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TITLE RUNNING HEAD. Lamellarin D – NLS and DTPA conjugates. 

 

ABSTRACT: The design and synthesis of Lamellarin D conjugates with a nuclear localization 

signal peptide and a poly(ethylene glycol)-based dendrimer are described. Conjugates 1-4 were 

obtained in 8-84% overall yields from the corresponding protected Lamellarin D. Conjugates 1 and 

4 are 1.4 to 3.3-fold more cytotoxic than the parent compound against three human tumor cell lines 

(MDA-MB-231 breast, A-549 lung, and HT-29 colon). Besides, conjugates 3, 4 showed a decrease 

in activity potency in BJ skin fibroblasts, a normal cell culture. Cellular internalization was 

analyzed and nuclear distribution pattern was observed for 4, which contains a nuclear localization 

signalling sequence.  

 

KEYWORDS: Lamellarin D; PEG; DTPA; Nuclear localization signal; Dendrimer 

 
 



 

  3

INTRODUCTION 

Actively mediated cellular delivery of biomolecules (1) has garnered great interest as a strategy for 

delivering cancer chemotherapeutics (2-5). Conjugates of a drug and a macromolecular vehicle such 

as NLS1 peptidic sequences (5-8), PEG carriers (9) and dendrimers (10) may have better cellular 

internalization than the drug alone, and in some cases, may produce passive accumulation of the drug in 

tumors by the EPR effect (11). In addition, the therapeutic activity of these conjugates is associated to 

their capacity to release the drug at a specific subcellular target. Thus, the suitability of 

macromolecules as vehicles also extends to their propensity to deliver the drug to a predetermined 

intracellular location.  

The marine alkaloid Lam-D (12-15) is a promising drug candidate due to its Topo I inhibition 

activity. Topoisomerases are nuclear enzymes crucial in cellular replication. They change the 

topology of DNA before and after the replication and transcription processes. Therefore, they are 

especially attractive targets for cancer therapy (16-19). Lam-D is limited by its insolubility in 

common solvent media, especially in water. Therefore, it has been used to investigate its 

conjugation to macromolecules. In the previous paper we have described the first generation of Lam 

D-bioconjugates based on PEG esters such as 1 (9). In this paper we describe a second generation of 

Lam-D conjugates (Figure 1) based on esterification with either a poly(ethylene glycol)-based 

dendrimer (in 2) or NLS oligopeptide sequences (in 3 and 4). The peptide NLS H-Pro-Pro-Lys-Lys-

Lys-Arg-Lys-Val-OH, which has been demonstrated (20) to shuttle compounds to the nucleus, was 

used in the present work.  

The introduction of such oligomeric systems to Lam D demanded an integrated and robust 

synthetic scheme with a collection of suitable orthogonal protecting groups, in terms of selective 

removal and compatibility with the presence of other functional groups (21).  

EXPERIMENTAL PROCEDURES  

General Data. Reagents and solvents were purified according to Purification of Laboratory 

Chemicals, Armarego, W. and Chai C., Elsevier (2003). Melting points (m.p.) were determined in a 
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Büchi Melting Point B540 in open capillaries and are uncorrected. Automatic flash chromatography 

was done in an Isco Combiflash medium pressure liquid chromatograph with Redisep silica gel 

columns (47-60 µm). Sonication was performed in a Branson ultrasound bath. 1H NMR and 13C 

NMR spectra were recorded on a Varian Mercury 400 MHz spectrometer and a Gemini 200 MHz 

spectrometer. Multiplicity of the carbons was assigned with DEPT and gHSQC experiments, using 

standard abbreviations for off-resonance decoupling: (s) singlet, (d) doublet, (t) triplet, (q) quartet. 

The same abbreviations were also used for the multiplicity of signals in 1H-NMR, plus (m) 

multiplet, (bs) broad singlet, (bd) broad doublet. Spectra were referenced to appropriate residual 

solvent peaks (d6-acetone, d6-DMSO, d4-MeOH or CDCl3). IR spectra were obtained on a Thermo 

Nicolet FT-IR spectrometer. HRMS were performed on a Bruker Autoflex high resolution mass 

spectrometer by Unidad de Espectrometría de Masas (Universidad de Santiago de Compostela) and 

by Servei d’Espectrometria de Masses (Universitat de Barcelona). Microwave-assisted reactions 

were carried out in a CEM Discover microwave. The automatic syringe pump was used as specified 

for controlled addition of some reactants. Reversed phase analytical HPLC was performed on a 

Waters Alliance separation module 2695 using a Waters Xterra MS C18 column (150 x 4.6 mm, 5 

µm) and a Waters 996 PDA detector at 254 nm. 

 

General Procedures: 

A) General Method for Simultaneous Removal of TBDPSO and N-Boc. 

HF (5 mL) at -196 ºC was poured over solid 11, 12 or 14 (0.05-0.08 mmol). The solution was 

stirred for 1 min and the solvent was immediately removed under vacuum at low temperature. 

MeCN was added to the crude, and the deprotected compound was precipitated by addition of 

MTBE, cooling to 0 ºC and centrifugation (10 min, 2000 r.p.m.). The residue was dried in vacuo to 

give the final Lam-D conjugates 1-3. 

B) General Method for MOMO deprotection  
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Me3SiI (142 µL, 3.00 mmol) was added at r.t. to a solution of 10a, or 10b (1.00 mmol) in CH2Cl2 

(225 mL), and the resulting orange solution was stirred at r.t. for 20 min. The solvent was removed 

in vacuo, and the residue was dissolved with EtOAc and then washed three times with sat. NH4Cl 

and brine. The organic phase was dried over anhydrous MgSO4 and the solvent was removed in 

vacuo. Purification by column chromatography on silica gel by elution with hexane/EtOAc (80:20 

to 60:40) gave the title compounds (84%-quant. yield). 

C) General Method for Esterification. Synthesis of Conjugates. DMAP (0.6 mmol) and 5 (1 

mmol) in dry CH2Cl2 (45 mL) were added to a solution of NHBocPEG6-OH, or Boc-NLS-Gly-OH 

(4 mmol), and EDC·HCl (4 mmol) in dry CH2Cl2 (5 mL). The resulting solution was stirred at r.t. 

for 2 h. The reaction mixture was diluted with CH2Cl2 and washed with sat. NaHCO3 solution and 

brine. The organic phase was dried over anhydrous MgSO4 and the solvent removed under vacuum, 

to provide the title compounds 11 and 13 (89%-quant. yield). 

3-[3-(2-(2-(2-(2-(2-(2-Aminoethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)propanoyloxy]Lam-

D (22) (1). Following the general procedure A and starting from 11 (24, 23 and 23 mg, 0.05 mmol), 

a yellow solid (35 mg, 84%) was obtained. The spectroscopic data are in accordance with previous 

reports (9). 

3-[2-(Bis(2-(bis(2-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propylamino)-2-

oxoethyl)amino)ethyl)amino)acetyl]Lam-D (22) (2). Following the general procedure A and 

starting from 12 (17 and 15 mg, 0.12 mmol), 2 as a yellow solid (8 mg, 36%) was obtained. 1H 

NMR (D2O, 400 MHz) δ 1.54 and 1.67 (2h, J = 6.6 Hz, 8H); 1.76 and 1.83 (2h, J = 6.6 Hz, 8H); 

2.93 (2t, J = 7.2 Hz, 4H); 2.97 (2t, J = 7.2 Hz, 4H); 3.02-3.10 (m, 8H); 3.16-3.29 (m, 11H, OMe); 

3.33-3.43 (m, 43H, OMe); 3.52-3.56 (m, 18H); 3.70 (br, 3H, OMe); 6.43 (s, 1H); 6.57 (br, 1H); 

6.71 (br, 1H); 6.81-6.88 (m, 4H); 6.99 (br, 1H); 8.35 (br, 1H). 13C NMR (D2O, 100 MHz) δ 26.6 (t); 

26.7 (t); 28.5 (t); 28.6 (t); 36.4 (t); 36.5 (t); 37.7 (t); 37.8 (t); 55.2 (q); 55.5 (q); 55.7 (q); 57.6 (t); 

57.7 (t); 68.3 (t); 68.4 (t); 68.5 (t); 69.4 (t); 69.5 (t); 69.6 (t); 69.7 (t); 107.7 (d); 111.5 (d); 111.7 (d); 

122.2 (d); 122.4 (d); 122.8 (d); 127.6 (d); 145.6 (d); 146.7 (d); 147.4 (s); 149.5 (s); 149.9 (s); 150.3 
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(s); 151.1 (s); 171.0 (s); 171.1 (s). MS (MALDI-TOF) 1684 (M+1, 100), 1685 (M+2, 93) 1686 

(M+3, 49). HRMS m/z calcd. for C82H131N12O25 1683.9342, found 1683.9346. HPLC analysis: 6.9 

min retention time (94% purity), with a gradient of 0 to 100% of eluent B over 15 min using the 

solvent system: H2O/0.045% TFA (A) and MeCN/0.036% TFA (B). 

