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A mathematical model of the voltage drop which arises in on-chip power distribution

networks is used to compare the maximum voltage drop in the case of different geometric

arrangements of the pads supplying power to the chip. These include the square or Manhattan

power pad arrangement, which currently predominates, as well as equilateral triangular and

hexagonal arrangements. In agreement with the findings in the literature and with physical

and SPICE models, the equilateral triangular power pad arrangement is found to minimize the

maximum voltage drop. This headline finding is a consequence of relatively simple formulas

for the voltage drop, with explicit error bounds, which are established using complex analysis

techniques, and elliptic functions in particular.

Key words: Mathematical problems of computer architecture; Elliptic functions and integrals;

Poisson’s equation

1 Introduction

Control of the maximum voltage drop between power distribution pads is a factor of

increasing importance in the design of the power distribution network (PDN) of modern

IC computer chips. The voltage drop between power pads depends on both the current

flowing in the power mesh between the pads and the electrical resistance in the power

mesh. Technological advances lead to higher current densities on the microprocessor,

which in turn lead to higher voltage drops. At the same time, lower supply voltages imply

lower tolerable voltage drops. Thus, as technology advances, the necessity to eliminate

large voltage drops at the design stage becomes of increasing importance. The physical

layout of a computer chip and the interaction between the chip and its PDN are described

in detail by Shakeri and Meindl [9] in the context of both wire-bond and flip-chip PDN

design. They focus on a dominant paradigm in which the power pads and the power mesh

are arranged in a square grid, which is known as the Manhattan architecture; they derive

the equations governing the voltage drop and provide the leading terms of the solution.

The Y-architecture, in which pads are arranged in an equilateral lattice and the power
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mesh is also arranged in an equilateral grid, is considered by Chen et al. [3]. Analytical

and simulation results are obtained, which indicate a 5% reduction in the maximum

voltage drop in the case of a single layer Y-architecture compared with the single layer

Manhattan architecture.

Aquareles et al. [2] put the mathematical aspects of the work of Shakeri and Meindl

[9] on a firm footing. They obtain an asymptotic formula for the maximum voltage drop

in terms of the size of the pads, including higher order terms that would seem to be

beyond the techniques in Shakeri and Meindl [9]. The main mathematical tool they use is

that of matched asymptotic expansions. In the present work, we use a complex analysis

method to derive an expression for the maximum voltage drop in the case of the square

pad arrangement. This method is simpler and more direct than the approach in Aquareles

et al. [2] and covers, without additional effort, the case of pads arranged in an equilateral

triangular array. With a little extra work, the method extends to treat the case of pads

arranged in a hexagonal pattern, thereby covering all three regular arrangements of power

pads.

The results that we obtain suggest that the smaller maximum voltage drops observed

by Chen et al. in [3] are due to the arrangement of pads in an equilateral array. Note that

the various interconnection architectures considered in [3] could potentially be thought

to contribute to a reduced voltage drop. In our model, the power pads are connected

to a mesh of perpendicular wires that appear in the idealised mathematical model as a

non-homogeneous term in the Poisson equation. Our results show that, irrespective of any

other design variations, the arrangement of power pads alone can account for the smaller

voltage drop reported in [3].

We also obtain formulas for the maximum voltage drop in each of these configurations

(square, triangular, and hexagonal). It is found that the hexagonal pad arrangement

has the largest voltage drop of the three configurations considered. Nonetheless, it may

be useful to have an explicit formula for the voltage drop in this case since, however

important, control of the maximum voltage drop is but one of several constraints in the

design of an on-chip PDN. Finally, the availability of explicit formulas makes it possible

to accurately predict the maximum voltage drop at an early point in the circuit design

stage, thereby obviating the need for costly redesign.

2 Mathematical model of the voltage drop

In this section, we describe the mathematical model of the PDN and the associated

voltage drop as derived by Shakeri and Meindl [9].

The surface of the integrated circuit is modelled as an infinite complex plane in which

the power pads of the PDN are modelled as circular disks of radius ε. Power to the chip

is supplied through these power pads and distributed through a fine grid of wires called

the power mesh. The square and triangular arrangements of the pads are displayed below.

The planar region consisting of the complex plane with these circular disks removed is

denoted by Ωε. Under the assumption of uniform current flow between pads, the voltage

drop satisfies the equation Δu = c as the power mesh becomes finer.

The constant c on the right-hand side of this partial differential equation codes for

the resistance properties of the wires of the mesh and the current drawn from the power
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network. In order to make a fair comparison between the voltage drop across different

PDN configurations, the resistance properties of the underlying integrated circuits (IC)

and the current drawn need to be the same, that is, we need to use the same constant

c in all cases. Moreover, since we measure the relative change in the maximum voltage

drop across different arrangements of power pads, and since the solution to Δu = c is

proportional to c, it suffices to take the common value c = 1 in the modelling equation.

Next, the power distribution pads are held at a constant voltage, which we may take to

equal zero. Thus, the governing partial differential equation for the voltage in the region

Ωε between the power pads is

{
Δu = 1 in Ωε,

u = 0 on ∂Ωε.
(2.1)

The voltage between the pads will then be negative, since u is subharmonic and the pads

themselves are held at voltage 0, while the voltage drop relative to the pads will simply be

−u. It is interesting to note that the solution of the partial differential equation Δu = −2

in a domain D, also with zero Dirichlet boundary conditions, describes the expected exit

time of standard Brownian motion from the domain. Thus, the problem of determining

the maximum voltage drop is mathematically equivalent to determining the maximum

expected lifetime of Brownian motion in the domain complementary to the power pads.

The partial differential equation (2.1) obeys the scaling law: If u(z) is a solution of

Δzu = 1 in the domain D, then v(w) = r2u(w/r) is a solution of Δwv = 1 in the domain rD.

