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Summary 

 

The idea that bacteriophage transduction plays a role in the horizontal transfer of antibiotic 

resistance genes is gaining momentum. Such transduction might be vital in horizontal 

transfer from environmental to human-body–associated biomes and here we review many 

lines of evidence supporting this notion. It is well accepted that bacteriophages are the 

most abundant entities in most environments, where they have been shown to be quite 

persistent. This fact, together with the ability of many phages to infect bacteria belonging 
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to different taxa, makes them suitable vehicles of gene transfer. Metagenomic studies 

confirm that substantial percentages of the bacteriophage particles present in most 

environments contain bacterial genes, including mobile genetic elements and antibiotic 

resistance genes. When specific genes of resistance to antibiotics are detected by qPCR 

in the bacteriophage populations of different environments, only ten-fold lower numbers of 

these genes than those found in the corresponding bacterial populations are observed. In 

addition, the antibiotic resistance genes from these bacteriophages are functional and 

generate resistances to the bacteria when these genes are transfected. Finally, reports 

about the transduction of antibiotic resistance genes are on the increase.  

 

 

Introduction  

 

The World Health Organization (WHO) has identified the increasing antibiotic resistance 

among bacteria as a major problem for public health on a global scale. The causes of this 

increase in resistance are frequently attributed to overuse and incoherent application of 

antibiotics in humans together with the use of antibiotics in animal husbandry [1]. But, at 

the same time, a growing body of evidence points to the potentially important role of 

environmental microorganisms from ecosystems in which the presence of antibiotics 

produced by humans is expected to be very low or completely absent. Such ecosystems 

are as varied as soil [2], a microcave isolated for over four million years [3], and pristine 

waters [4].  

 

Environmental bacteria seem to be an unrestricted source of resistance genes, probably 

because they have emerged in bacteria that produce antibiotics, which are mainly found in 
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environments with limited nutritional resources. There are also resistance genes in 

bacteria that share habitats with antibiotic producers. Finally, many antibiotic resistance 

genes are not primarily resistance genes, but can easily be converted to antibiotic 

resistance genes, and are thus known as the hidden resistome [2]. Bearing in mind that 

the production of antibiotics is considered a competitive advantage for microorganisms 

living in environments with scarce nutritional resources, it seems likely that antibiotic 

resistance genes are more abundant in the microbiomes of non-contaminated ecosystems 

than in the microbial communities of humans and animals not suffering the pressure of 

antibiotics. It seems clear nowadays that environmental bacteria are an unlimited source of 

genes that may act as resistance genes when transferred to pathogenic microorganisms 

through horizontal gene transfer. 

 

Moreover, bacteria in environments that are not contaminated with antibiotics from 

anthropogenic practices share antibiotic resistance genes, or resistomes, with human and 

animal pathogens [5,6]. A study by Tacao et al. [6] focused on Extended-spectrum β-

lactamase (ESBL) and cefotaxime-hydrolyzing β-lactamase (CTX-M) compared 

resistomes in polluted and unpolluted rivers, and found that: i) the level of diversity among 

CTX-M-like genes from unpolluted rivers was much greater than in polluted ones; ii) the 

majority of CTX-M like genes found in polluted waters were similar to chromosomal ESBL 

such as β-lactamase blaRAHN-1; iii) diversity was much lower in the polluted river, revealing 

the presence of different genetic mobile platforms previously described for clinical strains. 

A good example is found when looking at β-lactamases and Enterobacteriaceae. Available 

information reveals that many β-lactamases nowadays present in genetically mobile 

platforms are originally chromosomally located in strains of the Enterobacteriaceae family, 

which are considered environmental bacteria. These include different species of Kluyvera, 

Rahnella aquatilis, Klebsiella oxitoca, Citrobacter diversus, Proteus penneri, Serratia 
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fonticola, and Raoultella planticola, among others [7]. Whether and how these 

chromosomally located genes from environmental bacteria, some with little or no contact 

with β-lactam antibiotics, reach the pathogens and appear in genetically mobile platforms 

remains to be elucidated. Similar observations and questions arise for other antibiotics and 

bacterial groups.  

 

Some consensus is developing regarding the view that horizontal transfer and subsequent 

integration into mobile platforms of resistomes found in environmental bacterial 

populations are two different events that may occur independently at different stages. The 

horizontal transfer occurring anywhere at random and the assembly of genetically mobile 

platforms more likely to occur in environments where there is a selective pressure, like 

human and animal bodies associated biomes or wastewater treatment plants [7, 8], where 

phage and bacteria are very abundant and there is an exposure	 to	 antibiotic	 that	makes	

wastewater	treatment	plants	a	good	source	of	antibiotic	resistance	genes	and	their	spread	in	

the	environment.  

