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1
I N T R O D U C T I O N

From the point of view of a physicist, biological systems amaze by
their tremendous complexity at different scales, ranging from the
molecular level of proteins and DNA to the macroscopic scale of
animals and plants. At the molecular level, cells operate far from
equilibrium and are composed of complex networks of interacting
genes and proteins. Their description from a theoretical point of
view is challenging. However, it is now clear that physical concepts
and methods are needed in order to fully understand how biological
systems work. Advances in experimental methods have provided an
increasing wealth of data on most components of the molecular bi-
ology of a living cell. However, how all these different components
work together to give rise to biological functions remains largely un-
known. Concepts from statistical physics and complex systems can
be used to shed light on how these functions emerge from the inter-
action between genes, proteins and cells. In the molecular world of
biochemical reactions, fluctuations and randomness are ubiquitous
and affect many biological processes. While the effects of noise in
biological systems have been widely studied, many important ques-
tions remain unanswered. At the level of a single cell, fluctuations
may perturbate the functioning of gene regulatory networks. At the
level of a cell population, fluctuations may interfere with cell-cell
communication mechanisms and affect the reliability of multicellu-
lar coordinated behaviors, such as those observed in quorum sens-
ing bacterial species. In this thesis, we analyze the role of noise in
networks of genetic switch in bacteria, at the level of the single cell
and at the level of the population. We aim at better understanding
how collective behavior emerges in a population of cells communi-
cating by quorum sensing subjected to the unavoidable influence of
stochasticity. Making progress on this problem can be important for
the design of synthetic circuits based on the quorum sensing com-
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2 introduction

munication mechanism and to gain insight into the natural function
of quorum sensing in bacteria. In this thesis, we try to shed light on
these questions by using mathematical modeling and stochastic sim-
ulations. In the first section of this chapter, we describe the origins
and consequences of noise in biological systems. In the second sec-
tion, we introduce the quorum sensing communication mechanism
in prokaryotes and explain why it is a model system to study cell-
cell communication and multicellular behavior. In the third section,
we describe how fluctuations can affect the quorum sensing com-
munication and the experimental evidences showing that noise may
play an important role in this system. Finally, in the fourth section,
we briefly describe the different topics of study of the thesis.

1.1 noise in biological systems

1.1.1 Origins of biochemical noise in the cell

The central dogma in molecular biology describes how genetic infor-
mation flows in living cells. DNA encodes all the information neces-
sary to produce the proteins that the cell needs to achieve its biologi-
cal functions: metabolic activity, cell division, sensing and signaling,
etc. The instructions stored in the DNA are read in two steps: tran-
scription and translation. In transcription, a portion of the double-
stranded DNA serves as a template and is copied into a mRNA
molecule. During translation, the genetic sequence of the mRNA is
used as a template to assemble the chain of amino acids that form
a protein. The DNA sequence regions, called genes, that encode for
proteins, are not transcribed all the time. Transcription of a partic-
ular gene can be temporarily activated or suppressed, allowing the
cell to adapt to external signals and respond to a dynamically chang-
ing environment. The transcription of a gene is regulated by specific
proteins called transcription factors that bind to the DNA. The whole
set of genes in a cell together with their specific transcription factors
form a complex regulatory network.
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All of these fundamental processes occurring in the living cell are
under the unavoidable influence of noise that originates from the
low number of molecules [82]. The control of transcription, for ex-
ample, is mediated by the binding of a transcription factor to the
upstream promoter region of a gene. Because such binding events
are the result of random encounter between molecules that undergo
Brownian motion, the biochemical processes regulating transcrip-
tion are inherently stochastic. This molecular-level noise affects all
the processes of gene expression, from the initiation of transcription
to the degradation of proteins. In general, its effects are important
when the numbers of molecules involved in the biochemical pro-
cesses are low, as it is usually the case for mRNA, DNA and some
transcription factors.

1.1.2 Noise in gene expression

In recent years, single-molecule in vivo experiments have demon-
strated the fundamentally stochastic nature of biochemical events
involved in gene expression [144]. The imaging of real-time dynam-
ics at the level of single molecules has provided mechanistic insight
into the gene expression machineries, including transcription and
translation [99]. Single-molecule experiments have allowed to ob-
serve stochastic behavior that would have been otherwise obscured
in an ensemble-averaged measurement. Most of these advances re-
late to gene expression in bacterial cells, as these are more suited
for the detection of single fluorescent molecules due to their small
size that limits the cellular autofluorescence background. In this con-
text, the lac operon is one of the most studied regulatory network
and a model system for understanding transcription control and
stochastic gene expression in bacteria. In this thesis we will study
the effects of stochasticity in genetic switches with positive feed-
back. The lac operon has given rise to fundamental discoveries on
the stochastic activation of genetic switches and in the following
we describe the details of its gene regulatory network. The transcrip-
tion factor known as the lac repressor binds to its target operator site
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and represses the three downstream genes that encode proteins nec-
essary for lactose metabolism: lacZ, lacY, and lacA genes that encode
β-galactosidase, lactose permease, and transacetylase, respectively.
In the absence of lactose, LacI tetramers bind with high affinity to
the lacO operator and inhibits transcription of the lac operon. LacI
tetramers can also bind to other distant operator sites and form DNA
loop structures, thereby enhancing the repression [98, 16]. In this
condition of strong repression, very few transcripts are produced,
which leads to a low level of LacY transmembrane pumps and a
low lactose import rate. When lactose is present in the extra-cellular
medium, it gets transported into the cell where it is hydrolized. One
of the produced lactose metabolite called allolactose binds to the
LacI repressor and changes its shape. The resulting complex has a
lower affinity to the operator which leads to the unbinding of the re-
pressor and the activation of lac transcription. Allolactose therefore
acts as an inducer of the lac operon. Furthermore, since LacY partici-
pates in lactose import, the activation of gene expression leads to an
increase in lactose transport and in the inducer concentration, which
further promotes the release of the repressor. The resulting positive
feedback loop has been shown to be responsible for the bistable all-
or-none response of the lac operon [123].

The LacI repressor is constitutively expressed at very low levels
and is found at fewer than 5 copies per cell [49]. Therefore, stochas-
ticity in the binding and unbinding of LacI to the DNA must have
important effects in the regulation of the lac operon. Indeed, single-
molecule experiments have shown that the complete induction of the
operon result from random and infrequent events of dissociation of
the repressor from DNA [36]. While LacI has a high binding affinity
to the operator sites, thermal fluctuations induce rare events of LacI
full release from the binding sites. Once dissociated from DNA, it
takes a timescale of minutes for the LacI tetramer to rebind to the
operator, because the repressor spends most of his time binding to
non-specific sequences and searching through chromosomal DNA
[49]. This slow repressor rebinding time allows multiple copies of
lacY transcripts to be made, resulting in a peak in the production of
the transmembrane lactose permease. This sudden increase in LacY
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concentration initiates the positive feedback and switches the system
to the high lac expression state. Hence, in this example, a stochas-
tic single-molecule event as the dissociation of a repressor complex
from the DNA can change a cell’s phenotype. Importantly, these
observations on the lac operon show that stochasticity in gene reg-
ulation can have important effects in genetic switches with positive
feedback, as will be studied in chapter 3 and chapter 4.

One of the key progress provided by single-molecule experiments
has been to demonstrate that mRNAs and proteins are often pro-
duced in bursts which implies large and infrequent fluctuations in
their molecular numbers [82]. Stochasticity is believed to play an
important role at the two stages of gene expression: transcription
and translation. At the first stage, fluctuations in the number of tran-
scripts have been found to be larger than expected from a simple
model with a continuous rate of mRNA synthesis. If the transcrip-
tion process has one single limiting step, such as the RNA poly-
merase binding or initiation, the copy number of mRNA molecules
would follow a Poissonian distribution with a variance equal to its
mean. However, single-molecule studies have found that the distri-
bution of mRNA copy number shows a significantly larger devia-
tion than the Poisson distribution, an indication that transcription
occurs in bursts. The landmark studies of Golding et al. [60] and Le
and al. [96] use the MS2-GFP method which allows one to monitor
the transcription of individual mRNA in real time. The bacteria are
engineered to produce the bacteriophage coat protein (MS2) fused
to GFP, which has a strong affinity for a specific mRNA sequence:
the ms2-binding site [101]. Following a transcription event, target
mRNAs that contain repeated sequences of ms2-binding sites bind
to several MS2-GFP fusion proteins. The difference in the diffusion
coefficient of free MS2-GFP protein and mRNA-MS2-GFP complex
can then be used in order to detect single mRNA molecules in real
time by analyzing the fluorescence signal, a method called fluores-
cence correlation spectroscopy [148, 96]. The results of these stud-
ies showed transcriptional bursting by directly counting the integer-
valued numbers of mRNA in living E. coli cells. The observed be-
havior can be easily explained by a simple model [132, 88] of gene
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activation-inactivation in which the gene in the off state switches to
the on state with constant probability, and the gene in the on state ei-
ther switches off or makes a transcript with constant probability (see
figure 1.1A-D). Transitions between the two states of the gene are as-
sumed to happen at time intervals that are exponentially distributed
(constant probability of transition), following a random telegraph
process [73]. During each “on” period, transcription is assumed to
be Poissonian and produces a random number of mRNA molecules.
The combined effect of the exponential duration of active periods
and the Poissonian transcription is that the number of mRNAs pro-
duced during each active period follows a geometric distribution
[20]. In this model, if long periods of inactivity are followed by short
periods of intense mRNA synthesis activity, transcription is said to
occur in bursts (see figure 1.1D). One of the consequences of these
findings is that fluctuations in the level of mRNA are expected to
be particularly large when the transitions between the two states of
the gene are slow compared to the mRNA lifetime. Although this
seems to be the case for the lac operon, where binding and unbind-
ing rates of the LacI repressor have been measured, transcriptional
bursting have also been observed for constitutive promoters [99],
where there is no known transcription factor binding and unbind-
ing. Other mechanisms may be responsible for this behavior, such
as transcription re-initiation due to retention of sigma factor dur-
ing the elongation process [43] or mRNA polymerase availability. In
eukaryotes, other specific processes are believed to be responsible
for transcriptional bursting, such as the slow kinetics of chromatin
remodeling [158].

Stochasticity also arises at the second stage of gene expression,
when mRNA molecules are translated into functional proteins (see
figure 1.1E-G). Fluctuations in the number of transcripts are trans-
mitted to the concentration of proteins and can be either amplified or
reduced depending on the details of the gene expression mechanism.
Under repressed conditions, single-molecule experiments have shown
that proteins are also produced in bursts [202, 30]. In E. coli, individ-
ual molecules of yellow fluorescent protein (YFP) fused to a mem-
brane protein could be monitored in real-time [202]. The reduced
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diffusion of the membrane-bound protein allowed to increase the
sensitivity of the fluorescence signal detection and to identify indi-
vidual proteins. The proteins were found to be produced in bursts
resulting from the transcription of a single mRNA molecule from
the strongly repressed lac operon. The statistics of protein produc-
tion were found to be well described by a simple model of uncor-
related bursts parameterized by two values, the average number of
proteins produced per burst, b = 4.2, and the average number of
bursts per cell cycle, a = 1.2. Moreover, the number of proteins pro-
duced in each burst followed a geometric distribution, which can be
interpreted by a simple biological model. During the lifetime of a
mRNA, several rounds of translation take place. After the initiation
of one translation round, the presence of the ribosomes confers pro-
tection against ribonucleases and prevents the degradation of the
mRNA. After the completion of translation, the ribosome unbinds
from the mRNA and ribonucleases compete with other ribosomes
for binding to the mRNA. It was shown theoretically that the prob-
ability of producing n proteins from one mRNA molecule follows
the geometric distribution [20, 111, 51] P(n) = ρn(1− ρ), where ρ is
the probability of ribosome binding and 1− ρ is the probability of
ribonuclease binding. Moreover, assuming that the bursts are uncor-
related and exponentially distributed (following a Poisson process)
and that the mRNA lifetime is much smaller than the protein life-
time (which is usually the case in prokaryotes [178]), the resulting
steady-state distribution of proteins is the gamma distribution [30]

p(x) =
xa−1e−x/b

baΓ(a)
. (1.1)

where Γ is the gamma function and x is the continuous approxima-
tion of the protein copy number n. The gamma distribution derived
from this translational burst model compares well with stochastic
simulations of gene expression models when transcription occurs at
a constant rate (see figure 1.1E-G).
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Figure 1.1 (following page): Stochastic model of gene expression. (A) The three-
stage model of gene expression describes the basic biochemical reactions
for the expression of a single gene controlled by a repressor (adapted from
[82]). The promoter can transition between the active form (A) and the
repressed form (R) with transition rates koff and kon. Transcription and
translation are modeled as first-order reactions with rates sA (transcrip-
tion rate when promoter is active), sR (transcription rate when promoter is
repressed) and sP (translation rate), as well as degradation of mRNA and
proteins, δM and δP. In a stochastic model of gene expression, each reac-
tion step is described as a random event with an exponentially distributed
reaction time. The randomness in the reactions is expected to become more
important as the number of molecules involved is low. Deterministic mod-
els, on the other hand, cannot capture the effects of stochasticity in gene
expression. (B-D) Time series and histograms of mRNA concentration from
stochastic simulations using the Gillespie algorithm [57] in the transcrip-
tional burst model. Fixed parameters are sR = 0.5, δM = 0.1 and cell
volume V = 1.5 µm3. All reaction rate units are min−1. (B) Fast promoter
transitions compared to the mRNA lifetime lead to small fluctuations in the
number of mRNA molecules. koff = kon = 5, sA = 10. (C) Slow promoter
transitions lead to large mRNA level fluctuations and bimodal distribu-
tion. koff = kon = 0.02, sA = 10. The average number of mRNA is the same
as in (B). (D) When the stability of the repressed promoter is increased
and becomes active only for short and infrequent periods of time, the tran-
scription occurs in bursts. koff = 1, kon = 0.02, sA = 250. The average
number of mRNA is the same as in (B). (E-G) Time series and histograms
of protein concentration from stochastic simulations using the Gillespie al-
gorithm [57] in the translational burst model. The promoter is assumed to
remain in the active state (constitutive expression). Fixed parameters are
sR = 0.5, δM = 0.1, δP = 0.05. (E) High transcription rate and low transla-
tion rate produce small fluctuations in protein number. sA = 5, sP = 0.1.
(F) Lowering transcription rate and increasing translation rate lead to an
increase in protein fluctuations. sA = 0.2, sP = 2.5. (G) Lowering transcrip-
tion rate and increasing translation rate further produce bursts of protein
production. sA = 0.02, sP = 25. (E-G) In these three cases the average num-
ber of proteins is the same. The histograms from stochastic simulations
match well with the gamma distribution derived from a simple transla-
tional burst model (red line) with burst frequency parameter a = sA/δP
and burst size parameter b = sP/δM.
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While single-molecule experiments have demonstrated the stochas-
tic nature of gene expression, their results were specific to the pro-
moters and the details of gene regulation mechanisms. How gene ex-
pression noise depends on these details is still an open question [99]
and other mechanisms could also influence the overall noise in this
process. For example, supercoiling of the chromosome in cyanobac-
teria may play a role in the stochasticity of its circadian rhythm [34].
The contributions of transcriptional and translational bursting to the
total noise in gene expression depend on the details of the gene regu-
lation. However, it is generally assumed that translational bursting is
the main source of noise in prokaryotes [82]. In the landmark study
of Ozbudak et al. [124], both noise sources were tuned by changing
independently the rates of transcription and translation of a GFP
gene while maintaining the same average concentration of proteins.
A low rate of transcription combined with a high rate of transla-
tion produced large fluctuations in the protein concentration, show-
ing that translational bursting is the main source of stochasticity, in
agreement with the simple gene expression model (see figure 1.1E-
G).

Theoretical efforts have been done in order to model both the tran-
scriptional and translational stochasticity. In the three-stage model
of gene expression of Shahrezaei et al. [166], the transitions between
inactive and active promoter states, the transcription process and
translation process are all treated stochastically. The distribution of
protein numbers could be calculated using some approximations
that are valid when the mRNA lifetime is much shorter than the pro-
tein lifetime. Under these conditions, the calculations showed that
the more realistic three-stage model reproduced the geometric dis-
tribution for protein synthesis and therefore validated the simpler
translational burst theory.

1.1.3 Intrinsic and extrinsic noise

While the inherent randomness of biochemical reactions is at the
origin of molecular noise, external sources of fluctuations can also
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affect the cellular processes. For example, fluctuations in the number
of ribosomes, in the activity level of mRNA polymerase, in the tem-
perature, in the growth rate or in the concentration of external sig-
nal in the environment can all modulate the production and degra-
dation rates of a given protein and modify the fluctuations in its
concentration. Such sources of noise are usually called extrinsic (or
external) noise, while the molecular noise is referred to as intrin-
sic noise. The differentiation between these two categories of noise
sources in the case of gene regulation was formally introduced in
the theoretical work of Swain et al. [177] and in the experiments of
Elowitz and al. [50]. In the latter experiments (see figure 1.2), E. coli
cells are engineered to simultaneously express cyan and yellow flu-
orescent proteins that are under the control of two identical promot-
ers. In this setup, extrinsic fluctuations are those that affect equally
the expression of both fluorescent proteins. For example, fluctua-
tions in the number of available ribosomes should modulate equally
the translation rate for both proteins. Intrinsic fluctuations, on the
other hand, are those inherent to the randomness of transcription
and translation, and affect independently the two gene expression
pathways. The contribution of intrinsic noise to the total fluctuations
can therefore be related to the uncorrelated part of the fluctuations
in the expression levels of the two proteins. The results showed that
both noise sources contribute to the total variability in the cell and
that the relative importance of intrinsic to extrinsic noise depends
on the promoter. Moreover, the time scale for intrinsic fluctuations
in bacteria is smaller than 9 minutes and can be considered as white
noise within the limit of the experimental precision, whereas the
extrinsic fluctuations act on a time scale similar to the cell cycle du-
ration [153].

1.1.4 Noise in gene regulatory networks

At the level of a single gene, fluctuations clearly affect the gene ex-
pression process and result in variability in the number of protein
molecules present in the cell. A natural question arising from this
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Figure 1.2: Intrinsic and extrinsic noise in gene expression. Engineered strains
of E. coli [50] express a cyan fluorescent protein gene (cfp,
shown in green) and a yellow fluorescent protein gene (YFP,
shown in red) controlled by identical promoters. (A) Fluores-
cent image of cell colony with combined CFP and YFP channels.
Cells with the same amount of YFP and CFP appears in yellow,
while cells with different amounts of proteins appear either in
red or in green. (B) Schematic representation of the fluorescence
time course in a single cell. In the absence of intrinsic noise (up-
per) the protein levels fluctuate in a correlated manner. Intrinsic
noise may introduce uncorrelated fluctuations leading to differ-
ences between YFP and CFP protein levels (lower). (C) Scattered
plot of fluorescence in three scenarios: intrinsic noise only, ex-
trinsic noise only, or both. The intensity of extrinsic noise is
proportional to the spreading in the direction of the diagonal
and intrinsic noise intensity to the spreading in the direction
perpendicular to the diagonal. Adapted from [143] and [50].
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observation is how fluctuations are handled within gene regulatory
networks, which control most cellular functions. How does noise
influence the ability of regulatory networks to transmit reliable in-
formation, such as a response to an external signal? All sources of
noise are likely to affect in some way the regulation at different lev-
els of the network organization, from simple gene auto-regulation
to genome-wide regulatory networks.

One of the simplest case of gene regulation is the self-inhibited
gene, where the gene encodes for a transcription factor that binds to
its own promoter region and represses its expression. Several stud-
ies have shown that such a negative auto-regulation mechanism re-
duces the variability in the protein level [17, 9, 46]. In the experi-
ment of Becskei and Serrano [17], a single gene negative feedback
system was engineered in E. coli cells. They compared the variabil-
ity in the protein expression level for this regulatory network with
that obtained in the absence of feedback control. They observed a
decrease in the variability in the network with negative feedback,
as predicted by mathematical modeling [128, 182, 169, 129]. Such as
noise reduction effect can be expected to play an important role in
many gene regulatory networks. In fact, negative auto-regulation is
widespread in prokaryotic regulatory networks and roughly 40% of
known transcription factors in E. coli repress themselves [167]. Nega-
tive feedback may also play a role in minimizing the noise on down-
stream processes, by shifting the noise to higher frequencies where
it is more easily filtered out by gene networks as demonstrated the-
oretically [169] and experimentally [9].

