are

ϵðλÞμ ¼
�
ϵð0Þμ

ϵðλ0Þμ

�
¼

0
B@

P0ffiffiffiffi
P2

p Pjffiffiffiffi
P2

p

Pλ0ffiffiffiffi
P2

p δλ0
j − Pλ0P

jffiffiffiffi
P2

p
ðP0þ

ffiffiffiffi
P2

p
Þ

1
CA; (47)

and λ0 ¼ 1, 2, 3, j ¼ 1, 2, 3. The new canonical variables
ðēi; π̄i; x̄μ; P̄μ; uðλÞ; vðλÞÞ are related to the old ones
ðei; πi; xμ ¼ 1

2
ðxμ1 þ xμ2Þ; Pμ; rμ; qμÞ by [16]

5The theorem that guarantees the existence of this canonical
transformation is given by [17,18].
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π̄þ ¼ ∂W
∂ēþ ¼

�
πþ − Δ−

P2
π−

�
; π̄− ¼ ∂W

∂ē− ¼ π−;

eþ ¼ ēþ; e− ¼ ē− − ēþ
Δ−
P2

;

xμ ¼ ∂W
∂Pμ

¼ x̄μ þ uðλÞ
∂ϵðλÞν
∂Pμ

qν − Δ−uð0Þ

2
ffiffiffiffiffiffi
P2

p
3
Pμ þ ēþ

2Δ−
ðP2Þ2 π−Pμ;

P̄μ ¼
∂W
∂x̄μ ¼ Pμ; rμ ¼ ∂W

∂qμ ¼ uðλÞϵðλÞμ;

vðλÞ ¼
∂W
∂uðλÞ ¼ ϵðλÞμqμ þ

Δ−
2

ffiffiffiffiffiffi
P2

p δλ
0: (48)

The second class constraints in (45) are

π̄− ¼ 0; ē− ¼ 0; ϕ− ¼ −
ffiffiffiffiffiffi
P2

p
vð0Þ ¼ 0;

Θ ¼
ffiffiffiffiffiffi
P2

p
uð0Þ ¼ 0 (49)

and the first class constraints in (44) are

π̄þ ¼ 0;

1

4
C0 ≡ ϕþ − Δ−

P2
ϕ− ¼ 1

4
P2

−X3
λ0¼1

ðv2ðλ0Þ þ κ2uðλ0Þ2Þ − Δþ
2

þ Δ2−
4P2

¼ 0; (50)

with Δþ ¼ ðm2
10 þm2

20Þ. Notice that in C0 we have deleted
terms of square of constraints. They are the first class
constraints that commute strongly with the second class
constraints. This result is similar to what happens when
using Dirac brackets: we can put to zero second class
constraints in the expression of the first class ones.
However the canonical transformation method allows us
to work in the complete phase space.
The canonical quantization is obtained by imposing the

commutation relations on the canonical pairs

½ēi; π̄j� ¼−iδij; ½x̄μ;Pν� ¼−iδμν; ½uðλÞ; vðρÞ� ¼−iδλρ;
(51)

and requiring the first class constraint (50) as the physical
state condition. Concerning the second class constraints, a
non-Hermitian combination of Eqs. (49), following Gupta-
Bleuler, is required so that we have

1ffiffiffi
2

p ðē− − iπ̄−Þjψphysi ¼ 0; að0Þjψphysi ¼ 0; (52)

where we have defined the operators aðλÞ, for λ ¼ 0, 1, 2, 3,
as

aðλÞ ¼
1ffiffiffiffiffi
2κ

p ðvðλÞ − iκuðλÞÞ (53)

such that

½aðλÞ; a†ðρÞ� ¼ −gλρ: (54)

These two conditions imply

hψphysjē−jψphysi ¼ hψphysjπ̄−jψphysi ¼ hψphysjuð0Þjψphysi
¼ hψphysjvð0Þjψphysi ¼ 0 (55)

and are satisfied, in the coordinate representation, by a
Gaussian dependence of the wave function on the variables
ē− and uð0Þ.
Finally we require the first class constraints (50) as the

physical state condition,

π̄þjψphysi ¼ 0; (56)

implying that the wave function, in the coordinate repre-
sentation, does not depend on ēþ and

C0jψphysi ¼ 0; (57)

where

C0 ¼ P2 − 4κ
X3
λ0¼1

ða†ðλ0Þaðλ0Þ þ aðλ0Þa
†
ðλ0ÞÞ − 2Δþ þ Δ2−

P2
:

(58)
Notice that for unequal masses, the propagator has the
general form

1

M2
1 −M2

2

�
1

p2 −M2
1

− 1

p2 −M2
2

�
; (59)

where M2
1 and M2

2 are two solutions in P2 of the primary
constraint (57). Therefore, due to the minus sign in the
second term, the theory in general contains ghosts. The
Hilbert space would be the direct sum of two Hilbert
spaces: one with positive norm and the second one with
negative norm. As soon as one adds interaction terms in the
field theory Lagrangian, instabilities can occur and special
care has to be taken [25].
For this reason we limit the study of the spectrum in the

simplest case of equal masses Δ− ¼ 0 so that the wave
equation becomes quadratic in the momentum. Using (57)
the mass operator M2 is given by