  

Mobilization of antibiotic resistance determinants  

 

Horizontal gene transfer by conjugation, transformation or bacteriophage transduction is 

thought to provide the single most important mechanism with which to accelerate the 

dispersal of antibiotic resistance genes among bacterial populations. Genetically encoded 

resistance determinants are inherited vertically, but also through horizontal transfer, which 

means that the spread of the resistance genes is not restricted to microorganisms of the 

same species but also occurs between different bacterial species or even genera. This 

process may occur both between pathogens and between pathogenic and non-pathogenic 
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strains. Within a human or animal body this transfer could occur in the microbiomes in 

which these bacteria reside, for example the microbial populations of the gut or the lungs.  

  

Resistance genes are then usually spread by mobile genetic elements (MGEs). Previously 

described MGEs for the horizontal dissemination of antibiotic resistance determinants are 

diverse: plasmids, transposons, bacteriophages, genomic islands and integrons could be 

included in this group, since they agglutinate different genes in a single genetic platform 

[7-9]. Many integrative MGEs incorporate a method of getting into and out of genomes, 

involving integrases or related enzymes. Integration could occur in the chromosome, but 

also within a plasmid present in the recipient strain. Incorporation into the bacterial 

genome seems to be necessary for the survival of the recently acquired element and the 

antibiotic resistance genes that it contains.  

 

Some studies have evaluated the role of MGEs in aquatic environments. Sengelov and 

Sorensen [10] reported that plasmid transfer from a donor to a recipient cell occurs in 

environments such as bulk water, although at a low frequency. In contrast, integrons, 

particularly class 1 integrons, play a crucial role in the evolution of antibiotic resistance in 

clinics [7]. Indeed, class 1 integrons are not only platforms for gene aggregation, leading to 

the establishment of multi-drug resistance, but their localization on MGEs such as 

plasmids and transposons favors the spread of several genes in a unique transfer event. 

Integrons of class 1 are largely found in the environment and there is evidence that the 

clinical class 1 integrons originated from environmental bacterial communities [11]. Thus, 

conjugation, which requires cell-to-cell contact, has been considered to play a major role in 

the horizontal transfer and consequent spread of antibiotic resistance. Probably due to 

their higher incidence in clinical settings and the methodological complexities involved in 

the study of phages, much effort has been devoted to the study of plasmids, integrons and 
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transposons. Additionally, free exogenous DNA can also be captured by natural 

transformation [7] . 

 

More recently, several reports [8,12-14] have proposed that the role of phages in the 

horizontal transfer of antibiotic resistance genes is much more relevant than previously 

thought [12]. However, information on the actual involvement of phages in the spread of 

antibiotic resistance genes remains scarce.  

 

 

Bacteriophages transduction 

 

Bacteriophages, or phages, are viruses that infect bacteria. Bacteriophages are extremely 

abundant in nature, probably the most abundant life form on Earth. Their role in microbial 

ecology is nowadays widely accepted. On the one hand, by infecting and lysing infected 

bacteria, they contribute remarkably to bacterial mortality, for example up to 15% in the 

case of bacterioplankton [15]. Consequently, they regulate the numbers of certain bacteria 

in a given environment and by releasing organic compounds through cell lysis they have 

an important impact on the cycling of organic matter in the biosphere at a global level. On 

the other hand they control microbial diversity. They achieve this by selecting some types 

of bacteria that are resistant to their attack [16], thus changing the proportions of bacterial 

species or strains in a community, and consequently influencing the evolution of bacterial 

genomes through horizontal gene transfer by transduction.  

 

As viruses, they can only replicate in a susceptible host cell. Basically, bacteriophages 

present two different life cycles, the lytic and the lysogenic. In the lytic cycle, following 

infection the bacteriophage redirects the host metabolism towards the production of new 
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phages that are released by lysis of the host cell. Bacteriophages that can only follow the 

lytic cycle are known as virulent bacteriophages. Other bacteriophages, known as 

temperate bacteriophages, can follow the lysogenic cycle, in which the genome of the 

temperate phage remains in the host, replicating along with the host, either integrated in 

the cell chromosome or as an independent replicon. At this stage, the bacteriophage is 

known as a prophage, which can be induced to follow the lytic cycle. Induction occurs 

either spontaneously or when stimulated by inductors. Lysogenic inductors can be natural, 

such as host starvation and UV light, or introduced by human activity in the environment 

(e.g., some antibiotics, the best known being the quinolones) [17].  