Thus, if both the radius of the power pads and the spacing between their centres change

by a factor of r, then the maximum voltage drop changes by a factor r2. If we know the

voltage drop for all values of the radius of power pads for some fixed spacing between

their centres, then we can scale this result to determine the voltage drop in the case of

any power pad radius and any spacing between their centres.

Next, in order to make a fair comparison between different geometric power pad

configurations, the proportion of the area on the chip occupied by the power pads (let’s

call it p) should be the same in each case. Note that p, the area of the power pads per

unit area on the chip, does not change under the scaling z → rz discussed above, whereas

the voltage drop changes by a factor r2. Thus, even for prescribed areal density p of

power pads, the voltage drop can be made as small as one wishes by taking smaller pads

closer together. In order to make a fair comparison between different configurations, it

is therefore not only necessary to ensure that the areal density of the power pads is the

same in each configuration but also to specify the radius ε of each pad. The values of

p and ε then determine the spacing between the pads. (Alternatively, one could instead

specify the spacing between the pads rather than their radius, but this seems less natural.)

Referring to Figure 1, each pad in the square arrangement lies at centre of a square of

side d1, which does not overlap with the corresponding square for any other pad. Thus,

the areal density p is πε2/d2
1 in this case. For an equilateral triangular arrangement, each

pad lies at the centre of a diamond of area
√

3 d2
2/2, which does not overlap with the

corresponding diamond for any other pad. Thus, the areal density p of the pads in the

triangular configuration is 2πε2/(
√

3 d2
2). For prescribed common radius ε of the pads, the
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Square configuration Equilateral triangular configuration

Disks of
radius ε

d1

d2

Figure 1. (Colour online) Square and equilateral triangular arrangements of pads.

areal density of the pads will be the same in both configurations once

d2
2 =

2√
3
d2

1. (2.2)

Assuming, therefore, that in the square arrangement we have power pads of radius ε

whose centres are unit distance apart, in the triangular arrangement we should have

power pads of radius ε whose centres are d2 =
√

2/
4

√
3 � 1.0745 apart.

In the case of the hexagonal configuration, as shown in Figure 2, each pad lies at

the centre of an equilateral triangle of sidelength
√

3 d3 which does not overlap with the

corresponding triangle for any other pad. The area of this triangle is
√

3(
√

3 d3)
2/4 =

3
√

3 d2
3/4 so that the areal density p for the hexagonal configuration is 4πε2/(3

√
3 d2

3). In

order that this agrees with the areal density p = πε2 for the previous configurations, we

need

d3 =
2

4
√

27
� 0.87738.

In this case, each hexagon has area 2.

3 Main numerical results

Analytic formulas for voltage drop in each of the arrangements of the pads considered

above are established in Sections 4 and 5. These yield the following bounds for the

maximum voltage drop. In terms of the radius ε of pads, the maximum voltage drop V S
max

in the case of the square arrangement is

V S
max(ε) =

1

2π
log

1

ε
− 0.153418893205 +

1

4
ε2 + O(ε3). (3.1)
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0
d3

√
3 d3

Figure 2. (Colour online) Regular hexagonal configuration.

The maximum voltage drop VT
max in the case of the triangular configuration is

VT
max(ε) =

1

2π
log

1

ε
− 0.166549975068 +

1

4
ε2 + O(ε6). (3.2)

In the case of the hexagonal configuration, the voltage drop at the centre of a hexagon is

VH(ε) =
1

2π
log

1

ε
− 0.111391075030 +

1

4
ε2 + O(ε3). (3.3)

It is notable that, apart from the error term, the maximum voltage drop has the same

dependence on pad size in all three cases, the only difference being in the constant term.

The conclusion is that the hexagonal pad arrangement has the worst (that is, the largest)

voltage drop among the configurations that we consider, the best being the triangular

lattice, with the standard square lattice being in an intermediate position.

One intuitive explanation of this situation is that though in the hexagonal arrangement,

there are six disks around the origin, these are, crucially, further separated from the origin

than in the other configurations considered. It is possible to fit a bigger disk around the

origin which does not meet the boundary of Ωε and this allows the Brownian motion to

increase its expected lifespan.

Theorem 2 provides explicit upper and lower bounds on the maximum voltage drop

in each configuration, with explicit constants. These bounds imply (3.1), (3.2) and (3.3)

and are plotted in Figure 3. The curves represent upper and lower bounds for the

maximum voltage drops V S
max(ε) and VT

max(ε), which take account of explicit error terms in

Theorem 2. The plot in the hexagonal case shows the voltage drop VH(ε) at the centre of

a hexagon. Presumably, this is the maximum voltage drop, that is, the maximum voltage

drop presumably occurs at the centre of a hexagon, but in any case the maximum voltage

drop is at least this large. Thus, even at the limits of the error bounds, the triangular

arrangement outperforms the square and hexagonal arrangements for all pad sizes. Note

also that the error bounds are seen to be quite tight in both square and triangular

configurations so that formulas (3.1) and (3.2) are accurate. Note that the range of pad

size ε (from 0.1 to 0.3) relative to the distance between the centres of the pads (d1, d2, d3,

each of which is about unit size) is informed by industry norms (see [9, Table III]).
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Figure 3. (Colour online) Plots of explicit bounds for maximum voltage drop as a function of pad

size – see Theorem 2 [(4.31) and (4.33)] and Section 5. (Note that the upper and lower bounds in

the equilateral triangular configuration are so close as to be effectively indistinguishable.)

Table 1. Voltage drop measurements

Square arrangement Triangular arrangement

On board measurement 2.03 V 1.91 V

SPICE simulation 2.05 V 1.94 V

In order to test the robustness of these analytical results we assembled two boards, each

with a rectangular mesh of resistances. A constant current sink was connected at each

node. On one of the boards, the voltage distribution was through a collection of pads

in a square configuration, and on the other the pads were in a triangular configuration.

All pads were held at 5 V. The maximum voltage drop was measured for each board.