The other type of simple auto-regulation consists of a gene en-
coding for a transcription factor that activates its own transcription.
Self-activating feedback loop can lead to bistability, as shown by
mathematical modeling [76], a behavior that has been observed in
a number of biological systems [1, 175], as in the case of the lactose
utilization network in E. coli [123], and has also been implemented in
synthetic circuits [56, 18, 76, 8, 10]. The cooperativity in the gene reg-
ulation by transcription factors together with the self-activation re-
sult in a switch-like behavior where the stationary expression of the
gene can have two distinct states: one with low expression level, the
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“off” state, and the other with high expression level, the “on” state.
Due to the cooperativity, a minimum amount of transcription factor
is needed in order to trigger the activation. When in the “off” state,
transcription factor level stays below the threshold concentration in-
definitely and only large fluctuations can induce the gene expression
and switch the cell to the “on” state [68, 52]. Similarly, fluctuations
may also switch a cell to the “off” state. The transitions between the
stable states occur due to random fluctuations and are inherent to
the details of the genetic network. However, additional feedbacks
may be used to control the transition rates of the bistable system.
Avendaño et al. [10] constructed an interlinked positive and nega-
tive feedback network based on the galactose uptake control sys-
tem of Saccharomyces cerevisiae and showed that tuning the strength
of the coupled negative feedback allowed to tune the frequency of
the transitions. These results highlighted the role of the noise mod-
ulation by the two different feedback loops. Indeed, positive and
negative feedbacks modulate differently the noise [143], which re-
sult in a complex noise regulation when both feedback loops are
combined. At the level of the cell population, stochastic transitions
in a bistable system lead to a bimodal population distribution. By
differentiating cells into two distinct stable states, positive feedback
regulation enhances population heterogeneity and provides a mech-
anism for creating phenotypic variability in a population of genet-
ically identical cells. Positive feedback loops therefore allow for a
simple mechanism of cell differentiation and cell decision making
and has been the subject of intensive theoretical study [143]. While
the basis of stochastic transitions in the positive feedback switch has
been extensively studied, open questions remain about the effects of
stochasticity in such a system (see chapter 4).

Negative and positive autoregulation are not the only regulatory
motifs that appear in transcriptomes. For example, direct interac-
tion between a transcription factor and a target gene represents one
of the simplest building block of regulatory networks. Fluctuations
in the concentration of the transcription factor can be transmitted
to the target gene, a phenomenon known as noise propagation. In
the study of Pedraza and Van Oudenaarden [134], a synthetic reg-
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ulatory cascade of three genes was built such that the first gene
represses the second and the second gene represses the third. By
measuring the expression level of the three genes using multiple
fluorescent reporters, the authors found that fluctuations were trans-
mitted from the upstream genes to the downstream genes. As the-
oretically shown [134, 29], the total variability in the expression of
one gene can be decomposed into three components: the intrinsic
noise of the specific gene, transmitted noise from the upstream gene
and extrinsic noise coming from global fluctuations. The transmitted
noise sources are modulated by the strength and type of interactions
between genes. Thus, even in a network where all the components
have low intrinsic noise, the transmitted noise can still be substan-
tial and stochasticity may be important. Other important regulatory
motifs include feed forward loops, which modulate noise differently
depending on the type of interaction (positive or negative) between
the transcription factor and the target genes [167, 35].

1.1.5 Beneficial roles for noise

As a perturbation to the reliable functioning of cellular functions,
noise is a nuisance. This is especially true for cellular processes
whose success relies on precise spatial and temporal transmission
of information, such as in the development of multicellular organ-
isms. Evidences of the existence of noise buffering mechanisms have
been found in the development pathways of Drosophila [172] and
Caenorhabditis elegans [145] and suggest that these organisms have
evolved mechanisms to minimize noise during development. How-
ever, noise may also have beneficial roles in many biological pro-
cesses. In the recent years, an increasing number of studies have
shown that noise provides useful physiological functions in single
cells and produces variability in cell populations that can be advan-
tageous [48]. At the level of intracellular functions, noise has been
suggested to improve regulation by coordinating the expression of
large groups of genes. Such a case of stochastic enhancement of gene
expression coordination has been studied in the experimental work
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of Cai and al. [31], which examines the yeast response to extracellu-
lar calcium. The main transcription factor regulating the response to
calcium is Crz1, whose activity is controlled by phosphorylation and
dephosphorylation. The presence of calcium favors the dephospho-
rylation of Crz1, which results in its localization to the nucleus. Sur-
prisingly, experiments showed that Crz1 localizes to the nucleus in
short stochastic bursts lasting 1-2 minutes and that calcium concen-
tration modulates the frequency of these bursts without changing
their average duration and amplitude. Such a frequency-modulation
regulation allows cells to co-regulate a large set of target genes with
different input functions while maintaining the same proportional-
ity with respect to the signal concentration [48].

At the level of cell population, noise provides a fundamental func-
tion by allowing phenotypic variability in a population of genetically
identical cells. This variability could be especially useful for unicel-
lular organisms, by enabling population-level strategies such as bet-
hedging and division of labor that would be difficult to implement
in a deterministic system [48]. Population variability is usually en-
hanced by regulatory networks that produce multiple gene expres-
sion profiles that are mutually exclusive and that correspond to a
particular cellular decision. These states are stable in the sense that
small variations in gene expression or fluctuations in the environ-
mental signals are insufficient to induce a transition from one state
to another and the cell can remain in the same state for durations su-
perior to the cell cycle, providing a mechanism of epigenetic inheri-
tance. Occasionally, large fluctuations can drive the cell to a different
stable state, the mechanism creating diversity in the population. As
described above, positive feedback is a simple regulation motif that
creates bistability, allowing for the “on-off” switching of a particular
genetic program. The lactose utilization network of E. coli [123] is the
canonical example of this type of behavior, where cells stochastically
transition between the lactose and the glucose metabolism. In gen-
eral, cells can have several stable states as a result of the complexity
of gene regulatory networks, leading to multistability.

These observations raise the fundamental question of how phe-
notypic variability can be advantageous for a cell population and
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under which conditions. One of the key ideas emerging from theo-
retical studies [183, 92] is that stochastic phenotypic switching could
provide a fitness advantage in a fluctuating environment. When the
concentration of nutrients fluctuates randomly, cells can basically
choose between two strategies to optimize their growth: sensing the
changes and responding appropriately by switching their phenotype
(changing metabolic pathway) or allowing a fraction of the popula-
tion to stochastically differentiate to a phenotype that is adapted to
expected future changes in food concentrations, thus anticipating
environment fluctuations. The cost of the former strategy is main-
taining active sensory machinery and usually slow response times,
whereas the second strategy essentially sacrifices the part of the pop-
ulation that has a suboptimal growth in the current environment.
The advantage of the sensing strategy is that all the cells may achieve
an optimal growth after the transient time of response to an environ-
mental change, whereas the stochastic switching strategy does not
need to maintain any sensory network and can allow a group of cell
to be well-adapted to any abrupt environment change. The latter ad-
vantage is especially true in the case of a sudden and severe stress,
where the existence of a group of resistant cells can optimize the
survival of the population [23]. The experimental study of Acar and
al. [2] showed that the phenotypic switching rate may influence the
growth advantage of a population of yeast cells exposed to a fluctu-
ating environment. Fast switching cells grow faster in a rapidly fluc-
tuating environment whereas slow switching cells present a growth
advantage when the environment changes more slowly. The stochas-
tic switching is therefore an alternative strategy to sensing and is
most effective when the rate of phenotypic switching is similar to
the rate at which the environment fluctuates.

Another example of beneficial variability produced by noise is the
competence regulatory network in Bacillus subtilis. Competence is
a stress response activated in conditions of nutrient limitation that
allows cells to take up DNA from the environment. The differentia-
tion into the competent state is transient and occur only in a small
fraction of the cells, while the rest of the population remain in the
vegetative state or commit irreversibly to sporulation. At the heart
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Figure 1.3: Probabilistic differentiation into the competence state in Bacillus sub-
tilis. (A) The core circuit controlling the competence state in-
cludes the positive feedback self-regulation of ComK, which
leads to bistability. The competence genes are activated when
the cell is in the high ComK state. In the vegetative state, ComK
levels are kept low by the MecA-ClpC-ClpP protease com-
plex which degrades ComK. ComS competes with ComK for
binding to the protease complex, effectively lowering the rate
of ComK degradation. Random fluctuations may drive ComK
level above a threshold and induce transition to the competent
state. An indirect negative feedback loop mediated by ComS re-
duces ComK level and induces the exit from competent state.
Adapted from [176]. (B) Fluorescence images from a typical
competence event with PcomS-ypf and PcomG-cfp (a reporter of
PcomK activity) expression shown in green and red, respectively.
The cell exhibits a pulse of comK expression (red), during which
the competence is active. Adapted from [175].
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of the competence control circuit are the regulatory proteins ComK
and ComS (see figure 1.3). ComK positively regulates its own expres-
sion producing a bimodal population distribution where competent
cells exhibit high levels of ComK, activating the downstream genes
involved in DNA uptake, and noncompetent cells produce low basal
amounts of ComK [175]. Additional negative feedback loops medi-
ated by ComS and the ClpP-ClpC-MecA protease complex leads to a
system combining positive and negative feedback loops that exhibits
excitability, a type of behavior similar to the action potential in neu-
rons. In this system, intrinsic noise is thought to play an essential
role in the initiation of competence by allowing ComK to surpasses
the threshold level necessary for the activation of the positive feed-
back. This possibility was tested in the experimental work of Süel
and al. [176] by reducing the total intrinsic noise using very large
cells that are unable to divide, and in the experimental study of
Maamar and al. [110] by increasing the comK transcription rate and
lowering the translation rate, thereby reducing the noise in gene ex-
pression. Moreover, intrinsic fluctuations may be also responsible for
the variability in the durations of competence events.

As we have seen, noise plays an important role in many biological
functions and is ubiquitous in cellular processes, such as in tran-
scription, translation and gene regulation. Its effects are especially
important in cell differentiation circuits, such as genetic switches.
By allowing transitions between the different stable states, noise
enhances the phenotypic variability. How biochemical noise drives
these transitions, modifies the dynamics of the gene circuit and af-
fect the phenotypic landscape is still an open question. In chapter 4,
we study this problem and show that noise can redesign the pheno-
typic landscape of a positive feedback genetic switch.

If noise impacts all of the intracellular processes, the same could
be true for the processes of information exchange with its surround-
ings. Cells, in their natural context, are often surrounded by other
cells, sense and respond to changes in their environment and com-
municate one with another. This characteristic may be obvious in
multicellular organisms, but is also true for simpler prokaryotic cells,
as will be seen in the next section.
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1.2 quorum sensing

Bacteria, long thought having a solitary existence, were found to
communicate with one another by sending and receiving chemical
messages [13]. With the discovery of what is now called quorum
sensing (QS), it became clear that bacteria possess complex commu-
nication systems that allow them to coordinate their behavior in a
way similar to multicellular organisms. By sending and receiving
chemical messages, bacteria are able to gather information about
their environment and control gene expression synchronously in
the whole population. This ability to generate a collective behavior
in response to environmental changes resembles the sophisticated
communication mechanisms found in eukaryotes, such as the com-
munity effect during development [157]. In the simplest form of quo-
rum sensing, cells produce, export into the environment and detect
small chemical-signaling molecules called autoinducers. At low cell
density, the autoinducer molecules are diluted into the medium and
are present at a low concentration. As the population of bacteria
grows, more cells produce and release the autoinducer and its con-
centration increases. Upon reaching a critical concentration of sig-
naling molecule, bacteria are able to detect its presence and initiate
a signaling cascade resulting in changes in the expression of target
genes. By exchanging the autoinducer molecules through their envi-
ronment, bacteria are therefore able to sense their own number and
adapt their behavior depending on the average cell density of the
colony. Furthermore, communication by QS allows bacteria to coor-
dinate gene expression in the entire population, providing a simple
mechanism for achieving collective behavior.

The concept of prokaryotic intercellular communication originates
with the discoveries of Tomasz [186] on genetic competence in Strep-
tococcus pneumoniae and of Nealson, Platt and Hastings [119] on the
bioluminescence in Vibrio. Nealson and al. showed that the small ma-
rine bacterium Vibrio fischeri produces light at high cell density but
remains obscure in diluted suspension. Light production could be
stimulated by the addition of cell-free culture fluids, suggesting the
existence of a hormone-like substance secreted by the cells, called
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the autoinducer, which was later identified as an acyl-homoserine
lactone (AHL) [47]. During the exponential growth of a freshly inoc-
ulated culture of bacteria, the light emission was found to increase
abruptly upon reaching a critical cell density. It is now known that
such “all-or-nothing” behavior is caused by the positive feedback
loop mediated by the LuxI protein responsible for the autoinducer
synthesis (see page 26) [198, 121]. The QS mechanism in V. fischeri
allows bacteria to regulate the production of light depending on the
cell density, which may provide them with a great adaptability to
survive in different environments. When examining the wild life of
the bacterium, one finds that it leads two very different lives: either
free-living and isolated in seawater or forming a dense colony in
the light organ of the Hawaiian bobtail squid Euprymna scolopes (see
figure 1.4). The association between the bioluminescent bacterium
and the squid is a fascinating example of symbiosis [122, 155, 14],
in which the animal host provides nutrients to the bacteria, and the
bacteria provide light to the host, allowing it to escape its preda-
tors more easily. Euprymna scolopes is a small bobtail squid which
lives in shallow coastal waters off the Hawaiian Islands and Mid-
way Island [155]. During its nocturnal foraging activity, the squid
uses the light emitted by V. fischeri from its ventral surface to cam-
ouflage itself in a behavior called counter-illumination. By adjusting
the intensity of the bioluminescence from its light organ to match
down-welling moonlight, E. scolopes is able to reduce its silhouette
and evade predators more easily [80]. The light organ (see figure 1.4)
hosting the bioluminescent bacteria is a complex organ capable of
modulating the intensity of light and redirect it in the ventral direc-
tion using a reflective tissue layer [40]. In the squid light organ, V.
fischeri grows to extremely high cell densities (approximately 1011

cells/ml) [154] where it produces and accumulates autoinducer mol-
ecules. The high concentration of autoinducer activates the signaling
cascade that results in the induction of the expression of the genes re-
quired for light production. On the other hand, when V. fischeri lives
in open seawater, the autoinducer it produces is quickly diluted and
the light production genes are turned off. The bacterium therefore
uses the QS mechanism to detect wether it lives in a symbiotic associ-
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ation with its host or in the open seawater. When fully induced, light
production consumes a considerable part of the metabolic energy of
the cells and can account for up to 20% of oxygen consumption [26];
the concentration of luciferase, the key enzyme responsible for light
emission, can constitute 5% or more of the total cellular proteins
[67]. In the seawater environment, V. fischeri cells therefore avoid
expending the energy for light emission which results in a fitness
advantage. In this case, the QS mechanism enables bacterial cells
to adapt to very different ecological niches. Interestingly, the squid
Euprymna scolopes follows a curious diel behavior [122]: each day at
dawn, when it buries into the sand for their daytime quiescence, the
squid expels 95% of the light-organ symbionts into the seawater.
During the day, the bacteria that remain in the host grow till reach-
ing the maximum population size. When the squid emerges at dusk
to hunt, its light organ is full of bioluminescent bacteria which pro-
vide him with camouflage light. This behavior is believed to not only
help maintain the symbiont population in the host but also to seed
the environment with bacteria, increasing the chances of establish-
ing symbiosis with uninfected juvenile squids. It also indicates that
V. fischeri cells are faced with frequent changes in their environment
and that QS may offer an advantageous strategy to enhance their
adaptability.

Over the past two decades, a growing number of bacterial species
have been found to use quorum sensing mechanisms to control a
variety of cellular functions [121, 14]. Vibrio harveyi, a free living
marine bacterium and an important pathogen of marine organisms,
produces and responds to three different autoinducers [121], form-
ing a complex QS system that controls the bioluminescence pathway.
In Pseudomonas aeruginosa, an opportunistic human pathogen that
primarily infects individuals who are immunocompromised, several
QS pathways have been found to regulate biofilm development and
virulence factor production [130, 42]. In Vibrio cholerae, the causative
agent of the human disease cholera, pathogenicity and biofilm for-
mation are controlled by two parallel QS systems [206, 70, 81]. In-
terestingly, at low cell density V. cholerae activates the expression of
virulence factors and forms biofilms, whereas the accumulation of



1.2 quorum sensing 23

Figure 1.4: Light organ of the bobtail squid Euprymna scolopes hosting the biolu-
minescent bacteria Vibrio fischeri. (A) Photography of the Hawai-
ian bobtail squid Euprymna scolopes, which measures about 40

mm at adult age. Photography by Spencer Nyholm. (B) Cut-
away illustration of the juvenile light organ of Euprymna scolopes,
early (left) and late (right) in the initiation of symbiosis. When
symbiosis is established, Vibrio fischeri bacteria live in the deep
crypts (dc) of the light organ. In this association, the host uses
light that is produced by the bacteria in counter-illumination
to avoid predators during their nocturnal behavior, while the
bacteria receive nutrients from the host. Adapted from [193].
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autoinducers at high cell density represses these traits and promotes
the dispersion of bacteria, allowing them to leave the host and ini-
tiate a new cycle of infection. This behavior is the opposite of what
is seen in many other pathogens, which activate virulence factor ex-
pression at high cell density. In Streptococcus pneumoniae and Bacillus
subtilis, QS controls the activation of competence, the ability to up-
take exogenous DNA. Cell-cell communication by QS is also found
in soil bacteria species, as for example Agrobacterium tumefaciens, a
plant pathogen that causes the crown gall disease.

In natural environments, bacteria are often found in mixed-species
communities where cells exchange chemical signals across species
[13, 174, 14]. This new level of complexity in bacterial collective
behavior gives rise to the concept of socio-microbiology [173, 161]
which studies the cooperative or cheating behaviors in a microbial
population. Some interesting questions in this field include how QS
can be an evolutionarily stable strategy and what is its role under
ecological relevant conditions. One category of polymicrobial inter-
action of special interest is the association of pathogenic bacterial
species [137]. Pseudomonas aeruginosa, for example, is a highly adapt-
able bacterium which inhabits very diverse environments and is also
known as an opportunistic pathogen, causing infections of the eyes,
ear, skin, urethra and respiratory tract in cystic fibrosis and burn
patients [180]. Three QS systems allow the bacterium to regulate the
synthesis of several virulence factors and communicate with other
microbes, enabling sophisticated functions to interact with other
bacteria. P. aeruginosa secretes antimicrobial chemicals to compete
with other bacteria but also uses QS signals to cooperate with other
species [156, 180].

As the most abundant form of life on earth, bacteria are also of-
ten found to live in association with other organisms. Inter-kingdom
communication systems have evolved that allow bacteria to interact
with eukaryotic organisms [174], increasing the complexity of behav-
iors such as parasitic, symbiotic or commensal relationships. One in-
teresting example is the establishment of symbiosis between bacteria
of the family Rhizobiaceae and leguminous plants. Successful sym-
biosis leads to the formation of root nodules that host populations
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of Rhizobiaceae bacteria that mediate N2 fixation. In the formation
of the nodules, complex two-way chemical communication between
the two species are involved, including QS signaling between bac-
teria, flavonoids compounds release by the roots which signal the
bacteria to assemble near the root surface and production of Nod
factors by the bacteria which instruct the plant root to prepare for in-
vasion [174]. In the symbiotic association V. fischeri-squid described
above, bacteria also have a rich interaction with their animal host.
For example, it has been found that the bacteria communicate with
the host to drive the development of the tissues of the light organ
[193]. The biochemical signaling between V. fischeri and its host in-
volves both nitric oxide synthase (NOS) and NO [193], which are
important components of innate immunity. In addition, the host is
capable of detecting the light emitted by the bacteria and selects only
luminous symbionts [112].

The QS gene regulatory networks can be broadly classified into
two categories: QS systems in Gram-negative bacteria which use
acyl homoserine lactones (AHLs) with various carbon chain length
(from C4 to C18) as signaling molecules, and QS networks in Gram-
positive bacteria which primarily use modified oligopeptides as au-
toinducers. The fundamental difference between these two classes of
signaling networks lies in the transport and detection modes of the
signaling molecules. In many Gram-negative bacteria, small AHLs
diffuse freely across the cell membrane [84] and bind specifically to
a cytoplasmic receptor protein, such as LuxR in V. fischeri [95], which
activates the transcription of target genes. In Gram-positive bacteria,
the peptide signals are typically sensed by membrane-bound recep-
tors to initiate a phosphorylation cascade that leads to the activation
of target gene expression [121]. Because peptides cannot cross biolog-
ical membranes, secretion of QS oligopeptides is usually performed
by specialized transporter proteins (see also section 2.3.4). Thus, al-
though the general mechanism of QS in Gram-negative and Gram-
positive bacteria is the same, i.e. the density-dependent expression
of target genes via the production, secretion and detection of a sig-
naling molecule, the synthesis of the autoinducer, the secretion and
detection apparatus and the signaling molecule itself are different
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[14]. The classification into these two categories is however not exact
and some bacterial species may integrate characteristics of regula-
tory networks of both Gram-negative and Gram-positive bacteria, as
in the case of Vibrio harveyi [121].