 

In their extracellular phase, bacteriophages basically consist of a nucleic acid molecule, 

the genome, surrounded by a protein coat called the capsid. Many phages also contain 

additional structures such as tails and spikes. These extracellular viral particles are named 

virions. Because of their simple structure and composition, virions persist quite 

successfully in the environment and are quite resistant to natural and anthropogenic 

stressors [18,19]. Their persistence in comparison to their host depends on the habitat of 

the host. It is likely that phages infecting bacteria indigenous in a given habitat are less 

persistent than the bacterial host [20]; in contrast, in habitats in which the host bacteria are 

aliens, they persist much better than the bacteria [18,19]. Neither the persistence of the 

bacteriophage virions in a given habitat nor their high resistance to stressors seems to 

depend on the habitat in which their hosts live. Due to the structural characteristics of 

phages, their persistence in the environment is also much higher than that of free DNA, 

which is more sensitive to nucleases, temperature and radiation. These survival 

capabilities make bacteriophages especially suited for movement between different 

biomes [21]. 
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Indeed, many but not all phages can mobilize genetic material among different host 

bacteria in a process known as transduction. Typically, transduction has been associated 

with temperate bacteriophages, probably because their method of replication facilitates the 

detection of transductants, but virulent bacteriophages can also transduce [22]. Via 

transduction, genetic material can be introduced into a bacterium by a phage that has 

previously replicated in another bacterium, in which it packaged random DNA fragments 

(generalized transduction) or the DNA adjacent to the prophage attachment site 

(specialized transduction). The size of the DNA fragments that can be packaged into a 

bacteriophage particle is limited by the size of the phage capsid, but can reach upwards of 

100 kilobases (kb). Transduction by bacteriophages includes any sort of bacterial DNA, 

including linear chromosome fragments and all sorts of mobile elements such as plasmids, 

transposons and insertion elements [23,24]. Recent metagenomic studies of the viral 

fraction of activated sludge liquor show that the viral fraction contains a significant 

percentage, 8.2%, of mobile genetic elements [25]. Transduction does not require “donor” 

and “recipient” cells to be present at the same place or even at the same time, and for this 

reason bacteriophages have been contemplated as the optimum way of transferring 

genetic information among different biomes [26]. Transduction has so far been considered 

as a rare event occurring around once every 107–109 phage infections [27]. Even given 

this low frequency, considering the numbers of phages and hosts in many environments, 

gene transfer by transduction will take place an exceptional number of times per second in 

any one place. Moreover, it has recently been reported that transduction might occur at 

frequencies several orders of magnitudes greater than previously thought [28-30]. Since 

phage-encapsulated DNA is protected from degradation and phages may survive in 

special environments without the loss of their infectious capabilities, gene transfer by 

transduction might well be more important than previously thought, which supports the 

notion that the contribution of phages to gene transfer in non-human–associated microbial 



 

9 
Muniesa et al., 2013 

communities and in human-generated environments is greater than that of plasmids. In 

clinical settings, though, plasmids are probably the most relevant MGEs for horizontal 

antibiotic resistance transfer.  

 

On the other hand, the spectrum of bacteria (referred to as the host range) that can be 

infected by a given bacteriophage depends firstly on the presence of bacterial receptors 

recognized by the phage. Many bacteriophages have a narrow host range infecting a 

limited number of strains of a given species. But others, known as polyvalent 

bacteriophages, have been reported to have a wide host range that crosses the 

boundaries of different taxa. The transduction by polyvalent phages, although thought of 

as relatively rare, has been reported between: i) different bacterial species in a genus, for 

example Enterococcus [31]; ii) different genera in a family, for example 

Enterobacteriaceae [29,32], Actinomycetaceae [33] and Synechococcaceae [34]; iii) 

bacteria belonging to different orders, for example Lactobacillales and Bacilalles [35], and 

Pasteurelalles and Enterobacteriales [36]; iv) bacteria belonging to different classes, for 

example Gammaproteobacteria and Betaproteobacteria [37]; v) and even between Gram+ 

and Gram- bacteria [38]. Furthermore, transduction has also been described between 

bacteria belonging to different taxa [31,35]. In addition, similar prophages have been 

detected in bacteria of different species of Clostridium and Bacillus spp, [39].  

 

Once inside the new cell, the acquired sequences must escape degradation by the 

bacterial restriction systems of the cell, and then be incorporated into the recipient’s 

genome. Incorporation can be achieved either by homologous recombination or by 

integration, or by becoming associated with, or being itself, an autonomous replicating 

element (i.e., a plasmid). Other than the characteristics of the sequence transduced, the 

persistence of transduced sequences will depend on several factors (e.g the host cell, the 
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growth rate, environmental factors, etc), that will determine the final frequency of 

transduction.  

 

 

Ubiquity and abundance of bacteriophages  

 

Extracellular bacteriophages, or virions, are ubiquitous, with a global abundance that 

exceed that of bacteria and archea. At a given time, a significant fraction of bacterial cells 

can be infected by a lytic phage (up to 5% of the bacterial population) [40]. Moreover, 

relevant percentages of lysogeny, and hence of bacteria with inducible bacteriophages, 

have also been described in some environments; thus inducible fractions ranging from 4 to 

68% have been described in different types of soil [41].   

 

High numbers of bacteriophages have been detected in all sorts of environment, with 

variable numbers that seem to depend on bacterial abundance and activity (Table 1). 