It was 1.91 V in the triangular pad setting versus 2.03 V in the square setting. The

Simulation Program with Integrated Circuit Emphasis (SPICE) simulations with the same

configuration returned voltage drops of 1.94 V in the triangular case and 2.05 V in the

square case (see Table 1). The difference between the on-board measurements and the

SPICE simulations may be due to less than perfect current sinks.

4 Analytic expression for the voltage drop in square and triangular pad arrays

In this section, analytic expressions for the voltage drop in both square and triangular

pad arrangements are obtained. Both configurations correspond to lattices in the plane,

permitting direct use of the standard theory of elliptic functions. We next set out those

aspects of the theory that we will need, as well as the special results that pertain for

square and equilateral lattices, drawing on the classic text by Hille [6, Section 13.2] as a

standard general reference.
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4.1 Square and triangular lattices

A lattice of points in the complex plane consists of all integer linear combinations

2w1m+ 2w3n (m, n ∈ �) of two given complex numbers 2w1 and 2w3 for which w3/w1 has

positive imaginary part. We immediately specialize to the case in which

2w1 = d > 0 and 2w3 = αd, where α = e2πi/q, q ∈ �, (4.1)

so that α is a qth root of unity. In this case the lattice is described by

Λ = {λm,n = md + nαd : m, n ∈ �}. (4.2)

The resulting lattice is invariant under multiplication by α precisely when there are integers

k and j such that

e4πi/q = α2 = kα + j = ke2πi/q + j.

It is not difficult to see, for example by examining the resulting equations for the real and

imaginary parts separately, that α will satisfy such an identity only in the cases q = 4 and

q = 6. The case q = 4, with α = i, 2w3 = id, α2 = −1, corresponds to the square lattice.

The case q = 6, with α = eπi/3, 2w3 = eπi/3d, α2 = α − 1, corresponds to the triangular

lattice. The values of d in each case are governed by (2.2), which guarantee that the areal

densities of the pads agree.

Much of the analysis in the next sections is essentially unchanged whether we work

with the square or triangular lattice. We will therefore retain the notation q, d, α with the

understanding that

(q, d, α) =

⎧⎨
⎩

(4, 1, i) in the square lattice case,(
6,

√
2

4
√

3
, eπi/3

)
in the triangular lattice case,

(4.3)

the advantage being that in this way we can treat both configurations simultaneously.

4.2 The Weierstrass σ-function for a plane lattice

The Weierstrass σ-function associated with the previously defined lattice is given by

σ(z) = z
∏′

λ∈Λ

(
1 − z

λ

)
exp

(
z

λ
+

z2

2λ2

)
, (4.4)

where
∏ ′ denotes the product over all lattice points with zero omitted. The Weierstrass ζ-

function is defined by

ζ(z) =
1

z
+

∑′

λ∈Λ

(
1

z − λ
+

1

λ
+

z

λ2

)
, (4.5)

where
∑ ′ denotes the sum over all lattice points with zero omitted.

A quasi-periodicity property of the σ-function plays a key role in our analysis. Set

η1 = ζ(w1) and η3 = ζ(w3).



8 T. Carroll and J. Ortega-Cerdà

Then [6, Identity 13.2.19],

σ(z + 2wk) = −e2ηk(z+wk) σ(z), z ∈ �, k = 1, 3. (4.6)

Identity (4.6) with k = 1 and 3, together with Legendre’s identity (see [6, Exercise 13.2.4])

2w3η1 − 2w1η3 = iπ, (4.7)

leads to the full quasi-periodicity property

σ(z + 2mw1 + 2nw3) = (−1)m+n+mn exp
[
(z + mw1 + nw3)(2mη1 + 2nη3)

]
σ(z) (4.8)

for any integers m and n. To proceed further, we need to compute η1 and η3 explicitly

for square and triangular lattices, at which point the quasi-periodicity property (4.8)

will become explicit in these cases. While these results are known, here we give explicit

computations for completeness.

4.3 Computation of η1 and η3 for square and triangular lattices

Identity (4.7) in the case of either of our lattices becomes (see (4.1))

dαη1 − dη3 = iπ. (4.9)

The invariance of the lattice under multiplication by α = e2πi/q and its powers, with

q = 4 for the square lattice and q = 6 for the triangular lattice, leads to a second linear

relationship between η1 and η3 as follows. By definition,

η1 = ζ

(
d

2

)
=

2

d
+

∑′

λ∈Λ

(
1

d/2 − λ
+

1

λ
+

d

2λ2

)
.

Replacing λ by αkλ, k = 1, . . . , q − 1, gives a total of q expressions for η1. Adding these

leads to

η1 =
2

d
+

1

q

∑′

λ∈Λ

q−1∑
k=0

(
1

d/2 − αkλ
+

1

αkλ
+

d

2α2kλ2

)
.

Since
q−1∑
k=0

α−k = 0 =

q−1∑
k=0

α−2k, (4.10)

we find that

η1 =
2

d
+ S, where S =

1

q

∑′

λ∈Λ

q−1∑
k=0

1

d/2 − αkλ
. (4.11)

This procedure is repeated for η3, which is given by

η3 = ζ

(
dα

2

)
=

2

dα
+

∑′

λ∈Λ

(
1

dα/2 − λ
+

1

λ
+

dα

2λ2

)
.
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Replacing λ by αkλ, k = 1, . . . , q − 1, and adding all q expressions for η3, leads to

η3 =
2

dα
+

1

q

∑′

λ∈Λ

q−1∑
k=0

(
1

dα/2 − αkλ
+

1

αkλ
+

dα

2α2kλ2

)
.