M2 ¼ 8κ

�X3
λ0¼1

a†ðλ0Þaðλ0Þ þ
3

2
þm2

0

2κ

�
: (60)

Standard procedure allows us to build the quantum states of
the internal space corresponding to a three-dimensional

DOMINICI et al. PHYSICAL REVIEW D 89, 045001 (2014)

045001-6



harmonic oscillator. For increasing occupation numbers
one can build states of increasing internal angular momen-
tum that can be given by the representation of O(3).
The Lorentz generators

Mμν ¼ xμpν − xνpμ þ rμqν − rνqμ (61)

expressed in terms of the new canonical variables are giving
the massive representation,

Mij ¼ x̄iPj − x̄jPi þ Tij;

M0i ¼ x̄0Pi − x̄iP0 þ
Pj

P0 þ
ffiffiffiffiffiffiffiffi
jPj2

p Tji; (62)

where Tρ0λ0 is the O(3) little group generator,

Tρ0λ0 ¼ uðρ0Þvðλ0Þ − uðλ0Þvðρ0Þ: (63)

B. Massless sector

Let us now consider the quantization of the sectors with
P2 ¼ 0. In both sectors for the space-time variables all
constraints are first class and given by

πi ¼ 0; P2 ¼ 0; (64)

q2 þ k2r2 −m2
0 ¼ 0; (65)

ðP · rÞ ¼ 0; ðP · qÞ ¼ 0 (66)

or the equivalent combinations

π� ¼ 0; ϕþ ¼ 0; ϕ− ¼ −ðP · qÞ ¼ 0;

Θ ¼ ðP · rÞ ¼ 0; χ ¼ 1

2
P2 ¼ 0: (67)

The construction of the Hilbert space can be performed by
following the covariant quantization of the electromagnetic
field, introducing four polarization vectors: the first ϵð0Þμ

coincides with a timelike vector nμ with n2 ¼ 1, then we
consider two vectors ϵðλ0Þμ, λ0 ¼ 1, 2 orthogonal to Pμ and

nμ, and finally the fourth one, ϵð3Þμ ¼ Pμ−nμðP·nÞ
ðP·nÞ , orthogonal

to the previous ones. These four vectors are orthonormal

ϵðλÞμϵðρÞνημν ¼ ηðλÞðρÞ: (68)

Using them we make a canonical transformation
generated by

WðP; q; x̄; uÞ ¼ Pμx̄μ þ uðλÞϵðλÞμqμ: (69)

Here we take nμ ¼ ð1; 0; 0; 0Þ and the polarization
vectors as

ϵðλÞμ ¼

0
BBBBB@

1 0 0 0

0; 1− P1
2

jPjðjPjþP3Þ ; − P1P2

jPjðjPjþP3Þ ; − P1

jPj

0; − P1P2

jPjðjPjþP3Þ ; 1− P2
2

jPjðjPjþP3Þ ; − P2

jPj

0; P1

jPj ;
P2

jPj ;
P3

jPj

1
CCCCCA
: (70)

It follows that

xμ ¼ ∂W
∂Pμ

¼ x̄μ þ uðλÞ
∂ϵðλÞν
∂Pμ

qν; P̄μ ¼
∂W
∂x̄μ ¼ Pμ;

rμ ¼ ∂W
∂qμ ¼ uðλÞϵðλÞμ; vðλÞ ¼

∂W
∂uðλÞ ¼ ϵðλÞμqμ: (71)

After quantization the commutation relations between
the position and momentum operators are

½x̄μ; Pν� ¼ −iδμν; ½uðλÞ; vðρÞ� ¼ −iδλρ (72)

and the annihilation aðλÞ and creation operators a†ðλÞ are
given by

aðλÞ ¼
1ffiffiffiffiffi
2κ

p ðvðλÞ − iκuðλÞÞ; a†ðλÞ ¼
1ffiffiffiffiffi
2κ

p ðvðλÞ þ iκuðλÞÞ
(73)

such that

½aðλÞ; a†ðρÞ� ¼ −gλρ: (74)

The constraints on the einbein sector give for sector 2

π̄þjψphysi ¼ 0; π̄−jψphysi ¼ 0; (75)

which imply, in coordinate representation, that the wave
function does not depend on the einbein variables. Instead,
for the sector 3 we have

π̄þjψphysi ¼ 0; ājψphysi ¼ ðē− þ iπ̄−Þjψphysi ¼ 0:

(76)

In this case the wave function, in the coordinate represen-
tation, does not depend on ēþ and is a Gaussian function in
the variable ē−.
The constraints (65) become physical state conditions on

the quantum states

P2jψphysi ¼ 0;
�X2

λ0¼1

a†ðλ0Þaðλ0Þ − β

�
jψphysi ¼ 0:

(77)
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Here β is the parameter taking into account possible

ambiguity in defining the quantum operator a†ðλÞaðλÞ þ
m2

0

2k.