Indeed, they have been detected in high numbers in marine, freshwater and soil systems 

[42], in human- and animal-associated microbial communities [43], in microbial 

communities associated with the plant phyllosphere and rhizosphere [44], in anthropogenic 

environments such as wastewater treatment plants [45], and even in extreme 

environments [46]. The concentrations of bacteriophages detected in different 

environments are summarized in Table 1. 

 

Relevant information for evaluating the chances of bacteria–bacteriophage interactions, at 

least to guarantee the encounters needed for infection, is the concomitant presence of 

adequate or minimal numbers of host bacteria that can ensure such interactions. The 

concept bacteriophage (virus) to bacteria ratio (VBR) can be used to infer the numerical 
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relationship between bacteriophages and bacteria in a given setting. This ratio depends on 

the source of the samples and is variable in time. Reported values range from 0.01 to 100; 

but the predominant situation is that VBRs range between 1 and 10 [42] in most 

microbiomes, indicating that on most occasions phages outnumber bacteria by a factor 

ranging from 1 to 10.  

 

While not all phages will find and infect a bacterial host, the ubiquity, abundance and 

persistence of phages in the environment makes them ideal genetic vehicles for the 

transfer of genes between bacteria, be they from different taxa or biomes (Fig. 1). 

 

 

Bacterial genes in viral communities  

 

The inability to culture most of the bacteriophages present in natural viral communities and 

the limitations of the traditional techniques used in virology and the study of 

bacteriophages have hampered the study of aspects of viral communities such as their 

diversity and the potential contribution of these populations to horizontal gene transfer in 

natural environments. However, in the last few years, very powerful tools for genomic 

analysis have provided some insight into these aspects. On the one hand metagenomic 

analysis of these viral communities has provided a huge amount of information on the 

characteristics of the genetic material included in the viral particles that constitute the viral 

communities of the biomes of natural environments, anthropogenic environments such as 

wastewater treatments plants, and in the microbial communities associated with human 

and animal bodies. On the other hand, the application of qPCR specific for the 

amplification of certain sequences has allowed the abundance of a number of genes in 

different viromes to be determined.  
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Other than confirming that most viruses in the viral fraction of most environments are 

bacteriophages, metagenomic studies have shown that a large proportion of the viral 

particles contain bacterial DNA sequences. Searching the metagenomic libraries obtained 

using DNA of the viral fractions corresponding to different environments yields variable, 

but high percentages of sequences assigned to bacteria. Thus, these percentages ranged 

from 14 to 72% in different oceanic regions [47]; 54% in marine sediments [48]; 56% in an 

activated sludge microbial assemblage [49]; from 7.9 to 28% in stool samples of infants 

[50,51]; and between 30 and 35% in well and reclaimed water [52]. Significant fractions 

have also been reported for sewage [53] and respiratory tract communities [54].   

 

Various explanations contribute to the large number of bacterial genes found in viral DNA 

fraction, but perhaps the most relevant is revealed by sequencing the genome of phages 

from environmental samples, that shows that some carry bacterial genes (8). These genes 

are fully-functional and can be transcribed and translated by the host. While phages do not 

need these genes for their replication, they likely give phages or their host a selective 

advantage. Examples of such genes include psb (photosynthesis), pho (phosphate 

acquisition), spe (exotoxin A), stx (Shiga toxin), ctx (Cholera toxin) or hns (histone-like 

protein for transcription regulation), and functional analysis of the bacterial sequences 

detected in phage genomes reveals genes implicated in all cellular functions. However, the 

composition varies depending on the environment. Whereas the prevalence of genes 

related to DNA metabolism displays little variation, the incidence of many genes varies 

according to habitat [55,56]. In addition, there is a clear correlation between the functional 

composition of viral and cellular metagenomes [57]. The bacterial DNA seized by the viral 

particles in a number of biomes, other than bacterial genes implicated in all cellular 

functions, contains prophages, mobile genetic elements and integrases, transposases and 
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recombinases [52]. Thus, the percentage of reads similar to prophages ranges from 12% 

in an infant gut [51] to 26% in near-shore marine sediments [48]. Mobile genetic elements 

have also been detected in the viromes of marine sediments, infant guts, activated sludge 

and fermented foods [25,48,51,58], with values ranging from 15 to 22%.  

 

All the bacterial genes and genetic elements contained in the viral communities of most 

biomes studied indicate that both specialized and generalized transduction occur 

frequently. 

 

 

Antibiotic resistance determinants in viral communities  

 

Metagenomic studies of viral communities indicate that sequences corresponding to 

antibiotic resistance genes were detected in the viral communities of the human gut [59] 

and in an activated sludge wastewater treatment plants [25]. Sequences corresponding to 

drug efflux pumps, streptogramin acetyltransferases, lipoprotein, TetC protein, 

glyoxilase/bleomycin resistance protein and β-lactamases have been identified in these 

studies. Fancello et al. [60] found many short sequences in cystic fibrosis sputum viromes 

putatively encoding resistance to antimicrobials, and only three in the non-cystic fibrosis 

sputum. Of these, they confidently identified 66 efflux pump genes, 15 fluoroquinolone 

resistance genes and 9 β-lactamase genes. Phylogenetic analysis of these genes 

demonstrated different origins of these genes within the cystic fibrosis bacteriophage 

community. 