The LuxI/LuxR system of Vibrio fischeri has become a paradigm
for quorum sensing in Gram-negative bacteria and many other species
have been found to share a common regulatory motif. The LuxI pro-
tein is the autoinducer synthase and is responsible for the produc-
tion of the QS autoinducer N-3-(oxo-hexanoyl)-homoserine lactone
(3OC6HSL) [160]. After synthesis, the autoinducer molecule diffuses
freely across the cell membrane [84] and accumulates in the environ-
ment. Upon reaching a threshold concentration, the autoinducer is
detected by the cytoplasmic receptor LuxR, which binds reversibly
to 3OC6HSL and form a stable complex. The LuxR-3OC6HSL com-
plex then activates transcription of the lux operon by binding to the
lux box in the promoter region [142], leading to the production of
proteins responsible for the light emission. Because the expression of
luxI is also activated by the LuxR-3OC6HSL complex, more autoin-
ducer molecules are produced and released into the surrounding
environment, which bind to LuxR receptors and activate further the
QS circuits in all the cells. The resulting positive feedback loop, or au-
toinduction, is believed to be responsible for the bistable switch-like
behavior of the QS circuit (see also paragraph on positive feedback
loops on page 13), enhancing the synchrony of the activation of all
cells in the population. Such a bistable behavior has been reported
in in silico studies [45, 39, 62] and in vivo experiments [198, 66].

Increasing knowledge of the QS mechanisms that regulate vir-
ulence in pathogenic bacterial species has lead to promising new
strategies to inhibit virulence gene expression by interfering with
QS communication. In principle, the QS communication mechanism
could be inhibited by reducing signal production, inhibiting signal
reception or accelerating signal degradation. Most of recent studies
focus on finding antagonist compounds that strongly bind to the
LuxR-type receptors, competing with the native autoinducer and re-
ducing the QS response [94, 161].
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QS has opened an important research field with promising tech-
nological applications [126, 37]. In the field of synthetic biology, QS
components have been used to engineer complex genetic devices
with novel behaviors. The design, construction and study of syn-
thetic genetic circuits that use QS signaling can facilitate our un-
derstanding of collective behavior in natural systems and lead to
interesting applications such as biosensors [37]. The LuxI/LuxR sys-
tem of Vibrio fischeri is one of the most widely used component to
build synthetic QS-based networks. In the work of Basu and al. [15]
(see figure 1.5 panels A and B), two bacterial strains are engineered:
“sender” cells which are inoculated in the center of a Petri dish,
produce AHL autoinducer molecules which freely diffuse on the
solid agar surface to create a spatial gradient of signaling molecule
concentration; “receiver” cells are engineered to express GFP only
when the AHL concentration is within a narrow range (similar to a
band-pass filter), resulting in a ring pattern of fluorescence. In the
experimental study of Liu and al. [104], the LuxI/LuxR QS module
is coupled to a gene module controlling the cell motility in E. coli
cells, such that motility is suppressed at high cell density. The cou-
pling between cell density and cell motility leads to the formation
of periodic stripe patterns during the growth of a colony inoculated
at the center of a Petri dish (see figure 1.5 panels C and D). Spa-
tiotemporal pattern formation is one impressive example of collec-
tive behavior performed by QS synthetic circuits. The study of QS
synthetic and natural systems can therefore provide insights into
the more complex spatiotemporal organization mechanisms found
in the development of higher organisms. Other examples of QS
applications in synthetic biology include programmed population
control [201], environmentally controlled invasion of cancer cells [3]
and synchronized population of genetic oscillators, at the level of
microcolonies [41] and at the macroscopic level [140]. Thus, the QS
mechanism offers a fantastic tool for creating gene regulatory cir-
cuits with a variety of novel population-level behaviors. The success
of these synthetic biology experiments fundamentally relies on the
sinergy between experimental work and theoretical analysis. Mathe-
matical modeling can be used not only to test the design of synthetic
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circuits and make predictions, but also to gain a deeper understand-
ing of collective behaviors in populations of communicating cells in
their natural context [63]. In this sense, bacterial QS is a model sys-
tem to study the emergence of multicellular behaviors in prokaryotic
and eukaryotic systems.

Figure 1.5 (following page): Examples of spatiotemporal pattern formation in syn-
thetic QS-based circuits. (A) Design of the synthetic bacterial mul-
ticellular system of the study of Basu and al. [15]. Sender cells
express LuxI, which synthesizes the autoinducer molecule AHL.
Diffusion of the autoinducer in the solid medium creates a con-
centration gradient around the senders. The autoinducer enters
the nearby receiver cells and binds to LuxR, activating the ex-
pression of CI and a modified Lac repressor (LacIM1). Due to
the design of the regulatory circuit, only receiver cells which re-
ceive intermediate levels of autoinducer activate the expression
of GFP. (B) This band-pass filter behavior result in a ring pattern
of GFP fluorescence when receiver cells are cultivated uniformly
in a Petri dish around a colony of sender cells placed in the cen-
ter expressing CFP. A second strain of receiver cells is coculti-
vated on the dish, which respond to lower concentrations of au-
toinducer and express RFP, resulting in a second string pattern
of larger diameter. Figures adapted from [15]. (C) Stripe pattern
formation in the study of Liu and al. [104]. The density-sensing
module is adapted from the core of the LuxR/LuxI QS network.
The motility-control module contains the cheZ gene, which was
deleted from the cell genome and whose expression is needed
for cell motility on semisolid agar. cheZ is expressed at low cell
density, leading to the motile phenotype, and repressed by the
active LuxR regulator at high cell density, leading to the non-
motile phenotype. (D) The coupling between cell density and
cell motility leads to the formation of stripe patterns of cell den-
sity variations during the growth of a colony inoculated in the
center of a Petri dish. Intricate pattern are formed when placing
two inoculums in the middle of the dish. Figures adapted from
[104].
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1.3 stochastic effects in quorum sensing

The coordination of a myriad of bacterial cells, all expressing the
same set of genes in a synchronous manner, may raise the question
of how such a coordination can be achieved given the unavoidable
fluctuations affecting the biological networks of individual cells. As
experiments have shown both in wild-type and synthetic systems
(see section 1.2), the QS mechanism can produce a robust and syn-
chronized behavior at the level of the population. As described in
section 1.1, noise is ubiquitous in biological systems. Bacterial cells,
due to their small size, are particularly subject to intrinsic fluctu-
ations in the number of their regulatory proteins. The core of the
QS network may be perturbated, for example, by fluctuations in the
level of the LuxR-type receptor. In the recent experimental study of
Teng and al. [181], the number of LuxR proteins in Vibrio harveyi was
calculated by statistical analysis of protein and volume distributions
after cell division. At low cell density the average number of LuxR
dimers is between 80 and 135. This may sound like a large number
of proteins, enough to keep intrinsic fluctuations at a low level. How-
ever, around 70 target genes are under the control of LuxR, meaning
that there are few LuxR dimers relative to the number of operators
it can potentially bind to, suggesting that intrinsic noise may have a
considerable effect in the regulation of these genes. At high density,
the number of LuxR dimers increases to an average of 575 and the
average burst size was found to be b = 50. In other words, around 11

luxR mRNAs are produced per cell cycle and each of these mRNAs
translates into 50 LuxR dimers before it is degraded. Such a high
translation rate suggests that the gene expression noise may be an
important source of stochasticity at high cell density. Thus, intrinsic
noise can be expected to play an important role in QS regulatory
networks.

As in any communication process, the QS signal may also be per-
turbated by fluctuations during its transmission from one cell to
another. Such extrinsic noise sources could arise for example from
spatial heterogeneity in the diffusivity of the external medium, or
degradation of the autoinducer by extracellular enzymes [94]. More-
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over, the detection of the freely diffusing signaling molecule is sub-
ject to intense molecular noise due to the small volume of the cell
and the low concentration of signal in the environment [125]. For a
Vibrio fischeri bacterium with a typical volume of 0.35 µm3 [84], a con-
centration of autoinducer as low as 10 nM is enough to induce a QS
response [84]. This means that a level of only ∼ 2 signaling molecules
per cell can be sensed by the small marine bacterium. The low num-
ber of signaling molecules inside the cell, together with the other ex-
trinsic sources of noise, suggest that fluctuations in the autoinducer
level may influence the reliability of the QS activation pathway. One
central question is therefore to know how the diffusion process in-
fluences the intensity of the fluctuations in the signaling molecule
(see chapter 2).

As described in section 1.1, at the level of a single cell noise may
be controlled and regulated by different mechanisms, such as neg-
ative feedback loops. At the level of the population, however, the
role of cell-cell communication in the regulation of noise is still
poorly understood [63]. An intuitive view is that communication
by QS increases cell function’s robustness to noise by averaging
out the fluctuations in the signal coming from many cells. By act-
ing in a coordinated manner, a population of cells would therefore
be able to respond to signals with a higher sensitivity, overcoming
the fluctuations that are present in the single cell. In the case of
bistable networks, it has been proposed that communication provide
a mechanism for enhancing the reliability of collective cellular deci-
sion making [91]. Cell-cell communication has also been shown to
synchronize synthetic genetic oscillators, as predicted theoretically
[114, 53] and demonstrated experimentally [41]. However, the inter-
play between noise and cell-cell communication may in general de-
pend on the details of the genetic network and the communication
mechanism. One example showing the complexity of this relation
is the case of the suprachiasmatic nucleus (SCN), the master circa-
dian pacemaker in mammals. The SCN is composed of a network
of cells, with each cell acting as an autonomous oscillator. Due to
the noise in biochemical reactions that perturbates the intracellular
clock network, isolated cells are not able to maintain a precise rythm.
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However, in the SCN network, the intercellular coupling allows the
emergence of precise and synchronized rhythm in all the cells. This
effect has been widely studied and relies on the idea that intercel-
lular coupling can synchronize and improve the precision of noisy
oscillators, as shown by experiments [103] and mathematical model-
ing [61]. In the study of Ko and al. [89], mutant cells that lack one
essential component of the intracellular clock regulatory network
are analyzed. When isolated, these mutant neurons are unable to
produce oscillations and exhibit random fluctuations in the level of
the reporter. Surprisingly, mutant cells that are interconnected in a
network show stochastic oscillations synchronized over the whole
population, similar to the original circadian oscillations but lacking
their regularity. In this case, cell-cell coupling and noise work in
synergy to generate stochastic rhythms at the level of the cell popu-
lation. This observation shows how the interplay between intrinsic
and extrinsic fluctuations and cell communication can produce com-
plex behaviors that can have relevant biological function, such as
circadian oscillations that coordinate the physiological processes of
mammalian cells in a daily manner.

1.4 overview of the thesis

The QS mechanism in prokaryotes is a simple communication pro-
cess and could serve as a model system for studying the emergence
of collective behavior in populations of communicating cells. The in-
terplay between fluctuations and QS communication, however, are
still not well understood. Interesting unanswered questions remain
about the role of noise in both natural and synthetic QS systems. For
example, the cell response heterogeneity observed in many bacte-
rial species (see section 3.1) during the QS transition may originate
from different known and unknown noise sources. The diffusion
process of the autoinducer could provide a mechanism to regulate
the fluctuations inside the cell (see chapter 2). While previous work
has suggested that diffusion reduce the noise in the signal level, the
interplay between the different noise sources and the diffusion re-
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mains obscure. Moreover, understanding the exact relationship be-
tween the stochasticity at the level of a single cell and the reliabil-
ity of the cell coordination at the level of the population could be
important for the design of robust QS-based synthetic circuits (see
chapter 5) and to gain insight into the natural function of QS (see
chapter 3). At the level of a single cell, many aspects of the effects
of stochasticity in gene regulatory networks remain unknown. Be-
yond the trivial variability in the level of the regulatory proteins,
stochasticity can also have more subtle effects, such as changing the
position and stability of the stable states of the network (see chap-
ter 4). Such effects could be especially relevant in cell differentiation
circuits, such as bistable genetic switches, where the stability of the
stable states and the stochastic transitions between them are essen-
tial characteristics of the cell differentiation process.

In this thesis, we adopt a theoretical scope to analyze these ques-
tions. We make use of mathematical modeling and stochastic sim-
ulations to study the effects of fluctuations at the level of a single
cell and at the level of a population of QS-communicating cells. Our
analysis relies on quantitative biological data when available and
focus on well-studied canonical experimental models, such as the
LuxI/LuxR system. However, the scope of this work is broader and
intends to gain a better understanding of the interplay between QS
communication and intracellular noise. The modeling presented in
this thesis is based on well-established deterministic and stochas-
tic methods (such as the Gillespie algorithm [57]) to describe gene
regulatory networks and signaling mechanisms. We make use of
a custom-developed software (see appendix A.1) to simulate the
stochastic dynamics of a population of cells that can grow and di-
vide, taking into account the stochasticity of the biochemical reac-
tions and the diffusion of the signaling molecule. This simulation
tool is used throughout the thesis to study the effects of stochasticity
at the level of the single cell and at the level of the cell population.

This thesis is divided into six chapters, the first one being this
introduction. The chapters 2, 3, 4 and 5 each describes original re-
search studies. The corresponding publications can be found in the
Publications list on page v.
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The chapter 2 is dedicated to the analysis of the noise regulation
by the QS diffusion process. With the intention of studying the in-
terplay between noise and diffusion from a theoretical point of view,
we build a simplified model that describes the expression of the au-
toinducer and its diffusion in a population of cells. When the tran-
scription rate of the luxI-type gene is very low, we can disregard all
the regulation feedback loops and assume that the autoinducer is
expressed constitutively. In this regime, we make use of determinis-
tic and stochastic modeling to derive analytically the distribution of
autoinducer molecules at steady-state. This theoretical approach al-
lows us to isolate the contributions of different noise sources, such as
the transcriptional noise and the biochemical noise. Interestingly, we
find that the intensity of fluctuations in the autoinducer level shows
a non-monotonic behavior as a function of the diffusion rate, a re-
sult that had not been described before. Such analysis contributes to
gain a deeper understanding of the interaction between intracellular
noise sources and the QS communication process.

In chapter 3, I introduce our study of the stochastic effects in the
QS transition of a population of bacteria. The aim of this study is to
investigate how intrinsic noise at the level of individual cells affects
the coordination of the QS activation at the level of the cell popu-
lation. How does the collective response depend on the stochastic
dynamics of single cells, and in particular, how precise is this re-
sponse? In order to answer these questions, we build a stochastic
multi-cellular model of the well-characterized LuxI/LuxR system.
Our results indicate that the cell response is very heterogeneous, in
agreement with many recent experimental studies in a variety of
QS species [5, 24, 136, 65]. We find that the gene expression noise
in LuxR is the main factor controlling the variability of the cell re-
sponse. Our in silico results suggest that noise in the LuxR-type reg-
ulator has a large impact on the precision of the QS transition. Thus,
we provide with a possible explanation for the existence of LuxR
noise control mechanisms found in wild-type bacterial species such
as V. harveyi [181, 189].

In chapter 4, I present our analysis of the effects of intrinsic noise
on the phenotypic landscape of an autoactivating genetic switch. As
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described in section 1.1.4, positive feedback loop is an important
gene regulatory motif that can lead to bistability. Such an autoac-
tivating mechanism is at the core of the LuxI/LuxR QS regulatory
network of V. fischeri and is responsible for the switch behavior of
the QS activation. As shown recently in several theoretical studies
[88, 162, 203, 52, 79], fluctuations can not only change the dynamics
of gene regulatory networks but also modify the position of their
stable states. In chapter 4, we make use of analytical calculation and
stochastic simulation to show how the epigenetic landscape is mod-
ified due to the intrinsic noise. We explain why and how the noise
promotes the stability of the low-state phenotype of the switch and
show that the bistable region is extended when increasing the inten-
sity of the fluctuations, an effect that we call stochastic stabilization.
Our study contributes to a better knowledge of the consequences
of biochemical noise in gene regulatory networks and suggests that
noise may also redesign the epigenetic landscape of more complex
cell differentiation processes.

In chapter 5, I describe our model of a population of toggle switches
interfaced by two QS communication pathways. A synthetic biology
study has shown that the QS signaling can induce the flipping of
a population of toggle switches [90]. The QS signal, however, acted
as a global activator to flip all the switches once to the “on” state,
similar to the wild-type density-dependent QS transition. In chap-
ter 5, we present a computational model of a population of toggle
switches coupled by two QS signaling pathways such that both the
“on” and the “off” states of the switch are coupled. Due to the small
size of bacteria, intracellular noise drives the stochastic switching of
individual cells. We show that, by increasing the diffusion rate, the
cell population transitions from a disordered behavior with the cells
randomly flipping from one state to another, to a fully coordinated
behavior where all the cells are stuck in the same state. This sud-
den transition in the coordination of the population appears very
similar to the second order phase transition in the mean-field theory
of the Ising model. The phenomenon of phase transition suggests a
new mechanism for collective cellular decision making, relying on
the interplay between noise, bistability and cell-cell coupling. With
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our model, we suggest a new design of QS-based genetic circuit
that produces a coordinated and tunable behavior at the level of cell
population. By analyzing the response of the system to an external
signal, we suggest that this phenomenon could be used to increase
the sensitivity and robustness of biological sensors.

Finally, in chapter 6, I present the main achievements of the thesis
and discuss future perspectives.



2
N O I S E R E G U L AT I O N B Y Q U O R U M S E N S I N G I N
L O W M R N A C O P Y N U M B E R S Y S T E M S

2.1 introduction

Communication by quorum sensing (QS) in many gram-negative
bacteria relies on the diffusion of the signaling molecule through
the cell membrane. The low number of signaling molecules inside
the cell, together with other sources of noise, suggest that fluctua-
tions at the autoinducer level may influence the reliability of the QS
activation pathway. Therefore, as pointed out in section 1.3, one cen-
tral question is to elucidate how the diffusion process influences the
intensity of the fluctuations in the signaling molecule.

A recent study has indeed shown that diffusion can reduce the
noise at the level of the autoinducer [179]. However, the role played
by different sources of stochasticity present in the cell and their con-
tribution to the dynamics of the signaling molecule have not been
characterized yet. In the study of Tanouchi and al. [179], the authors
assume a constitutive expression of the receptor protein (LuxR) and
the autoinducer, and neglect the transcriptional noise. Yet, the latter
can be an important source of noise, in particular when the tran-
scription rate is low [82]. Moreover, as will be shown in chapter 3,
LuxR regulates crucial aspects of QS as the precision for achieving a
coordinated response among cells.

In order to study the interplay between different sources of intrin-
sic noise and the diffusion of the signaling molecule, we propose a
model that describes the expression of the autoinducer and its dif-
fusion in a population of cells when the QS genes are not activated.
In this case, the fluctuations of the signaling molecule are mainly
modulated by the diffusion into and out of the cell. When the au-
toinducer concentration is below the activation threshold, the tran-

37
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scription of the luxI gene occurs at a low basal rate, thus producing
low levels of the enzyme. In this regime, the feedback regulation of
the luxI gene leading to autoinduction can be disregarded. As a mat-
ter of fact, a number of QS systems lack autoinduction [146] and in
those cases neglecting the feedback is a valid approximation even
above the activation threshold.

The QS network architecture varies among species and may in-
clude complex regulation mechanisms [121]. At low cell density, the
luxI gene expression is either repressed by a high concentration of
its repressor or activated at a very low level by its activator. Under
these conditions, we assume that very few luxI transcripts will be
produced, following rare events of successful transcription. These
events may happen when the activator molecule, such as the LuxR-
autoinducer complex in the case of Vibrio fischeri, binds to its pro-
moter for sufficient time to allow initiation of transcription. In the
case of repression, a transcription event may take place when the
repressor unbinds from the promoter for a sufficient time, a process
known as leaking. Such infrequent transcription events have been
observed in the lac operon in E. coli (see section 1.1). Expression of
the operon is regulated by the lac repressor, which binds tightly to
its promoter region on the DNA. Single molecule observations have
shown that infrequent dissociation of the lac repressor produce rare
transcription events producing only one mRNA molecule [202, 36].
In our modeling approach we assume that during the transcription
events a single luxI mRNA molecule is produced. Under these condi-
tions the dynamics of the mRNA can be then described by means of
a Markovian dichotomous process [73], jumping between zero and
one molecule. This theoretical description will allow us to derive
analytical results for the dynamics of the autoinducer.

2.2 objectives and summarized results

In this chapter, I present our study of the interplay between the
QS communication and intracellular fluctuations in bacterial pop-
ulations. First, we aim at understanding how the communication
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mechanism and different sources of noise determine the dynamics
of the autoinducer. Second, we aim at shedding light on the mecha-
nisms that confer robustness to noise in QS communication. We re-
strict ourselves to the study of the aforementioned problems below
the QS activation threshold where we can assume that the transcrip-
tion events of the luxI-type gene produce basal constitutive levels of
mRNA of at most one molecule per cell at a time, that the mRNA is
translated into the signaling molecule in a single reaction step, and
that all regulatory feedback loops can be neglected.

In the Methods section, I present our modeling approach and de-
rive the analytical expression of the autoinducer distribution as a
function of the diffusion rate. In the Results section, we compute
by means of stochastic simulations the autoinducer distribution. By
comparing the analytical and simulations results, we are able to dis-
tinguish the contributions of the intrinsic noise and the transcrip-
tional noise in the fluctuations of the autoinducer. We show how
the diffusion process produces a repertoire of dynamics in regards
of the signaling molecule. We demonstrate that, for a large range
of diffusion rate values, the main contribution to the total noise of
the autoinducer concentration are the mRNA fluctuations. Finally,
we show that the total noise exhibits a non-monotonic behavior as a
function of the diffusion rate in contrast to previous results [179].

