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Abstract.  
 

(S)-2-(4-Bromo-2,4’-bithiazole)-1-(tert-butoxycarbonyl)pyrrolidine ((S)-1) was 
obtained as a single enantiomer and in high yield by means of a two-step modified 
Hantzsch thiazole synthesis reaction when bromoketone 3 and thioamide (S)-4 were 
used. Further conversion of (S)-1 into trimethyltin derivative (S)-2 broadens the scope 
for further cross-coupling reactions. 

 
Keywords: Hantzsch cyclization; thiazole; thiopeptides; proline. 
 
 

(insert Figure 1) 
 
 

Polyheterocyclic scaffolds containing thiazole rings are common features of 
numerous biologically active natural products.1 Chiral 2-(2,4’-bithiazole)amines 
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fragments can be found attached to the pyridine ring at the heterocyclic core of many 
thiopeptides (Figure 1).2,3 The syntheses of a handful of these interesting natural 
antibiotics has been achieved using a range of different strategies.2b Those based on 
cross-coupling reactions have the need of pyridines and azoles properly functionalized 
as halides and/or organometallic derivatives. To date, only primary amines substituted 
with a suitable halogenated 2,4’-bithiazole have been described.4 However, the 
methodology used so far cannot be applied when cyclic amines are pursued.5 In this 
note we present the synthesis of enantiopure (S)-2-(4-bromo-2,4’-bithiazol-2’-
yl)pyrrolidine (S)-1, which is easily converted into its trimethyltin derivative (S)-2 for use 
in subsequent Stille cross-couplings (Scheme 1). 
 

(insert Scheme 1) 
 

In order to avoid any stereoselective steps, the use of starting materials directly 
derived from the chiral pool and therefore available in Kg scale should be mandatory.6 
Thus, racemisation can be avoided throughout the course of the synthesis.  
 

During our investigations we found out that a 4-halo-2,4’-bithiazole fragment  
could not be accessed if the strategy relied on a key Hunsdiecker halodecarboxylation. 

7,8 A more convergent approach involving the construction of the middle ring of (S)-1,9 
by means of a modified two-step Hantzsch thiazole synthesis10 between 311 and (S)-4,12 
afforded the optically pure product13 in 77% yield (Scheme 1).14 Bromoketone 3 was 
obtained after consecutive bromine/lithium exchange and acylation of 515 and 
subsequent bromination under acidic conditions of the resulting 2-acylthiazole. 
Protection of prolylamide ((S)-6) with the Boc group16 and further treatment with 
Lawesson’s reagent gave thioamide (S)-4 in excellent yield.  The reaction was 
satisfactorily scaled-up without any loss of either optical purity or chemical yield and 
provided six grams of the desired biaryl (S)-1, which was subsequently converted into 
trimethyltin derivative (S)-2 in high yield.17 
 

In summary, an improved, convergent and high yield preparation of a 2-(2,4’-
bithiazol-2’-yl)pyrrolidine fragment suitably functionalized in its thiazole-4-position 
either as bromide ((S)-1) or tin derivative ((S)-2) for use in cross-coupling reactions has 
been described. The products have been obtained in multigram scale without any loss of 
their optical integrity.  
 

These building blocks will allow the preparation of those thiopeptide central cores 
bearing such moieties and that could not be accessed by previously reported methods. 
Further studies with these structures and their use in total synthesis of natural products 
are underway.  
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Legends 
 
Figure 1. Thiopeptides containing chiral bithiazole amine moieties. 

 
Scheme 1. Synthesis of 2-(4-bromo-2,4’-bithiazol-2-yl)pyrrolidine (S)-1 and trimethyltin 

derivative (S)-2. 
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Schemes 
 
Scheme 1: 
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Scheme 2: 

 