 

A few years before the first studies on viral metagenomics in 2002, detection by 

Polymerase Chain Reaction (PCR) of specific genes in the viral fraction of raw municipal 
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wastewater was described. Indeed, Muniesa et al. [61] reported the abundance of 

bacteriophages infecting Escherichia coli O157:H7 and carrying the Shiga Toxin 2 gene in 

municipal wastewater and, a couple of years later, Sander and Schmieger [62] detected 

phages carrying 16S rRNA of different bacterial species in the viral community of the 

mixed liquor of an activated sludge plant. In addition, Muniesa et al. [13] reported the 

occurrence of viral particles carrying sequences of blaOXA-2, blaPSE-1 or blaPSE-4 and blaPSE-

type genes in the viral fraction of raw municipal wastewater.  

 

The emergence of highly sensitive quantitative-PCR has enabled the quantification of viral 

particles carrying a given gene in all sorts of samples. Thus, Colomer-Lluch et al. [14] used 

quantitative real time PCR to quantify the number of viral particles carrying sequences 

corresponding to blaTEM and blaCTX-M, as well as mecA, in the bacteriophage DNA fraction 

of raw municipal wastewater and river water impacted by anthropogenic contamination, 

with concentrations of blaTEM, blaCTX-M and mecA ranging from 3 to 4, 1 to 2 and 1 to 2 log10 

units in raw municipal wastewater and 2 to 3, 0 to 1 and 1 to 2 log10 units in river water 

respectively. In both cases, the values in the viral fraction were about 10 times lower than 

those in the bacterial fraction. In addition, densities of 3 to 4 log10 gene copies (GC) of 

blaTEM, 2 to 3 log10 GC of blaCTX-M, and 1 to 3 log10 GC of mecA per milliliter or gram of 

sample were detected in the viral community of fecal waste from cattle, pigs and poultry 

[63], with the samples corresponding to cattle being unlikely to have had any contact with 

anthropogenically introduced β-lactam antibiotics. Again, the ratio of genes carried by 

bacteria to genes carried by bacteriophages was relatively constant and of the same order 

of magnitude as that found in the samples of wastewater and the river. Table 2 shows a 

summary of antibiotic resistance genes found in viral comunities or as a part of phage 

genomes.  
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To date, to the best of our knowledge, it has not been possible to detect the transduction 

of antibiotic resistance determinants using phages partially purified from the different 

microbial communities studied. This may be due to experimental difficulties in the 

preservation and identification of the potential transductants (see Fig. 2). In vitro though, 

the bla genes have been successfully transfected from phage DNA to host bacteria, which 

became resistant to ampicillin [14]. 

 

All these studies strongly indicate that bacteriophages are a reservoir of antibiotic 

resistance genes in different habitats. The studies reported in this section raise two 

questions: i) the potential of bacteriophages to mobilize antibiotic resistance determinants, 

either by generalized or specialized transduction, and ii) the presence of antibiotic 

resistance genes in viruses that have not been in contact with antibiotics for which they 

carry resistance determinants.  

 

 

Transduction of antibiotic resistance genes into/from pure cultures  

 

An increasing number of phages induced from lysogenic bacteria, most of them isolated in 

clinical studies, as well as a few isolated from natural samples, have been reported to 

transduce genes of resistance to antibiotics. These examples reinforce the role of phages 

in the mobilization and spread of antibiotic resistance.  

 

In Streptococcus pyogenes, there are some early descriptions of drug-resistant strains that 

were treated with mitomycin C to induce phages, along with the transduction of drug 

resistance by means of the phages so induced. Transduction of tetracycline resistance or 

multiresistance acquisition to chloramphenicol, macrolide antibiotics, lincomycin and 
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clindamycin via phages occurred [64]. Also in S. pyogenes, a bacteriophage from clinical 

isolates harbouring resistance to erythromycin caused transduction of the resistance, 

yielding transductants resistant to relatively high concentrations of erythromycin [65]. 

Moreover, also in S. pyogenes, the mefA gene, which encodes a macrolide efflux protein, 

is associated with a 58.8-kb chimeric genetic element composed of a transposon inserted 

into a prophage [66]. 

 

In Bacillus anthracis, prophage Wβ encodes demonstrable fosfomycin resistance, and the 

authors suggest that this could have occurred by the well-documented ability of 

bacteriophages to acquire prophage genes from their host via recombination, thus creating 

chimeric forms [67]. 