3-[Gly-Gly-NLS]Lam-D (22) (3). Following the general procedure A and starting from 14 (28 and 

17 mg, 0.16 mmol), 3 as a white solid (10 mg, 38%) was obtained. 1H NMR (DMSO-d6, 400 MHz) 

δ 0.83-0.88 (m, 6H, 2CH3); 1.22-1.36 (m, 10H, 5CH2); 1.42-1.54 (m, 8H, 4CH2); 1.56-1.62 (m, 8H, 

4CH2); 1.88-1.93 (m, 4H, 2CH2); 2.05 (br, 2H, CH2); 2.07 (br, 2H, CH2); 2.33 (t, J = 1.8 Hz, 2H, 

CH2); 2.55 (br, 1H, CH); 2.67 (t, J = 1.8 Hz, 2H, CH2); 2.69-2.75 (m, 16H, 3CH2); 3.36 (2s, 6H, 

2OMe); 3.75 (s, 3H, OMe); 3.99-4.05 (m, 3H, CH); 4.14-4.25 (m, 7H, 3CH, 2CH2); 4.58 (br, 1H, 

CH); 5.93 (br, 1H); 5.76 (br, 1H); 5.47 (br, 1H); 6.70 (s, 1H); 6.87 (s, 1H); 7.01 (dd, J = 8.0, 1.7 

Hz, 1H); 7.10 (d, J = 8.0 Hz, 1H); 7.12-7.13 (m, 2H); 7.19 (s, 1H); 7.21 (br, 1H); 9.00 (d, J = 7.4 

Hz, 1H, H8). MS (MALDI-TOF) 1575 (M+1, 100), 1576 (M+2, 92). HRMS m/z calcd. for 

C77H111N18O18 1575.8324, found 1575.8319. HPLC analysis: 1.8 min retention time (96.7% purity), 

with 15 min isocratic MeCN/0.036% TFA. 

4’-[Gly-NLS]Lam-D (22) (4). Peptide 8 (392 mg, 0.23 mmol) was pre-activated for 15 min at r.t. 

with TCFH (63 mg, 23 mmol) and NEt3 (32 µL, 23 mmol) in CH2Cl2 dry (15 mL). Compound 6 (53 

mg, 0.08 mmol) and DMAP (9 mg, 0.08 mmol) in CH2Cl2 dry (5 mL) were then added. The 

resulting solution was stirred at r.t. for 120 h. The reaction mixture was diluted with CH2Cl2 and 

washed with sat. NaHCO3 solution and brine. The organic phase was dried over anhydrous MgSO4 

and the solvent was removed under vacuum. The residue was purified by flash chromatography: 

elution with CH2Cl2/MeOH (99:1 to 95:5) gave 15 (45% yield based on 40% transformation of 6). 

The Boc protected compound 15 was then treated with 40% TFA in CH2Cl2 (10 mL) at r.t. for 1 h. 

The solvent was removed under reduced pressure, and the residue was purified by reverse phase 

chromatography. Elution with H2O/MeCN (60:40 to 40:60) gave 4 as a yellow solid (3 mg, 17%). 

1H NMR (D2O, 500 MHz) δ 1.04 (d, J = 6.5 Hz, 3H, CH3); 1.16 (d, J = 6.5 Hz, 3H, CH3); 1.39-1.56 
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(m, 8H, 4CH2); 1.66-1.77 (m, 10H, 5CH2); 1.78-1.88 (m, 8H, 4CH2); 2.00-2.12 (m, 4H, 2CH2); 

2.17 and 2.36 (2br, 2H, CH2); 2.44 and 2.58 (2br, 2H, CH2); 2.84 (br, 1H, CH); 2.96-3.05 (m, 10H, 

5CH2); 3.40 (br, 3H, OMe); 3.44 (s, 3H, OMe); 3.45 (s, 3H, OMe); 3.22 (t, J = 7.5 Hz, 1H, CH2); 

3.59 (t, J = 7.0 Hz, 1H, CH2); 3.81 (br, 2H, CH2); 4.23-4.42 (m, 5H, 5CH); 4.51 (t, J = 8.3 Hz, 1H, 

CH); 4.65 (dd, J = 9.0, 8.4 Hz, 1H, CH); 6.38 (s, 1H); 6.64-6.87 (m, 4H); 6.99 (br, 1H); 7.01 (br, 

1H); 7.32 (br, 1H); 8.54 (br, 1H). MS (MALDI-TOF) 1518 (M+1, 100), 1519 (M+2, 82). HRMS 

m/z calcd. for C75H108N17O17 1518.8109, found 1518.8114. HPLC analysis: 6.9 min retention time 

(95% purity), with a gradient of 50 to 100% of eluent B over 15 min using the solvent system: 

H2O/0.045% TFA (A) and MeCN/0.036% TFA (B). 

4’,11-Bis(tert-butyldiphenylsilyl)Lam-D (22) (5). Following the general procedure B and starting 

from 10b (1.06 g, 1.04 mmol), 5 as a yellow solid (856 mg, 84%) was obtained. mp (MeCN) 278-

280 ºC. IR (film) ν 1704, 1487, 1428, 1284, 1111 cm-1. 1H NMR (CDCl3, 200 MHz) δ 1.15 (s, 9H); 

1.17 (s, 9H); 3.18 (s, 3H, OMe); 3.47 (s, 3H, OMe); 3.64 (s, 3H, OMe); 5.89 (s, 1H); 6.68 (d, J = 

7.4 Hz, 1H, H9); 6.69 (s, 1H); 6.91-6.93 (m, 3H); 6.95 (s, 1H); 7.05 (br, 1H); 7.06 (br, 1H); 7.37-

7.48 (m, 10H); 7.71-7.79 (m, 10H); 9.04 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 MHz) δ 

19.9 (s); 26.6 (q); 26.7 (q); 54.5 (q); 55.5 (q); 55.7 (q); 103.4 (d); 104.7 (d); 105.9 (d); 107.6 (s); 

109.8 (s); 111.0 (s); 112.1 (d); 115.4 (d); 116.5 (d); 119.7 (s); 120.3 (d); 122.7 (d); 123.7 (d); 124.4 

(s); 127.5 (d); 127.6 (d); 128.5 (s); 129.1 (s); 129.7 (d); 129.9 (d); 132.9 (s); 133.0 (s); 133.4 (s); 

134.1 (s); 135.0 (d); 135.1 (d); 143.1 (s); 144.9 (s); 146.1 (s); 146.8 (s); 150.7 (s); 151.1 (s); 155.3 

(s). MS (MALDI-TOF) 976 (M+1, 100), 977 (M+1, 57), 978 (M+2, 38).  

3,11-Di-tert-butoxycarbonyl-Lam-D (22) (6) A solution of TBAF in THF (1 M, 1.64 mmol) was 

added to a –78 ºC solution of 10d (771 mg, 0.82 mmol), in MeOH-THF (100 mL, 80:20). The 

mixture was stirred at -78 ºC for 15 min. Solvents were removed under vacuum, and the residue 

was dissolved in CH2Cl2. The organic solution was washed with water and brine. The organic phase 

was dried over anhydrous MgSO4 and the solvent removed under vacuum. The residue was purified 

by flash chromatography: elution with hexane/EtOAc (60:40 to 40:60) gave 6 as a white solid (491 
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mg, 85%). mp (MeCN) 149-150 ºC. IR (film) ν 1760, 1709, 1275, 1255 cm-1. 1H NMR (CDCl3, 400 

MHz) δ 1.54 (s, 9H); 1.55 (s, 9H); 3.455 (s, 3H, OMe); 3.463 (s, 3H, OMe); 3.91 (s, 3H, OMe); 

5.93 (br, 1H, OH); 6.83 (s, 1H); 6.97 (d, J = 7.4 Hz, 1H, H9); 7.11 (br, 1H); 7.15 (dd, J = 8.0, 1.8 

Hz, 1H); 7.18 (br, 1H); 7.24-7.26 (m, 2H); 7.44 (br, 1H); 9.14 (d, J = 7.4 Hz, 1H, H8). 13C NMR 

(CDCl3, 100 MHz) δ 27.5 (q); 55.3 (q); 55.6 (q); 56.3 (q); 83.89 (s); 83.95 (s); 106.4 (d); 106.6 (d); 

108.8 (s); 111.8 (d); 112.6 (d); 113.0 (s); 113.5 (d); 115.4 (d); 115.7 (s); 120.3 (d); 123.0 (d); 123.6 

(s); 123.8 (s); 124.0 (s); 124.4 (d); 128.1 (s); 128.3 (s); 133.6 (s); 140.0 (s); 141.0 (s); 145.4 (s); 

145.9 (s); 147.7 (s); 147.9 (s); 150.9 (s); 151.0 (s); 151.1 (s); 155.0 (s). MS (MALDI-TOF) 699 (M, 

56), 700 (M+1, 100). 