2.3 methods

2.3.1 Modeling Approach

As discussed in section 2.1, below the activation threshold, it can
be assumed that rare transcription events produce individual luxI
transcripts. Under these conditions the dynamics of the mRNA can
be then described by means of a Markovian dichotomous process
[73],

Mi
0

β-�
α

Mi
1 (2.1)
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where Mi
0,1 = 0, 1 stands for the number of mRNA molecules at cell

i and α and β for the transition rates between these states; i.e. α
and β account for the mRNA degradation rate and the transcription
frequency respectively. Notice that the fluctuations of the mRNA dy-
namics between the values 0 (no mRNA) and 1 (a mRNA molecule)
are not memoryless, i.e. white. Once a mRNA molecule is produced,
and until it becomes degraded, the cell keeps producing the autoin-
ducer. That is, the transcriptional noise is a colored noise, and its
autocorrelation decays exponentially with a characteristic time scale
τc = (α+β)−1 [73].

Once a mRNA molecule is produced the translational, and post-
translational processes (if any), leads to the appearance of functional
luxI synthetases. Yet, our interest here focuses on the dynamics of
the signaling molecule. It has been shown that the amount of the
synthetase substrate is not a limiting factor for the production of the
autoinducer [117, 127]. As a consequence, the levels of the signaling
molecule depends directly on the expression levels of the synthetase.
Ignoring intermediate biochemical steps in the autoinducer synthe-
sis reduces the number of noise sources and may even change, under
some circumstances, the observed dynamics [166]. Still, we assume
here that the translation of the synthetase and the subsequent syn-
thesis of the autoinducer, A, can be effectively described by a single
chemical step with rate k+. In addition, we consider that the autoin-
ducer becomes degraded at a rate k−, that is,

Mi
1

k+- Mi
1 +A

i (2.2)

Ai
k−- ∅ . (2.3)

Passive diffusion in and out the cell of the autoinducer can be
implemented by considering a new species, Aext, that accounts for
the number of signaling molecules in the extracellular medium such
that

Ai
D-�
rD

Aext (2.4)

where D stands for the diffusion rate and r = V/Vext represents
the ratio of the volume of a cell to the total extracellular volume.
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We consider all cells to have the same value of the diffusion rate.
In addition, we assume a well-stirred system where spatial effects
can be neglected. As the bacterial population grows the autoinducer
accumulates in the media. In experiments, in order to keep the con-
centration of the autoinducer below the activation threshold, such
growth is compensated by means of a dilution protocol. As detailed
below (see Parameters) the latter constitutes the main source of ef-
fective degradation of the signaling molecule. Thus, hereinafter we
take for granted the degradation rate of the signaling molecule to be
the same inside and outside the cell,

Aext
k−- ∅ . (2.5)

Figure 2.1 schematically represents the biochemical processes con-
sidered in our approach. The set of reactions reactions 2.1 to 2.5
characterizes the stochastic dynamics of the autoinducer and the
mRNA. Their probabilistic description is given by the correspond-
ing master equations that can be sampled by means of the Gillespie
algorithm in a N-cells system [57].

2.3.2 Analytical Calculations: Null Intrinsic Noise Approximation

Further insight into the dynamics of the signaling molecule can be
obtained by analytical means as follows. Two stochastic contribu-
tions drive the dynamics of A: the mRNA fluctuations due to the
random switching and the molecular, i.e. intrinsic, noise due to low
copy number of the autoinducer. As of the latter it can be neglected
if over the course of time Ai/

(
Ai + 1

)
' 1 (large number of autoin-

ducer molecules). While in this system such approximation is not
totally justified (see parameters values below), it is useful to imple-
ment it in order to discriminate between the effects caused by differ-
ent stochastic contributions and to obtain analytical expressions. In
this case it is straightforward to demonstrate that the dynamics of
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Figure 2.1: Scheme of a simplified biochemical network of QS systems near the
activation threshold. Schematic representation of the biochemi-
cal processes considered in our approach for describing the dy-
namics of the signaling molecule, A (diamonds), in cell i. The
mRNA dynamics follow a dichotomous process with state val-
ues M0,1 corresponding to zero and one molecule respectively.
Once the autoinducer has been produced, it can diffuse into
and out of the cell leading to cell communication (see text).

the autoinducer, reactions 2.1 to 2.5, can be described by the follow-
ing coupled stochastic equations:

.
cAi = k+cMi

1
(t) − k−cAi +D (cAext − cAi) (2.6)

.
cAext = −k−cAext + rD

N∑
i=1

(cAi − cAext) =

= −k−cAext + rDN (〈cA〉− cAext) , (2.7)

where cAi = Ai/V , cMi
1
(t) =Mi

1/V , and cAext = Aext/Vext stand for
the concentration of species A and Mi

1 in cell i and for species Aext

in the extracellular medium respectively,N is the colony size, and 〈·〉
represents the population average. In equation (2.6) the term cMi

1
(t)

accounts for a dichotomous stochastic process characterized by the
rates and states (α,β) and (0, 1/V) respectively, and describes the
fluctuating mRNA dynamics. Notice that if D = 0 then the resulting
equation from equation (2.6) has been proposed to study graded
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and binary responses in stochastic gene expression and it has been
shown that, despite its simplicity, it can actually reproduce some
gene expression phenomena [86, 188, 77].

We can further proceed with the analytical calculations by imple-
menting, as in previous studies e.g. [114], a quasi-steady approxi-
mation for the dynamics of the external autoinducer, i.e.

.
cAext = 0.

Notice that this approximation is justified by the fact that the steady-
state dynamics of cAext are determined by the average of a large
number of fluctuating variables cAi . As we will show in this study,
the main source of randomness in cAi originates in the dynamics of
the mRNA. The fluctuations in the mRNA are uncorrelated between
cells and therefore we can expect the dynamics of cAi to be approx-
imately independent between cells. Moreover, we consider that all
cells are identical and therefore the steady-state probability distribu-
tions of cAi are identical. Due to the central limit theorem, we can
expect cAext to be a constant as a first approximation,

cAext = 〈cA〉
1

1+ k−
NDr

. (2.8)

By substituting equation (2.8) into equation (2.6) we obtain a rate
equation for the concentration of the signaling molecule inside a
given cell that depends on the average 〈cA〉 (the index i has been
dropped),

.
cA = k+cM1

(t) −D

(
1+

k−

D

)
cA + 〈cA〉

D

1+ k−
NDr

. (2.9)

In the absence of diffusion, equation (2.9) reveals that the concentra-
tion of the signaling molecule reaches a maximum value of c+A =

k+/ (k−V) when cM1
(t) = V−1. In terms of c+A and the time scale

tc = 1/k− (the typical lifetime of a signaling molecule), the dimen-
sionless version of equation (2.9) reads

.
c̃A = ĉM1

(t̃) + keff
+ (〈c̃A〉) − keff

− c̃A , (2.10)
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where

D̃ = D/k− (2.11)

keff
− = 1+ D̃ (2.12)

keff
+ (〈c̃A〉) = 〈c̃A〉

D̃

1+ 1

ND̃r

; (2.13)

ĉM1
(t̃) being a Markovian dichotomous noise with states {ĉM1

} =

0, 1 and rates α̃ = α/k− and β̃ = β/k−.
Equation (2.10) can be formally closed by invoking the following

self-consistency condition:

〈c̃A〉 =
∫
Ω̃

c̃A ρ (c̃A; 〈c̃A〉)dc̃A, (2.14)

ρ (c̃A; 〈c̃A〉) being the probability density solving equation (2.10) and
Ω̃ its support (see below) [73]:

ρ (c̃A; 〈c̃A〉) = N
(
keff
− c̃A − keff

+ (〈c̃A〉)
) β̃

keff
−

−1

(
1+ keff

+ (〈c̃A〉) − keff
− c̃A

) α̃

keff
−

−1
, (2.15)

with

N =
(1+ D̃) Γ

[
α̃+β̃

1+D̃

]
Γ
[
α̃

1+D̃

]
Γ
[
β̃

1+D̃

] (2.16)

being the normalization constant. The condition (2.14) can be exactly
solved and leads to the following value for the average concentra-
tion:

〈c̃A〉 =
1+ D̃Nr

1+ D̃Nr+ D̃

β̃

α̃+ β̃
=

1+ D̃Nr

1+ D̃Nr+ D̃
〈c̃A〉|D̃=0

(2.17)

where 〈c̃A〉|D̃=0
= β̃/

(
α̃+ β̃

)
is the average concentration of the

signaling molecule in the absence of diffusion. When the diffusion
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is non zero, the autoinducer is produced in the cell and diffuses
out into the external medium where it degrades, leading to a de-
crease in the overall concentration of autoinducer in the cells, 〈c̃A〉 <
〈c̃A〉|D̃=0

. For the sake of concision, on what follows we drop, in the
notation of ρ (c̃A; 〈c̃A〉), the term 〈c̃A〉 from the argument. Note that
ρ (c̃A) has two states (barriers) that define its support. That is, the
minimum and maximum values that the concentration of the autoin-
ducer can reach as a function of the diffusion are:

c̃−A =
D̃2Nr

(1+ D̃)(1+ D̃+ D̃Nr)

β̃

α̃+ β̃
(2.18)

c̃+A = c̃−A +
1

1+ D̃
. (2.19)

It is easy to prove that the probability density ρ (c̃A) shows a single
extremum if

α̃, β̃ ≶ keff
− , (2.20)

where the extremum is a maximum if α̃, β̃ > keff
− and a minimum

if α̃, β̃ < keff
− . In the other cases the probability density does not

display any extrema. Therefore, as a function of α̃ and β̃, the prob-
ability density ρ (c̃A) may show four different behaviors depending
on the value of the diffusion coefficient as schematically represented
in figure 2.2A. However, given the constraints on the parameters
of our modeling not all regions, i.e. behaviors, are accessible to the
autoinducer dynamics. In particular, we have assumed a low con-
stitutive expression such that only a single mRNA molecule can be
transcribed at a time. The latter implies that β̃ < α̃ (the degradation
rate of the mRNA is larger than the transcription rate) in order to
assure that a maximum of one mRNA molecule is present in a cell
at any given time (see Parameters section 2.3.3). As a consequence,
and independently of the diffusion value, the dynamics leading to
the probability density shown at the top-left region of figure 2.2A
(for which β̃ > α̃) can not be considered as physical in the context
of our modeling approach. Yet this constraint is not a fundamental
ingredient for obtaining our results (see section 2.5).
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Figure 2.2: Probability densities of the signaling molecule and parameter space.
(A) Sketch of the different probability densities of the autoin-
ducer concentration depending on the value of α̃ and β̃ with
respect to D̃. Given a set of values (α̃, β̃) the dynamics of the
autoinducer show different behaviors depending on the value
of the diffusion parameter. The limits of the parameter regions
are located at α̃, β̃ = 1 + D̃. The constraints of our modeling
in terms of the parameter values make the region on the top-
left corner non-accessible (see text). (B) Parameter space dia-
gram (α̃, β̃) indicating the sets of parameters used in the sim-
ulations (solid squares): γ1 = (8, 2), γ2 = (15, 5), γ3 = (8, 0.5),
γ4 = (15, 0.5). The experimental values reported for the degra-
dation rate of the mRNA leads to a biological meaningful range
for α̃ (blue region). The low constitutive expression assumption
is prescribed by the constraint α̃ > 2β̃ (red colored region).
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Finally, the noise of the autoinducer concentration reads

η2c̃A =
σ2c̃A
〈c̃A〉2

=
α̃
(
1+ D̃+ D̃Nr

)2
β̃
(
1+ D̃

)(
1+ D̃Nr

)2 (
1+ D̃+ α̃+ β̃

) (2.21)

where σ2c̃A = 〈c̃2A〉− 〈c̃A〉2. While in the analytical calculations we
have disregarded the intrinsic noise, equation (2.21) will allow us to
elucidate the contributions of different sources of noise. By means of
the numerical simulations (Gillespie) of the set of reactions 2.1 to 2.5
in a N-cell system, we can evaluate the total (intrinsic + transcrip-
tional) noise. Hence, by subtracting from that quantity the contribu-
tion of the transcriptional noise, i.e. equation (2.21), we obtain the
levels of intrinsic noise (see Results).

2.3.3 Parameters

We are particularly interested in the role played by the fluctuations
of the signaling molecule, A, when its concentration is close to the
activation of the QS switch. Therefore, we fix the mean concentration
of the autoinducer and modulate the rest of the parameters in order
to keep constant this value. Pai and You [125] have recently studied
the core architecture of the QS mechanism for a comprehensive set
of bacterial species and estimated that the critical concentration of
autoinducer needed for the activation of the QS genes ranges from
10 to 50 nM for most of the bacterial species. In our model, we set the
average concentration of A to a typical value of c0A = 25nM. Yet, our
results do not depend on the particular value we choose within that
range. As shown below (see section 2.4), this value fixes the level of
intrinsic noise of the system. However, the interplay between diffu-
sion and transcriptional noise does not depend on that. Moreover,
by defining the so-called sensing potential, ν = (rN)−1, Pai and You
estimated the range of critical cell densities for the QS activation
and concluded that its typical value is ν ∼ 103 − 104. In our simula-
tions we set this parameter to ν = 103. In the experimental setups
the cells are typically present in a volume of a few milliliters and
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the total number of cells is of the order of 108 − 109. The concentra-
tion of autoinducer in the medium is therefore determined by the
exchange of signaling molecules coming from many cells. In con-
trast, the behavior of QS systems with a very low number of cells
can be significantly different, as shown by microfluidic confinement
of cells in picoliter droplets [24, 33, 65]. In our study, in order to dis-
card small system size effects, we choose a sufficiently large number
of cells in the numerical simulations, N = 102. Since the typical vol-
ume of an E. coli cell is V = 1.5 µm3, then Vext = νNV = 105V (i.e.
r = 10−5).

We point out that keeping ν to a constant value necessarily re-
quires an external dilution protocol for maintaining constant the cell
density. The control of the dilution rate is usually achieved by the
use of chemostats or microfluidic devices [19]. The rate of dilution
should compensate for the cell growth, ∼ 2 · 10−2 min−1 (i.e. cell
cycle duration ∼ 50min). In our modeling, by keeping constant the
number of cells and the average concentration of the autoinducer, we
tacitly assume a dilution protocol too. Importantly, the dilution rate
effectively modifies the degradation rate of the signaling molecule.
Generally speaking, bacteria which synthesize AHLs do not degrade
them enzymatically. In fact, AHLs are chemically stable species in
aqueous solutions [87]. However, some bacteria species possess hy-
drolytic enzymes that do degrade AHLs. In this regard, the degra-
dation rate of the autoinducer has been measured in vitro for the
homoserine lactone 3-Oxo-C6-AHL and it has been found that this
autoinducer is rather stable: 2.86·10−4 min−1 [87]. Measurements of
the degradation rate of other AHL autoinducers show similar results.
Based on experimental data and mathematical modeling, the degra-
dation rate of the signaling molecule in vivo has been also estimated
[125]. Depending on the pH of the medium, the latter ranges from
∼ 5 · 10−3 min−1 to ∼ 2 · 10−2 min−1. Consequently, the dilution pro-
cess constitutes the main source of effective degradation of A, both
inside and outside the cell, and here we set k− = 2 · 10−2 min−1.

In regards to the mRNA dynamics, α, the degradation rate, de-
pends on the cell’s degradative machinery. To this respect, the half-
lives of all mRNAs of Staphylococcus aureus have been recently mea-
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sured during the mid-exponential phase. Most of the transcripts
(90%) have half-lives shorter than 5 minutes [150, 4]. According to
these studies we restrict the mRNA degradation rate to the range
ln(2)/5 min−1 < α < ln(2)/2 min−1 and consequently α̃ > 1. As
for the frequency of the transcription events, β is determined by
particular characteristics of the gene regulatory process under con-
sideration, like the affinity of the regulatory proteins to the operator
site and the initiation rate of transcription. Due to the assumption
of low constitutive transcription, we choose values of parameter β
satisfying the relation α > β. In particular in our simulations we
implement the more restrictive condition α > 2β. For all the chosen
parameter values, we show that our modeling is compatible with
the translational burst theory (see section 2.3.5). Figure 2.2B reca-
pitulates these constraints and shows the different sets of α and β
values that we have used in our simulations and analytical calcula-
tions.

Summarizing, N, r, and k− are kept fixed in our simulations and
analytical calculations and we explore the parameter space α, β, and
D within the ranges and constraints mentioned above. In every par-
ticular situation, once a set of those parameters is prescribed, we de-
termine the value of k+ by using equation (2.17) in order to keep the
average value of cA at a fixed value (25nM), as shown in figure 2.3.

2.3.4 Passive diffusion and active transport in QS

The rate of passive diffusion has been estimated for the 3-Oxo-C6-
AHL autoinducer based on the measure of diffusion of glucose and
lactose through the outer membrane of E. coli [179]. For a typical cell
volume of 1.5 µm3 the estimated diffusion rate is ∼ 103 min−1. Un-
der these conditions the typical value for the normalized parameter
D̃ is of the order of 104. Yet, active transport mechanisms for the
autoinducer leads to much smaller effective diffusion values and we
explore the role played by this parameter.

In some QS systems the autoinducer is actively transported in
and out of the cell. For example, in the bacterial species Pseudomonas
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Figure 2.3: Tuning of parameter k̃+ as a function of the diffusion coefficient. Pa-
rameter k̃+ as a function of diffusion coefficient D̃ for all the
sets of parameters γ1,2,3,4 (see figure 2.2B). For every value of
parameter set (α̃, β̃, D̃) we adjust the value of k̃+ = k+/k− by
using equation (2.17) in order to keep the average value of cA
at a fixed concentration value (25nM).
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aeruginosa, C4-HSL can freely diffuse but C12-HSL, a larger signal-
ing molecule, is subjected to active influx and efflux where its im-
portation and exportation rate are of the order of ∼ 10−2 min−1 and
∼ 10−1 min−1 respectively [131]. Another example corresponds to
the AI-2 signaling molecule. The latter is present in many Gram-
positive and Gram-negative species and it is believed to allow for
interspecies communication [200]. In E. coli and Salmonella enterica
extracellular AI-2 accumulates during the exponential phase, but
then decreases drastically upon entry into the stationary phase. This
reduction is due to the import and processing of AI-2 by the Lsr
transporter [200, 195]. Moreover, excretion from the cell of this au-
toinducer also appears to be an active process involving the putative
transport protein YdgG (or alternatively named TqsA) [69]. In the
case of E. coli these rates have been estimated by computational and
experimental means: Dout ' 10−1 min−1 and Din ' 10−3 − 10−2

min−1 [100]. All in all, the transport rates when driven by active
processes are four orders of magnitude smaller than the diffusion
rate of small molecules through the membrane. Hence, transport
rates in QS systems can be categorized into two main, well sepa-
rated, classes: small transport rates due to active process, and large
diffusion rates due to passive mechanisms.

In principle our model does not account for active diffusion pro-
cesses, but transport driven by concentration differences. Still, our
simple model is valid when the transport mechanism can be de-
scribed by two symmetric first-order transport reactions. We assume
that the excretion and uptake systems follow the Michaelis-Menten
kinetics. In the regime where the concentration of autoinducer (sub-
strate) is much smaller than the Km of the enzymatic reaction, the
transport rate can be approximated by a first-order reaction with
rates DincAext and Doutca. If, in addition, we assume that the trans-
port rates are symmetric, Din = Dout, the resulting dynamics are
identical to the case of passive diffusion. Under these conditions, the
rates of active transport in the QS systems described above would
fit in our model with a normalized diffusion coefficient in the range
D̃ ∈ [10−1, 10].
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2.3.5 Validity of the low mRNA copy number approximation in the frame-
work of protein burst expression theory

In our analysis, we assume that the rate of transcription is very
low, such that one mRNA molecule is present in the cell at most.
This assumption allows us to reduce the stochastic dynamics of the
mRNA to a dichotomous process that transitions between 0 and 1

molecule. We expect the dichotomous approach to describe accu-
rately the mRNA dynamics when the transcription rate is much
smaller than the mRNA degradation rate, i.e. β � α. In this case,
the probability of finding two mRNA molecules at any given time
in the cell is small and the simple dichotomous process is a good
approximation of the mRNA dynamics.