 

In Pseudomomas aeruginosa, wild-type phages induced from a strain resistant to 

imipenem, cefotaxime, kanamycin and streptomycin showed a high frequency of 

transduction for kanamycin and particularly for cefotaxime resistance determinants, 

followed by imipenem determinants [68]. The resistance determinants to anti-pseudomonal 

antibiotics (imipenem, aztreonam and ceftazidime) could be separated by transduction. 

Thus, the resistance to these antibiotics was presumably coded by different genes [68]. 

 

Actinobacillus actinomycetemcomitans (Aa) strain ST1 carries the tetracycline (Tc) 

resistance transposon Tn916 and the Aa phi ST1 prophage. High-titer phage preparations 

induced from this strain by mitomycin C were used to transduce the Tc resistance 

determinant to susceptible recipient strains [69]. In addition, the same bacteriophage, Aa 

phi ST1, and another one named Aa phi 23, were capable of transducing the 

chloramphenicol (Cm) resistance marker of a plasmid (pKT210). This plasmid in the 

recipient strains was indistinguishable from the same plasmid found in the donor strain. 
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In Enterococcus, three bacteriophages isolated from environmental samples of pig host 

strains of Enterococcus gallinarum and Enterococcus faecalis were used to transduce 

tetracycline resistance from Ent. gallinarum to Ent. faecalis and gentamicin resistance from 

Ent. faecalis to Enterococcus faecium, and from Enterococcus hirae/durans to 

Enterococcus casseliflavus [31] . 

 

Varga et al. [70] recently reported a high frequency of transduction of penicillinase and 

tetracycline resistance plasmids within methicillin-resistant Staphylococcus aureus clone 

US300, one of the S. aureus clones with the greatest spread worldwide. This study proves 

that transduction is an effective mechanism for spreading plasmids within a single clone 

that could evolve faster. 

 

In Salmonella there are some examples of transduction of antibiotic resistance genes. 

Schmieger and Schicklmaier [23] reported phage-mediated transfer of ampicillin, 

chloramphenicol and tetracycline resistance among S. enterica Typhimurium DT104. 

Moreover, transduction of blaCMY-2, tetA, and tetB was achieved with phages induced from 

S. enterica serovar Heidelberg to S. enterica serovar Typhimurium, indicating that 

transduction of antibiotic resistance genes can happen between serovars and that this is 

common in Salmonella of bovine origin, since many of these phages demonstrate a broad 

host range. This is not surprising given data that indicate that about 95% of strains of S. 

enterica serovar Typhimurium examined to date contained complete inducible prophage 

genomes and that 99% of these phages were capable of generalized transduction of 

chromosomal host markers and plasmids [71]. The occurrence of generalized transduction 

in this study was supported by the fact that β-lactam resistance and tetracycline resistance 

were not co-transduced and the transduction frequency for β-lactam resistance was the 
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same as that for tetracycline resistance. The core resistance genes in S. enterica serovar 

Typhimurium DT104 are chromosomally encoded in a tight cluster as part of Salmonella 

genomic island I (43 kb), which is well within the size that a bacteriophage could package 

and transduce [23,72]. 

 

 

Conclusions  

 

All this information suggests that phages play a much more important role in mobilizing 

determinants of resistance to antibiotics than was thought a few years ago, when 

horizontal transfer of these antibiotic resistance determinants was almost exclusively 

thought to be due to plasmids. This conclusion is based on a number of facts that have 

been reviewed throughout the paper and that are summarized below.  

 

The ubiquity of phages, their great abundance, and resistance to environmental stressors 

means that they can move between different biomes, and since they can transfer genetic 

information by transduction, they are good candidates for the transfer of genetic 

information between biomes. They can transfer both individual antibiotic resistance genes 

and resistance genes linked to mobile genetic platforms, by both generalized and 

specialized transduction. Hence, they may play an important role in transferring antibiotic 

resistance genes between biomes and within biomes.  

 

They can also transfer genetic information between bacteria belonging to different taxa. 

Bacteriophages are numerous in many environments, mostly in aquatic environments. 

Their numbers are high enough to guarantee phage–bacteria encounters and hence 

guarantee infection and transduction.  
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Recent genomic studies of viromes (viral communities), with bacteriophages being in the 

majority, indicate that large proportions of viral particles carry bacterial genes, among them 

antibiotic resistance genes, pointing to greater probabilities of transduction than previously 

thought.  

 

Based on the above, we hypothesize that phages might play a crucial role in the early 

stages of transfer of the chromosomally located resistomes of environmental bacteria, as a 

random event probably through generalized transduction, to commensal bacteria of the 

microbial communities of human and animal bodies (which have recently been described 

as potential reservoirs of resistance genes [73]), and ultimately to pathogens. In addition, 

since they can also transfer plasmids and other mobile genetic elements, their participation 

in the horizontal transfer of these platforms between members of different microbial 

communities including those of human and animal bodies is quite likely (Fig. 1). 