=
2

dα
+

1

q

∑′

λ∈Λ

q−1∑
k=0

1

dα/2 − αkλ

=
2

dα
+

1

qα

∑′

λ∈Λ

q−1∑
k=0

1

d/2 − αkλ

=
2

dα
+

1

α
S =

(
2

d
+ S

)
1

α
. (4.12)

Together, (4.11) and (4.12) yield

η1 = α η3. (4.13)

Solving the simultaneous equations (4.9) and (4.13) gives

η1 =
iαπ

d(α2 − 1)
and η3 =

iπ

d(α2 − 1)
. (4.14)

Lemma 1 In the case of the square lattice (d = 1, α = i)

η1 =
π

2
and η3 = − iπ

2
, (4.15)

while in the case of the triangular lattice (d =
√

2/
4

√
3, α = eπi/3),

η1 =
π√
2

4
√

3
and η3 =

π√
2

4
√

3
e−πi/3. (4.16)

These results are easily verified, in view of (4.1), by replacing α by i and d by 1 in (4.14) in

the case of the square lattice to obtain (4.15). In the case of the triangular lattice, replace

α by eπi/3 in (4.14) and use

α2 − 1 = −3

2
+

√
3

2
i =

√
3 i

(
1

2
+

√
3

2
i

)
=

√
3 iα

to obtain η1 = π/(
√

3d) and η3 = π/(
√

3dα) = πα/(
√

3d). Finally, set d =
√

2/
4

√
3 to obtain

(4.16).

4.4 Quasi-periodicity and true periodicity for square and triangular lattices

These values for η1 and η3 lead to a simple form of the general quasi-periodicity relation

(4.8) for the σ-function in the case of square and triangular lattices. Surprisingly, perhaps,

this relation has the same form in both cases, thereby unifying the analysis required to
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derive an analytic expression for IR-drop. With an eye on (4.8), recall that a general

lattice point is λm,n = 2w1m + 2w3n = md + nαd, where m and n are integers. Then in the

case of a square lattice with d = 1 and using the η-values given by (4.15),

λm,n = m + in and 2mη1 + 2nη3 = mπ − inπ = π λm,n.

In the case of a triangular lattice with d =
√

2/
4

√
3, we use the η-values given by (4.16) to

obtain

λm,n =

√
2

4
√

3
m +

√
2

4
√

3
eπi/3n,

2mη1 + 2nη3 =
2mπ√
2

4
√

3
+

2nπ√
2

4
√

3
e−πi/3 = π

(√
2

4
√

3
m +

√
2

4
√

3
e−πi/3n

)
= π λm,n.

The quasi-periodicity property (4.8) of the σ-function, in the case of either square or

triangular lattice, therefore becomes

σ
(
z + λm,n

)
= (−1)m+n+mn exp

[
(z + 1

2
λm,n) π λm,n

]
σ(z)

= (−1)m+n+mn exp
[
πλm,n z +

π

2
|λm,n|2

]
σ(z). (4.17)

This quasi-periodicity property of the σ-function leads to true periodicity of a related

function.

Lemma 2 Set

h(z) = − 1

2π
log |σ(z)| +

1

4
|z|2, z ∈ � \ Λ. (4.18)

In the case when either Λ is a square lattice or a triangular lattice, h is periodic in the sense

that h(z + λ) = h(z), for z ∈ � \ Λ, λ ∈ Λ.

Furthermore, the value of h doesn’t change under reflection in any side of relevant lattice,

in that

h
(
α2k z

)
= h(z), (4.19)

where α = i and k = 0 or 1 in the square lattice case, while α = eπi/3 and k = 0, 1 or 2 in

the triangular lattice case.

Remark 1 The periodicity of h in the case of square or triangular lattices also follows from

the results in [4, Proposition 3.4] which builds upon work in [5]. Gröchenig and Lyubarskii

[4] have a more general periodicity result which is valid for all lattices and involves an

explicit normalization factor in terms of η1 and η3. The computation of η1 and η3 above

shows that no normalization factor arises for triangular or square lattices.

Proof Taking the logarithm of (4.17) with λ = λm,n ∈ Λ leads to

log |σ(z + λ)| = log |σ(z)| + Re
[
πλz +

π

2
|λ|2

]
= log |σ(z)| +

π

2

[
|λ|2 + 2Re

(
λ z

)]
.
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But

|λ|2 + 2Re
(
λ z

)
= |z + λ|2 − |z|2,

so that

log |σ(z + λ)| = log |σ(z)| +
π

2

[
|z + λ|2 − |z|2

]
.

This establishes the periodicity of h.

To establish that h is invariant under reflection on any side of the lattice, note that in

any of the cases in (4.19),

σ
(
α2k z

)
= α2k z

∏′

λ∈Λ

(
1 − α2k z

λ

)
exp

(
α2k z

λ
+

α4k z2

2λ2

)
.

The invariance of the lattice under multiplication by α2k , that is, α2k Λ = Λ, and then its

invariance under complex conjugation, shows that

σ
(
α2k z

)
= α2k z

∏′

λ∈Λ

(
1 − z

λ

)
exp

(
z

λ
+

z2

2λ2

)

= α2k

(
z
∏′

λ∈Λ

(
1 − z

λ

)
exp

(
z

λ
+

z2

2λ
2

))

= α2k

(
z
∏′

λ∈Λ

(
1 − z

λ

)
exp

(
z

λ
+

z2

2λ2

))

= α2k σ(z). (4.20)

On taking logarithms, the identity (4.19) follows. �

4.5 Analytic expressions for IR-drop in square and triangular arrangements

Formally, Ωε = � \
⋃

λ∈Λ D(λ, ε) denotes the region formed by removing from the plane a

closed disk of radius ε about each lattice point. Our main result gives an analytic bound

for the voltage drop in both square and triangular arrangements of pads. It is possible

to analyse both configurations simultaneously, which we do. After stating and proving

the analytic bound, we derive explicit numerical bounds (3.1) and (3.2), which prove, in

particular, that the triangular disposition outperforms the square arrangement.

Before stating the main analytical result, Theorem 1, we need an estimate on the

σ-function near the origin.