Boc-Pro-Pro-Lys(Boc)-Lys(Boc)-Lys(Boc)-Arg(Boc2)-Lys(Boc)-Val-Gly-OH (8): The Boc 

protected peptide was synthesized manually on solid-phase in a polypropylene syringe fitted with a 

porous polyethylene disc. Solvents and soluble reagents were removed by suction. Washings 

between deprotection, coupling and subsequent deprotection steps were carried out with DMF (5 × 

1 min) and CH2Cl2 (5 × 1 min) using 10 mL solvent/g resin each time. Standard Fmoc/tBu 

chemistry and chlorotrityl resin (0.5 g, 1.5 mmol/g) were used. The resin was pre-swollen in 

anhydrous CH2Cl2 and then in DMF. The first Fmoc-protected amino acid (Fmoc-L-Gly-OH) (155 

mg, 0.7 equiv) was introduced in the presence of DIEA (635 µL, 5 equiv) in DMF. After one hour, 

MeOH (0.5 mL) was added and the mixture was stirred for 30 min. The resin was then washed with 

DMF and CH2Cl2, and the synthesis continued as described below. The peptide was elongated 

through successive iterations of Fmoc removal and amino acid coupling. The Fmoc protecting 

group was removed with several treatments of 20% piperidine in DMF (1× 1 min + 2 × 15 min). 

The resin was then washed with DMF and CH2Cl2. The corresponding Fmoc-protected amino acid 

(5 equiv) was introduced using DIPCDI (310 µL, 5 equiv) and HOBt (305 mg, 5 equiv) as coupling 

agents. After 2h, the resin was washed with DMF and CH2Cl2, and the coupling was monitored 

using the Kaiser test. Re-couplings were done when needed. Boc-L-Pro-OH (430 mg, 5 equiv) was 

used as a last amino acid. The peptide was finally cleaved from the resin using 3% TFA in CH2Cl2, 
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(5 x 1 min). Washes were collected in a flask containing 50 mL of water. The CH2Cl2 was then 

evaporated under reduced pressure, MeCN (30 mL) was added to the aqueous solution, and the 

resulting mixture was then lyophilized. Peptide 8 (590 mg, 94%) was obtained as a white solid. 

HPLC analysis: 6.2 min retention time (92% purity), with a gradient of 50 to 100% of eluent B in 7 

min using the solvent system: H2O/0.045% TFA (A) and MeCN/0.036% TFA (B). HPLC ESI-MS 

calcd. for C82H144N16O24 [M + H]+ 1738, found: [M+2]2+/2, 870. 

11-Benzyl-4’-tert-butyldiphenylsilyl-3-methoxymethyl-Lam-D (22) (10). A mixture of 9 (27) 

(1.54 g, 1.76 mmol) and DDQ (400 mg, 1.76 mmol) in dry CHCl3 (25 mL) was purged with Ar in a 

sealed vessel and microwaved at 120 ºC for 10 min. The organic solution was washed with water, 

and brine, dried over MgSO4, filtered, and then concentrated in vacuo. Purification by column 

chromatography on silica gel by elution with hexane/EtOAc (80:20 to 60:40) gave 10 as a white 

solid (2.27 g, 81%). mp (MeCN) 144-145 ºC. IR (film) ν 1705, 1429, 1267, 1223 cm-1. 1H NMR 

(CDCl3, 200 MHz) δ 1.17 (s, 9H); 3.43 (s, 3H, OMe); 3.46 (s, 3H, OMe); 3.50 (s, 3H, OMe); 3.65 

(s, 3H, OMe); 5.23 (s, 2H); 5.24 (s, 2H); 6.77 (s, 1H); 6.92-6.96 (m, 3H); 7.06-7.08 (m, 2H); 7.19 

(s, 1H); 7.25 (d, J = 5.4 Hz, 1H); 7.32-7.47 (m, 11H); 7.75-7.79 (m, 4H); 9.16 (d, J = 7.2 Hz, 1H, 

H8). 13C NMR (CDCl3, 50.3 MHz) δ 19.9 (s); 26.7 (q); 55.2 (q); 55.5 (q); 55.7 (q); 56.3 (q); 70.7 (t); 

95.4 (t); 105.1 (d); 105.5 (d); 105.6 (d); 109.4 (d); 111.3 (s); 111.4 (s); 112.3 (d); 115.4 (d); 119.3 

(s); 120.3 (d); 123.1 (d); 123.7 (d); 124.5 (s); 127.2 (d); 127.7 (d); 128.0 (d); 128.4 (s); 128.5 (s); 

128.6 (d); 128.9 (s); 129.9 (d); 133.3 (s); 134.1 (s); 135.1 (d); 136.2 (s); 145.0 (s); 146.0 (s); 146.2 

(s); 146.6 (s); 149.0 (s); 149.5 (s); 151.2 (s); 155.3 (s). MS (MALDI-TOF) 871 (M, 18), 872 (M+1, 

100). 

4’-tert-Butyldiphenylsilyl-3-methoxymethyl-Lam-D (22) (10a). Pd/C (10%) was added to a 

solution of 10 (509 mg, 0.58 mmol) in MeOH/EtOAc (2:1, 58 mL), the mixture was purged with 

H2, and the resulting suspension was stirred at r.t. for 16 h. The reaction mixture was filtered 

through a pad of Celite, which was then washed with CH2Cl2. The solvent was removed under 

vacuum to provide the 10a as a brown solid (433 mg, 95%). mp (MeCN) 129-130 ºC. IR (film) 
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ν 3213, 1680, 1425, 1222 cm-1. 1H NMR (CDCl3, 400 MHz) δ 1.16 (s, 9H); 3.44 (s, 3H, OMe); 

3.47 (s, 3H, OMe); 3.51 (s, 3H, OMe); 3.65 (s, 3H, OMe); 5.24 (s, 2H); 5.92 (br, 1H, OH); 6.77 (s, 

1H); 6.93-6.94 (m, 2H); 6.98 (d, J = 7.4 Hz, 1H, H9); 7.05 (br, 1H); 7.13 (s, 1H); 7.16 (s, 1H); 7.25 

(d, J = 5.6 Hz, 2H); 7.38-7.47 (m, 5H); 7.75-7.78 (m, 4H); 9.18 (d, J = 7.4 Hz, 1H, H8). 13C NMR 

(CDCl3, 100 MHz) δ 19.8 (s); 26.7 (q); 55.3 (q); 55.5 (q); 55.7 (q); 56.3 (q); 95.5 (t); 105.0 (d); 

105.3 (d); 105.6 (d); 110.8 (d); 111.2 (s); 111.5 (s); 112.4 (d); 115.4 (d); 118.8 (s); 120.4 (d); 123.3 

(d); 123.7 (d); 125.3 (s); 127.7 (d); 128.6 (s); 129.0 (s); 129.96 (d); 129.98 (d); 133.37 (s); 133.43 

(s); 134.4 (s); 135.2 (d); 135.3 (s); 145.1 (s); 146.1 (s); 146.3 (s); 146.66 (s); 146.69 (s); 146.8 (s); 

151.3 (s); 155.4 (s). MS (MALDI-TOF) 781 (M, 60), 782 (M+1, 100). 