The low copy number of mRNA may lead to burst-like produc-
tion of proteins (see also section 1.1). Single molecule protein exper-
iments [202, 30] have shown that genes under the tight repression
of the lac promoter are expressed in bursts. Stochastic dissociation
events of the Lac repressor from the promoter lead to the transcrip-
tion of a single mRNA which is translated into a few copies of the
protein before the mRNA is degraded. The sudden production of
several copies of the protein is referred to as burst-like production.
By assuming that the expression events are temporally uncorrelated
and that the number of proteins produced per burst is exponentially
distributed, the steady-state protein distribution can be described by
the following gamma distribution [51, 30]:

pΓ (x) =
1

baΓ(a)
xa−1e−x/b , (2.22)

where a = β/k− is the mean number of bursts per protein lifetime,
and b = k+/α the mean number of proteins produced per burst. We
show below that the distribution (2.15) derived in our analytical cal-
culations is a good approximation of this gamma distribution when
β� α.
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When D̃ = 0, the dimensionless steady-state distribution (2.15)
reduces to

ρdich (c̃A) =
Γ
[
α̃+ β̃

]
Γ [α̃] Γ

[
β̃
] (c̃A)β̃−1 (1− c̃A)α̃−1 (2.23)

with

c̃A =
cA

c+A
= cA

k−

k+
(2.24)

and support [0, 1]. We denote this distribution by ρdich to emphasize
the underlying assumption of the mRNA following a dichotomous
process. In order to compare the distribution we obtain in our model
to the gamma distribution, we transform ρdich back to dimensional
variables,

ρdich (cA) =

∣∣∣∣ 1c+A
∣∣∣∣ Γ [(α+β) /k−]

Γ [α/k−] Γ [β/k−]

(
cA

c+A

) β
k−

−1(
1−

cA

c+A

) α
k−

−1

(2.25)

with support [0, c+A]. In the case β� α, the first moment of this dis-
tribution is the same as the mean of the gamma distribution (2.22),

〈cA〉dich = c+A
β

α+β

β�α
≈ c+A

β

α
= ab = 〈cA〉gamma . (2.26)

Moreover, the second moment, in the case that β� α and α� 1, is
the same as the second moment of the gamma distribution,

〈c2A〉dich = c+A
β (1+β)

(α+β) (1+α+β)

β�α
≈

(
c+A
α

)2
αβ (1+β)

1+α

α�1≈
(
c+A
α

)2
β (1+β) = 〈c2A〉gamma . (2.27)

We can see in figure 2.4, that the theoretical distribution (2.25) is
a good approximation of the gamma distribution when β � α for
the parameter sets γ3 and γ4 of our simulations and in qualitative
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Figure 2.4: Comparison of analytical distributions from protein burst theory and
from our modeling approach. Comparison between the gamma dis-
tribution (2.22) of the protein burst theory (red line) and the
analytical distribution (2.25) derived in our modeling approach
when there is no diffusion (blue line), for all parameter sets
γ1 = (α̃, β̃) = (8, 2), γ2 = (15, 5), γ3 = (8, 0.5), γ4 = (15, 0.5).
The analytical distribution based on the dichotomous mRNA
dynamics is a good approximation of the protein burst-like pro-
duction when β� α as for the parameter sets γ3 and γ4.

agreement otherwise. In our modeling approach, the assumption of
having at most one mRNA molecule in the cell is needed in order
to describe the dynamics of the mRNA by a dichotomous process.
This theoretical description allowed us to calculate the analytical dis-
tribution of the autoinducer. However, there is no biological reason
to assume that once a mRNA is in the cell, no other transcription
event could take place. This analysis shows that, despite this non-
biological assumption, the dichotomous process correctly describes
the dynamics of the mRNA when the transcription rate is much
smaller than the mRNA degradation rate. The resulting distribution
is compatible with the distribution obtained in the protein burst ex-
pression theory, which makes use of a more realistic description.



2.4 results 55

2.4 results

2.4.1 The autoinducer dynamics exhibit different regimes as a function of
the diffusion rate

The distribution of cA at the steady-state is computed for the differ-
ent parameter sets according to the ranges and constraints described
above (section 2.3.3). In order to explore the role of the diffusion in
the dynamics of the signaling molecule we first study the case D̃ = 0.
According to the analytical calculations (see inequality (2.20)) in this
case two possible distributions for the concentration of cA can be
observed depending on the value of β̃. Since α̃ > 1 we can expect
a maximum only if β̃ > 1 (note that keff

− = 1 if D̃ = 0), otherwise
extrema are not expected. The results of the numerical simulations
shown in figure 2.5A in fact reveal that scenario. Note that in all
cases the histogram obtained from the simulations fits fairly well
to the expression (2.15) except for deviations due to the intrinsic
noise that are not taken into account by the analytical approach. The
differences among dynamics are evidenced by the trajectories (fig-
ure 2.5B). Thus, for β̃ < 1 (parameter sets γ3 and γ4) the dynamics
of the autoinducer shows a burst-like behavior. If β̃ > 1 (parameter
sets γ1 and γ2) the frequency of bursts is high enough to maintain
the concentration of molecules near the average and a single-peak
distribution develops.

If D̃ > 0 we expect a more fruitful phenomenology since the tran-
sition lines in the parameter space (α̃, β̃) shift as a function of the dif-
fusion (see figure 2.2A). According to the analytical calculation we
can anticipate that, for a given parameter set and as D̃ increases, the
system explores different dynamical regimes. By taking as a refer-
ence the case γ2, that is (α̃, β̃) = (15, 5), figure 2.6 shows the effect of
the diffusion on the distribution (left column) and dynamics (center
column) of cA in a given cell. The system initially displays a single-
peak distribution for D̃ = 1. By increasing the diffusion coefficient
we observe transitions to other behaviors (monotonically decreasing
and double-peak distributions). The corresponding dynamics of cA
(right panels) show how the diffusion, acting as an additional effec-
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Figure 2.5: Distributions and dynamics of the signaling molecule in a diffusion-
less system. (A) Distributions of cA at steady-state for different
sets of parameters (α̃, β̃) as indicated in figure 2.2B. In all cases
D̃ = 0. The histogram obtained in simulations (blue bars) com-
pares well with the distribution from the analytical calculations
(blue line). Yet, small deviations are observed due to intrinsic
noise (see text). (B) The dynamics of the autoinducer show dif-
ferent behaviors depending on the region of the parameters
phase space (see figure 2.2). Two typical trajectories are shown
with a gray-shaded background indicating the presence of a
mRNA molecule in the cell.
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tive degradation on A, first increases the sharpness of the bursts of
production. For D̃ = 10, the diffusion is large enough to remove
signaling molecules between consecutive burst events, thus leading
to a monotonically decreasing distribution. Increasing the diffusion
rate to D̃ = 100 leads to the situation where both α̃ and β̃ becomes
smaller than 1+ D̃ and a bistable dynamics develops. Under these
circumstances the concentration of autoinducer alternates between
two states that correspond to a low concentration when there is no
mRNA production and a high concentration following mRNA syn-
thesis. As the diffusion further increases, e.g. D̃ = 2 · 103, the autoin-
ducer molecules diffusing from the external medium into the cell set
a constitutive level of this species. The latter explains the presence of
Amolecules in the cell even if no mRNA is produced. Finally, at very
large values of D̃, e.g. D̃ = 5 · 104, the low constitutive concentration
of the autoinducer increases due to the influx of molecules when no
mRNA is present whereas the concentration of A that is internally
produced decreases due to the efflux of molecules. In this case, the
whole N-cells system can be considered as a single volume with no
diffusive barriers between cells. Thus, the burst events average out
and, as a consequence, a single effective peak again develops.

2.4.2 The intensity of intrinsic fluctuations remains constant when chang-
ing the diffusion rate

Figure 2.6 shows that the theoretical distribution captures the essen-
tial features of the dynamics obtained in the numerical simulations
(Gillespie). The noticeable deviations are due to the intrinsic noise of
the signaling molecule A that are not considered in the theoretical
analysis. Notice that as the diffusion increases those deviations seem
to be larger. We stress that in our simulations we keep constant the
average concentration of the autoinducer by modulating the effec-
tive production rate (see Parameters section). As D̃ becomes larger
we increase the production rate k+ so that the average number of au-
toinducer molecules per cell remains constant. Consequently, the de-
viations between the simulations and the theoretical analysis cannot
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be ascribed to a putative decrease of the number of A molecules (i.e.
to an increase of the intrinsic noise). Moreover, the deviations cannot
be attributed either to a failure of the quasi-steady approximation in-
troduced in equation (2.7) because the larger the diffusion the more
accurate that approximation is. As indicated by equation (2.21) the
noise due to the mRNA dynamics behaves as ∼ 1/D̃. Thus, for large
values of the diffusion rate, the transcription noise level decreases.
Therefore, we must conclude that deviations between the theoretical
and the numerical approaches apparently increase with the diffu-
sion rate because there is a drop of the fluctuations related to the
mRNA dynamics. This also indicates that for large enough diffusion
rate, the intrinsic noise constitutes the main source of stochasticity.

In order to ensure that the intrinsic fluctuations are not actually
increasing due to diffusion we first perform the following in silico ex-

Figure 2.6 (following page): Distributions and dynamics of the signaling
molecule in a system with diffusion. Distributions (left column)
and dynamics (center column) of cA at steady-state for differ-
ent values of D̃. In all cases the parameters set (α̃, β̃) is γ2
(see figure 2.2B). The production rate k̃+ is modulated as a
function of (α̃, β̃, D̃) in order to maintain constant the average
〈cA〉 = 25 nM. The histograms obtained in the stochastic sim-
ulations (blue bars, left column) are in qualitative agreement
with the probability densities from the analytical calculations
(blue line, left column). When increasing the diffusion coeffi-
cient the system explores different dynamics as also revealed by
the trajectories shown in the center column. The gray-shaded
background shown in the trajectories of cA indicates the pres-
ence of a mRNA molecule in the cell. In order to discern a pu-
tative increase in the molecular noise (see section 2.4.2) we per-
form stochastic simulations of a modified system in which a sin-
gle mRNA molecule produces two distinguishable autoinducer
molecules A1 and A2. The density plots (right column) of the
distribution of cA2 vs cA1 reveal that the diffusion does not con-
tribute to an increase of the intrinsic noise since the spreading
of the distributions in a direction perpendicular to the diagonal
does not grow when increasing D̃.
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periment. We consider a modification of our system such that a sin-
gle mRNA molecule transcript leads to two autoinducer molecules
that are considered to be distinguishable. As described in section 1.1,
the latter can be experimentally achieved by placing consecutively
two copies of the encoding sequence of the autoinducer’s synthetase
in the operon labeled with different fluorescent tags [50]. Thus, we
double the set of reactions 2.2 to 2.5 in order to account for Ai1 and
Ai2 molecules synthesis at cell i due to a single mRNA transcriptMi

1.
Following [50], by plotting the distribution of cA1 as a function of
cA2 we can then discern a putative increase of the intrinsic fluctua-
tions (see also section 1.1). Right column of figure 2.6 displays the
results in this regard. The width of the distribution in a direction
perpendicular to the diagonal is a measure of the intrinsic fluctua-
tions. As shown, as the diffusion increases there is no amplification
of this quantity.

2.4.3 The total noise exhibits a maximum of intensity for intermediate
diffusion rates

It is interesting to place the previous result in the context of the
total noise present in the autoinducer concentration. Figure 2.7 re-
veals that η2cA shows a non-monotonic behavior. As a function of D̃
the total noise first increases and reaches a maximum at D̃ ∼ 102

and then decreases as the diffusion becomes larger. The same behav-
ior is observed for all four parameter sets. Note that the analytical
calculations, that just account for the transcriptional noise, are in
agreement with the numerical simulations, that account for both the
transcriptional and the intrinsic noise, for a large range of D̃ values.
This indicates that the main contribution to the total fluctuations
for a large range of diffusion values is the transcriptional noise. Yet,
as mentioned above, the latter diminishes as the diffusion increases
while the intrinsic fluctuations remain constant. Consequently, the
contribution of the intrinsic noise must become more relevant than
the mRNA dynamics stochasticity beyond some value of D̃.
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We address this point by calculating the relative importance of
the noisy sources. To this end we make use of the decomposition
η2cA = η2cA,int + η

2
cA,tran, where η2cA,int and η2cA,tran stand respectively

for the intrinsic and the transcriptional contributions to the total
noise [177]. Thus, by subtracting the analytical expression of the tran-
scriptional noise given by equation (2.21) to the total noise obtained
in the numerical simulations we are able to compute the intrinsic
noise as a function of the diffusion (see figure 2.7). By performing
a linear regression of the points that corresponds to the intrinsic
noise we obtain that the slope of the curve is indeed zero in prac-
tical terms (2 · 10−7 for parameter set γ2). Therefore, in agreement
with the results obtained in figure 2.6 (right column), the intrinsic
noise remains constant ( η2cA,int = 0.054± 0.003 for parameter set γ2)
as the diffusion increases and is the main stochastic component if
D̃ & 104.

2.5 discussion

Most of the stochastic models of gene expression assume that the
lifetime of the protein is much longer than the lifetime of the mRNA
[166]. This assumption is used, for example, in the protein burst
theory to obtain the gamma distribution (2.22). While this is a rea-
sonable assumption for many genes in prokaryotes [178], we have
shown that this assumption is not valid for QS systems where the
signaling molecule can diffuse. As in pointed in [77], the gamma dis-
tribution does not describe accurately the protein distribution when
the degradation rate of the protein is similar or smaller to the degra-
dation rate of the mRNA. The degradation rate of the protein is
determined by the dilution due to cell growth and by enzymatic
degradation. In bacteria that communicate by QS, passive diffusion
and active transport through the cell membrane is another mecha-
nism that can greatly modify the effective degradation of the sig-
naling molecule. In this chapter, we have shown how diffusion can
dramatically modify the distribution and dynamics of the signaling
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Figure 2.7: Noise in the signaling molecule as a function of the diffusion coeffi-
cient. Noise η2cA as a function of diffusion coefficient D̃ for all
the sets of parameters γ1,2,3,4 (see figure 2.2B): stochastic simu-
lations (circles) and analytical expression (2.21) (solid line). By
using the decomposition η2cA = η2cA,int + η

2
cA,ext, the difference

between the spreading of the computational and the theoretical
distributions quantifies the amount of intrinsic noise (squares).
As evidenced by the linear regression (blue short-dashed line)
the latter remains constant and is the main contribution to the
total noise only for large diffusion values, D̃ > 104 (see text).
Notice that the linear regression appears as an exponential on
the log-log scale because the slope is much smaller than the
intercept. The noise function is non-monotonic and has a maxi-
mum value above η2cA > 1 for all parameter sets, showing that
the variance is larger than the mean for intermediate ranges of
D̃.



2.5 discussion 63

molecule by modifying the ratio of time scales of the mRNA lifetime
and the signaling molecule effective lifetime.

Moreover, we have observed that the non-monotonic behavior of
the total noise as a function of the diffusion rate suggests a new inter-
pretation of the role of noise regulation by the QS mechanism. The
values of the diffusion rates in QS systems fall into two distinctive
categories (see section 2.3.4): either large values corresponding to
passive transport mechanism, D̃ ∼ 104, or small values when an ac-
tive transport mechanism applies, D̃ ∼ 10−1 to 10. Surprisingly, these
two QS classes avoid diffusion rates that maximize the total noise,
D̃ ∼ 5 · 101 − 102. While our modeling is certainly very simple and
the derived consequences should be considered with caution, the
latter suggests that bacteria have developed mechanisms for coping
with the noise and keep their functional QS regime away from the
region where η2cA > 1. Notice that the maximum noise in the level
of autoinducer is very large and translate into large fluctuations that
may perturb the activation of the QS pathway. When looking at the
dynamics of the autoinducer for D̃ = 100 (see figure 2.6) we observe
that the autoinducer jumps between a low state with a few molecules
and a high state around 100 nM. If the activation threshold lies in
between these two values, the QS pathway could get randomly acti-
vated due to the fluctuations, even if the average level of autoinducer
(always equal to 25 nM in all our simulations) is below the critical
concentration. In this regard notice that in every form of information
exchange the precision is key. If the precision of the information is
fuzzy then the related biological function lacks robustness. Our re-
sults point towards the direction that bacteria have adapted their
communication mechanisms in order to improve the signal to noise
ratio and produce a more reliable information exchange.

Our final comment refers to the possibility of considering other
sources of stochasticity. Cell-to-cell variability and extrinsic noise
have been proved to act as an important contribution in many cell
processes [50, 153, 165, 32]. In the context of the problem studied
herein, we can envision that variability, either at the level of the
mRNA dynamics or at the level of the diffusion rate, can effectively
lead to significant changes in the reported phenomenology. How-
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ever, theoretical studies [71, 116] suggest that the quorum sensing
synchronization is robust to the variability in the diffusion rate and
extracellular noise. In addition, by considering additional steps in
the synthesis of the autoinducer, the levels of intrinsic noise could
change. Whether or not these additional noise sources, coupled with
feedback regulation, may generate new effects in the framework of
QS is not known.

2.6 conclusions

In this chapter I have explored the role played by cell-cell commu-
nication and transcriptional noise in QS systems near the activation
threshold. We have built a model describing the expression of the sig-
naling molecule and its diffusion. We have focused on the situation
where the luxI gene is expressed at a low constitutive level, such that
i) the feedback regulation of the luxI gene can be disregarded, and ii)
the transcription level is low enough such that at most one mRNA
molecule can be present in the cell. Under these conditions the dy-
namics of the mRNA can be described by a Markovian dichotomous
process with random transitions between 0 and 1 mRNA molecule.
Moreover, we assume that the production of the autoinducer can be
described by a single reaction step. We have used parameter values
that are biologically relevant in the prokaryotes.

We have identified two stochastic contributions that drive the dy-
namics of the autoinducer: the mRNA fluctuations (transcriptional
noise) and the molecular noise (intrinsic noise). We have studied the
role played by these two noise sources and their interplay with the
diffusion of the autoinducer. First, by neglecting the intrinsic noise,
we have derived an analytical expression for the steady-state distri-
bution of the autoinducer concentration. This analytical distribution
only takes into account the transcriptional noise. Second, we have
computed the steady-state distribution by means of stochastic sim-
ulations (Gillespie) that takes into account the transcriptional and
the intrinsic noise. By comparing the variability in the autoinducer
concentration obtained by the two methods, we have been able to
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elucidate the contribution of each noise source in the total noise of
the autoinducer.

We have shown that the dynamics and fluctuations of the signal-
ing molecule exhibits different behaviors depending on the diffu-
sion coefficient. When increasing the rate of diffusion, the proba-
bility distribution of the autoinducer changes from single-peak dis-
tribution (sustained bursts dynamics), to monotonically decreasing
distribution (bursts dynamics), to double-peak distribution (bistable
dynamics), and finally to narrow single-peak distribution (diffusion-
averaged dynamics).

In addition, we have shown that the interplay between the diffu-
sion and the mRNA dynamics plays a crucial role for regulating the
total amount of noise in the number of signaling molecules. Tran-
scriptional noise is the main contribution to the total noise for a
large range of diffusion values, D̃ < 104. Only for very large values
of the diffusion the intrinsic noise is the major source of stochasticity.
When maintaining the average level of autoinducer, we have shown
that the intrinsic noise remains constant when varying D̃. Impor-
tantly, we have shown that the total noise shows a non-monotonic
behavior as a function of the diffusion rate. For large values of the
diffusion coefficient, the total noise decreases as the diffusion rate in-
creases. In this regard, our results are to be compared to previously
reported noise reduction mechanisms, as for example in the case of
LuxR/LuxI system [179], or in the case of bistable genetic switches
coupled by QS communication [91]. In this regime, diffusion effec-
tively reduces fluctuations by averaging the concentration of the au-
toinducer between all the cells. On the other hand, when the diffu-
sion rate is comparable to the characteristic rate of mRNA degra-
dation, the total noise increases as the diffusion becomes larger. We
have observed that in this regime, the diffusion effectively changes
the type of dynamics of the autoinducer. The competition of tempo-
ral scales between the lifetime of the mRNA (α̃−1) and the effective
degradation of the autoinducer ((1+ D̃)−1) leads to different dynam-
ical behaviors that exhibit increasing variability.

The regulation of the fluctuations at the level of the autoinducer
could have an impact on the biological function of the QS mecha-
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nism. Cell-cell communication can give rise to coordinated behavior
at the level of the population, as shown by the density-dependent
gene activation observed in QS experiments. However, in every com-
munication system the precision of the information is key. As we
have seen, transcriptional and intrinsic noise can give rise to large
fluctuations at the level of the signaling molecule. How do these fluc-
tuations interfere with the synchronization of cells during the QS ac-
tivation? In the next chapter, we will study the role of intra-cellular
fluctuations in the activation of the QS pathway when the feeback
mechanism of the gene regulatory network and a more realistic cell
model are taken into account.



3
D Y N A M I C S O F T H E Q U O R U M S E N S I N G S W I T C H :
S T O C H A S T I C A N D N O N - S TAT I O N A RY E F F E C T S

3.1 introduction

As first described in the work of Nealson et al. [119], the quorum
sensing (QS) phenomenon appeared as a sudden activation of the
bioluminescence in a culture of growing Vibrio fischeri cells. By mea-
suring the average light emission and the cell density of a freshly
inoculated culture, the experiments suggested a density dependent
activation of the luciferase gene. Since then, the QS mechanism has
been mainly revealed in different bacterial species at the population
level by measuring the average gene expression as a function of cell
density.

It was not until recently that the behavior of individual cells has
been shown to differ significantly from the bulk behavior, reveal-
ing large inter-cell variations in the expression level of QS genes.
By immobilizing Vibrio fischeri individual cells, Pérez and Hagen
[136] were able to measure the weak bioluminescence of a single
bacterium when exposed to a fixed concentration of autoinducer.
The authors observed a large cell-to-cell variability in the level of
emission and in the onset time for the response. Importantly, this
heterogeneity seemed not to be related to the specificities of Vibrio
fischeri and was also reported in other QS bacterial species, as Vibrio
harveyi [5], Pseudomonas aeruginosa [24], and luxI/luxR-GFP strains
of E. coli [65].