 

 

Future perspective 

 

Information on this topic remains scarce and much work remains to be done to confirm 

some of the hypothesis discussed, and how to act to minimize the transfer of genes in 

natural, mostly water-borne, environments to human and animal commensals and 

pathogens. Key aspects to investigate are: 

 

- Better characterization of the resistomes of environments, both natural and 

anthropogenically managed, like wastewater treatment plants, that are not contaminated 

with present and future antibiotics used in medicine and veterinary practice.  
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- Determine whether bacteriophages participate in their spread to human and animal 

microbial communities.  

- Determine which biomes are most highly implicated in the origin and transfer of 

antibiotic resistance genes to human and animal pathogens. 

 

Finally, all the information generated should be used to minimize the transfer of antibiotic 

resistance genes from biome to biome.  

 

Executive summary 

 

 The World Health Organization (WHO) has identified increasing antibiotic resistance 

among bacteria as a major problem for public health on a global scale. 

 Bacteria in environments not contaminated with antibiotics by anthropogenic practices 

share antibiotic resistance genes with human and animal pathogens. The key 

question is how do these genes move from environmental bacteria to those found in 

clinical settings?  

 

Mobilization of antibiotic resistance determinants  

 Resistance genes are usually spread by mobile genetic elements (MGEs).  

 Horizontal gene transfer by conjugation, transformation or bacteriophage transduction 

is thought to provide the single most important mechanism for accelerating the 

dispersal of antibiotic resistance genes among the bacterial population. 

 

Bacteriophages  
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 Because of their simple structure and composition, virions persist quite successfully in 

the environment and are quite resistant to natural and anthropogenic stressors. 

 Phages can mobilize antibiotic resistance genes through generalized or specialized 

transduction and convert susceptible hosts to clones with resistance to a given 

antibiotic. 

 

Ubiquity and abundance of bacteriophages  

 Extracellular bacteriophages, or virions, are ubiquitous, with a global abundance that 

seems to exceed that of bacteria and archea.  

 High numbers of bacteriophages have been detected in many different environments. 

 

Bacterial genes in viral communities  

 Metagenomic analysis of these viral communities as well as the application of qPCR 

specific for the amplification of certain sequences has enabled measurement of the 

abundance of a number of bacterial genes in different viromes.  

 

Antibiotic resistance determinants in viral communities  

 Metagenomic studies of viral communities indicate that sequences corresponding to 

antibiotic resistance genes are detected in the viral communities of different biomes.  

 Bacteriophages may be a reservoir of antibiotic resistance genes in different habitats. 

 

Transduction of antibiotic resistance genes into/from pure cultures  

 An increasing number of phages induced from lysogenic bacteria, most of them 

isolated in clinical studies, as well as a few isolated from natural samples, have been 

reported to transduce genes coding resistance to antibiotics.  
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 It has not yet been possible to detect the transduction of antibiotic resistance 

determinants using phages partially purified from the different microbial communities 

studied. 

 

Conclusions 

 Because of their physical characteristics and resistance to environmental stressors, 

phages can move between different biomes, and transfer genetic information by 

transduction.  

 Phages might play a crucial role in the early stages of transfer of the chromosomally 

located resistomes of environmental bacteria, as a random event probably though 

generalized transduction, to commensal bacteria of the microbial communities of 

human and animal bodies (which have recently been described as potential reservoirs 

of resistance genes), and ultimately to pathogens. 
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Reference Annotations 

**D’Costa et al. 2006.  

This paper reports how the soil is a reservoir of all sorts of resistance determinants from 

where they can be mobilized into different microbial communities. 

**Lupo et al. 2012.  

This paper reviews how the environment, and specifically freshwater, constitutes a reactor 

where the rise, evolution and mobilization of antibiotic resistance determinants occur. 

*Saylers et al. 2004 

The authors review the importance of commensal bacteria in human and animal body 

communities as reservoirs and intermediaries in the mobilization of antibiotic resistance 

determinants from environmental bacteria to pathogens and vice versa. 

*Chibani-Chennoufi et al. 2004.  

This is a review paper about the bacteriophages and their host interactions, mostly from an 

ecological perspective. It contains interesting information on the role of bacteriophages in 

gene mobilization, numbers and persistence of phages in nature, polyvalence of phages, 

etc.  

**Weinbauer, 2002.  
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This is a very long, but very useful review that contributes a lot of information essential to 

assess the potential of phages as tools of genetic interchange in nature and that is feasible 

the movement of phages between different biomes.  

*Parsley et al. 2010.  

This is one of the many papers, published in the last few years, referring how the viral 

fraction of a given biome, in this case the population of a activated sludge water 

depuration plant, contains abundant and diverse bacterial sequences that code for all 

functional capabilities, as well as mobile genetic elements so frequently associated to 

antibiotic resistance.   

*Schmieger and Schickmaier. 1999.  

This is an example of the numerous papers that report the transfer by transduction of 

determinants of antibiotic resistance.  