4’,11-Bis(tert-butyldiphenylsilyl)-3-methoxymethyl-Lam-D (10b). TBDPSCl (389 µL, 1.07 

g/mL, 1.47 mmol) was added to a solution of 10a (768 mg, 0.98 mmol), imidazole (135 mg, 1.96 

mmol) and DMAP (120 mg, 0.98 mmol) in dry DMF (30 mL). The mixture was stirred for 24 h 

under Ar. DMF was removed under reduced pressure and the residue was dissolved in CH2Cl2. The 

organic phase was washed with water and brine, and then dried over anhydrous MgSO4. The 

solvent was removed under vacuum and the residue was purified by flash chromatography. Elution 

with hexane/CH2Cl2 (40:60 to 20:80) gave 10b (584 mg, 58%) as a brown oil. IR (film) 

ν 1679, 1426, 1113 cm-1. 1H NMR (CDCl3, 200 MHz) δ 1.13 (s, 9H); 1.15 (s, 9H); 3.17 (s, 3H, 

OMe); 3.42 (s, 3H, OMe); 3.49 (s, 3H, OMe); 3.61 (s, 3H, OMe); 5.21 (s, 2H); 6.71 (d, 1H, J = 7.4 

Hz, H9); 6.74 (s, 1H); 6.90 (2s, 2H); 6.92 (s, 1H); 7.01-7.05 (m, 2H); 7.22 (br, 1H); 7.10-7.19 (m, 

10H); 7.69-7.77 (m, 10H); 9.06 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 MHz) δ 19.9 (s); 

26.6 (q); 26.7 (q); 54.5 (q); 55.4 (q); 55.7 (q); 56.3 (q); 95.4 (t); 105.1 (d); 105.5 (d); 105.9 (d); 

107.9 (s); 111.3 (s); 111.4 (s); 112.3 (d); 115.3 (d); 116.5 (d); 119.7 (s); 120.3 (d); 122.7 (d); 123.6 

(d); 124.4 (s); 127.4 (d); 127.6 (d); 127.7 (d); 127.8 (d); 128.4 (s); 128.8 (s); 129.5 (d); 129.7 (d); 

130.0 (d); 132.9 (s); 133.0 (s); 133.4 (s); 134.7 (d); 135.0 (d); 135.1 (d); 144.9 (s); 145.9 (s); 146.2 

(s); 146.5 (s); 150.7 (s); 151.1 (s); 155.3 (s). MS (ESI) 1020 (M+1, 100).  
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4’-tert-Butyldiphenylsilyl-Lam-D (22) (10c). Following the general procedure B and starting from 

10a (639 mg, 0.81 mmol), 10c as a white solid (603 mg, quant) was obtained. mp (MeCN) 275-276 

ºC. IR (film) ν 3415, 1679, 1429, 1271 cm-1. 1H NMR (CDCl3, 400 MHz) δ 1.17 (s, 9H); 3.46 (s, 

3H, OMe); 3.47 (s, 3H, OMe); 3.65 (s, 3H, OMe); 6.71 (s, 1H); 6.93-6.94 (m, 2H); 6.98-7.05 (m, 

3H); 7.13 (s, 1H); 7.17 (s, 1H); 7.39-7.47 (m, 6H); 7.76-7.79 (m, 4H); 9.17 (d, J = 7.4 Hz, 1H, H8). 

13C NMR (CDCl3, 100 MHz) δ 19.9 (s); 26.7 (q); 55.3 (q); 55.5 (q); 55.7 (q); 103.6 (d); 104.7 (s); 

104.8 (d); 105.0 (d); 107.8 (s); 109.9 (s); 110.8 (d); 110.9 (s); 112.3 (d); 115.5 (d); 118.8 (s); 120.4 

(d); 123.4 (d); 123.8 (d); 125.4 (s); 127.7 (s); 127.9 (d); 129.3 (s); 130.0 (d); 133.4 (s); 133.5 (s); 

135.2 (d); 143.2 (s); 145.1 (s); 146.2 (s); 146.7 (s); 146.8 (s); 147.0 (s); 151.3 (s); 155.5 (s). MS 

(ESI-TOF) 737 (M, 73), 738 (M+1, 100).  

4’-tert-Butyldiphenylsilyl-3,11-bis(tert-butoxycarbonyl)Lam-D (22) (10d). (Boc)2O (536 mg, 

2.45 mmol) and DMAP (30 mg, 0.25 mmol) were added to a solution of 10c (605 mg, 0.82 mmol) 

in CH2Cl2 (130 mL). The reaction mixture was stirred at r.t. under Ar for 16 h. The mixture was 

washed with a sat. NaHCO3 and brine. The organic layer was dried over anhydrous Na2SO4, filtered 

and concentrated to dryness to give 10d as a yellow solid (767 mg, quant). mp (MeCN) 188-189 ºC. 

IR (film) ν 1760, 1710, 1486, 1430, 1274, 1255 cm-1. 1H NMR (CDCl3, 400 MHz) δ 1.15 (s, 9H); 

1.56 (s, 9H); 1.57 (s, 9H); 3.40 (s, 3H, OMe); 3.42 (s, 3H, OMe); 3.64 (s, 3H, OMe); 6.83 (s, 1H); 

6.90-6.93 (m, 2H); 7.01 (br, 1H); 7.04 (d, J = 7.4 Hz, 1H, H9); 7.23 (s, 1H); 7.25 (d, J = 5.8 Hz, 

2H); 7.38-7.46 (m, 6H); 7.74-7.77 (m, 4H); 9.22 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 

MHz) δ 19.9 (s); 26.7 (q); 27.6 (q); 55.3 (q); 55.6 (q); 55.7 (q); 83.96 (s); 84.02 (s); 106.5 (d); 106.7 

(d); 108.9 (s); 111.9 (d); 112.7 (d); 113.1 (s); 115.0 (d); 115.8 (s); 120.3 (d); 120.5 (d); 123.3 (d); 

123.4 (d); 123.7 (s); 123.9 (s); 127.7 (s); 127.9 (d); 128.3 (s); 130.0 (d); 133.4 (s); 133.6 (s); 135.1 

(d); 140.0 (s); 141.0 (s); 145.3 (s); 145.5 (s); 147.7 (s); 150.8 (s); 151.0 (s); 151.2 (s); 151.5 (s); 

155.1 (s). MS (MALDI-TOF) 938 (M+1, 100), 939 (M+2, 63).  

4’,11-Bis(tert-butyldiphenylsilyl)-3-[3-(2-(2-(2-(2-(2-(2-tert-

butoxycarbonylaminoethoxy)ethoxy)ethoxy)ethoxy)ethoxy)ethoxy)propanoyl]Lam-D (22) 
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(11). Following the general procedure C and starting from 5 (78 mg, 0.80 mmol), 11 as a yellow oil 

(112 mg, quant.) was obtained. IR (film) ν 1710, 1486, 1429, 1283, 1159, 1114 cm-1. 1H NMR 

(CDCl3, 200 MHz) δ 1.04 (s, 9H); 1.06 (s, 9H); 1.36 (s, 9H); 2.81 (t, J = 6.5 Hz, 2H); 3.07 (s, 3H, 

OMe); 3.24 (br, 4H, 2CH2); 3.29 (s, 3H, OMe); 3.43-3.48 (m, 4H, 2CH2); 3.52-3.60 (m, 19H, 8CH2, 

OMe); 3.79 (t, J = 6.5 Hz, 2H); 5.05 (br, 1H); 6.68 (d, J = 7.4 Hz, 1H, H9); 6.75 (s, 1H); 6.81 (br, 

2H); 6.85 (s, 1H); 6.91 (br, 1H); 6.95 (br, 1H); 7.03 (s, 1H); 7.24-7.38 (m, 10H); 7.61-7.68 (m, 

10H); 9.00 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 MHz) δ 19.8 (s); 26.5 (q); 26.7 (q); 28.4 

(q); 34.7 (t); 40.3 (t); 54.4 (q); 55.4 (q); 55.6 (q); 66.3 (t); 70.1 (t); 70.5 (t); 105.8 (d); 106.3 (d); 

108.1 (s); 111.8 (s); 111.9 (d); 112.6 (d); 115.1 (d); 116.0 (s); 116.5 (d); 119.6 (s); 120.3 (d); 122.5 

(d); 123.5 (d); 124.3 (s); 127.4 (s); 127.5 (d); 127.6 (d); 128.0 (s); 128.1 (s); 129.7 (d); 129.8 (d); 

132.8 (s); 132.9 (s); 133.3 (s); 134.2 (s); 134.9 (d); 135.1 (d); 139.2 (s); 144.9 (s); 145.3 (s); 146.2 

(s); 147.2 (s); 150.8 (s); 151.1 (s); 154.9 (s); 169.2 (s). MS (MALDI-TOF) 1311 (M+1-Boc, 100), 

1433 (M+Na, 45).  

4’,11-Bis(tert-butyldiphenylsilyl)-3-[2-(bis(2-(bis(2-(3-(2-(2-(3-tert-butoxycarbonylamino-

propoxy)ethoxy)ethoxy)propylamino)-2-oxoethyl)amino)ethyl)amino)acetyl]Lam-D (22) (12). 