As explained in section 1.3, noise may play an important role in
the QS activation phenomenon (see also chapter 2). The aforemen-
tioned heterogeneity may be caused by the random fluctuations that
unavoidably affect cell regulation and signaling. As a matter of fact,
a number of studies have shown that noise plays an important role

67
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in bistable systems [184, 194, 52] and therefore may influence the ac-
tivation of the QS bistable switch. This poses the intriguing question
of how cells achieve a coordinated response in the presence of noise.
Indeed, the QS mechanism may produce a robust and synchronized
behavior at the level of the population both experimentally [41] and
theoretically [53]. However, how this behavior at the collective level
arises from the stochastic dynamics of individual cells is still an open
question. At the end, in the framework of QS, a collective response
means a precise information exchange in the colony. Consequently,
how can a bacterial population estimate its number of constituents
precisely if such information is fuzzy at the single cell level? In this
chapter, we shed light on this problem and investigate how noise
affects the QS transition both at the level of individual cells and at
the level of the cell population.

From all the sources of intra-cellular fluctuations, gene expression
noise is one of the most important [82]. In the LuxR/LuxI canoni-
cal system of Vibrio fischeri (see section 1.2), the two main regulatory
proteins LuxR, the receptor of the signaling molecule, and LuxI, the
synthetase of the signaling molecule, control the activation of the
QS genes. Therefore, fluctuations at the level of the expression of
these two proteins can potentially influence the variability in the QS
transition. Interestingly, experiments have revealed the presence of
additional regulatory interactions for controlling the LuxR noise lev-
els [181], as for example in V. harveyi. In this chapter, we study how
this variability changes when we modulate the intensity of gene ex-
pression noise of LuxR and LuxI. Understanding the role of gene
expression noise in this canonical system can help us understand
the architecture of more complex QS regulatory networks [121] and
whether bacteria have evolved to control the noise and the pheno-
typic variability.

The LuxR/LuxI system is the simplest QS system and is therefore
well suited for mathematical modeling. However, the regulatory in-
teractions that control the wild-type lux operon in Vibrio fischeri are
more complex than first thought [109, 163]. Those include both posi-
tive and negative regulation of the luxR gene depending on the con-
centration of the autoinducer [170]. Simplified synthetic constructs
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inserted in E. Coli, such as lux01 and lux02 [198], retain the minimal
LuxI/LuxR regulatory motif and lack the structural genes responsi-
ble for light emission that may also play a regulatory role, e.g. luxD
[164]. The lux01 operon is a truncated divergently transcribed lux
operon, capable of expressing LuxR but lacking the luxI gene. All the
transcripts normally downstream of the promoter are replaced with
gfp. Bacteria carrying the lux01 operon cannot produce the autoin-
ducer and therefore addition of exogenous autoinducer is required
for GFP expression. On the other hand, the lux02 operon carries a
luxI::gfp fusion and is capable of expressing LuxI and synthesize
the autoinducer. These constructs reproduce the main features of
the wild-type operon as revealed by the GFP fluorescence reporting
the promoter activity [198]. The positive feedback loops mediated
by LuxR and LuxI lead to a bistable switch behavior depending on
the level of the autoinducer [198, 66]. The decoupling of the two
feedback loops in lux01 offers valuable experimental data on the
regulation of LuxR. In this chapter, we focus on the lux01 and lux02
constructs as well characterized examples and use the experimental
data to fit the parameters in our theoretical approach.

In the context of QS modeling, most research has focused on the
understanding of the intracellular circuit [45, 39, 62, 85, 93, 198, 66,
179, 125], i.e. single cell studies, while few of them have considered
an ensemble of communicating cells [64, 152, 91, 115, 78, 116]. In
order to study the effects of intra-cellular fluctuations on the be-
havior of a population of communicating cells, a multi-cellular de-
scription is needed. As part of my thesis, I developed a software
(see appendix A.1) capable of simulating a population of cells that
can grow and divide, and that includes stochastic simulation of the
intra-cellular biochemical reactions and of the diffusion reaction. So
far, very few studies [64] have taken into account the coupling of
the signaling mechanism at the single cell and collective levels by
stochastic means together with realistic dynamics of the prolifera-
tion process.
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3.2 objectives and summarized results

In this chapter, I present our model for the QS signaling mechanism
in Vibrio fischeri based on the synthetic strains lux01 and lux02. Our
approach takes into account the key regulatory interactions between
LuxR and LuxI, the autoinducer transport, the cellular growth and
the division dynamics. By using both deterministic and stochastic
models, we analyze the response and dynamics at the single-cell
level and compare them to the global response at the population
level. We aim at studying the effects of gene expression noise on the
precision of the QS activation. In a broader context, our study in-
tends to shed light on the relation between the single cell stochastic
dynamics and the collective behavior in a population of communi-
cating cells.

Our results indicate that the cell response is highly heterogeneous
and that noise in the gene expression of LuxR is the main factor
that determines this variability. Moreover, we show that the transi-
tion of the QS switch near the critical concentration of autoinducer
is very slow compared to the cell cycle duration and that, as a con-
sequence, the non-stationary effects are crucial for setting a precise
switch. In addition, we show that increasing the noise in the expres-
sion of LuxR helps cells to get activated at lower autoinducer concen-
trations but, at the same time, slows down the global response. We
introduce the concept of precision in order to characterize the reliabil-
ity of the QS response at the level of the population. The precision
is defined as the inverse of the range of autoinducer concentrations
for which the cell population response is not fully coordinated (bi-
modal distribution). We show that the precision of the QS switch un-
der non-stationary conditions decreases with noise, while at steady-
state it is independent of the noise value. These results, together
with recent experimental evidences on LuxR regulation in wild-type
species [181, 189], suggest that bacteria have evolved mechanisms to
regulate the intensity of those fluctuations and control the variability
in the QS activation.

In the Methods section, I describe our two modeling approaches,
deterministic and stochastic, and detail the choice of parameters
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values. In the Results section, I first explain how the deterministic
model is used to fit the parameters of the model and reproduce
the experimental data at the level of the population average. Then, I
present the results of the stochastic model: the cell response distribu-
tion in the transient regime and at steady-state, and the statistics of
activation time. In the Discussion section I analyze the results both
from the theoretical point of view and in the context of the biolog-
ical function of QS networks. Finally, I summarize our results and
discuss some open questions in the Conclusions section.

3.3 methods

3.3.1 Modeling of the LuxI/LuxR gene regulatory network

The lux01 operon lacks the luxI gene and only gfp is transcribed in
that direction. On the other hand, the lux02 operon carries a luxI::gfp
fusion. Accordingly, lux01 cells cannot produce their own autoin-
ducer and the induction in that case is driven by adding exogenous
autoinducer to the medium. Figure 3.1 shows schematically the reg-
ulatory interactions we consider in our model. The autoinducer mol-
ecules (A) are produced due to the action of their synthetase, LuxI,
and bind to the cytoplasmic protein LuxR (R) creating a complex
(C2). The latter binds to the promoter region activating both the tran-
scription of luxI::gfp (only gfp in the case of lux01) and luxR. Signal-
ing molecules can diffuse passively in and out the cell and contribute
to increase the external concentration of the autoinducer (Aext) that
can be eventually modified by an external influx of molecules (A∗)
and a dilution protocol (see section 3.3.4). In our model we consider
that signaling molecules degrade at the same rate whether they are
cytoplasmic or not. Finally, we consider a DNA duplication process.
Such modeling scheme can be formally written as a set of chemical
reactions:
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DNA
αRkR−→ DNA+mRNAluxR

DNA
αIkI−→ DNA+mRNAluxI::gfp

DNA · (luxR ·A)2
kR−→ DNA · (luxR ·A)2 +mRNAluxR

DNA · (luxR ·A)2
kI−→ DNA · (luxR ·A)2 +mRNAluxI::gfp

mRNAluxR
pR−→ mRNAluxR + luxR

mRNAluxI::gfp
pI−→ mRNAluxI::gfp + luxI ::gfp

luxI ::gfp
kA−→ A+ luxI ::gfp

luxR+A
k−1 /Kd1←→
k−1

luxR ·A

2 (luxR ·A)
k−2 /Kd2←→
k−2

(luxR ·A)2 (3.1)

(luxR ·A)2 +DNA
k−lux/Kdlux←→
k−lux

DNA · (luxR ·A)2

A
D←→
rD

Aext

A
dA−→ ∅

Aext
dA−→ ∅

mRNAluxR
dmR−→ ∅

mRNAluxI::gfp
dmI−→ ∅

luxR
dR−→ ∅

luxI ::gfp
dI−→ ∅

(luxR ·A)2
dC2−→ ∅

luxR ·A dC−→ ∅

DNA
ln(2)/τ−→ DNA+DNA

DNA · (luxR ·A)2
ln(2)/τ−→ DNA · (luxR ·A)2 +DNA.
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Figure 3.1: Scheme of the LuxI/LuxR regulatory network. The LuxR (R) protein
activates the operon upon binding to autoinducer molecules
(A). The lux01 operon lacks the luxI gene and therefore cells
cannot produce their own autoinducer and exogenous signal-
ing molecules are needed to activate the expression of luxR
and GFP [198]. On the other hand, the lux02 operon carries a
luxI::gfp fusion and allows for the production of autoinducer
and self-induction (see text for details).

As revealed by the set of reactions (3.1), we assume that the reg-
ulatory complex (luxR ·A)2 activates the transcription of luxI and
luxR in opposite directions upon binding to the DNA. These reac-
tions account for the main regulatory interactions of both lux01 and
lux02 constructs. Since lux01 lacks the luxI gene the autoinducer, A,
cannot be synthesized, i.e. kA = 0. The expression rates of luxI and
luxR depend on the initiation rate of transcription, the speed of elon-
gation, the length of the transcript, and the rate of translation and
post-modification into functional proteins. We take into account the
differences due to these intermediate processes in an effective man-
ner by using different transcription/translation rates for the luxR
and luxI::gfp genes. Note that we assume that there are basal tran-
scriptional rates, αRkR and αIkI, even though the regulatory com-
plex (luxR ·A)2 is not bound to the promoter region of the DNA
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(the leaky process mentioned in chapter 2). Still, since αR,αI � 1

(see parameter values in section 3.3.5), the maximum transcriptional
rates take place when the activator complex is bound.

3.3.2 Deterministic and stochastic approaches: cell growth and division

The reactions (3.1) lead to a Master equation description that can be
sampled exactly by means of the Gillespie algorithm [57]. This ap-
proach is suitable for the characterization of the system at the single
cell level. Complementary to this, if the number of molecules of the
species is large enough such that the fluctuations can be neglected,
a set of ordinary differential equations (ODEs) can be derived from
reactions (3.1) (see equations (3.7) to (3.16)). The ODEs formalism is
then appropriate to account for the behavior at the colony level since
noise averages out in that case. Notice however that in some cases,
the fluctuations can actually modify the behavior of a genetic regu-
latory network in a more profound way, as will be seen in chapter 4.
Herein we make use of both stochastic and deterministic descrip-
tions as follows. As for the deterministic model, we consider that all
cells share their cytoplasm in a single volume Vc,tot (see figure 3.2).
Chemical species X inside the cell are described by their concentra-
tion, cX, in Vc,tot. Therefore, this model can only be used to study
the dynamics of species averaged over all the cells in the popula-
tion. From an experimental point of view, the population average
could be measured by determining the average bulk fluorescence of
the GFP reporter of the cell culture by means of a fluorometer or by
averaging the fluorescence data obtained with a flow cytometer.

We notice that our in silico experiments span up to 100 hours of
cell culture growth in some cases (simulated experimental time, not
computational time). Thus, regardless of the description, and in ad-
dition to the dynamics of the regulatory network, we also need to
take into account the effects of cell growth. If cells are maintained in
the exponential phase with doubling time τ then the dynamics of the
volume of the cell is Vc,tot (t) = V0,tot2

t/τ. Where V0,tot = NV0, N
being the number of cells in the colony and V0 the volume of a single
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Figure 3.2: Scheme of the deterministic and stochastic modeling approaches. (A)
In the deterministic model, the population of cells is described
by a unique volume with average and continuous concentra-
tions of all species, including the DNA carrying the QS net-
work (small circles). Cellular growth is also taken into account
in this approach. (B) In the stochastic model, cells are modeled
as individual compartments that can grow and divide and all
molecular species are represented as discrete entities. In both
cases, A and B, we assume that all species are well-stirred in-
side the cells and in the medium. In order to maintain a con-
stant cell density, as in the experiments we aim to model, we
implement a dilution protocol. In the deterministic model the
dilution removes continuously cytoplasmic material in order to
compensate the cell growth. In the stochastic model individual
cells are removed every time a new cell is born (see figure 3.5).
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cell at the beginning of the cell cycle. As a consequence, the cellular
growth introduces dilution terms, −cX

ln(2)
τ , in the r.h.s. of the ODEs

of all species, with the exception of the autoinducer in the medium
Aext. On the other hand, cell division events lead to the duplication
of the genetic material. The latter is taken into account by adding the
term + ln

(2)
τ

(
cDNA + cDNA·(luxR·A)2

)
to the ODE that describes

the concentration of DNA. This term compensates exactly for the
cell growth dilution such that cDNA,tot = cDNA + cDNA·(luxR·A)2

,
i.e. the total concentration of DNA, is kept constant.

In our simulations, as in the experiments we aim to reproduce,
the cell density is kept constant. This can be achieved by means of
an external dilution protocol (see section 3.3.4) that compensates for
cell proliferation. We then keep the volume Vc,tot constant and de-
fine the external volume, Vext, such that the total volume of the cell
culture reads Vtot = Vext+Vc,tot. Accordingly, the parameter r, see
reactions (3.1), reads r = Vc,tot/Vext. We assume that molecules are
homogeneously distributed inside both the cytoplasm and the exter-
nal volume (i.e. spatial effects are disregarded). Finally, the resulting
ODEs are numerically integrated.

In order to study the role of noise in a population of cells com-
municating by QS, we have also developed a stochastic model of a
population of bacteria. In this case, each bacterium is described as
a single cell carrying a copy of the regulatory network. The ensem-
ble of all the chemical reactions in all cells, including the diffusion
reaction, are treated as one global system. We apply the Gillespie
algorithm [57] to compute the time of the next reaction, choose the
reaction channel from the list of all possible reactions and update
the number of molecules according to the reaction stoichiometry. We
model the system of cells as a global stochastic system in order to
simulate as exactly as possible the stochastic dynamics of all chem-
ical species, in particular that of autoinducer molecules. The noise
in the signaling molecule originates from different sources: random-
ness in its synthesis by LuxI, fluctuations at the level of the number
of molecules of LuxI, and randomness in the diffusion reaction of
the autoinducer. The latter is particularly important since it leads to
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correlations between cells as follows. An autoinducer molecule can
diffuse out of the cytoplasm of one cell into the medium, thereby
increasing the number of molecules in the external volume by one;
this increase in the level of Aext changes the probabilities of an au-
toinducer molecule to diffuse into any other cell. Thus, all the cells
are coupled through the diffusion reaction. We note that while a pos-
sible optimization of the algorithm relies on parallelizing the code
such that each cell evolves independently [64], this approximation is
prone to introduce errors in the dynamics of the signaling molecule
because the aforementioned correlations are neglected.

As mentioned above, cell growth introduces a dilution of the mol-
ecules in a cell. We implement cell growth in our stochastic model
by allowing the volume of cell i to change in time as,

Vc,i (t) = V02
t/τi , (3.2)

where V0 is the volume of a cell at the beginning of the cell cycle
(same for all cells), τi is the duration of the cell cycle of cell i, and
t is referred to the precedent division event. When t = τi the cell i
has doubled its volume and a new division takes place. At this time
the internal clocks and volumes of daughter cells are reset to zero
and V0 respectively. Moreover, when a cell divides, proteins, mR-
NAs and signaling molecules are binomially distributed [60, 153]
between daughter cells and one copy of the DNA is given to each
cell. We note that regulatory complexes bound to the DNA are de-
tached prior to the distribution between daughter cells. As in the
case of the deterministic model, we assume that the cell density is
maintained constant during experiments due to a compensating ex-
ternal efflux that wash away cells in the culture (see section 3.3.4).
In relation to the effect of the cell volume of individual cells on the
diffusion rate of the autoinducer, we note that in this case,

ri (t) =
Vc,i (t)

Vtot −
∑N
j=1 Vc,j (t)

. (3.3)
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The duration of the cell cycle, τi, is different for each cell and is set
independently after a division according to the following stochastic
rule [32],

τi = λτ+ (1− λ) τ̃, (3.4)

where τ and τ̃ denote, respectively, the deterministic and stochastic
components of the cell cycle duration, and λ ∈ [0, 1] is a parameter
that weights their relative importance. The stochastic component ac-
counts for the period of time between events driven by a Poissonian
process and satisfies an exponential distribution,

ρ (τ̃) =
e−

τ̃
τ

τ
. (3.5)

In this way, we allow variability from cell to cell in regards of
the duration of the cell cycle, yet setting a minimum cell cycle du-
ration, λτ. According to these definitions, the average duration and
standard deviation of the cell cycle are τ and (1− λ) τ respectively.

Finally, we notice that in principle the Gillespie algorithm needs
to be adapted in order to take into account the time-dependent cell
volume. The propensity of a second-order reaction at cell i at time
t scales as pi (t) = p0V0/Vc,i (t), where p0 stands for propensity
of the reaction at division time when Vc,i (0) = V0. The propensity
p0 are derived from the corresponding reaction rate, k, by dividing
the latter by the initial cell volume, p0 = k/V0. In addition to the
change in the propensities of the reaction channels, the algorithm
would also need to be adapted to compute the time till next reac-
tion [107]. However, in our case, since all reactions rates are faster
than the rate of variation of the cell volume, ∼ 1/τ (see parame-
ter values in section 3.3.5), then the volume increase is negligible
during the time interval until the next reaction takes place. Conse-
quently, we can adiabatically eliminate the volume growth dynamics
and safely assume that the volume-dependent propensities remain
constant until the next reaction occurs. Summarizing, at a given time
t we compute, as described above, the time-dependent propensities
based on the volume of the cell at that time and, according to those,
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we determine the time at which the next reaction takes place, t+∆t,
following the standard Gillespie algorithm.

3.3.3 Gene expression noise: burst size

During translation mRNA molecules are translated into proteins fol-
lowing a bursting dynamics [82, 202, 30]. The so-called burst size,
bX, is defined as the ratio between the protein X production rate and
the X mRNA degradation rate (see section 1.1). It has been shown
that bX is directly related to the intensity of gene expression noise
[124, 82]. Thus, for the same average protein concentration, the larger
bX is, the more fluctuating expression dynamics is displayed by pro-
tein X. In our stochastic simulations we use the burst size bX as a
parameter to tune the noise intensity at the level of luxI and luxR and
study its effects. Unless explicitly indicated otherwise, the bursting
size in the stochastic simulations is bR = bI = 20 [30, 181].

3.3.4 External dilution protocol

In controlled experimental setups it is advantageous to keep the cell
density constant. This is carried out by means of an external dilu-
tion protocol that compensates for cell growth. Experimentally, this
is usually achieved by periodic dilutions of the cell culture [198] or
by a continuous flow of liquid medium in a chemostat or in a mi-
crofluidic device [19]. This procedure allows to measure the station-
ary concentration of the signaling molecule at a given cell density
and/or to estimate the threshold of the QS collective response of a
cell culture. Moreover, the external dilution is also important in or-
der to maintain cells in the exponential growth phase and prevent
depletion of nutrients in the medium. Additionally, the levels of the
autoinducer can be controlled by adding/removing exogenous sig-
naling molecules in/from the culture buffer. We implement those in
our simulations as follows.

In the deterministic model, as shown in figure 3.2, we assume a
unique cell with volume Vc,tot. Cell density is controlled by a con-
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tinuous efflux that removes cytoplasm and culture medium at a rate
that compensates exactly for the cell growth, such that the volume
Vc,tot remains constant. Concurrently, a continuous influx of equal
and opposite rate brings fresh medium to the cell culture. In our
in silico stochastic experiments, the efflux is reproduced by remov-
ing molecules, Aext, from the medium and washing away cells by
“deleting” a cell picked at random in the population each time a new
cell is born.

In our simulations, the exogenous autoinducer concentration cA∗
is the control parameter [198]. This means that the levels of autoin-
ducer are controlled by varying the concentration of exogenous au-
toinducer in the dilution buffer (influx). The influx of exogenous
autoinducer molecules, together with the efflux of culture medium,
can be represented by the following reaction,

Aext
γ←→

γcA∗Vtot
∅. (3.6)

where γ = ln(2)/τ. That is, an efflux removes autoinducer molecules
from the external volume at a rate γ and an influx introduces signal-
ing molecules in the external volume at a rate γcA∗Vtot. In the deter-
ministic description, this reaction leads to an additional term at the
r.h.s. of the ODE for the concentration ofAext : +γ

(
cA∗

Vtot
Vext

− cAext

)
.