Lemma 3 For |z|q � 3
5
,

| log |σ(z)| − log |z| | � Aq

(
|z|q + |z|2q

)
, (4.21)

where Aq = 1
q

∑′

λ∈Λ
1

|λ|q and where q is 4 or 6 depending on whether we are working with
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the square or the triangular lattice. Correct to eight decimal places,

A4 =
1

4

∑′

λ∈Λ

1

(m2 + n2)2
= 1.50670300 (4.22)

and

A6 =

√
3

16

∑′

λ∈Λ

1

(m2 + n2 + mn)3
= 0.69020942. (4.23)

Proof Recall expression (4.4) for the σ-function. By the symmetry of the lattice under

multiplication by αk , we see that

σ(z) = z
∏′

λ∈Λ

(
1 − z

αkλ

)
exp

(
z

αkλ
+

z2

2α2kλ2

)
, k = 0, 1, . . . , q − 1.

When these q expressions for σ(z) are multiplied together, one obtains

σq(z) = zq
∏′

λ∈Λ

q−1∏
k=0

(
1 − z

αkλ

)
= zq

∏′

λ∈Λ

(
1 − zq

λq

)
, (4.24)

where (4.10) leads to the elimination of exponential terms and the identity

1 − wq = (1 − w)
(
1 − w

α

)
. . .

(
1 − w

αq−1

)
, q ∈ �,

was used at the last step in (4.24). Taking the logarithm of (4.24) leads to

log |σ(z)| = log |z| +
1

q

∑′

λ∈Λ
log

∣∣∣∣1 − zq

λq

∣∣∣∣ . (4.25)

The power series expansion of the analytic function − log(1 − w) about 0 is

− log(1 − w) = w +
w2

2
+

w3

3
+

w4

4
+ · · · ,

so that, for |w| � 3
5
,

| log |1 − w| | = |Re
(
log(1 − w)

)
|

� | log(1 − w)|

� |w| +
|w|2
2

+
|w|3
3

+
|w|4
4

+ · · ·

� |w|
(

1 +
|w|
2

+
|w|2
3

1

1 − |w|

)
� (1 + |w|) |w|. (4.26)

Since |λ| � 1 for λ ∈ Λ \ {0}, once |z|q � 3
5

we can apply (4.26) with w = (z/λ)q to obtain∣∣∣∣∣1q
∑′

λ∈Λ
log

∣∣∣∣1 − zq

λq

∣∣∣∣
∣∣∣∣∣ �

1

q

∑′

λ∈Λ

(
|z|q
|λ|q +

|z|2q
|λ|2q

)
� Aq

(
|z|q + |z|2q

)
,
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where

Aq =
1

q

∑′

λ∈Λ

1

|λ|q .

Together with (4.25), this proves (4.21). Estimates (4.22) and (4.23) can be obtained

numerically. �

Theorem 1 In the case of either the square or the triangular lattice, in each case with the

values given in (4.3), the solution of{
Δuε = 1 in Ωε

uε = 0 on ∂Ωε

(4.27)

may be written as

uε(z) = − 1

2π
log |σ(z)| +

1

4
|z|2 +

1

2π
log ε − 1

4
ε2 + hε(z), (4.28)

where hε satisfies

|hε(z)| �
Aq

2π

(
εq + ε2q

)
, z ∈ Ωε, (4.29)

and Aq has the value given in the statement of Lemma 3.

Proof Let hε be the function which is harmonic on Ωε and has boundary values

hε(w) =
1

2π
log |σ(w)| − 1

4
|w|2 − 1

2π
log ε +

1

4
ε2, w ∈ ∂Ωε. (4.30)

By Lemma 2, these boundary values are periodic and so too is hε (that is, hε(z+λ) = hε(z)

for z ∈ Ωε and λ ∈ Λ).

Define a function uε by (4.28). Then Δuε = 1 in Ωε. This is because Δ
(
|z|2

)
= 4, while

log |σ(z)| is harmonic on Ωε being the logarithm of the modulus of a non-vanishing

analytic function there. Moreover, uε vanishes on the boundary of Ωε, so that uε is the

solution of (4.27).

Set D0 to be the interior of the square with vertices 0, 1, 1 + i and i in the square lattice

case, and set D0 to be the interior of the triangle with vertices 0,
√

2/
4

√
3 and

√
2eπi/3/

4
√

3

in the triangular lattice case. Bound (4.29) for hε is obtained by applying the maximum

principle to hε on Ωε ∩D0. If hε were to assume an extremal value on the closure of Ωε ∩D0

at a point of Ωε ∩ ∂D0, then by the symmetry of hε in the sides of D0 (see the final part of

Lemma 2), hε would have a local extremum there, contradicting the maximum principle.

Thus, hε achieves its extremum values (over Ωε or, equivalently, over Ωε ∩ D0) at a point

of ∂Ωε, that is, again using the periodicity of hε, at a point on the circle C(0, ε). Taking

account of the boundary values (4.30) and then Lemma 3, we see that, for |w| = ε,

|hε(w)| =
1

2π
| log |σ(w)| − log ε| �

Aq

2π

(
εp + ε2p

)
.

Thus, by the maximum principle, the harmonic function hε satisfies the bound (4.29)

throughout Ωε. �
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Theorem 2 The maximum voltage drop V S
max(ε), when the pads are arranged in a square

lattice and with the parameters given in (4.3), satisfies∣∣∣∣VM
max(ε) −

[
1

2π
log

1

ε
− CM +

1

4
ε2

]∣∣∣∣ �
A4

2π

(
ε4 + ε8

)
, (4.31)

where A4 is given by (4.22) and

CM =
1

π
logΓ ( 1

4
) − 1

2π
log(2

√
2π) = 0.153418893205, (4.32)

correct to 12 decimal places.