A mixture of polystyrene solid supported DMAP (6.0 mg, 19 mmol) and 5 (31 mg, 32 mmol) in dry 

CH2Cl2 (2 mL) was added to a solution of 7 (51 mg, 32 mmol) and EDC·HCl (6 mg, 32 mmol) in 

dry CH2Cl2 (2 mL). The resulting solution was stirred at r.t. for 16 h. The reaction mixture was 

filtered, and the solvent was removed under vacuum. The residue was purified by flash 

chromatography with neutral alumina. Elution with CH2Cl2/MeOH (99:1 to 98:2) gave 12 as a 

yellow oil (22 mg, 26%). IR (film) ν 3323, 1665, 1548, 1428, 1275, 1112 cm-1. 1H NMR (CDCl3, 

200 MHz) δ 1.11 (s, 9H); 1.13 (s, 9H); 1.41 (s, 18H); 1.42 (s, 18H); 1.61-1.77 (m, 16H); 2.34 (2t, 

4H); 2.71-2.78 (m, 4H); 3.12 (s, 3H, OMe); 3.15-3.31 (m, 26H); 3.35 (s, 3H, OMe); 3.47-3.67 (m, 

43H); 5.06 (br, 2H); 5.16 (br, 1H); 5.30 (br, 1H); 6.77 (d, J = 7.4 Hz, 1H, H9); 6.84 (s, 1H); 6.88 

(br, 2H); 6.92 (s, 1H); 6.97 (br, 1H); 7.00 (br, 1H); 7.12 (s, 1H); 7.32-7.45 (m, 10H); 7.64-7.73 (m, 

10H); 9.08 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 MHz) δ 15.4 (q); 19.8 (s); 26.6 (q); 26.7 



 

  13

(q); 27.3 (t); 28.4 (q); 29.4 (t); 29.7 (t); 35.3 (t); 37.0 (t); 38.4 (t); 39.5 (t); 54.5 (q); 55.4 (q); 55.7 

(q); 57.2 (t); 59.0 (t); 69.3 (t); 69.4 (t); 70.1 (t); 70.4 (t); 70.5 (t); 105.9 (d); 106.4 (d); 108.2 (s); 

112.0 (d); 112.9 (d); 115.2 (d); 116.2 (s); 116.6 (d); 119.7 (s); 120.4 (d); 123.5 (d); 124.4 (s); 127.6 

(d); 127.7 (d); 128.0 (s); 128.1(s); 129.8 (d); 129.9 (d); 130.0 (s); 132.9 (s); 133.0 (s); 133.4 (s); 

134.4 (s); 135.1 (d); 135.2 (d); 138.9 (s); 145.2 (s); 145.4 (s); 146.4 (s); 147.2 (s); 150.9 (s); 151.3 

(s); 154.9 (s); 156.1 (s); 159.1 (s); 169.2 (s); 170.7 (s). MS (ESI-TOF) 820 ([M-Boc+3]/3, 100). 

4’,11-Bis(tert-butyldiphenylsilyl-3-( tert-butoxycarbonylaminoacetyl)-Lam-D (22) (13). 

Following the general procedure C and starting from 5 (99 mg, 1.02 mmol), 13 was obtained as a 

yellow solid (103 mg, 89%). mp (MeCN) 197-199 ºC. IR (film) ν 1711, 1509, 1486, 1429, 1283, 

1158 cm-1. 1H NMR (CDCl3, 200 MHz) δ 1.14 (s, 9H); 1.15 (s, 9H); 1.49 (s, 9H); 3.17 (s, 3H, 

OMe); 3.37 (s, 3H, OMe); 3.62 (s, 3H, OMe); 4.23 (brd, J = 5.0 Hz, 2H); 5.13 (brt, J = 5.0 Hz, 1H); 

6.73 (d, J = 7.4 Hz, 1H, H9); 6.85 (s, 1H); 6.91 (br, 2H); 6.93 (s, 1H); 7.02 (br, 1H); 7.05 (br, 1H); 

7.12 (br, 1H); 7.36-7.48 (m, 10H); 7.70-7.77 (m, 10H); 9.05 (d, J = 7.4 Hz, 1H, H8). 13C NMR 

(CDCl3, 100 MHz) δ 19.9 (s); 26.6 (q); 26.7 (q); 28.3 (q); 42.3 (t); 54.5 (q); 55.5 (q); 55.6 (q); 105.8 

(d); 106.4 (d); 108.1 (s); 111.7 (d); 111.9 (s); 112.7 (d); 115.2 (d); 116.3 (s); 116.6 (d); 119.7 (s); 

120.3 (d); 122.5 (d); 123.5 (d); 124.3 (s); 127.5 (s); 127.6 (d); 127.7 (d); 127.9 (s); 128.1 (s); 129.6 

(s); 129.7 (d); 129.9 (d); 132.9 (s); 133.3 (s); 134.2 (s); 135.0 (d); 135.2 (d); 135.4 (s); 138.8 (s); 

145.0 (s); 145.3 (s); 146.3 (s); 147.0 (s); 150.8 (s); 151.2 (s); 154.8 (s); 168.3 (s). MS (MALDI-

TOF) 1132 (M, 100), 1133 (M+1, 79), 1134 (M+2, 37).  

4’,11-Bis(tert-butyldiphenylsilyl)-3-[Gly-Gly-Boc-NLS]Lam-D (22) (14). Lamellarin 13 (32 mg, 

29 mmol) was treated with 40% TFA in CH2Cl2 (10 mL) at 0 ºC for 10 min. The solvent was 

removed under reduced pressure, and the crude was used without further purification. A solution of 

this residue and DIPEA (4.9 µL, 29 mmol) in dry CH2Cl2 (3 mL) was added to a solution of 8 (50 

mg, 29 mmol), HOBt (5 mg, 34 mmol), DIPEA (4.9 µL, 29 mmol) and EDC·HCl (7 mg, 34 mmol) 

in dry CH2Cl2 (2 mL). The resulting solution was stirred at r.t. for 4 h. The reaction mixture was 

diluted with CH2Cl2 and washed with sat. NaHCO3 solution and brine. The organic phase was dried 
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over anhydrous MgSO4 and the solvent was removed under vacuum. The residue was purified by 

flash chromatography with neutral alumina: elution with CH2Cl2/MeOH (98:2 to 95:5) gave 14 as a 

yellow oil (46 mg, 58%). IR (film)  3328, 1650, 1534, 1429, 1365, 1281, 1166 cm-1. 1H NMR 

(CDCl3, 200 MHz) δ 0.92-1.00 (m, 6H, 2CH3); 1.11 (s, 3H, CH3); 1.13 (s, 3H, CH3); 1.23-1.33 (m, 

8H, 4CH2); 1.36-1.37 (m, 4H, 2CH2); 1.39 (s, 3H, CH3); 1.41 (s, 18H, 6CH3); 1.44-1.50 (m, 4H, 

2CH2); 1.46-1.50 (m, 8H, 4CH2); 1.84 (br, 4H, 2CH2); 2.07 (br, 4H, 2CH2); 2.43 (br, 4H, 2CH2); 

2.71 (h, J = 6.8 Hz, 1H); 3.00 and 3.07 (2br, 8H, 4CH2); 3.14 (s, 3H, OMe); 3.34-3.41 (m, 2H, 

CH2); 3.44 (s, 3H, OMe); 3.59 (s, 3H, OMe); 3.62-3.74 (m, 2H, CH2); 3.92-4.23 (m, 5H, 5CH); 

4.28 (br, 2H, CH2); 4.47-4.53 (m, 2H, CH2); 4.67-4.71 (m, 3H, 3CH); 4.77 (br, 1H); 4.86 (br, 1H); 

6.67 (s, 1H); 6.71 (d, J = 7.4 Hz, 1H, H9); 6.80-6.89 (m, 2H); 6.91 (d, J = 1.8 Hz, 1H); 6.95-6.99 

(m, 2H); 7.02 (d, J = 8.2 Hz, 1H); 7.32-7.47 (m, 10H); 7.56-7.75 (m, 10H); 8.2 (br, 1H); 8.3 (br, 

1H); 8.4 (br, 1H); 8.5 (br, 1H); 9.07 (d, J = 7.4 Hz, 1H, H8). 13C NMR (CDCl3, 100 MHz) δ 19.8 

(s); 23.6 (t); 23.7 (t); 24.6 (t); 26.2 (t); 26.6 (q); 26.7 (q); 28.0 (q); 28.3 (q); 28.4 (q); 29.5 (t); 29.7 