**Colomer-Lluch et al. 2011.  

To our knowledge this is the first paper to report quantitative data on the numbers of 

phage particles carrying antibiotic resistance genes in a pair of water biomes. As well it 

compares the numbers of these genes in phages and in the bacterial fraction. As well it 

reports how these genes are functional since they we transfected to host bacteria. 
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Figures 

Figure 1.- Schematic representation of the mobility of bacteriophages between biomes 

and between commensal and pathogenic bacteria.  

 

Figure 2.- Difficulties in the process of generation and detection of transductants with 

bacteriophages from an environmental pool. To guarantee successful transduction, an 

infectious phage should encounter its bacterial host, overcome defense systems of the 

host to integrate its genome within the host genome. Moreover, the presence of lytic 

phages in the same phage pool could cause the lysis of the transductants generated 

before they could have been selected on an agar plate. 
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Table 1. Ubiquity and abundance of bacteriophages.  

Origin Concentration  Reference 

Deep sea environments 104-105 VLP/ml [74] 

Coastal environments 106-107 VLP/ml [74] 

Productive lakes or estuarine waters 108 -109 VLP  [75]  

Limnetic and marine sediments >108 -109 VLP [76]  

Soil or rizosphere 107-108 VLP/g [77]  

Intestinal content 5x107-1010 VLP/g [43]  

Sputum of patient with bronchopulmonary infections 103-107 PFU on Pseudomonas aeruginosa  [78]  

Plant’s microbial communities >106 PFU/g of leave tissue of phages infecting Erwinia [79]  

Activated sewage sludge >109 VLP/ml [45]  

Raw municipal wastewater 108 VLP/ml  [52]  

Potable and well water 105-106 VLP/ml [52]  

VLP: virus like particles; PFU: plaque forming units 
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Table 2.- Antibiotic resistance genes described within the genome of bacteriophages, phage-related elements 
or in the viral DNA fraction of diverse biomes.  
 

Resistance gene or protein Antibiotic Source (natural reservoir, or bacteria) Reference

Genes   

bcrA bacitracin swine fecal microbiomes, human gut 
viromes, cystic fibrosis sputum microbiota 

[17, 59, 60] 

blaOXA-2, blaPSE-1, blaPSE-
4, bla(PSE)-type genes 

β -lactam antibiotics sewage [13] 

blaTEM, blaCTX-M β -lactam antibiotics sewage water, river water, animal 
wastewater 

[14] 

blaCTX-M-10 β -lactam antibiotics Enterobacteriaceae [80] 

blaCMY-2,  ampicillin S. enterica [23] 

dfrAa trimethoprim swine fecal microbiomes [17] 

fluoroquinolone 
resistance genes 

fluoroquinolones cystic fibrosis sputum microbiota [60] 

macB macrolides  
 

swine fecal microbiomes [17] 

mecA methicillin Sewage water, river water, animal 
wastewater 

[14, 63] 

mef(A) macrolides  S. pyogenes [17,  66] 

tetA, tetB tetracylcline S. enterica [23] 

tet(W) tetracycline swine fecal microbiomes, human gut 
viromes 

[17, 59] 

tet37  tetracycline swine fecal microbiome [17] 

Genes not anotated β -lactam antibiotics human gut viromes, cystic fibrosis 
sputum microbiota 

[59, 60] 

vancomycin resistance genes vancomycin swine fecal microbiomes, human gut 
viromes 

[17, 59] 

genes not anotated fosfomycin resistance prophage Wβ B. anthracis,  [67] 

genes not anotated tetracycline, gentamicin Enterococcus [31] 

ND erythromycin S. pyogenes [65] 

ND tetracycline, 
chloramphenicol, 
macrolide antibiotics, 
lincomycin, clindamycin  

S. pyogenes [64] 

ND  imipenem, cefotaxime, 
ceftazidime, aztreonam, 
kanamycin, streptomycin  

P. aeruginosa [68] 

Predicted proteins    

Acriflavin resistance protein acriflavin viral metagenomes from an activated 
sludge microbial assemblage 

[25] 

class A β-lactamase β -lactam antibiotics viral metagenomes from an activated 
sludge microbial assemblage 

[25] 

Drug resistance transporter 
Bcr/CflA 

ND viral metagenomes from an activated 
sludge microbial assemblage 

[25] 

glyoxalase/bleomycin 
resistance protein 

ND viral metagenomes from an activated 
sludge microbial assemblage 

[25] 

TetC protein  
 

tetracylcline viral metagenomes from an activated 
sludge microbial assemblage 

[25] 

Tc resistant transposon Tn916 tetracylcline phage Aa phi ST1 in  
A. actinomycetemcomitans 

[69] 

Cm resistance marker Of 
plasmid  pKT210 

chloramphenicol phages Aa phi ST1 and Aa phi 23 in A. 
actinomycetemcomitans 

[69] 

Streptogramin 
acetyltransferase 

streptogramin human gut viromes [59] 

ND. Not determined 
 


