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ABSTRACT

Growth factors seem to be part of a complex cellular signalling language, in which individual growth factors are the
equivalents of the letters that compose words. According to this analogy, informational content lies, not in an individual
growth factor, but in the entire set of growth factors and others signáis to which a cell is exposed. The ways in which
growth factors exert their combinatorial effects are becoming clearer as the molecular mechanisms of growth factors
actions are being investigated. A number of related extracellular signalling molecules that play widespread roles in
regulating development in both invertebrates and vertebrales constitute the Fibroblast Growth Factor (FGF) and type |3
Transforming Growth Factor (TGF (3). The latest research literature about the role and fate of these Growth factors and
their influence in the craniofacial bone growth ad development is reviewed.

RESUME

Les Facteurs de Croissance (Growth Factors), font aparémment partie d'un langage compléxe de signaux céllulaires,
dans lequel les facteurs de croissance individuéis séraint l'équivalent des lettres qui composeraient les différents mots.
A la suite de cette analogie, le contenu de 1'Information ne se trouverait pas dans un facteur isolé, mais dans tout
l'ensemble de facteurs de croissance et d'autres signaux auxquels la cellule est exposée. Les voies par lesquelles ees
mollécules éxercent leurs effets combines deviennent plus clairs au für et a mesure que les méchanismes d'action des
facteurs de croissance sont décrits. Le Fibroblast Growth Factor (FGF) et le Transforming Growth Factor-p (TGFfS)
constituent les deux groupes de mollécules de signalisation qui jouent un role plus étendu en la regulation du
developpement aussi des invertebrés que des vertebres. Cette revue de la literature présente les derniers travaux sur le
role et l'evolution de ees Facteurs de Croissance et leur influence sur la croissance et le developpement des os du crane
et de la face.
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INTRODUCTION

The biochemical variations in craniofacial sutures at
differents stages of their development are still unknown.
To understand the normal and abnormal behaviour such
knowledge migth be crucial. A number of related
extracellular signaling molecules that play widespread
roles in regulating development in both invertebrates and
vertebrales constitute the Fibroblast Growth Factor
(FGF) and type p Transforming Growth Factor (TGF(3)14.
TGF-p is a 25 kDa dimeric protein which represents a
large family of factors with a variety of activities. The
concept that TGF-P is prototypic of a superfamily of
growth, differentiation, and morphogenetic factors
became clear in 19873-4. The structural prototype for this
gene superfamily is the protein that was first isolated
from human platelets as TGF-p s, cloned from a human
cDNA library6 and later named TGF-P I7. The
distribution of TGF-P related factors is widespread in
organisms from fruit flies to humans, and their
evolutionary conservation is unusually strict8. There are
three TGF-P isoforms (TGF-pl-p3) that initiate a variety
of osteogenic cascades in mammals"2.

The Fibroblast Growth Factor family currently
comprises nine members, FGF1 to 9, which in
mammals, can interact with four different receptor
tyrosine kinases (FGF receptors [FGFRs]) to stimulate
mitogenic, differentiation, migration and survival
responses depending on the target cell and its
development history13"14. The genes encoding FGFs and
FGFRs are evolutionarily conserved and the receptors
have been identified in both vertebrates and
invertebrates15. Many FGF genes display expression
patters in early mammalian embryos suggestive of
significant role in development16"22. FGF promotes cell
proliferation in chondrocytes in vitro23 and in vivo24 as
well as in osteoblasts in vitro".

To understand the role of cranial sutures as
intramembranous bone growth sites, its necessary to
establish where sutures occurs, how they form, and what
regúlales their formation and maintenance26. Despite the
obvious differences in human and rodent craniofacial
characlerislics, there is an amazing conservation in the
molecular specification and assembly of the embrionic
cranial structures. Coordinated allometric growth of the
cranium is achieved through an elabórate series of
tissues interactions among of the brain, dura mater,
suture mesenchyme, and calvarial bones27. The presence
or absence of FGFand TGFp during embryonic mouse
development may díctate wide-ranging effects on the

progression of skull expansión.

If these studies elucídate the specific functions of
FGFs and TGF-P members during mouse craniofacial
development, and provide importan! molecular
characterization, will constitutes a foundation for the
design and testing of non-surgical therapies for the
correction of abnormal craniofacial development in
humans.