(t); 30.2 (t); 40.4 (t); 47.1 (t); 54.4 (q); 55.48 (q); 55.53 (t); 55.6 (q); 56.4 (d); 56.5 (d); 56.6 (d); 

56.7 (t); 63.1 (d); 63.6 (d); 83.2 (s); 103.5 (d); 104.8 (d); 105.9 (d); 109.8 (s); 111.1 (s); 112.2 (d); 

115.4 (d); 116.6 (d); 119.7 (s); 120.3 (d); 122.7 (s); 123.7 (d); 124.4 (s); 127.5 (d); 127.6 (d); 127.7 

(s); 128.6 (s); 129.2 (s); 129.8 (d); 129.9 (d); 130.0 (s); 132.9 (s); 133.0 (s); 133.4 (s); 135.0 (d); 

135.2 (d); 143.3 (s); 145.0 (s); 146.2 (s); 146.3 (s); 146.9 (s); 150.8 (s); 151.2 (s); 153.4 (s); 155.2 

(s); 155.9 (s); 156.0 (s); 156.1 (s); 157.4 (s); 170.4 (s); 171.9 (s); 173.1 (s); 174.7 (s); 175.3 (s). MS 

(ESI) 884 ([M-Boc+3]/3, 24), 1326 ([M-Boc+2]/2, 77).  

Cell Lines and Culture. Human-derived established cell lines used in this study were purchased 

from ATCC (American Type Culture Collection): A-549, human lung carcinoma (ATCC no. CCL-

185), BJ, Skin Fibroblast (ATCC no. CRL-2522), HT-29, human colorectal adenocarcinoma 

(ATCC no. HTB-38), and MDA-MB 231, human breast adenocarcinoma (ATCC no. HTB-26). All 

cell lines were maintained in DMEM supplemented with 10% FBS and 100 units/mL penicillin and 

streptomycin at 37 °C and 5% CO2. 
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GI 50 Analysis. Triplicate cultures were incubated for 72 h in the presence or absence of test 

compounds Lam-D, 1, 2, 4, 15 (at ten concentrations, typically ranging from 0.0026 to 10 µg/mL). 

A colorimetric assay using SRB was adapted for quantitative measurement of cell growth and 

viability, following a previously described method (23). Cells were plated in 96-well microtiter 

plates at a density of 5 × 103/well and incubated for 24 h. One plate from each different cell line 

was fixed, stained and used for Tz reference (see next paragraph). The cells were then treated with 

vehicle alone (control) or compounds at the concentrations indicated. Treated cells were incubated 

for an additional 72 h, and then evaluated for cytotoxicity via colorimetric analysis. The cells were 

washed twice with PBS, fixed for 15 min in 1% glutaraldehyde solution, rinsed twice in PBS, and 

stained in 0.4% SRB solution for 30 min at room temperature. The cells were then rinsed several 

times in 1% acetic acid solution and air-dried. SRB was then extracted in 10 mM trizma base 

solution and the absorbance measured at 490 nm. Cell survival is expressed as percentage of control 

cell growth. 

Dose−response curves were obtained by using the NCI algorithm (24) : Tz = number of control 

cells at time t0; C = number of control cells at time t; and T = number of treated cells at time t. 

If Tz < T < C (growth inhibition), then the result is 100 × ([T − Tz]/[C − Tz]). 

If T < Tz (net cell death), then the result is 100 × ([T − Tz]/Tz). 

After dose-curve generation, the results were expressed as GI50 (the concentration that causes 

50% cell growth inhibition, compared to control cultures). 

General Treatments for Imaging. A-549, MDA-MB-231 and HT-29 cells were seeded onto 

MatTek (Ashland, USA) glass bottom microwell dishes at 30 103 cells/cm2. After 24 h, the culture 

medium was discarded and replaced by fresh DMEM medium containing either Lam-D, 1 or 4 at 1 

µM. Absence of compound was used as a negative control. Cells were then incubated for 12 h at 37 

ºC.  

Topo I-GFP Visualization. Procedure for a single microwell dish transfection: A-549, MDA-

MB-231 and HT-29 cells were seeded onto a MatTek (Ashland, USA) glass bottom microwell dish 
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at 30 103 cells/cm2. Culture medium was discarded after 24 h, cells were washed 3 × PBS, and 1400 

µL of reduced serum media Opti-MEM I (Invitrogen, U.S.A) were added. The preparation of DNA 

for transfection required previous dilution of 3 µL FuGENE (Roche Molecular Biochemicals, 

Indianapolis, IN) in 100 µL of reduced serum media Opti-MEM I (Invitrogen, U.S.A), and further 

addition of 6.7 µL of the plasmid solution encoding green fluorescent protein GFP with full length 

Topo I (25). The mixture was mixed thoroughly and incubated for 30 min at r.t., before addition to 

the dish. Samples were incubated at 37 °C and 5% CO2 for 10 h. Afterwards medium was 

discarded, cells were washed three times with PBS, and new DMEM solution containing 1 µM 

Lam-D, 1 or 4 was added. Absence of compound was used as a negative control. The cells were 

incubated for an additional 12 h at 37 ºC, and then analyzed by confocal microscopy. 

Confocal Laser Scanning Microscopy. Confocal laser scanning microscopy was performed with 

a Leica TCS SPII microscope (Leica Microsystems Heidelberg GmbH, Mannheim, Germany), 

using a 63× objective. GFP fluorescence was excited with an Ar laser excitation at 488 nm. Lam-D 

and its derivatives were excited at 351. The same microscope settings were used for each conjugate 

and concentration. To avoid crosstalk, the two-fluorescence scanning was performed in a sequential 

mode.  

Uptake Measurements by Fluorescence-Activated Cell Sorting Flow Cytometry. 1 106 A-

549, BJ, MDA-MB-231 and HT-29 cells were seeded onto 25 cm2 cell culture flasks (Nalgene 

Nunc International, Naperville, USA) with 10 mL of DMEM. After 12 h, the culture medium was 

discarded and replaced by fresh DMEM medium containing compounds 1µM Lam-D, 1, 2 or 4 at a 

Absence of compound was used as a negative control. The cells were then incubated for 12 h at 37 

ºC. After incubation, the cells were washed three times with PBS, detached with trypsin-EDTA 

0.25% and centrifuged at 1000 × rpm. Finally, the medium was decanted, and the cellular pellet was 

resuspended in PBS and kept at 0 ºC until measurements were performed. Fluorescence analysis 

was performed with a MoFlo cytometer (DakoCytomation, Colorado, USA), using the 351 nm 

excitation line of an Ar laser (25 mW) and emission detection at 450 nm (tolerance range ± 65 nm). 



 

  17

CIQ is expressed as a percentage value in reference to Lam-D. It was calculated by dividing the 

fluorescence value of the test compound by the fluorescence value obtained with the Lam-D control 

under the same experimental conditions. 

 

 

RESULTS  

Orthogonal protecting groups had to be used for the three phenol groups of Lam-D and for the 

functional groups presented into the conjugation building blocks. N-Boc was used to protect the 

amino and guanidino groups of the oligomeric building blocks 7 and 8. Synthesis of compounds 2-4 

required the preparation of different building blocks: the protected Lam-D derivatives 5 and 6, the 

DTPA-PEG dendrimer 7 and the peptide 8 (Figure 2). Compounds 5 and 6 are the precursors for the 

conjugates at positions 3 and 4’, respectively, and contain two phenolic groups protected as either 

TBDPS ethers or Boc esters, respectively. In the protected peptide 8 a glycine was introduced as 

spacer at the C-terminal position to avoid the steric hindrance caused by the C-terminal Val residue 

during coupling. 

Synthesis of Protected Lamellarins 5 and 6:  

The protecting groups OiPr/OBn used in earlier strategies (9) required harsh deprotection conditions 

incompatible with the synthesis of more complex Lam-D conjugates such as 4.2 The previously 

described lamellarin 9 (26, 27), for which three different and orthogonal protecting groups were 

employed (MOM, Bn and TBDPS), was used as the precursor to Lam derivatives 5 and 63 (Scheme 

1). Lam 9 was prepared following Banwell’s strategy for the total synthesis of Lam-K (28). 