We notice that in our simulations, as in experiments, Vtot/Vext ' 1.
In the absence of synthesis (e.g. lux01) and taking into account that
the degradation is slower than the diffusion and the influx rate, it
is easy to see that the concentration of autoinducer, both inside and
outside the cell, tends to cA∗ : the desired control value of the autoin-
ducer concentration (see figure 3.3).

3.3.5 Parameters

The parameters used in our model are listed in table 3.1. When pos-
sible, parameter values are fixed or estimated by using experimental
measurements found in the literature. The rest of the parameters are
fitted to the experimental data of [198] using the deterministic model
to reproduce the main characteristics of the response curves of the
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Figure 3.3: Intra and extracellular autoinducer as a function of exogenous autoin-
ducer concentration. Response curves to autoinducer induction
for lux01 (A, C and E) and lux02 (B, D and E) operons. Total
autoinducer concentration cAtot in the external volume and in
the cells (A and B), intracellular concentration cA (C and D),
and extracellular concentration cAext (E and F), as a function of
the exogenous autoinducer concentration, cA∗ , in the determin-
istic model. All graphs represent the steady-state response for
increasing (blue line) and decreasing (red line) autoinducer con-
centrations. The exogenous autoinducer concentration cA∗ con-
trols the autoinducer concentration in the medium by means
of an influx and an efflux (see section 3.3.4). Upon activa-
tion of the operon, LuxR is produced at high levels, thus se-
questering autoinducer molecules inside the cells. The bound
form of autoinducer cannot diffuse out of the cell and is there-
fore not subjected to the influx and efflux. This explains why
the total concentration of autoinducer in the system, cAtot =
1
Vtot

[
Vcell

(
cA + cluxR·A + 2 c(luxR·A)2

+ 2 cDNA·(luxR·A)2

)
+

VextcAext

]
is slightly larger than cA∗ , when the operon is ac-

tivated. For the same reason, the concentration of free autoin-
ducer, both in the cell and in the medium, is smaller.
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lux01 operon: a difference of two orders of magnitude in the level of
expression of GFP between the low and the high states, a hysteresis
effect in the range of autoinducer concentrations 0 / cA∗ / 15 nM,
and a time to reach steady-state at full induction (cA∗ = 100 nM)
shorter than 6 hours. In regards of the cell density, based on an es-
timate of the CFU/mL for an average OD of 0.5 for E. coli cells, we
take a typical value of cN = 5 · 108 cells/mL. Moreover, in order to
keep the computational time within reasonable limits, we choose a
system size of N = 100 cells. After fixing the number of cells and
the cell density, the total and external volumes are then respectively
derived from the relations cN = N/Vtot and Vext = Vtot −NV0,
where Vtot = 2 · 10−4 µL. Finally, for the case of the lux02 operon
there is one additional parameter that needs to be calibrated: the
synthesis rate of the autoinducer, kA. The latter is adjusted such
that the lower bound of the hysteresis region extends up to cA∗ = 0
as experimentally reported.

Table 3.1: Parameters used in the deterministic and stochastic simulations.
Abbreviation list: Parameters (Par.), Reference (Ref.), estimated
based on experimental values in other biological systems (est.)
and fitted to experimental data in [198] (fit.).

par . description value ref .

Kd1 dissociation constant of LuxR to A 100 nM [190]

k−1 unbinding rate of LuxR to A 10 min−1 est.

Kd2 dissociation constant of LuxR · AI
dimerization

20 nM fit.

K−
2 dissociation rate of dimer (LuxR ·

AI)2

1 min−1 est.

kA synthesis rate of A by LuxI 0.04 min−1 fit.

Kdlux dissociation constant of (LuxR ·AI)2
to the lux promoter

200 nM fit.

k−lux dissociation rate of (LuxR · AI)2 to
the lux promoter

10 min−1 est.
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Table 3.1: (continued)

par . description value ref .

b burst size 20 [30, 181]

kR transcription rate of luxR 200/bmin−1 fit.

kI transcription rate of luxI 50/b min−1 fit.

pR translation rate of luxR mRNA bdmR min−1

pI translation rate of luxI mRNA bdmI min−1

αR ratio between unactivated and acti-
vated rate of expression of luxR

0.001 fit.

αI ratio between unactivated and acti-
vated rate of expression of luxI

0.01 fit.

dA degradation rate of A (same inside
and outside the cell)

0.001 min−1 [87]

dC2 degradation rate of (LuxR ·AI)2 0.002 min−1 est.

dC degradation rate of LuxR ·AI 0.002 min−1 est.

dR degradation rate of LuxR 0.002 min−1 est.

dI degradation rate of LuxI 0.01 min−1 est.

dmR degradation rate of luxR mRNA 0.347 min−1 [150]

dmI degradation rate of luxI mRNA 0.347 min−1 [150]

D effective diffusion rate of A through
the cell membrane

10 min−1 [84]

τ cell cycle duration (doubling time) in
RM/succinate at 30 C

45 min [198]

λ relative weight between the det./sto.
components of the cell cycle

0.8 [153, 147]

V0 cell volume at the beginning of cell
cycle

1.5 µm3 [187]
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Table 3.1: (continued)

par . description value ref .

Vtot total cell culture volume 2 · 10−4 µl

3.3.6 First passage time analysis

The mean first passage time at a given autoinducer concentration
quantifies the average time that a cell takes to get activated or deac-
tivated. For computing the first passage time in transitions, from low
(high) to high (low) state, we take a single cell at the low (high) state
and follow its dynamics until the GFP expression level reaches the
high (low) state. We point out that the maximum GFP concentration
refers to that of the deterministic simulations. In order to get enough
statistics, we repeat this procedure, departing from the same initial
condition, 103 times for each concentration of autoinducer.

3.4 results

3.4.1 The deterministic model reproduces the experimental observations
at the population level

The chemical kinetics formalism leads to a set of ODEs that describes
the population average dynamics in terms of the concentration of the
different species considered in our model:

ċluxI::gfp = pIcmRNAluxI::gfp −

(
ln(2)

τ
+ dI

)
cluxI::gfp (3.7)

ċluxR = −
k−1
Kd1

cAcluxR + k
−
1 cluxR·A + pRcmRNAluxR

−

(
ln(2)

τ
+ dR

)
cluxR (3.8)
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ċmRNAluxI::gfp = αIkIcDNA + kIcDNA·(luxR·A)2

−

(
ln(2)

τ
+ dmI

)
cmRNAluxI::gfp (3.9)

ċmRNAluxR = αRkRcDNA + kRcDNA·(luxR·A)2

−

(
ln(2)

τ
+ dmR

)
cmRNAluxR (3.10)

ċluxR·A = −k−1 cluxR·A +
k−1
Kd1

cAcluxR − 2
k−2
Kd2

[cluxR·A]
2

+ 2k−2 c(luxR·A)2
−

(
ln(2)

τ
+ dC

)
cluxR·A (3.11)

ċ(luxR·A)2
=
k−2
Kd2

[cluxR·A]
2 − k−2 c(luxR·A)2

−
k−lux
Kdlux

c(luxR·A)2
cDNA + k−luxcDNA·(luxR·A)2

−

(
ln(2)

τ
+ dC2

)
c(luxR·A)2

(3.12)

ċDNA = −
k−lux
Kdlux

c(luxR·A)2
cDNA + k−luxcDNA·(luxR·A)2

+
ln(2)

τ

(
cDNA + cDNA·(luxR·A)2

)
−
ln(2)

τ
cDNA (3.13)

ċDNA·(luxR·A)2
=
k−lux
Kdlux

c(luxR·A)2
cDNA

− k−luxcDNA·(luxR·A)2
−
ln(2)

τ
cDNA·(luxR·A)2

(3.14)

ċA = k−1 cluxR·A −
k−1
Kd1

cAcluxR + kAcluxI::gfp

+D (cAext − cA) −

(
ln(2)

τ
+ dA

)
cA (3.15)
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ċAext = rD (cA − cAext) + γ
Vtot

Vext
cA∗ − (γ+ dA)cAext (3.16)

As explained in the section 3.3.4, we assume that the cell culture
grows in an environment where the concentration of the external au-
toinducer in the medium, cAext , is kept fixed and under well-stirred
conditions. In addition, we implement a dilution protocol that com-
pensates for cell growth and maintains the cell density constant.

We use the deterministic simulations as a benchmark of the reg-
ulatory interactions included in our model and also to fit/estimate
some parameters such that the experimental data are reproduced
(see [198]). Thus, by integrating numerically the rate equations (3.7)
to (3.16) derived from the population-averaged model, we compute
the steady state concentration (induction time 100 hours) of GFP
(lux01) and LuxI::GFP (lux02) as a function of cA∗ . The steady-state
induction curves for increasing and decreasing autoinducer concen-
tration of the lux01 and lux02 constructs are shown in figure 3.4. We
are able to reproduce the behavior of the network at the steady-state,
in particular a region of bistability in the range of autoinducer con-
centration 2 nM < cA∗ < 15 nM (lux01) and 0 nM < cA∗ < 15 nM
(lux02). As shown by Williams et al. [198], the luxR regulation of
the lux01 operon alone (positive feedback loop) is enough to yield a
bistable response. Moreover, expression of LuxI in the lux02 operon
restores the autoinduction loop and extends the lower bound of the
bistable range to zero concentration of exogenous autoinducer as
seen experimentally, indicating that once the operon is fully acti-
vated and cells produce their own autoinducer that increases the
stability of the high state.

Further simulations to check if the dynamics of our model is com-
patible with the experimental data refer to the behavior of the system
under non-stationary induction conditions and to the serial dilution
protocol of the external medium [198]. As for the first, when cells
are induced for 10 hours, we observe that the bistability region in-
creases (see figure 3.4). As for the second, cells are partially induced
at a fixed autoinducer concentration for 2 hours and afterwards the
external medium is changed hourly to decrease the concentration of
the autoinducer. In this case, the transient response of the cells (fig-
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Figure 3.4: Response curves to autoinducer induction in the population-average
model. lux01 (A) and lux02 (B) operons. The normalized GFP
concentration is plotted as a function of the exogenous autoin-
ducer concentration cA∗ : steady-state (s.s.) response for increas-
ing (arrow-free upper blue curve) and decreasing (arrow-free
red curve) autoinducer concentration, response under 10 h in-
duction time for increasing (blue curve with arrow, 10h) au-
toinducer concentration, transient response after 2 hours of
induction (lower blue curve, 2h) from initially non-induced
cells, decreasing-concentration trajectories (green curves, dilu-
tion) for cells weakly induced for 2 hours at cA∗ = 100 nM,
75 nM and 50 nM, and decreasing-concentration trajectories
(red curve with arrow) for cells fully induced (10 hours) at
cA∗ = 100 nM. The decreasing-concentration trajectories reduce
the value of cA∗ hourly by 25% (similar to the experiments
in [198]). The gray-shaded region between the increasing and
decreasing steady-state curves reveals bistability in the range
2 nM < cA∗ < 15 nM (lux01) and 0 nM < cA∗ < 15 nM (lux02).
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http://tinyurl.com/lgtwx5y

Figure 3.5: Movie of the stochastic simulation. Movie of the stochastic simula-
tion using our Colony simulation software (see appendix A.1)
for the lux02 operon, 10 h of induction at cA∗ = 50nM, burst
size bR = bI = 4. Cells are modeled as individual compart-
ments containing a copy of the LuxR/LuxI regulatory network.
The Gillespie algorithm [57] is used to integrate the stochastic
dynamics of the whole system of cells. Cell growth and divi-
sion is explicitly taken into account as well as a certain degree
of stochasticity in the cell cycle duration. Cells movement is
purely aesthetic since we do not include any spatial effects in
our model and consider a well-mixed environment. The num-
ber of cells (N = 100) is maintained constant by removing one
cell at random each time a cell divides.

http://www.youtube.com/watch?v=E7Nw8dG97nk
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ure 3.4, green curves) also reproduces qualitatively the experimental
observations. That is, from the point of view of the population av-
erage, the deterministic model is not only capable of reproducing
the steady-state of the network but also its non-stationary dynamics.
Moreover, in agreement with experiments (see figure S6 in [198]) our
simulations reveal that the temporal scale for reaching a steady-state
is much larger than the cell cycle duration. In order to clarify how
noise and the induction time modifies the timing for the transition
at the single cell level we then perform stochastic simulations.

3.4.2 The stochastic simulations reveal the interplay between non-statio-
nary effects and noise

Cells are subjected to intrinsic noise at the level of the mRNAs, reg-
ulatory proteins, i.e. LuxR and LuxI, and at the level of signaling
molecules. In order to analyze the behavior of individual cells and
reveal how noise affects the QS switch, we perform stochastic sim-
ulations of a population of growing and dividing cells as described
in the Methods section (see also figure 3.5). The transition of an indi-
vidual cell from the low to the high state, and the other way around,
is intrinsically random and depends, among others, on the levels of
autoinducer. Thus, inside a population some cells will jump while
others remain in their current state leading to a bimodal phenotypic
distribution. We compute the proportion of cells that are below and
above a threshold of GFP equal to half-maximum GFP concentration.
We consider the distribution of cells to be bimodal when the propor-
tion of cells in either the low or the high state is below 90% and
according to this we define the range of autoinducer concentration
[cA∗b1 , cA∗b2 ] for which there is bimodality. For low concentrations of
autoinducer, cA∗ < cA∗b1 , the collective response of the cell popula-
tion is unactivated, and for high concentrations, cA∗ > cA∗b2 , such
response activates most of the cells leading to a global response of
the colony. On the other hand, within the bimodality range, the re-
sponse is distributed between two subpopulations, thus failing to
achieve a global coordination in the colony. In order to characterize
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this behavior, we introduce the concept of precision in the QS switch
as the inverse of the cA∗ concentration range for which the cells re-
sponse distribution (phenotypes), during an induction experiment,
is bimodal. That is, the larger the bimodal range, the less precise the
switch is in order to generate a global response in the colony. In this
regard, we point out that the precision of the switch in a noise-free
situation is infinite since all cells achieve global coordination simul-
taneously.

Figure 3.6 shows, by means of a color density plot, the probabil-
ity of a cell to have a particular GFP expression level after either 10

or 100 hours of induction as a function of cA∗ . In order to gather
enough statistics, we average our results over 10 different realiza-

Figure 3.6 (following page): Cell response distribution to autoinducer induction
in the stochastic model. Cell response probability after 10 hours
(top: A, B) and 100 hours (middle: C, D) of induction at differ-
ent autoinducer concentrations cA∗ for the lux01 (left: A, C) and
lux02 (right: B, D) operons in the stochastic model. The distribu-
tion reveals the coexistence of two subpopulations with low and
high GFP expression when the cells are induced at intermediate
autoinducer concentrations. The region of bistability (inverse of
the precision) is defined by the range of cA∗ for which the re-
sponse is bimodal according to the following criterion: the low-
er/upper limit of the bistable region (orange lines) is defined by
the value of cA∗ for which 90% of the cells are in the low/high
state. The black line stands for the concentration of GFP (nor-
malized) as a function of cA∗ in the deterministic model at the
steady state. After 10 hours of induction (top: A, B) most cells
are still in a transient state if cA∗ < 70 nM. After 100 hours
of induction (middle: C, D), the bimodality region shrinks and
the precision increases. The population average curves of the
steady-state induction and dilution experiments in the stochas-
tic model (bottom: E, F, dashed lines) show that the intrinsic
noise allows cells to jump to the high state inside the deter-
ministic bistable region. On the other hand, the transition from
high to low follows the deterministic path thus indicating that
the switching rate in this case is close to zero.
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tions (i.e. experiments). For a large range of autoinducer concentra-
tions, for both the lux01 and for the lux02 operon, the distribution of
GFP expression after 10 h of induction is bimodal. As shown, some
cells of the colony are induced before the critical concentration of
the deterministic model at the steady state (black line). Still, the con-
centration for which more than 90% of the cells are induced requires
up to four times more autoinducer than under deterministic condi-
tions. Thus, on the one hand noise can help cells to get induced at
lower autoinducer concentrations but, on the other hand, amplifies
the non-stationary effects for achieving global coordination. In order
to clarify this interplay between non-stationary and stochastic ef-
fects, we perform the same simulations with a larger induction time
(100 h). As expected, the precision of the switch increases (10-fold
change) and cells achieve global coordination at (lux01) or before
(lux02) the critical deterministic concentration. Note that in all cases
noise induces a significant variability in terms of the GFP expression
levels in the high state compared to that of the low state (see also
figure 3.7). The variability introduced in the colony response by the
fluctuations with respect to the deterministic approach can also be
observed in experiments under weak inducing conditions where the
autoinducer concentration is periodically decreased (see figure 3.8).

The heterogeneity in terms of the jumping statistics is revealed in
figure 3.7 where we plot individual trajectories for the lux01 operon
as a function of time at cA∗ = 25 nM over a period of 50 hours.
Some cells become induced after 3 hours, while others need ∼ 10

times more induction time to reach the high state. At this concentra-
tion of autoinducer all cells have eventually reached the high state
after ∼ 30 hours of induction. Importantly, we do not observe that
cells jump back (see section 3.5). That is, while there is variability
over the colony in regards of the switching time, once the transition
occurs the cell remains in the new state that is sustained over genera-
tions as seen in figure 3.9. Therefore, over the typical timescale of an
experiment (10 to 50 hours), the behavior of the QS switch is highly
dynamic and the precision of the switch is a transient quantity that
crucially depends on the duration of induction.
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Figure 3.7: Individual cell trajectories for autoinducer induction in the stochas-
tic model. Individual cell trajectories (blue lines) and cell pop-
ulation average (orange line) for an induction experiment at
cA∗ = 25 nM for the lux01 operon in the stochastic model. Indi-
vidual cell trajectories show the heterogeneous distribution of
cell jumping times. While some cells achieve full induction of
the operon before the deterministic solution (red dashed line),
the global response of the population reaches steady-state at
∼ 30 hours, slower than the in the deterministic case.
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Figure 3.8: Individual cell trajectories during decreasing autoinducer concentra-
tion experiment in the stochastic model. Individual cell trajectories
(blue lines), cell population average (orange line) and determin-
istic solution (green line) for dilution experiment plotted as GFP
normalized expression vs. external autoinducer concentration
cAext . Cells are initially induced at cA∗ = 100 nM for 2 hours.
The concentration of exogenous autoinducer cA∗ is then hourly
decreased by 25% in order to simulate the experiments (see
[198]), leading to a similar decrease in cAext . The individual cell
trajectories reveal the heterogeneity in the cell activation and
deactivation times. For the lux01 operon (A), cells eventually go
back to the unactivated state when reaching zero autoinducer
concentration, while cells carrying the lux02 operon (B) remain
in the activated state. Cells response is clearly bistable, with
some of the cells staying unactivated for all autoinducer con-
centrations while other cells jump to the fully active state. The
bimodality due to stochasticity cannot be detected at the level
of population average or in the deterministic model.
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Figure 3.9: Lineage tree of an induced population of cells in the stochastic model.
Linage tree of a population of cells induced at a fixed autoin-
ducer concentration cA∗ = 50 nM for the lux01 operon (A) and
the lux02 operon (B). Vertical lines represent individual cells
and horizontal lines cell division events. The color of the lines
changes from black for unactivated cells to green for activated
cells, following a color code that depends on the normalized
GFP expression. The initial number of cells is 100 and is kept
constant during the experiment by deleting cells at random ev-
ery time a cell divides (truncated vertical lines). The lineage tree
shows how the state of the cell is transmitted over generations
and reveals that once the operon is activated the transition is
“irreversible”.
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Figure 3.10: Trajectory of chemical species in individual cells. Trajectory of
chemical species in the lux02 operon: LuxR mRNA (mR),
LuxR, LuxI, intracellular autoinducer (AI), regulatory complex
LuxR2 ·AI2 (AL2) and promoter bound to complex (P10), in
an individual cell for the following control parameter and
burst size values: (A) cA∗ = 15 nM, bR = bI = 20, (B)
cA∗ = 50 nM, bR = bI = 20, (C) cA∗ = 15 nM, bR = bI = 0.01,
(D) cA∗ = 50 nM, bR = bI = 0.01.
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As expected the intrinsic noise decreases the precision of the QS
switch with respect to the deterministic case. Still, noise helps cells to
become activated before the critical concentration of a fluctuations-
free system under all induction conditions. Moreover, in steady-state
conditions the high state is globally achieved before the critical de-
terministic concentration. This phenomenon is recapitulated in fig-
ure 3.6 (bottom) where we plot the population average response for
the induction and dilution experiments at steady-state (100 h induc-
tion) for both the deterministic and stochastic models. Notice that
the dilution curves of the stochastic model are similar to that of
the deterministic model; however, the average transition to the high
state occurs at a lower autoinducer concentration due to intrinsic
fluctuations.

3.4.3 The features of the QS switch depends on the transcriptional noise
of LuxR

For the same concentration of the external autoinducer, the stochas-
tic dynamics of the regulatory network arises from the noise at the
level of LuxI and LuxR. We now analyze the individual contribution
of those by modulating the burst size of LuxR and LuxI, bR and
bI respectively. We notice that the burst size modulates the stochas-
ticity levels while maintaining the average protein copy numbers.
Figure 3.10 illustrates the effect of changing the burst size by show-
ing individual trajectories of the chemical species obtained for large
and small values of this quantity at low and high concentrations of
the external autoinducer.