TRANSFORMING GROWTH FACTOR 0 AND
BONE

Normal skeletal growth results from a balance
between the processes of bone matrix synthesis and
resorption. The biochemistry of skeletal growth is
complex, and results from many anabolic and catabolic
processes regulated by endocrine, paracrine, and
autocrine factors. Although many growth promoters are
associated with bone matrix, it is related particulary with
TGF-p activity. The intricated mechanims by which
TGF-p regúlales bone formation are likely to be
fundamental to understanding the processes of skeletal
growth during development, maintenance of bone mass
in adult life, and healing subsequent to bone fracture28.

Both bone matrix and the conditioned médium of
bone organ cultures are rich in TGF-P29"34. TGF-P is
thought to be a local regulator of bone growth, as it has
dose-dependent effects on cell replication in bone organ
culture and in osteoblast-enriched cell populations from
cultures of fetal rat calvaría14"36. In 1990 Shinar and
Rodan reported a biphasic effect of TGF-p on the
production of osteoclast-like cells (OC) in mouse bone
marrow cultures; low concentrations of TGF-P
stimulated the generation of OC, whereas higher
concentrations inhibited greatly their production38.

TGF P also regulates the expression of extracellular
matrix proteins at the transcriptional and
posttranscriptional levéis in a variety of isolated cell
cultures8-39"45. In bone organ culture and osteoblast-
enriched cell cultures, it alters differentiated cell funtion
by stimulating protein and collagen synthesis and
inhibiyig alkaline phosphatase activity and osteocalcin
production 3546"48.

Noda and Camilliere provided in 1989 the first
evidence that all TGF-p stimulates bone formation in
vivo49. Experimental evidence indicates that bone and
cartilage contain large amounts of TGF-P and active
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target cells for its activity 9. In 1990, Joyce, et al 50

showed that the effect of TGF-(3 on the periosteum is
first to stimulate the proliferation of mesenchymal cells
that then differentiate into chondrocites and osteoblast.
The net result of coninued TGF(3 injection was the
formation of a callus with central cartilage and lateral
intramembranous bone; the endocondral replacement of
the cartilage, and the remodeling into cortical bone after
cessation of the TGF-J3 treatments. They showed that
TGF-(32 induce a matrix that contains both type I and
type II Collagen a characteristics that is compatible with
Chondroid tissue, which was described by Goret-
Nicaise51. Carrington et al52, showed that TGF-(3l and
(32 were present during endochondral bone development
when the critica! transition from calcified cartilage to
bone was taking place in presence of osteoblasts. Hock
et a/.53 showed that TGF-J3 is a mitogen in all cell zones
of the pericranial periosteum. This mitogen effect is in
contras! to the more specific effects of the Insuline Like
Growth Factor (IGF-I) which preferentially stimulate
cell replication in the progenitor and osteoblast cell
zones 54.

TGF-P AND EMBRYONIC DEVELOPMENT

The history of the skull development is complicated
because its progressive phylogenetical modifications and
its adaptative specialization to the new and more
complex functions that appear during the evolution55.
The skeletal system develops from the paraxial and
lateral píate (somatic layers) mesoderm and from the
neural crest56. Cranial neural crest migration in the
mouse begins at embryonic day 8 and is completed after
approximately 2 days27.

Neural crest cells in the head región differentiate into
mesenchyme (ectomesenchyme) and particípate in the
formation of the face and skull bones. The more ancient
and dorsally situated part of the skull base, that appears
around the notochord, is from mesodermic origin,
derived from the occipital somites. The rest of the cranial
base, derived from the paraxial mesoderm, completes the
cranial base structure, by way of an endochondral
ossification process55 57. The phylogenetically newest
part of the skull develops from the neural crest cells. It
constitutes both the exoskeleton of the neo-encephalon
and the viscerocranium, mus including in a complete
structure of mesectodermal origin both the calvaría, the
bone structures surrounding the sensory organs, and the
branchial arches derivatives, which will constitute the
stomatognathic system. These neural crest cell
derivatives develop into bones by way of an
intramembranous ossification process55.