Note that we have included also the mass term in this
ambiguity. Finally the constraints on the transversality to
the total momentum (66) are imposed à la Gupta Bleuler,

ðað0Þ − að3ÞÞjψphysi ¼ 0: (78)

Therefore the construction of the Hilbert space can be
performed by following the covariant quantization of the
electromagnetic field. The general solution of Eq. (78) can
be written as

jψphysi ¼ jψTi ⊗ jϕ0i þ
X
n≠0

cnjϕni; (79)

where n denotes the number of longitudinal að3Þ and scalar
að0Þ oscillators and jψTi is built with the transverse

operators a†ð1Þ and a†ð2Þ. All the states jφni with n ≠ 0 have

zero norm and therefore at the end jψphysi has positive
definite norm.
Summing up, only jψTi contributes to the observables

and the physical states exist for non-negative integers of β.
If we choose an integer β ¼ n ≥ 0, the states have helicities
ranging

n; n − 2;…;−nþ 2;−n: (80)

For instance, the states for β ¼ 1 are

1ffiffiffi
2

p ða†ð1Þ � ia†ð2ÞÞjp; 0i; (81)

where

jp; 0i ¼ jpi ⊗ j0i (82)

with Pμjpi ¼ pμjpi. They are corresponding to helicity�1
states as can be checked from the form of the helicity
operator,

Λ ¼ −iða†ð1Það2Þ − a†ð2Það1ÞÞ: (83)

Indeed the Lorentz generators

Mμν ¼ xμpν − xνpμ þ rμqν − rνqμ (84)

once use is made of Eq. (71), become the massless
representation as

M12 ¼ x̄1P2 − x̄2P1 þ Λ;

M23 ¼ x̄2P3 − x̄3P2 þ
P1

P3 þ jPjΛ;

M31 ¼ x̄3P1 − x̄1P3 þ
P2

P3 þ jPjΛ;

M01 ¼ x̄0P1 − x̄1P0 − P0P2

jPjðP3 þ jPjÞΛ;

M02 ¼ x̄0P2 − x̄2P0 þ
P0P1

jPjðP3 þ jPjÞΛ;

M03 ¼ x̄0P3 − x̄3P0; (85)

where P0 ¼ �jPj corresponding to its signs.

If we identify β ¼ −2 − m2
0

k , only m2
0 < 0 can allow

massless solutions for the physical states. The P2 ¼ 0
sector at the quantum level, and also at the classical level, is
empty for positive rest mass m2

0 > 0. Nontrivial massless
sectors appear by choosing the tachyonic rest mass param-
eter m2

0 < 0.

V. CONCLUSIONS AND OUTLOOK

In this paper we have studied a model of two interacting
relativistic particles via a harmonic potential at classical
and quantum levels. The model contains three parameters,
the two rest masses of the particles and the frequency of the
harmonic oscillator. When the rest masses are different,
the model has only the massive sector. At quantum level the
spectrum in general contains a branch with ghosts. Instead
if the rest masses are equal, the model has the massive and
massless sectors. At quantum level the massive sector has a
spectrum of increasing masses with higher internal spin.
The massless sector is nontrivial at classical and quantum
level when we consider tachyonic rest masses. We have
also given the two Noether gauge transformations in the
massless sector of equal rest masses. One of the trans-
formations is the worldline diffeomorphism. For the second
gauge transformation, that has an open algebra, we have not
yet found a clear geometrical interpretation.
It is interesting to ask what happens when the distance

among the particles is constrained to be lightlike. This
situation does not occur for the harmonic potential as we
have seen. Lightlike sectors with r2 ¼ 0, in addition to the
massive sector, appear, for example, if we consider a
quartic potential Vðr2Þ ¼ kðr2Þ2. Being more precise there
are four sectors with the lightlike constraint; among these
there is one with the following set of constraints:

P2¼ 0; q2¼ 0; r2 ¼ 0; ðP · rÞ¼ 0; ðP ·qÞ¼ 0:

(86)

The same constraints appear in the rigid string model
[26–28]. Therefore, our model, for a suitable choice of the
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potential, has a sector that describes the rigid motion of a
string.
Our model can be thought of as a sort of effective theory

describing possible interaction among two particles. It does
not give any prescription to determine the potential. The
form of the potential could be chosen from phenomeno-
logical reasons or in the best scenario could come from a
fundamental theory describing the higher energy degrees of
freedom.
We also think that the analysis of this model, presented

here, could be a useful example to examine other dynamical
systems with sectors, like bigravity theories.
In a work in progress we will consider how we can

construct the gauge transformations from the constraint
structure. We will also consider the gauge structure of the

model by considering the solutions of the classical master
equation.
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