

Виртуальная трехмерная модель поясничного отдела позвоночника

Альберто Пратс-Галино¹, Мигель-Ангель Реина², Мариха Мавар-Арамиха¹, Анна Пуигдельивол-Санчес¹, Хоан Сан-Молина³ и Хосе-Антонио Де-Андрес⁴

¹ Лаборатория хирургической нейроанатомии (LSNA), кафедра анатомии и эмбриологии человека, медицинский факультет Университета Барселоны (Барселона, Испания).

² Кафедра клинических медицинских наук и Институт прикладной молекулярной медицины медицинского факультета Университета Святого Петра (Мадрид, Испания); отделение анестезиологии Университетской клиники Мадрид-Монтепринсипе (Мадрид, Испания).

³ Кафедра медицинских наук, медицинский факультет Университета Жироны (Жирона, Испания).

⁴ Кафедра интенсивной терапии и лечения боли университетской клиники (Валенсия, Испания).

Перевод с английского язык – доктор медицинских наук профессор В.А.Корячкин. РНИИТО имени Р.Р.Вредена (Санкт-Петербург).

Содержание

1	Вве	дение	3			
	1.1	О документе	3			
	Авто	оры:	3			
	1.2	Назначение	4			
2	Осн	овные инструкции	5			
	2.1	Экран рабочего стола	6			
	2.2	Просмотр по умолчанию	8			
	2.3	Выбор структуры	10			
	2.4	Функция изображения	12			
	2.5	Степень прозрачности	12			
	2.6	Опция "Показать все"	13			
	2.7	Опция "Скрыть все"	13			
	2.8	МРТ-срезы	14			
	2.9	Навигация МРТ-слайдов	14			
	2.10	Просмотр срезов	16			
	2.11	Ориентация плоскости среза	16			
	2.12	Смещение плоскости среза	17			
	2.13	Набор профилей с пояснением	19			
	2.14	Опция "Отключить выбор"	19			
	2.15	Вызов справки	19			
3	Спи	сок рисунков	20			
4	Блаі	агодарности21				
5	Лицензирование2					

1 Введение

1.1 О документе

Рис. 1 Интерактивная 3D модель в формате PDF.

Авторы:

Альберто Пратс-Галино¹, Мигель-Ангель Реина², Мариха Мавар-Арамиха¹, Анна Пуигдельивол-Санчес¹, Хоан Сан-Молина³ и Хосе-Антонио Де-Андрес⁴

¹ Лаборатория хирургической нейроанатомии (LSNA), кафедра анатомии и эмбриологии человека, медицинский факультет Университета Барселоны (Барселона, Испания).

² Кафедра клинических медицинских наук и Институт прикладной молекулярной медицины медицинского факультета Университета Святого Петра (Мадрид, Испания); отделение анестезиологии Университетской клиники Мадрид-Монтепринсипе (Мадрид, Испания).

³ Кафедра медицинских наук, медицинский факультет Университета Жироны (Жирона, Испания).

⁴ Кафедра интенсивной терапии и лечения боли университетской клиники (Валенсия, Испания).

E-mail для переписки:

Альберто Пратс-Галино (Alberto Prats-Galino): aprats@ub.edu

Мигель Рейна (Miguel Angel Reina): miguelangel@perticone.e.telefonica.net

Интерактивная модель разработана на основе 3D реконструкции результатов магнитнорезонансной томографии человека.

Авторы заявляют об отсутствии конфликта интересов.

1.2 Назначение

Настоящая трехмерная интерактивная анатомическая модель имеет формат pdf-файла, что обеспечивает ее совместимость, а также удобство использования, пересылки и хранения за счет возможности сжатия и распространения между различными платформами. Предлагаемый способ трехмерной визуализации анатомических структур может быть использован в следующих областях:

Образовательные программы

- ЗD визуализация материала для преподавания анатомии нейроаксиальных структур и нейроаксиальной анестезии;
- Разработка новых доступов для регионарной анестезии.

Научно-исследовательские программы

- Представление диагностических данных и анализ техники анестезии;
- Визуализация возможных технических осложнений регионарной анестезии.

Информирование пациентов

- Дополнительный иллюстративный материал, дополняющий описание инструментальных методов и хирургических манипуляций, которые планируются выполнить пациенту.
- Разработанная трехмерная интерактивная анатомическая модель основана на магнитнорезонансной томографии и может быть использована для решения задач регионарной анестезии и лечения боли (например, на рис. 2 представлен парамедиальный доступ к субарахноидальному пространству).

Рис. 2 Пример: спинальный медиальный доступ.