In the rat, all cranial vault sutures with the exception
of the posterior interfrontal suture remain patent for the
life of the animal27. At birth the fíat bones of the human
skull are separated from each other by narrow seams of
connective tissue, the sutures, which are also derived
from neural crest55. Cranial vault sutures are the major
sites of bone growth along the leading margins of the
cranial bones during craniofacial development,
especially during the rapid expansión of the
neurocranium 5S.

The posterior fontanelle closes about 3 months after
birth, but the anterior fontanella normally remains open
until 1.5 year of age59. The main biological funtion of
the sutural tissue is not restricted to being an articulation
but appears to include: 1) to unite bones, while allowing
minor movements; 2) to act as growth áreas; and 3) to
absorb mechanical stress, thus protecting its osteogenic
tissue60 and the neural structures beneath.

Pritchard et al61 stated that a difference exists in the
development of facial and cranial sutures. Persson and
Roy62 offered a biomechanical explanation for the
morphogenesis of facial sutures, where dura mater does
not exist. Based on the sutural development of the rabitt
palate, they concluded that spatial separation of bones
during growth regulates suture formation. Whereas the
bones in the facial skeleton approach each other in loóse
mesenchymal tissue, those in the cranial vault approach
each other in an already differentiated membrane, the
fibrous brain capsule. This capsule, the extomeninx, is
delaminated by the osteogenesis into an outer periosteal
layer and an inner dura mater.

To function as bone growth sites, sutures need to
remain patent while allowing rapid bone formation at the
edges of the bone fronts27. Cartilages adjacent to facial
and cranial sutures occur both in humans63 and in the
midpalatal suture of rats and mice, where a
synchondrotic unión between bones is established6264.
The cartilages are secondary cartilages and are mainly
found in rapidly growing áreas. As for the calcified
tissues, many authors65 6S have attributed the presence of
cartilage in the sutures to the relative anoxia and to the
biomechanical forces present in the sutural área during
its closure, even if they have also suggested that the
normal sutural closure occurs without the participation
of cartilaginous tissue. The presence of chondroid tissue
in the human cranial vault, the biomechanical reasons
for its presence and the precise role witch plays in the
closure of the metopic suture in the human were already
described by Goret-Nicaise and her co-workers69 71 in the
1980's. Rafferty and Herring68 have recently confirmed
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those fmdings in experimental studies.
TGF-P like activity has been reported in extracts of

mouse embryos72"71 by differential immunolocalization of
all three TGF-p isoforms in embryonic cartilage
(perichondrium and chondrocytes) and bone (
periosteum and osteocytes), as well as in liver and
thymus7475. Findings from these studies indicated a
complex interaction pattern of translation and secretion
between the TGF-P isoforms existing in the mouse
embryo. The results also suggested that the TGF-P
isoforms act through paracrine and autocrine
mechanisms during embryogenesis.

However, the intrinsic physiological role of those
peptide in the developing embryo is still unknown.
Heine et a/76 presented data suggesting that TGF-P has
an important role in many embryonic tissues,
particularly in those in mesodermal and neural crest
origin, at specific times, when critica! morphogenetic
and histogenetic events occur.

They also showed that the participation of TGF-P in
cartilage and bone formation is not limited to the axial
skeleton, since intense staining is also found in
craniofacial mesenchyme of neural crest origin, destined
to become mandible, maxilla, palate, nose and nasal
tissues, and other important craniofacial structures.

Mouse skulls have been studied histologically in
order to better understand the morphogenesis and
maduration of cranial sutures. Contemporany research
has fundamentally reformed our understanding of
cranial suture biology. In vitro and in vivo models
demonstrated that the subjacent dura mater shapes
spatially supplying osteoinductive growth factors (TGF-
PS or FGF-2) and cellular elements (eg. Osteoblast-like
cells) to the overlying osteogenic fronts and suture
mesenchyme77. There is a differential biologic activity
for TGFp isoforms during cranial suture, development,
growth and fusión.