Oxidation of 9 under MW irradiation using DDQ in CHCl3 gave 10 with good yield. Compound 10 

was subjected to changes of protecting groups (see Scheme 1). Catalytic hydrogenation of 10 over 

Pd-C in methanolic EtOAc gave 10a, which was successfully converted into 10b by TBDPS 

protection of the phenol. Removal of the MOM protecting group at position 3 of 10b with 

trimethylsilyl iodide in CHCl2 gave 5 in excellent yield. Moreover, compound 10a was subjected to 
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the latter conditions, which afforded the 4’-OTBDPS mono-protected Lam-D 10c in quantitative 

yield. The free phenol groups of 10c were protected as tert-butyl carbonates using Boc2O, DMAP 

and CH2Cl2 to give 10d in quantitative yield. Finally, OTBDPS deprotection of 10d with TBAF in 

MeOH gave the 4’-OH Lam-D intermediate 6 (85%). 

As a side note, compounds 10a and 10c are privileged synthetic intermediates for the construction 

of additional mono-, and di-conjugates at positions 11-OH, and 3,11-OHs of Lam-D, respectively. 

Synthesis of poly(ethylene glycol)-based dendrimer 7 

PEG-based dendrimer 7 was synthesized by coupling 1-(tertbutyloxycarbonylamino)-4,7,10-trioxa-

13-tridecanamine to monobenzyl-protected diethylenetriamine pentaacetic acid with PyBOP and 

DIPEA. The tetracarboxylic moiety derivative was prepared from an orthogonally protected DTPA 

derivative (one benzyl and four tert-butyl protecting groups). The tBu groups were eliminated using 

4.0 M HCl in dioxane, and then the benzyl group was eliminated by hydrogenolysis with Pd/C to 

render dendrimer 7 (29). 

Synthesis of the peptide NLS 8  

The protected peptide 8 was synthesized on chlorotrityl resin following standard Fmoc/tBu solid-

phase chemistry, with 20% piperidine-DMF for the deprotection steps, and DIPCDI and HOBt as 

coupling reagents.  

N-α-Fmoc-N-ω,N-ω'-bis-tert-butoxycarbonyl-L-arginine was used for the synthesis of the NLS 

peptide sequence. Attempts to use Fmoc-N-ω-Pbf-L-arginine, resulted in harsher deprotection 

conditions and complex reaction crudes. The last amino acid used was Boc-L-Pro-OH (as the 

desired building block had to be completely protected). The peptide was cleaved from the resin 

using 3% TFA in CH2Cl2, and after solvent evaporation, it was lyophilized. 

Esterification and Synthesis of Conjugates 1-4 

To test the efficacy of the protecting scheme, the synthesis of bioconjugate 1 was repeated using the 

following strategy (21). An ester bond between 5 and BocNH-CH2(CH2OCH2)6CH2COOH was 

formed using EDC·HCl with a catalytic amount of DMAP to afford compound 11 (Figure 1) in 
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quantitative yield. Compound 11 was considered a good model for the deprotection assays, because 

it contains the critical protecting groups and the ester functional group. Hence, it was used for the 

optimization of procedures and to test the success of the deprotection steps. Initial assays of 

sequential TBAF-TFA, two-step deprotection led to complex crude products. Furthermore, 

purification on SiO2 gave low yields of 1. The best results were obtained via simultaneous 

deprotection of both groups, using liquid HF at low temperature. Highly pure final product was 

obtained from the reaction crude by precipitation with MTBE. Notwithstanding, the scope of the 

reaction was limited to small amounts of starting material.4 Compound 1 was synthesized in 84% 

overall yield from its precursor 5. This is a major improvement over previous OiPr/OBn strategies 

(45% yield, from 4’,11-diisopropyl-Lam-D) (9). 

Formation of an ester bond between 5 and 7 (29) afforded compound 12 (Fig. 1) in 26% yield, 

using EDC·HCl with a catalytic amount of PS solid supported DMAP in CH2Cl2. Deprotection of 

compound 12 using HF provided 2 in 36% yield.  

Ester bond formation between 8 and protected lamellarin 5 or 6 using EDC·HCl was unsuccessful. 

The inaccessibility of the carboxylic acid in the N-Boc protected oligopeptide sequence 8, or steric 

hindrance of the free phenolic group in Lam-D building blocks 5 and 6, may have been decisive to 

the lack of reaction. Various attempts at ester bond formation between 8 and the scaffold 5 were 

also unsuccessful.5 Therefore, taking advantage of the relatively easy amide bond formation (i.e. 

compared to ester bonds), an N-Boc-Gly-OH spacer was introduced at position 3 of 5 (affording 13 

in 89% yield, Fig. 2) for subsequent amide bond formation with 8. N-Boc deprotection of 13 with 

40% TFA followed by reaction with 8 in EDC·HCl, HOBt, and DIPEA as base, gave 14 (Fig. 1, 

58% yield). Deprotection of 14 with HF under standard conditions afforded the NLS peptidic 

conjugate 3 in 38% yield. 

The NLS conjugate at position 4’ of Lam-D could not be formed using the same conditions 

employed for ester bond formation between 6 and 8.6,7 Instead, pre-activation of 8 with TCFH (30) 

and NEt3, followed by the addition of a solution of 6 and DMAP were required, affording 15 (Fig. 
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1) in 45% yield (relative to 40% transformation of 6). Elimination of the nine Boc protecting groups 

with 40% TFA in CH2Cl2 gave compound 4 in 17% yield.  

The ester bond of compound 3, which has a double Gly spacer, is more susceptible to nucleophilic 

attack by nucleophiles from the medium than that of compound 4, which has a single Gly spacer. 

Thus, the final conjugate 3 (derived from 14) was water labile. The rapid degradation of 3 made 

biological tests with this compound impossible.8  

Cytotoxicity and Cellular Uptake. 

The cytotoxicity of Lam-D and its analogs (1, 2, 4 and 15) was evaluated against BJ human skin 

fibroblasts, and a panel of three human tumor cell lines: A-549, HT-29, and MDA-MB-231 (Table 

1). A conventional colorimetric assay was used to estimate values of GI50 (defined here as the drug 

concentration that causes 50% of cell growth inhibition after 72 h of continuous exposure to the test 

molecule). Lam-D was included for comparison. The results are shown in Table 1. The tested 

compounds in the tumor cell lines exhibited cytotoxicities from 4 µM to 40.7 nM, except for the 

Boc protected derivative 15, which only had micromolar activity for the HT-29 and MDA-MB-231 

cell cultures. BJ skin fibroblasts were used in the present study to evaluate the effects of the drug 

and its conjugates in normal cells. In this non tumoral cellular culture, conjugate 1 citotoxicity was 

similar to that of Lam-D, or even 2.4-4.9-fold less for 2 and 4.  

FACS flow cytometry was used to measure cellular uptake quantification (9). The results are 

shown in Table 2. Interestingly, the cellular internalization quotient for the PEGylated derivatives 1 

and 2 were higher than that of Lam-D in all cancer cell lines. Indeed, compound 4, with an NLS 

sequence, was 10 times more active than Lam-D in A-549 and MDA-MB-231 cell lines and 

retained CIQ, despite having the highly charged NLS peptide. CIQ of conjugates in BJ cellular 

culture were from 76.8 to 128.6%.    

Cellular Distribution of Lam-D, 1 and 4. Tracking in GFP-Topo I Transfected Cell 

Cultures.  
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Lam-D is a Topo I inhibitor. To determine whether Lam-D, 1 and 4 localize to the same 

subcellular compartment as Topo I, a cellular localization assay was performed. A functional 

chimera of the green fluorescent protein EGFP with full length Topo I (GFP-Topo I) was expressed 

in HT-29, A-549 and MDA-MD-231 cells, which were then treated with either Lam-D, 1 or 4. As 

described, GFP-Topo I was located in the nucleus (25) in all cell types (Fig.3, positive control). 

Conjugate 4, carrying the NLS signal, was localized to the nucleus in HT-29 and A-549 cells (Fig. 

3, j1, j2, k1 and k2), suggesting that its higher activity could correlate to subcellular co-localization 

with its target, Topo I. 