The maximum voltage drop VT
max(ε), when the pads are arranged in a triangular lattice and

with the parameters given in (4.3), satisfies∣∣∣∣VT
max(ε) −

[
1

2π
log

1

ε
− CY +

1

4
ε2

]∣∣∣∣ �
A6

2π

(
ε6 + ε12

)
, (4.33)

where A6 is given by (4.23) and

CY =
3

2π
logΓ ( 1

3
) − 1

2π
log(2

√
2π) +

1

8π
log 3 = 0.166549975068, (4.34)

correct to 12 decimal places.

Proof In the case of the square pad arrangement, the maximum voltage drop occurs at

the point bs = (1 + i)/2, which lies at the centre of the square formed by lattice points

at 0, 1, 1 + i and i (see Section 6). Thus, the negative of expression (4.28), evaluated at

z = bs, is the maximum voltage drop. Since |bs|2 = 1/2,

V S
max = −uε(bs) =

1

2π
log

1

ε
− CM +

1

4
ε2 − hε(bs),

where

CM =
1

8
− 1

2π
log |σ (bs)| . (4.35)

Formulas 18.14.7 and 18.14.9 in Abramowitz and Stegun [1] give

σ(w2) =
√

2 e(1+i)π/4 when w1 =
Γ 2( 1

4
)

4
√

π
, w3 = iw1, w2 = w1 + w3.

Scaling by t = 2
√

π/Γ 2( 1
4
) so that w1 = 1/2, and noting that the σ-function also scales

linearly, we find that

σ(bs) =
2
√

π

Γ 2( 1
4
)

√
2 e(1+i)π/4.

Then

log |σ(bs)| =
π

4
+ log(2

√
2π) − 2 logΓ ( 1

4
),

so that (4.32) follows from (4.35), and then (4.31) follows from the bound (4.29) for hs.
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In the case of the triangular pad arrangement, the maximum voltage drop occurs at

the point

bt =
1√
3
eπi/6 d = 3−3/4

√
2 eπi/6

that lies at the centre of the equilateral triangle with vertices 0, 2w1 = d, 2w3 = d α, where

d =
√

2/
4

√
3 and α = eπi/3. Since |bt|2 = 2/(3

√
3),

VT
max(ε) = −uε(bt) =

1

2π
log

1

ε
− CY +

1

4
ε2 − hε(bt),

where

CY =
1

6
√

3
− 1

2π
log |σ (bt)| . (4.36)

Formulas 18.13.15 and 18.13.28 in Abramowitz and Stegun [1] give the value of σ at the

centre of the equilateral triangle [σ(z0) in their notation] as

σ

(
1√
3
eπi/6 d̃

)
= eπ/(3

√
3) eiπ/6 when d̃ =

Γ 3( 1
3
)

2π
.

Scaling by t = d/d̃ = 2π
√

2/
(

4
√

3Γ 3( 1
3
)
)

leads to the value

σ(bt) =
2
√

2π
4

√
3Γ 3( 1

3
)
eπ/(3

√
3) eiπ/6

for the σ – function at the centre of a triangle in our lattice. Then,

log |σ(bt)| =
π

3
√

3
+ log(2

√
2π) − 1

4
log 3 − 3 logΓ ( 1

3
),

(4.34) follows from (4.36), and then (4.33) again follows from the bound (4.29) for hs. �

5 The Hexagonal configuration

We estimate the voltage drop for a hexagonal lattice with the same areal density of pads

as in the case of square and triangular power pad arrangements analysed in the previous

section. The geometric setting is the following. We consider the domain

Ω = Ωε = � \
⋃
λ∈Λ

D(λ, ε),

where Λ is the set of vertices of the blue hexagonal grid shown in Figure 2.

It will be convenient to view the set of centres Λ as the difference of two lattices: see

Figure 2. The first lattice consists of black and red vertices in Figure 2, which we denote

by BR, while the second lattice consists of red vertices alone, which we denote by R. Thus,

Λ = BR \ R. Both BR and R are lattices that determine an equilateral grid. The main

advantage of considering Λ as a difference between two lattices is that for any equilateral

lattice we can construct an associated Weierstrass entire function with zeros on the lattice

whose pseudo-periodicity properties were analysed in the previous section. Thus, instead
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of directly building an entire function with zeros on Λ, we obtain more information by

considering a quotient of two entire functions, one vanishing on BR and the other on R.

The maximum voltage drop corresponds to the minimum value of u, where u is the

solution to Δu = 1 in Ωε and u = 0 in the boundary of Ωε. The maximum voltage drop

is, consequently, at least as big as −u(0), where 0 is at the centre of a hexagon.

Let us denote by σ(z) the Weierstrass σ-function associated with the equilateral trian-

gular lattice with side length d2 =
√

2/
4

√
3 as described in (4.3). The σ-function for the

lattice BR, with sidelength d3 = 2/
4

√
27, is then

σBR(z) =
d3

d2
σ

(
d2

d3
z

)
=

√
2
3
σ

(√
3
2
z

)
,

while the σ-function for the lattice R, with sidelength
√

3d3, is

σR(z) =
√

2 β σ

(
1√
2 β

z

)
, where β = eπi/6.

Clearly, σR vanishes on the vertices of R, and σBR vanishes on the vertices of BR.

Consider the function defined in Ω by

v(z) = vBR(z) − vR(z) =

[
3

8
|z|2 − 1

2π
log |σBR(z)| − cε

]
−

[
1

8
|z|2 − 1

2π
log |σR(z)| − dε

]
,

where cε and dε are to be chosen appropriately. Both functions vBR and vR have many

symmetries. In particular, they are symmetric across any line that extends any of the sides

of the hexagon which form the original grid. Thus, v has the same symmetry. Moreover,

Δv = 1 in Ω so that v is close to the desired solution u of the problem. In fact, they differ

by a harmonic function in that u = v + h. The desired value u(0) can be approximated

by the value of v at the centre of the hexagon. The error that we make, that is h(0), can

again be estimated by the maximum principle, in that |h(0)| � sup∂Ω |h| = sup∂Ω |v|.
Constants cε and dε will now be chosen so that both sup∂Ω vBR and sup∂Ω vR are small.