ROLE OF TRANSFORMING GROWTH
FACTOR IN CRANIAL SUTURE FUSIÓN

Despite the high degree of homology among the
three mammalin isoforms, TGF-P 1, TGF-P2, TGF-P3
can have different biological effect on the same cell7S. To
determinate whether growth factors were involved in the
development, growth and maintenance of sutures its
necessary to determine their presence in suture tissues.
Opperman et al79 have demostrated the specific location
of TGF-P 1, P2 and P3 in developing sutures, sutures
remaining unossified, and sutures becoming obliterated,

thereby implicating a role for these growth factors in
cranial suture morphogenesis. The continued presence of
of TGF-P 1 and p2 in the developing rat coronal and
frontonasal suture proven by inmunohistochemical
analysis, was associated with posterior frontonasal
suture fusión, whereas a decrease in intensity in TGF-P 1
and TGF-P2 inmunoreactivity was associated with the
maintenance of coronal suture patency. Increased TGF-
b3 activity was associated with the coronal suture
remaining unossified, suggesting a role for'TGF-p3 in
maintaining suture patency. Roth et al80'81 described the
inmunolocalizatin of TGF-pl, TGF-P2 and TGF-P3 and
IGF-I in both fusing and patent cranial sutures in rats and
in human. In the rat, there was an increased
inmunoreactivity for the TGF-P isoforms and for IGF-I
in the actively fusing posterior frontal suture compared
with patent control sutures. In an analysis of human
suture specimens, a more intense immunoreactivity for
these same growth factor was noted in the osteoblast at
the margins of prematurely fusing sutures when
compared with patent control sutures 79.

Numerous studies have shown that sutural fate (ie.
Fusión vs Patency ) is regulated by the dura mater
directly underlaying the cranial suture628285 Menhara et
aP3 using recombinant DNA technology, a replication
deficient adenovirus encoding a defective TGF-P
receptor capable of blocking TGF-P receptor to the dura
mater underlying a cranial suture programmed to fuse
can significantly attenuate suture fusión even after
prolonged in vitro culture. Sagiroglu et al*6

demonstrated that TGF-pl production is increased
significantly in the postero-frontal suture compared with
the sagittal suture in the initial stages of "in vitro" suture
fusión, and that TGF-P 1-3 production by these tissues
decreased thereafter.

Studies supporting a role of dura mater in cranial
suture fusión detail its osteoinductive and
osteoconductive properties 87~89. Postero-frontal suture
surgically manipulated to overlie the sagittal suture dura
mater remain patent, whereas sagittal sutures
manipulated to overlie the postero-frontal suture dura
mater fuse5090 In addition, postero-frontal sutures
maintained separated in vitro from their underlying dura
mater remain patent, whereas separation followed by
coculture of postero frontal suture complex and its
underlying dura mater restores programmed sutural
fusión ". Yu et a/88 have shown that transplantation of
calvarial dura mater into epitheliomesenchymal pockets
can induce bone formation. Other investigations have
shown that dura mater is the critical determinan! of
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calvaría bone regeneration after surgical excisión in
immature animáis 9193. Spector et al94, isolated 35 to 40
postero-frontal and Sagital suture complexes, and
suture-derived cell cultures were established. They
demostrated that molecular differences between the
posterior frontal and sagittal suture complexes were
readily identified in vivo, although these distinctions
were lost once the cells comprising the suture complex
were cultured in vitro. They suggested that these changes
in gene expression resultad from the loss of the influence
of the underlying dura mater. High levéis of TGF-J31
inmunoreactivity were further detected in cells lining the
bone fronts of coronal suture undergoing osseus
obliteration after being cultured in the absence of dura
mater: lower levéis of inmunoreactivity were seen in
nonfusing coronal sutures cutured in the presence of
dura mater. In contrast to the in vivo fmdings, low levéis
of inmunoreactivity of TGF-p2 remained in coronal
sutures cultured in both the presence and the absence of
duramater.

Suture obliteration induced by remo val of TGF-J33
activity was preceded by elevated levéis of DNA
synthesis, similar to these seen upon removal of the dura.
Addition of exogenus TGF-(33 to calvarie cultured
without dura both prevenís suture obliteration and
reduces DNA synthesis to levéis comparable to those
seen in with sutures intact dura. Addition of exogenous
TGF-p2 to calvarial cultures induced sutural fusión
accompanied by elevated levéis of cell proliferation.
Sutures rescue from obliteration by removal of TGF-J32
activity did not have decreased levéis of cell
proliferation 95.