Технология, использованная для создания этой интерактивной модели, недавно применяется в медицине и позволяет создавать интерактивные 3D-модели с помощью 3D-реконструкции 2D-изображений, благодаря специальному программному обеспечению (Amira 5.4.0 ©). В результате

созданная модель является простым и полезным инструментом в обучении, в работе и в исследованиях. Работа с моделью не связана с какими-либо затруднениями: представлен файл в формате PDF, который может быть открыт в программе Windows для свободного пользования любым врачом.

Представленная модель включает изображения позвонков, позвоночных дисков, дужек позвонков, желтую, надкостную и межостистую связки, эпидурального и фораминального жира, спинномозговых корешков.

Каждый элемент может поворачиваться на 360° и рассматриваться частично или полностью с функцией увеличения.

2 Основные инструкции

PDF документ открывается в программе Adobe Acrobat 11 или выше.

Навигация может быть запущена любой точки. Работа с фигурами осуществляется с помощью мыши, что позволяет поворачивать модель и рассматривать ее с разных точек зрения: аксиальной, сагиттальной или корональной. Возможен просмотр изображений в аксиальных, сагиттальных или корональных МРТ-срезах. Другие опции интуитивно понятны и просты для понимания.

Рис. З Выбор функции: нажмите на кнопку для перехода к соответствующему разделу.

Функционально PDF-документ описан в 15 коротких инструкциях, каждая из которых объясняет конкретную функцию/кнопку. Вы можете нажать на пронумерованную синюю кнопку на рис. 3, чтобы перейти к разделу, описывающему соответствующую функцию.

2.1 Экран рабочего стола

Полноэкранный режим достигается комбинацией клавиш Ctrl + L, выход – нажатием на клавишу ESC.

Рис. 4 Рабочий стол.

Поворот изображения на 360° осуществляется при помощи мыши при удержании ее левой кнопки.

Рис. 5 Поворот модели на 360°.

2.2 Просмотр по умолчанию

Выбор по умолчанию четырех положений, в которых модель может быть отображена (переднее, боковое, заднее, верхнее).

Рис. 6 Просмотр по умолчанию: пример: вид сверху.

Рис. 7 Просмотр по умолчанию: пример: латеральный вид.

2.3 Выбор структуры

Выберите в выпадающем меню желаемую структуру для построения модели на экране. Выбор осуществляется отметкой в поле 4 (показать/скрыть выбранную структуру). Структуры могут быть включены на экране последовательно.

Рис. 8 Выбор структуры.

Рис. 9 Выбор структуры: например, жировая ткань в вэпидуральном пространстве (красный цвет).

Рис. 10 Выбор структуры: например, жировая ткань в вэпидуральном пространстве.

Рис. 11 Примеры различных структур показать/скрыть.

2.4 Функция изображения

При щелчке левой кнопкой мыши на белый квадрат выбранное изображение появляется на рабочем столе, при повторном щелчке - выбранное изображение исчезает.

Рис. 12 Функция изображения: показать/скрыть выбранную структуру.

2.5 Степень прозрачности

При помощи стрелок возможно изменение прозрачности, которая изменяется постепенно вместе с изменением цвета фигуры.

Рис. 13 Степень прозрачности выбранной структуры.

Рис. 14 Степень прозрачности, пример полупрозрачный позвонок L4.

2.6 Опция "Показать все"

Эта кнопка отображает на экране все изображения 3D-модели. Каждая избранная структура может быть сделана более прозрачной. Для удаления изображения структуры, щелкните левой клавишей мыши на белый квадрат - Функция изображения (2.4).

Кроме того, изображение может быть удалено с экрана путем выбора его названия в выпадающем меню (2.3) и щелчка на белый квадрат - Функция изображения (2.4).

Рис. 15 Опция "Показать все": Все структуры модели становятся видимыми.

2.7 Опция "Скрыть все"

При щелчке на кнопку "Скрыть все" все изображения удаляются с рабочего стола.

2.8 МРТ-срезы

Щелчок левой клавишей мыши на соответствующий белый квадрат позволяет показывать или удалять MPT-срезы.

Аксиальные, сагиттальные и корональные срезы могут быть выбраны как в одиночку, так и в комбинации.

Рис. 16 Демонстрация МРТ-срезов на рабочем столе.

2.9 Навигация МРТ-срезов

Стрелки позволяют осуществить переход от одного МРТ-среза к другому. Есть сочетания стрелок для изменения ориентаций: девять аксилярных, семь сагиттальных и шесть корональных.

Рис. 17 Аксиальные МРТ-срезы.

Рис. 18 Сагиттальный МРТ-срезы.

Рис. 19 Корональный МРТ-срезы.

2.10 Просмотр срезов

Эта функция отображает срезы 3D-модели, в том числе МРТ-среза, выбранные функцией 11.