The selection of cε required to make vBR small on the boundary is more straightforward.

By the symmetries of vBR , we have sup∂Ω vBR = sup∂D(0,ε) vBR . Observe that although

∂D(0, ε) is not part of the boundary of Ω, all disks around the vertices of the combined

black and red triangular grid are equal if we restrict our attention to vBR . On ∂D(0, ε), the

value of vBR is close to a constant. In fact, we see from Lemma 3 that

vBR(z) =
3

8
ε2 +

1

2π
log

1

ε
+ O(ε6) − cε, for all z ∈ D(0, ε).

Thus, with the choice of cε = 1
2π

log 1
ε
+ 3

8
ε2, we obtain that |vBR(z)| � Cε6 on ∂Ωε.

We now consider the values of vR on the boundary of Ωε which consists of disks of

radius ε at the centres of red triangles. The function vR has the same behaviour at each.

Let us denote one of the centres by A. Then, as established in Section 6, vR has a local

minimum at A. We can actually prove that

vR(z) = vR(A) +
1

8
|z − A|2 + O(ε3), for all z ∈ D(A, ε).
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Δv = 1

vy = 0

Ω

v = 0

0

Figure 4. Auxiliary domain for square lattice.

Thus, if we choose dε = 1
8
|A|2 − 1

2π
log |σR(A)| + 1

8
ε2, then |vR(z)| � Cε3 on ∂D(A, ε) and

therefore on ∂Ωε.

Finally, we have proved that sup∂Ωε
|h| = sup∂Ωε

|v| � Cε3. The voltage drop at the

centre of a hexagon is −u(0) = −v(0) − h(0), and so

VH(ε) := −u(0) = cε − dε + O(ε3) =
1

2π
log

1

ε
− 1

8
|A|2 +

1

2π
log |σR(A)| +

1

4
ε2 + O(ε3).

Observe that log |σR(A)| = log
√

2 + log |σ(A/(β
√

2))|. In our setting |A|2 = 4/(3
√

3) and

the value of the σ-function at the centre of its defining triangle can be computed explicitly

(see [1, Formula 18.13.28]), as

∣∣∣∣σ
(

A

β
√

2

)∣∣∣∣ = eπ/(3
√

3) 2
√

2π

31/4Γ (1/3)3
� 0.642836690101.

Thus, the voltage drop at the centre of a hexagon is

VH(ε) =
1

2π
log

1

ε
− 0.111391075030 +

1

4
ε2 + O(ε3),

which is (3.3). The conclusion is that the hexagonal grid has the worst voltage drop among

the ones that we considered, with the best being the triangular lattice, and the standard

square lattice being in an intermediate position.

6 Where does the maximum voltage drop occur?

We now examine where the maximal voltage drop takes place in the square lattice

configuration and in the triangular setting. Heuristically, one expects the voltage drop

to be maximal at the centres of the squares and centres of the equilateral triangles

respectively. This has been taken for granted in the literature, but we will nevertheless

give a rigorous proof of this intuitive fact. The case of the square is the easier one.

Proof Consider the solution v in the unbounded domain Ω to the mixed Dirichlet–

Neumann problem as in the Figure 4: We want to prove that it has a minimum value at

z = 0. We will prove that the function vy > 0 when 	z > 0 and vy < 0 when 	z < 0.
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Clearly,

Δvy =
∂Δv

∂y
=

∂1

∂y
= 0.

Thus, vy is harmonic. Moreover, on the ‘straight’ pieces of the boundary, vy = 0. The

function v vanishes on the half circles, thus ∇v is perpendicular to these circles. Therefore,

vy = 〈∇v, (0, 1)〉 is positive on the half circles to the top of the dotted line and negative on

all others. By symmetry, vy = 0 on the dotted line. Thus, solving the Dirichlet problem

for vy in the domain Ω+ := Ω ∩ {	z > 0}, we see that vy � 0 in Ω+ (on the boundary it

is positive) and vy � 0 in Ω− := Ω ∩ {	z < 0}.
We argue similarly in the x-direction and we are done. �

In the case of triangular lattice we consider the domain in Figure 5. The domain Ω is

the equilateral triangle where we remove the three disks of equal radius centred at the

corners of the triangle. Let p be the centre of the triangle and define the function u such

that Δu = 1 in the interior of Ω, u = 0 on the part of the boundary of Ω defined by the

arcs of circles and ∂u/∂n = 0 on the part of the boundary of Ω defined by the sides of

the triangle. The claim is the following:

Claim There is only one minimum value of u in Ω and it is attained at p.

Proof We will base this argument on a variation of the radius of disks. It will be

convenient to denote by Ωt the domain obtained by removing the disks of radius t and

by ut the corresponding solution. We will denote by v the Green’s function of the flat

torus whose fundamental domain is twice the equilateral triangle. It follows from the

definition that the Green’s function of this torus is the function v(z) = 1
4
|z|2 − 1

2π
log |σ(z)|,

as we saw in Lemma 2. In a sense we will see that ut is very close to v as t → 0. We are

interested in the critical points of ut. The corresponding critical points for v have been

identified in [7] and the only ones appearing are the trivial ones that can be identified by

symmetry considerations. There is a local minimum of v at p and three saddle points at

the midpoints of the sides of the triangle.

We are going to prove that a very similar structure arises in the case of ut, namely

that there is a minimum at p and three saddle points at the midpoints of the sides of the

triangle.

Throughout this discussion we will restrict ourselves to the case 0 < t < t0, where t0
is the largest radius such that the disks defining Ωt are disjoint, since this is the only

relevant case.

We begin by observing that ut has a critical point at the centre p for symmetry reasons.

Moreover, since ut(e2πi/3(z − p)) = ut(z − p), the Hessian of ut at p must be a constant

times the identity matrix. Since Δut(p) = 1, it follows that utxx(p) = utyy(p) = 1/2.