The biological functions of TGF-ps are modulated
by interactions with two widely expressed
transmembrane serine-threonine kinase receptors: (Tb-
RI and Tb-RII)96. Menhara et al97 have show that Tb-RI
and Tb-RII immunostainig is increased in the dura mater
and osteoblast of the sutural margin of the postero-
frontal suture during active suture fusión compared with
the osteblast and dura mater underlying the patent
sagittal suture. Cui et alm have also localized the
expression of TGF-J33 and TB-RII in palatal epithelial
cells during palathogenesis. Transforming growth
factors-b3 does not regúlate protein levéis of TGF-|32 in
sutures94-90, so TGF-p"3 could regúlate tissue
responsiveness to TFG-(i2 by regulating TGF-(32 access
to receptors.

Opperman et al™, found that the numbers of cells
expressing Tb-RI within the suture matrix increased over
time in sutures remaining patent. Osteoblastic cells

lining the bone fronts on either side of sutures were Tb-
RI positive during early morphogenesis, but these
numbers declined as sutures fused, both in vivo and in
vitro. Addition of TGFb3 to calvaría in culture decreased
the number of Tb-RI expressing cells in both fusing and
non-fusing sutures, with dramatic decreases in the
numbers of osteoblast expressing Tb-RI.

FIBROBLAST GROWTH FACTOR

Significant advances in our understanding of the later
development roles of FGFRs have come from
investigations into genetics basis of human dysmorphic
diseases. These investigations have highlighted the
critical role that the FGFr family plays in bone and limb
development101-102. Mutations in FGFr3 have been shown
to be responsible for achondroplasia, the most common
form of dwarfism103-104.

The achondroplasia phenotype is consistent with the
FGFr3 RNA expression patters both in the developing
mouse and human, which showed transcripts in the
cartilaginous rudiments of all developing bones
including the skull and long bones of the limbs105'06.

Recent genetic mapping studies have demonstrated
mutations in fibroblast growth factor receptors,
particulary FGFrl and FGFr2, in association with
craniosynostotic syndromes107106. Mutations in FGFrl
have been associated recently with Pfeiffer syndrome113,
an autosomal dominant disease characterized by
craniosynostosis, or premature fusión of the cranial
sutures, resulting in an abnormal skull shape and
craniofacial anomalies.

Mutations in FGFr2 have also been identified in three
other autosomal dominant craniosynostosis syndromes
known as Jackson-Weiss, Crouzon and Apert
syndromes101. In addition, numerous in vitro and in vivo
studies have demonstrated an important role for basic
fibroblast growth factor (bFGF), the most abundant
FGFr ligand, in the regulation of ephitelial-
mesenchymal interactions, limb pattering, fracture
healing, and bone growth"4'"6.

The analysis of targeted mutations in the genes
encoding mouse FGFs and their receptors has
demonstrated the critical role that these signalling
molecules play in regulating embryonic growth and
patterning during the early post-implantation
development. The demonstration that mutations in
human FGFrs underline several dysmorphic diseases has
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provide genetic evidence that FGFrs are involved in limb
and craniofacial development101.

In developing cranial sutures both in vivo and ex vivo,
the undifferentiated mesenchymal cells of the sutures
have the dual role of proliferation within sutural tissues
to maintain the normal suture cellularity and architecture
while simultaneously providing a pool of cells from
which osteoblast, along the osteogenic fronts, can
differentiate to form bone 8(). Several candidate factors
are present during the development and growth of cranial
sutures and likely play a part in this complex regulatory
sequence. Through the identification of mutations in
their receptors, the fibroblast growth factors (FGFs) have
similarly been implicated in suture regulation89.
Opperman et al79 have demonstrated that embryonic
cranial suture patency in vitro is dependen! on the
presence of the underlying dura and that this interaction
is mediated by soluble, heparin biding factor such as the
fibroblast growth factor. Also they were the first to
suggest the existence of communicators for the suture-
dural interactions that maintain cranial suture patency
during development.