2.11 Ориентация плоскости среза

Эта функция определяет плоскость среза - аксиальную, сагиттальную или корональную.

2.12 Смещение плоскости среза

Эта функция смещать плоскость среза по изображению.

Рис. 22 Смещение плоскости среза по изображению.

Рис. 23 Аксиальный срез.

Рис. 24 Сагиттальный и корональный срезы.

2.13 Набор профилей с пояснением

Доступны различные заданные профили (виды), каждый из которых в момент показа сопровождается кратким пояснением. Все вышеперечисленные функции могут быть применены на всех профилях.

Рис. 25 Выбор обзора и комментарии.

2.14 Опция "Отключить выбор"

Опция отключает пользователя от выбранного изображения щелчком мыши.

Это может быть полезно при наличии проблем с графикой компьютера или если мы хотим повернуть модель без случайно выделенного изображения с красным цветом.

Рис. 26 Отключить выбранную модель.

2.15 Вызов справки

Инструкцию по использованию интерактивного PDF-файла можно получить, нажав на кнопку с вопросительным знаком в правом верхнем углу.

Рис. 27 Вызов справки

3 Список рисунков

Рис.	1 <i>V</i>	Інтерактивная 3D модель в формате PDF	3
Рис.	2 [Тример: спинальный медиальный доступ	4
Рис.	3 E	Зыбор функции: нажмите на кнопку для перехода к соответствующему разделу	5
Рис.	4 F	Рабочий стол	6
Рис.	5 I	Товорот модели на 360°	7
Рис.	6 I	Тросмотр по умолчанию: пример: вид сверху	8
Рис.	7 I	Тросмотр по умолчанию: пример: латеральный вид	9
Рис.	8 E	Зыбор структуры	10
Рис.	9 E	Зыбор структуры: например, жировая ткань в вэпидуральном пространстве (красный ц	вет).
			10
Рис.	10	Выбор структуры: например, жировая ткань в вэпидуральном пространстве	11
Рис.	11	Примеры различных структур показать/скрыть	11
Рис.	12	Функция изображения: показать/скрыть выбранную структуру	12
Рис.	13	Степень прозрачности выбранной структуры.	12
Рис.	14	Степень прозрачности, пример полупрозрачный позвонок L4	12
Рис.	15	Опция "Показать все": Все структуры модели становятся видимыми	13
Рис.	16	Демонстрация МРТ-срезов на рабочем столе.	14
Рис.	17	Аксиальные МРТ-срезы	14
Рис.	18	Сагиттальный МРТ-срезы	15
Рис.	19	Корональный МРТ-срезы	15
Рис.	20	Плоскость среза	16
Рис.	21	Ориентация среза.	16
Рис.	22	Смещение плоскости среза по изображению	17
Рис.	23	Аксиальный срез	17
Рис.	24	Сагиттальный и корональный срезы	18
Рис.	25	Выбор обзора и комментарии	19
Рис.	26	Отключить выбранную модель.	19
Рис.	27	Вызов справки	19

Благодарности 4

Эта работа была частично поддержана грантами "Maraty TV3 Project" [411/U/2011 -Количественный анализ и компьютерное моделирование малоинвазивных подходов к внутричерепным сосудистым поражениям] и "2012PID-UB/002 Project" [Группа виртуальной имитации анатомии университета Барселоны].

Мы также благодарим Ольгу Фуентес1 за техническую помощь.

Лицензирование 5

3D Интерактивная виртуальная модель позвоночника, выполненная в pdf-формате, доступна по лицензии СС BY-NC-SA 2.02², предполагающей указание авторства и некоммерческое использование, а также распространение продукта по той же лицензии, что и лицензия оригинала.

Исходный JavaScript-код и оригинальная геометрия поверхности модели не находятся в публичном доступе и не могут быть использованы или модифицированы.

При использовании указанного документа или его частей (например, полученных изображений анатомических структур) в соответствии с лицензией СС ВУ-NC-SA 2.0 обязательна ссылка на один из следующих источников:

http://diposit.ub.edu/dspace/handle/2445/44844?locale=en

Prats-Galino A., Mavar M., Reina M.A., Puigdellívol-Sánchez A., San-Molina J., De Andrés J.A. Threedimensional interactive model of lumbar spinal structures. Anaesthesia 2014; 69: 521.

Оригинальный 3D документ в PDF-формате вместе с инструкциями и лицензией находится в свободном доступе на

http://diposit.ub.edu/dspace/handle/2445/44844?locale=en.

¹Лаборатория хирургической нейроанатомии (LSNA), кафедра анатомии и эмбриологии человека, медицинский факультет Университета Барселоны (Барселона, Испания).

² http://creativecommons.org/licenses/by-nc-sa/2.0/