 Interestingly, Lam-D and 1 showed both higher activity and greater nuclear localization in MDA-

MB-231 cells than 4 did (Fig. 3, f1, f2, i1 and i2)  

 

DISCUSSION 

We have described the synthesis of Lam-D conjugates with well-defined, water-soluble peptidic 

and dendritic systems as potential nontoxic drug delivery vehicles. Interestingly, the Lam-D 

conjugate containing a single backbone attached to a phenolic residue of Lam-D has very different 

solubility compared to Lam-D alone. Scaffold 10, with three orthogonal protecting groups, has 

proven to be a good starting material, enabling synthesis of 5 and 6, via protection group 

interchange, on a multigram scale and in good overall yield. New protected derivatives of Lam-D, 

which can be conjugated to one (C11-OH, 10a) or two (C3-OH and C11-OH, 10b) phenol groups, 

have been isolated in good yields with this strategy. Compound 1 was synthesized in 84% overall 

yield from its precursor 5; this constitutes an important improvement over previous strategies (45% 

yield, from 4’,11-diisopropyl-Lam-D) (9). Simultaneous removal of TBDPSO and NBoc with HF is 

a new and highly efficient deprotection scheme for compounds with labile ester bonds. The OBoc 

and TBDPSO protecting groups used in lamellarins 5 and 6 permitted optimization of the final 

deprotection conditions and represented adequate choices for total deprotection in the last step. 
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Thus, single step HF deprotection was the cleanest method for preparing Lam-D 1-3 (9-84% overall 

yields from 5).  

The new Lam-D conjugates reported here are excellent candidates for further biological 

evaluation. The evaluation of conjugates 3, 4 in BJ skin fibroblasts as normal cells was used in the 

present study. In this cellular culture, no significative variation, or even less citotoxicity was 

obtained for conjugates 3, 4 than the parent compound Lam-D. PEGylated conjugates 1 and 2 have 

much higher cytotoxicity to MDA-MB-231 cells than does Lam-D alone. Surprisingly, compound 4 

had nanomolar GI50 for MDA-MB-231 and A-549, representing 10-fold-lower GI50, respectively, 

compared to Lam-D. These results in A-549 cancer cell line could correlate to co-localization of 4 

in nuclear regions where GFP–Topo I accumulated (Fig. 3k). The NLS peptidic sequence is at least 

partly responsible for nuclear import of 4 in A-549 and HT-29 cell lines. Contrariwise, Lam-D and 

1 were able to weakly reach the nucleus in only MDA-MB-231 cells. Altogether, we conclude that 

better cytotoxicity correlates with greater nuclear localization.  

In summary, the use of a robust chemistry strategies, with a combination of solid-phase and 

solution strategies and a myriad of orthogonal and/or compatible protecting groups, has allowed the 

preparation of several Lam-D bioconjugates. All of them show some improved characteristics when 

compared with the parent lamellarin D. Particularly 4, which contains the NLS-peptide, shows a 

clearly improved cytotoxicity and a co-localization in the nucleus. To the best of our knowledge, 4 

is one of the first examples of NLS peptide conjugation with small molecules.  

Our results (9) indicate that Lam-D derivatives obtained through various chemical modifications 

may have markedly higher activity than the parent compound in certain tumor cell lines increasing 

the selectivity between the tumor cell lines.  
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Footnotes: 

1 Abbreviations: AU, absorbance units; A-549, lung carcinoma cell line; Bn, benzyl; Boc, tert-
butoxycarbonyl; Cbz, benzyloxycarbonyl; CIQ, cellular internalization quotient; DDQ, 2,3-
dichloro-5,6-dicyano-p-benzoquinone; DIPCDI, N,N′-diisopropylcarbodiimide; DIPEA, 
diisopropylethylamine; DMAP, 4-dimethylaminopyridine; DMEM, Dulbecco’s modified Eagle’s 
medium; DMF, dimethylformamide; DMSO, dimethylsulfoxide; DTPA, diethylenetriamine-
N,N,N',N',N"-pentaacetic acid; EDC·HCl, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 
hydrochloride; EPR, enhance permeability and retention; FACS, fluorescence-activated cell sorting; 
FBS, fetal bovine serum; GFP, green fluorescent protein; HOAt, 1-hydroxy-7-azabenzotriazole; 
HOBt, 1-hydroxybenzotriazole; HT-29, colon carcinoma cell line; GI50, 50 percent growth 
inhibition; iPr, isopropyl; Lam, Lamellarin; MDA-MB-231, breast adenocarcinoma cell line, MOM, 
methoxymethyl; MSNT, 1-(mesitylene-2-sulfonyl)-3-nitro-1H-1,2,4-triazole; MW, microwave; 
NLS, nuclear location signal; NMI, N-methylimidazole; Pbf, (2,2,4,6,7-
pentamethyldihydrobenzofuran-5-sulfonyl), PBS, phosphate buffered saline; PEG, 
poly(ethyleneglycol); PS, polystyrene; PyBOP, (benzotriazol-1-yloxy)tripyrrolidinophosphonium 
hexafluorophosphate, SRB, sulforhodamine B; TBAF, tetrabutylammonium fluoride; TBDPS, tert-
butyldiphenylsilyl; TBME, tert-butyl methyl ether; tBu, tert-butyl; TCFH, N,N,N′,N′-
tetramethylchloroformamidinium hexafluorophosphate; TFFH, N,N,N′,N′-
tetramethylfluoroformamidinium hexafluorophosphate; TFA, trifluoroacetic acid; THF, 
tetrahydrofurane; Topo, Topoisomerase. 
2 Conjugate 4 protected with OiPr on positions 3 and 11, and Boc-Lys, Boc-Pro and Pbf-Arg gave 
only mixtures on deprotection assays. 
3 The ester bonds of the protected Lam-D conjugates were labile; hence, to avoid problems with 
hydrolysis, we minimized the deprotection steps after condensation. 
4 The yield for the deprotection was 84% working on a 20-30 mg scale. However, the procedure 
could not be scaled up. The stability 1 was studied in DMEM supplemented with 10% FBS and 100 
units/mL penicillin and streptomycin at 37 °C. HPLC analysis indicates 97% of Lam-D liberation 
after 360 min of incubation.  
5 Esterification of 5 was tested with EDC·HCl, TCFH or N,N,N’,N’-tetramethylchloroformamidyl 
chloride as activating agents. 
6 N-Cbz-Gly-OH was anchored to 6 in quantitative yield. However, further Cbz deprotection could 
not be performed without concomitant hydrolysis of the conjugate ester bond. 
7 Other coupling reagents as EDC·HCl, DIPCDI, TFFH, PyBOP with HOAt, and MSNT with NMI 
failed in ester bond formation. 
8 Compound 3 quickly hydrolyzes and liberates Lam-D into the medium, even on the time scale of 
an HPLC analysis. 
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Table 1. Cytotoxicity of compounds 1, 2, 4, 15 in three human cancer cell lines. 

Compound 

Cytotoxicity (M) 

HT-29 Colon A-549 Lung MDA-MB-231 Breast BJ Skin Fibroblast 

Lam-D 3.00 10-6 1.22 10-7 1.34 10-7 6.37 10-9 

1 1.68 10-6 8.86 10-8 4.07 10-8 6.51 10-9 

2 3.92 10-6 2.20 10-7 8.31 10-8 1.54 10-8 

4 1.01 10-6 4.79 10-8 4.79 10-8 3.14 10-8 

15 1.94 10-6 n.d. 1.24 10-6 --- 

 

Table 2. Cellular internalization as measured by FACS.  

C
om

pound 

Cellular Internalization (AU) Cellular Internalization Quotient (CIQ)a 

HT-29 

Colon 

A-549 

Lung 

MDA-MB-231 

Breast 

BJ Skin 

Fibroblast 

HT-29 

Colon 

A-549 

Lung 

MDA-MB-

231 Breast 

BJ Skin 

Fibroblast 

Lam-D 82.7 328.5 443.8 259.4 100%a 100%a 100%a 100%a 

1 88.0 393.0 527.5 333.4 106% 120% 119% 128.6% 

2 83.7 374.9 455.3 199.2 101% 114% 103% 76.8% 

4 88.5 377.7 434.9 240.6 107% 115% 98% 92.8% 

a CIQ was calculated in reference to the cellular uptake of Lam-D.  
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Scheme 1. 
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Reagents and conditions: i: DDQ, CHCl3, MW, 120 ºC, 10 min (81%); ii: H2, Pd-C, EtOAc, MeOH, 

r.t., 16 h (95%); iii: TBDPSCl, Im, DMAP, DMF, r.t., 24 h (58%); iv: Me3SiI, CH2Cl2 r.t., 20 min (84% 

for 5; quant. yield for 10c); v: Boc2O, DMAP, CH2Cl2 r.t., 16 h (quant.); vi: 1M TBAF in THF, MeOH, 

-78 ºC, 15 min (85%). 
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Figure 1. 
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Figure 2. 
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Figure 3. Internalization of Lam-D and conjugates 1 and 4 by Topo I-GFP transfected cells.  
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The UV emissions corresponding to Lam-D, 1 and 4 are arbitrarily represented in red tones. The 

test compounds were seeded at a concentration of 1 µM and then incubated for 12 h. 