The fact that bFGF is a heparine binding molecule,
together with the finding that increased bFGF
immunostaining in the fusing posterior frontal suture
was initially noted in cells of the underlying dura mater
and osteoblast of the endocranial bone. This was the
observation of followed later by increased staining of
the remaining sutural connective tissue, that suggests
that bFGF is an important regulator of bone induction
and sutural fusión by the dura mater"7. Spector et al94

reported that stimulation of immature dura mater with
recombinant human FGF2 resulted in significant
changes in proliferation, expression of extracellular
matrix molecules and markers of the osteoblast lineage,
and production of osteoinductive cytokines. This
incresead pool of more differentiated cells may be a
crucial effector of calvarial morphogenesis, cranial
suture fusión and reossification after injury. FGF2 levéis
are highly elevated in fusing sutures"8 morco ver addition
of FGF2 to sutures induces fusión"9. Also in addition of
FGF4 to cultured foetal mouse calvaría induces
premature suture fusión associated with elevated levéis
of cell proliferation120.

Normal human osteoblast increase TGF-B2
production during prolonged exposure to FGF2,
accompanied by increased osteoclast production and
matrix mineralization121. Opperman43 suggests that most
of the FGFr mutations do not affect proliferative activity,
but rather alter cell differentiation. Increased cell
proliferation at the suture, both increasing the bone cell

lineage and accelerating osteoblast differentiation,
results in increased bone formation, that would be
sufficient to induce premature suture obliteration.
Experimental evidence supporting receptor
autoregulatory mechanism in fibroblast growth factor-
mediated mechanisms can be derived from studies
demonstrating regulation of FGFrl and FGFr2 in
response to fibroblast growth factor stimulation122125.

Meharara117 et al and also Most et a/118, have
demonstrated increased bFGF and decreased FGFrl and
FGFr2 immunostaining during sutural fusión in the rat
posterior frontal suture. They have demonstrated an
increased FGFrl and FGFr2 immunostaining in the
patent sagittal suture as compared with the fusing
posterior frontal suture. A similar pattern of
immunostaining was noted in experiments investigating
FGFr2 in patent and synostotic sutures of patients with
Crouon syndrome125126.

Those data suggest an active role for bFGF in the
regulation of sutural closure. Recently, Iseki et al. "9

have investigated the patters of expression of FGFrl,
FGFr2 and FGFr3 in the fetal mouse head, with specific
reference to their relationship to cell proliferation and
differentiation in the frontal and parietal bones and in the
coronal suture. FGFr2 is expressed only in proliferating
osteoprogenitor cells; the onset of differentiation is
preceded by down regulation of FGFr2 and up-
regulation of FGFrl. Following up-regulation of the
differentiation marker osteopontin, FGFrl, osteonectin
and alkaline phosphatase are down-regulated, suggesting
that they are involved in the osteogenic differentiation
process but not in maintaining the differentiated stated.
They suggest that a gradient of FGF ligand, from high
levéis in the differentiated región to low levéis in the
enviroment of the osteogenic stem cells, modulates
differential expression of FGFrl and FGFr2 and that
signalling through FGFr2 regúlales stem cell
proliferation whereas signalling through FGFrl
regúlales osteogenic differentiation.

Warren et al127 showed that noggin, an antagonic of
bone morphogenetic proteins (BMPs) required for
embryonic neural tube, somites and skeleton
patterning128"13" is expressed postnatally in the suture
mesenchyme of patent but not fusing cranial sutures, and
that noggin expression is supressed by FGF2 and
syndromic FGF-r signalling. Since noggin
misexpression prevents cranial suture fusión in vitro and
in vivo, they suggested that syndromic FGFr mediated
craniosynostosis may be the result of inappropiated
downregulation of noggin expression.
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The analysis of targeted mutations in the genes
encoding mouse FGFs, TGFs and their receptors has
demostrated the critical role that these signalling
molecules play in regulating embryonic growth and
pattering during the early post-implantation
development.

The mouse embryo presents a hard challenge to
development biologists. It has however two immediate
attractions. First, the mouse is a mammal as humans are.
Second, among mammals, it is one of the most
convenient for genetics studies, because it is small and
breeds rapidly.

These two factors have spurred an enormous research
effort, resulting in the development of some remarkably
powerful experimental tools that will hopefully help us
to understand the complícate process of cranial growth
in the future .
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