Let d1, d2, d3 be vectors pointing from p to the vertices v1, v2, v3 of the triangle as in

Figure 5. By symmetry again, the gradient of ut at any point of a median of the triangle

is a multiple of dj .
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p d1

d2

d3

v3

v2

v1

o2

o3

o1

Figure 5. (Colour online) The equilateral triangular fundamental domain.

Assume, for the time being, that there is a δ such that for any given t < δ we have

proven that utdj (x) > 0 at any x on the median joining p to the corresponding vertex

(excluding the centre), i.e. along the medians the gradient points towards the vertices.

Under this assumption, we concentrate our attention on the yellow region in the picture

consisting of one-third of the original domain Ωt bounded by two of the medians. We

will prove that on the yellow region the function uto1
, which is the derivative of ut in

the direction o1 := −d3, is strictly positive. This is clear because the function uto1
is a

harmonic function (Δuto1
= 0) and on the boundary of the shaded region it is positive:

On the medians it is positive by assumption, on the remaining side of the triangle it is

actually 0 by the definition of ut, and on the arcs of circles the gradient of ut points

towards the centre of the disks (ut ≡ 0 on the boundary of the disks and it is negative in

Ωt), thus uto1
is positive on the arcs of circles that bound the shaded region.

Now any point q belonging to the yellow region has the property that u(p) < u(q)

since we can follow a path from p to q consisting of a line segment parallel to the

median followed by a line segment in the direction of o1, and on both segments ut will be

increasing.

It remains to prove that utdj (x) � 0 on the corresponding median. Let us assume for the

time being that this is the case for all t � δ. We will prove then that this is true for all

t < t0.

Let us denote by t∗ the largest t such that utdj (x) � 0 on all points of the median. Now

we will see that if t∗ < t0, we reach a contradiction. By continuity, ut
∗

dj
(x) � 0 on the

median. If we proved that actually

ut
∗

dj
(x) � c > 0 (6.1)

on the median, we would have reached a contradiction since t∗ would not be maximal. We

cannot prove (6.1) directly since utdj (p) = 0 but, in a neighbourhood of p, utdj (x) > utdj (p)

since utdjdj (p) = 1/2. Thus, if t∗ is maximal, it may only be for two reasons. Either there

is a point q in the interior of the median different from p such that ut
∗

dj
(q) = 0 or the

same thing happens for the point q′ that is at the intersection of the median with the

boundary of Ωt. Let us examine these two cases separately. In the first case, ut
∗

dj
� 0 along

the median but it vanishes in some intermediate position. By symmetry, this will happen

in ut
∗

d1
and ut

∗

d2
simultaneously. Thus, ut

∗
o1

is a harmonic function in the yellow region that

is positive on the boundary (and strictly positive at some points on the boundary, for
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instance near p). Thus, by the maximum principle, it is a strictly positive function in the

interior of the yellow region. Thus, ut
∗
o1

is positive on the median that bisects the yellow

region. By symmetry again ut
∗
o3

is positive on the segment of the median denoted by o3 in

the picture. Therefore, finally, ut
∗

d1
� 0 on the region bounded by o1, o3 and ∂Ωt. Finally,

since ut
∗

d1
is harmonic, it follows that it is strictly positive on the interior, i.e. on the median

d1. Thus, such a point q does not exist.

On the other hand, ut
∗

d1
cannot vanish at the endpoint e where the median d1 meets

the circle because we are assuming that t∗ < t0 and therefore the expected lifetime near

the boundary of the disk can be estimated from below by the expected lifetime of a

corona around the disk. This has an explicit expression that has positive derivative on the

boundary. Thus, ut
∗

d1
(e) > 0. We have reached a contradiction.

It only remains to prove that we can start the argument, i.e. that there is a δ such that

for any given t < δ we have that utdj (x) > 0 at any point x (excluding the centre) on the

median joining p to a vertex. This is the case when t = 0. In this case we define u0 = v,

the Green’s function. In this case, the gradient vdj is positive along each median because,

by the results of [7], p is a unique critical point of v in the interior of Ω0. For very small

t, the Green’s function v has values in the circles around the vertices of the triangle very

close to a constant. Thus, ut can be obtained by adding to v a harmonic function that

almost coincides with a constant in the circles. One can check that utdj is close to vdj , and

thus it is positive if t is small enough. �

7 Conclusions

Complex analysis methods, and elliptic functions in particular, are used to estimate the

maximum value, in absolute terms, of the solution to the boundary value problem Δu = 1

with zero Dirichlet boundary conditions in the complement of an infinite grid of disks

of fixed size ε. This models the maximum voltage drop between power distribution pads

in modern IC computer chips. The goal, building on existing work in the literature, is

to compare different geometric arrangements of power pads with a view to minimizing

the maximum voltage drop. With the normalisation that the areal density of pads is

the same in all cases, it is found that an equilateral triangular power pad disposition

outperforms the industry-dominant square power pad disposition. A hexagonal power

pad disposition is also analysed and found to underperform both triangular and square

arrangements. Other regular configurations of pads can be considered, but we do expect

that the equilateral lattice is optimal. This is reminiscent of the Abrikosov conjecture,

where it is speculated that free electrons under a uniform external magnetic field minimize

their energy in an equilateral lattice. It has been recently proved, see [8], that among

regular lattices the triangular one is optimal for the Abrikosov problem.

These mathematical results complement the work of Aquareles et al. [2], and are in

agreement with the findings of Shakeri and Meindl [9] and Chen et al. [3] as well as

with physical and SPICE models. We obtain simple explicit formulas for the maximum

voltage drop in each of the power pad arrangements (square, triangular and hexagonal)

as a function of the pad size ε. Finally, we establish rigourously that the maximum voltage
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drop in the case of square or triangular grid arrangement occurs at the centre of a square

or triangle respectively.
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