Insight about the activation process can be obtained by comput-
ing the mean first passage time (MFPT) for transitions between the
low and the high state. Figure 3.11 shows this quantity as a func-
tion of cA∗ and for different values of the burst size of LuxR and
LuxI. For the sake of comparison, we also compute the MFPT for
the deterministic solution. We note that in that case, the MFPT inside
the bistable region is infinite, since the deterministic system cannot
spontaneously jump from one stable state to the other. Our results in-
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dicate that changing the burst size of LuxI does not modify the mean
first passage time whereas changing the transcriptional noise at the
level of LuxR modifies the jumping statistics. Moreover, our results
reveal a non-trivial behavior of the MFPT as a function of the con-
centration of the autoinducer. On one hand, with respect to the acti-
vation dynamics, when cA∗ is below ∼ 25 nM, an increase in LuxR
noise decreases the mean time of the activation. That is, LuxR noise
helps cells to get the initial activation quicker. On the other hand,
above ∼ 25 nM of autoinducer concentration, the effect is the oppo-
site: an increase in LuxR noise increases the mean jumping time thus
slowing down the full cell activation. We observe these effects both
for the lux01 and lux02 operons. Surprisingly, when the autoinducer
concentration is above the critical concentration of the deterministic

Figure 3.11 (following page): Mean first passage time of cell activation for dif-
ferent burst size values. Mean first passage time of cell activa-
tion as a function of autoinducer concentration cA∗ for dif-
ferent values of the burst size for LuxR (bR) and LuxI (bI)
and for the deterministic solution: (A) low to high transition
MFPT in the lux01 operon, (B) low to high transition MFPT
in the lux02 operon. The lower (upper) limit of the shaded re-
gions is the 10% (90%) quantile curve of the distribution of
FPT for the cases bR = bI = 20 (blue shaded region) and
bR = bI = 0.01 (green shaded region). The distribution of the
FPT for cA∗ = 100 nM, bR = bI = 20 is plotted on the side as
an example. The MFPT reveals a non-trivial behavior: for low
autoinducer concentration noise helps cells to jump quicker to
the high state, while for high autoinducer concentration noise
slows down the cells activation (see text). Intersections of the
quantile 10% and quantile 90% curves with a horizontal line at
t = 10 h indicate the autoinducer concentration for which 10%
of cell trajectories have jumped to the high state (left arrow)
and the concentration for which 90% of cell trajectories have
been activated (right arrow). The precision after 10h of induc-
tion is inversely proportional to the width of the region delim-
ited by the arrows, and increases when decreasing the noise in
LuxR (see text). Note that in the case of the lux01 operon, there
is no luxI gene and therefore bI cannot be changed.
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system, cA∗ ≈ 20nM, the stochastic system always takes more time
to get activated than the deterministic case (see chapter 4).

By computing additional properties of the first passage time prob-
ability density we also clarify the behavior of the precision depend-
ing on the induction time. In particular, we compute the times tlow

and thigh for which, at a given cA∗ concentration, the probabilities
of finding a FPT< tlow and a FPT> thigh are 10%, i.e. the 10% and
90% quantiles respectively. The shadings in figure 3.11 delimit these
regions for the cases bR = bI = 20 and bR = bI = 0.01. The preci-
sion of the switch after n hours of induction, is directly related to
the width of the shaded region at 〈FPT〉 = n hours: at any given
time, this width indicates which is the minimal concentration of
autoinducer for getting 10% of cells already activated and also the
concentration beyond which more than 90% of cells have been acti-
vated. Thus, in agreement with figure 3.6, the induction time clearly
modifies the precision: it increases (the width decreases) as the in-
duction time becomes larger. Moreover, note that as the LuxR noise
weakens the precision increases. Figure 3.12 recapitulates some of
these results. There we show the GFP expression probability for the
lux02 operon after 10 hours of induction for different values of the
burst size bR and bI. Notice that the region of bimodality does not
vary when changing the burst size for LuxI. However, decreasing
the burst size in LuxR reduces the region of bimodality thus increas-
ing the precision of the switch. Furthermore, the noise at the level
of LuxR helps some cells to become activated at lower concentration
levels of the autoinducer. Once more, this phenomenon does not de-
pend on the levels of transcriptional noise of LuxI. That is, while the
global coordination increases as the transcriptional noise of LuxR
decreases, more concentration of the autoinducer is required to start
activating cells. Figure 3.11 also suggests that the sensitivity of the
precision as a function of the induction time and/or as a function
of the stochasticity levels get diminished after ∼ 30 hours since the
width of the shaded region barely varies. Figure 3.13 points towards
that direction: under long induction time conditions (100 h) the pre-
cision of the switch remains constant regardless the value of the
burst size. All together, these results indicate an interesting and
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Figure 3.12: Cell response distribution in the transient regime for different burst
size values. Cell response distribution (jumping probability)
after 10 hours of induction (transient state) at different au-
toinducer concentrations for the lux02 operon in the stochas-
tic model, for different burst sizes. Burst size values: (A)
bR = bI = 20 (B) bR = 4, bI = 20 (C) bR = 20, bI = 4 (D)
bR = bI = 4 (E) bR = bI = 0.01. Width of bistable region: (A)
= 60 nM (B) 25 nM (C) 70 nM (D) 27.5 nM (E) 25 nM. The black
line stands for the normalized concentration of GFP as a func-
tion of cA∗ in the deterministic model at the steady state. The
region of bimodality in the transient regime only varies when
changing the burst size in LuxR (bR) and does not depend on
the burst size of LuxI (bI).

counterintuitive role of the transcriptional noise of LuxR in terms
of the biological function of the QS switch.

3.5 discussion

The response of bacterial colonies driven by the QS signaling mech-
anism under noisy conditions has been addressed, in a broad sense,
by different authors. In particular, the characterization of the collec-
tive response as a synchronization phenomenon where the pheno-
typic variations can be generically predicted has been proposed [71].
However, this approach requires gene regulatory interactions con-
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Figure 3.13: Cell response distribution at the steady-state for different burst size
values. Cell response distribution at the steady-state (100 h in-
duction), at different autoinducer concentrations for the lux02
operon in the stochastic model for different burst size values:
(A) bR = bI = 20 (B) bR = bI = 4 (C) bR = bI = 0.01. The
width of the bistable region, ≈ 7 nM, barely depends on the
stochasticity levels. The black line stands for the normalized
concentration of GFP as a function of cA∗ in the deterministic
model at the steady state.

trolling the QS genes that do not induce bistability and lead to a
monostable behavior, e.g. negative feedback loops [205]. Our study
focus on strains that display, as the wild-type LuxI/LuxR system
do, bistability and, consequently, an alternative method to quantify
the phenotypic variability induced by noise was needed. As we have
seen, the bistability of the regulatory circuit leads to a bimodal re-
sponse in the cell population. In this case, fluctuations of individual
cells around their current stable state are less relevant at the level
of the population than the proportion of cells in each of the sta-
ble states (“off” or “on”) (see figure 3.7). We have shown that the
intrinsic noise, and especially the gene expression noise of LuxR, in-
fluences the probability of a cell to jump from the deactivated to the
activated state. We propose that the biologically meaningful measure
of the synchronization of the cells in this case relies on the homogene-
ity of the cell response. The new concept we have introduced, the
precision, describes the ability of the cell population to respond to
the autoinducer concentration in a switch-like manner with a sharp
transition and high coordination between cells. At the level of the
population average, the precision translates into the sharpness of the
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switch-like response to the autoinducer concentration. A small pre-
cision means a bimodal response over a broad range of autoinducer
concentrations, producing a graded response at the population level.
A high precision means a response that is mainly monomodal and
a bimodal response over a narrow range of autoinducer concentra-
tions, providing a switch-like response at the population level.

We have characterized how the precision of the QS switch de-
pends on the stochasticity levels and, importantly, elucidated which
noisy component of the LuxI/LuxR regulatory network drives the
observed phenomenology. Thus, we have found that under non-
stationary conditions, LuxR controls the phenotypic variability and
that changing the noise intensity at the level of LuxI has no effect
on the precision of the switch. A plausible explanation for this reads
as follows. The fluctuations at the level of LuxI are transmitted to
the autoinducer. However, the diffusion mechanism, in the regime
of high diffusion rates found in many gram-negative bacteria, effec-
tively averages out the fluctuations of the signaling molecule (see
chapter 2). This is not possible for LuxR which is kept within the
cell. As a consequence the amount of activation complex (luxR ·A)2,
that is ultimately the responsible for the activation, is driven by the
fluctuations of LuxR but not by those of LuxI.

Recent experimental work has measured the bioluminescence lev-
els of individual V. fischeri cells at fixed autoinducer concentration
[136]. In agreement with our results, the authors observed that cells
differed widely in terms of their activation time and luminescence
distribution. Interestingly, other experiments have revealed the pres-
ence of additional regulatory interactions for controlling the LuxR
noise levels. For example, C8HSL molecules, a second QS signal in
V. fischeri, has been suggested to reduce the noise in bioluminescence
output of the cells at low autoinducer concentrations [135]. In the
same direction, in V. harveyi, the number of LuxR dimers is tightly
regulated indicating a control over LuxR intrinsic noise [181]. In fact,
wild-type V. harveyi strains have two negative feedback loops that
repress the production of LuxR [189] and this kind of regulatory cir-
cuit is known to reduce noise levels [12]. In this context, our results
provide a feasible explanation for the network structure in wild-type
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strains: since noise in LuxR controls the phenotypic variability of the
LuxR/LuxI QS systems, bacteria may have evolved mechanisms to
control its noise levels. An additional argument in this regard arises
from our results about the deactivation of cells: once they are fully
induced we do not observe reversibility of the phenotype (FPT larger
than 100 h). First, these results are in agreement with other switch-
ing systems as the galactose signaling network in yeast [1] and with
theoretical results that explain the highly asymmetric switching dy-
namics due to stochastic effects (multiplicative noise) [52]. Second,
they reveal the importance of additional interactions that regulate
negatively luxR in wild-type strains [170, 109, 163] and indicates that
synthetic strains as lux01 and lux02 summarize many features of the
wild-type operon during the activation process but fail to capture
some of dynamical aspects of the deactivation phenomenon. Indeed,
a theoretical study has shown that while a strong positive feedback
is necessary to build a robust switch, it may also induce irreversible
transitions and lead to excessively stable states [138]. The addition
of a negative feedback can destabilize the stable states and favor the
switch transitions.

Most of previous works assume stationary conditions and disre-
gard the role of the cell cycle duration. In our stochastic model, we
have shown that the time for reaching a steady state of cell response
distribution is much larger than the duration of the cell cycle. This
is in agreement with experimental results [198] as well as with an-
other stochastic model of QS transition in Agrobacterium tumefaciens
[64]. Notice that in our simulations, the population of cells needs
∼ 30 hours to reach a steady-state when induced at a concentration
of autoinducer of 50 nM and that this time is even greater near the
critical concentration of activation (see figure 3.11). In most labora-
tory experiments studying the QS transition, the typical experimen-
tal run or time of culture growth before measurement rarely exceed
20 hours [123, 198, 181, 106, 6], after which the expression of genes
is assumed to reach a steady-state. While our modeling approach is
certainly a simplification of the real genetic network, our results sug-
gest that special care should be taken about transient effects when
studying the population-wide QS response. Indeed, bistable gene
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networks are often associated with slow response time compared to
graded-response gene networks [159, 185]. As we have seen, stochas-
ticity in the QS bistable switch leads to a large variability of the
switching times and to a transient bimodal response. This transient
heterogeneity in the population distribution has been proposed to
favor cell-fate determination by making the cell decision more reli-
able compared to a genetic circuit with a graded response and to use
the phenotypic heterogeneity as a bet-hedging strategy [12, 185].

Our simulations indicate that non-stationary effects are essential
during the activation of the QS response. While speculative, these re-
sults can be extrapolated to growing colonies where the cell density
is not kept constant. A good supply of nutrients implies short induc-
tion times since the concentration of autoinducer will quickly grow
(exponentially) as the population size does. According to our results,
this fast growing condition decreases the precision of the switch and,
consequently, promotes variability at the population level (see fig-
ure 3.14, fast growth line). In addition, the full collective activation of
the system would require a large population size. On the other hand,
if the colony grows in a poor nutrient environment, the system will
have time to reach the steady-state and the precision would increase
(see figure 3.14, slow growth line). Hence, the variability would be
diminished, and full activation would require smaller colony sizes.
In addition, modifying the gene expression noise in LuxR would
have different effects in these two growth conditions. While increas-
ing the noise in the fast growth condition would increase the vari-
ability, it would have little effect in the slow growth condition. In
the latter case, cells reach the steady-state and we have seen that the
variability hardly changes with the gene expression noise at steady-
state. Most phenotypic changes induced by the QS mechanism refer
to bacterial strategies for survival and/or colonization. In this con-
text, our results suggest that both the QS activation threshold and
the phenotypic variability might depend on the growth rate of the
colony and, as a consequence, on the environmental conditions. This
is in agreement with recent studies that show that the collective re-
sponse of a population of cells depends not only on the underlying
genetic circuit and the environmental signals, but also on the speed
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of variation of these signals [120]. Moreover, it has been shown that
the growth rate, together with the stochasticity in gene expression,
can influence the switching rate in the lactose utilization network of
Escherichia coli and thus change the transient population distribution
[149].

Finally, we have observed a counter-intuitive effect of the gene
expression noise in the dynamics of the QS activation. For high con-
centration of autoinducer (above ∼ 25 nM) an increase in the noise
intensity slows down the mean activation time. This effect is the
opposite of what would be expected in the case of a bistable autoac-
tivating switch with additive noise [204]. In the next chapter, I focus
on this problem and propose an explanation to this phenomenon: in-
trinsic noise modifies the bifurcation diagram of the bistable switch
and stabilizes the deactivated state of the cells, therefore retaining
the cells for more time in the low state.

3.6 conclusions

Herein I have introduced deterministic and stochastic modeling ap-
proaches for describing the core functionality of the LuxI/LuxR reg-
ulatory network in quorum sensing systems. I have focused on syn-
thetic constructs, lux01 and lux02, that reproduce the behavior of the
wild-type system and allow for controlled experiments that have
provided quantification of the activation process [198]. The deter-
ministic approach allowed us to estimate different parameters of the
model and reproduce the switch-like behavior of the QS network.
Our simulations reveal that the interplay between non-stationary
and stochastic effects are key and that, for an extended range of
autoinducer concentrations, a bimodal phenotypic variability devel-
ops such that cells fail to produce a global response. In this context
we have introduced the concept of precision of the QS switch, as the
inverse of the width of the bimodal phenotypic region.

By computing the statistics of the activation dynamics of cells, we
have shown that the QS precision depends on the gene expression
noise at the level of LuxR and is independent from that of LuxI. This



3.6 conclusions 107

Figure 3.14: The growth rate conditions the phenotypic variability. In the con-
text of a growing colony, the autoinducer concentration in-
creases as the colony does: purple lines show schematically
two exponential growth conditions for the autoinducer con-
centration as a function of time. Our results on the MFPT,
valid at fixed autoinducer concentrations, can be extrapolated,
qualitatively, to the case of increasing autoinducer levels. Fast
growth results in a large cell variability and large critical
colony size for achieving a global response, while slow growth
produces reduced cell variability and a smaller critical pop-
ulation size. Increasing fluctuations in LuxR have two oppo-
site effects: in the slow growth case, increasing the noise (blue
curves: bR = 20; green curves: bR = 0.01) decreases the critical
population size while hardly changing the variability, in the
fast growth case, increasing noise increases the critical popula-
tion size and increases greatly the variability.
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result, together with the experimental evidences on LuxR regulation
in wild-type species, suggest that the noise at the level of LuxR con-
trols the phenotypic variability of the LuxR/LuxI QS systems and
that bacteria have evolved to control its intensity. In addition, the
robust stabilization of the phenotype once is fully induced indicates
that, albeit synthetic strains as lux01 and lux02 summarize many fea-
tures of the wild-type operon during the activation process, they fail
to capture crucial aspects of the deactivation phenomenon.

Most insight in regards of the effect of LuxR noise on the dynam-
ics of cell activation has been given by the study of the mean first
passage time (MFPT). The calculation of the statistics of the first pas-
sage time has allowed us to relate the concept of precision of the
switch with the variability of the FPT by estimating the 10% and
90% quantiles. We have shown that increasing the noise in LuxR de-
creases the precision in the transient regime while at steady-state the
precision does not depend on the burst size of LuxR or LuxI.

In summary, our results indicate that in bacterial colonies driven
by the QS mechanism there is a trade-off between the activation
onset and a global response due to non-stationary and stochastic
effects. On one hand, when compared to a noise-free system, large
levels of noise at the level of LuxR imply that cells require smaller
autoinducer levels for achieving an activation onset but, at the same
time, a global coordinated response requires a substantial autoin-
ducer concentration. On the other hand, if LuxR noise levels are
small, the activation onset is shifted toward larger values of the
autoinducer concentration but the global response is achieved for
smaller concentration values.

Finally, we have also observed a counter-intuitive effect on the
mean first passage time for autoinducer concentrations above 20 nM:
larger noise in LuxR slows down the mean time of cell activation.
From a broader point of view, stochasticity can affect the gene regu-
latory networks not only in the fluctuations around the stable states,
but also by modifying the dynamics and the stable states themselves
[162]. In the next chapter, I focus on this problem and study how in-
trinsic noise modifies the bifurcation diagram of a genetic bistable
switch.



4
S T O C H A S T I C S TA B I L I Z AT I O N O F P H E N O T Y P I C
S TAT E S : T H E G E N E T I C B I S TA B L E S W I T C H A S A
C A S E S T U D Y

4.1 introduction

Over the past decade, studies have shown that stochastic effects play
an important role in cell differentiation [12]. As introduced in sec-
tion 1.1, noise allows cells that are exposed to the same environment
to choose between different fates, thereby increasing the phenotypic
diversity. In this regard, the simplest, non-trivial, regulatory system
showing phenotypic multi-stability correspond to a genetic switch
with two possible stable solutions: low/high concentrations of a reg-
ulatory protein. The core of the genetic circuit underlying bistable
systems typically involves a protein that up-regulates its own pro-
duction, leading to a positive feedback loop. Such a behavior has
been found in a number of biological systems, as in the case of
the lactose utilization network in E. coli [123], and has been also
implemented in synthetic circuits [56, 76, 8]. Moreover, the QS acti-
vation circuit in Vibrio fischeri is also based on a positive feedback
switch, as seen in chapter 3. Consequently, the characterization of
genetic switches is important both for the development of larger
and more robust synthetic circuits that use small gene modules with
well-defined behaviors [141] and for the understanding of complex
processes such as cell differentiation.

The conceptual framework of cell differentiation is rooted in Wad-
dington’s ideas about the projection of the genotype space into the
phenotype counterpart [59]. Therein phenotypes are associated with
attractors, i.e. stable fixed points, in a phase space (the epigenetic
landscape) that can be parametrized by the concentration of the
molecular species of interest [74]. Interestingly, several studies have
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shown that a stochastic bifurcation diagram (i.e. a stochastic epige-
netic landscape) can differ significantly from its deterministic coun-
terpart [88, 162, 203, 52, 79]. Recent advances in the field include the
noise-induced bimodality in the response of the ERK signaling path-
way [22] or the increased stability of phenotypic states in bistable
systems due to noisy contributions [204, 52, 197]. Moreover, recent
studies have clarified the role of different noisy sources for defining
the global phenotypic attractor in bistable regulatory systems [79].
Still, despite these efforts, there is a lack of a theoretical formalism
to easily understand how those changes in the phenotypic stability
are driven by the inherent biochemical fluctuations.

In the context of genetic circuits, a definition of stochastic bifur-
cation has been previously proposed, based on experimental data
[171] or results from gene network models [88, 203]. In general, a
stochastic bifurcation is characterized by a qualitative change in one
of the observables of the stochastic process. In the case of a bistable
system, one may consistently identify two subpopulations of cells
whose states are distributed around the two stable states (or attrac-
tors) [171]. We follow this approach and define the stochastic system
as monostable if its steady state probability distribution is unimodal
and bistable if its distribution is bimodal. More complex stochastic
bifurcations has been proposed, for example in the case of systems
with oscillatory dynamics [203].

4.2 objectives and summarized results

In this chapter, I introduce our perturbative theory to analyze how
noise modifies the epigenetic landscape. By means of analytical cal-
culation and stochastic simulations, we show how intrinsic noise
modifies the bifurcation diagram of gene regulatory processes that
can be effectively described by the Langevin formalism. We have ap-
plied our findings to a general class of regulatory processes that in-
cludes the simplest case that displays a bistable behavior and hence
phenotypic variability: the genetic auto-activating switch. Thus, we
explain why and how the noise promotes the stability of the low-
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state phenotype of the switch and show that the bistable region is
extended when increasing the intensity of the fluctuations. In addi-
tion, we examine the role played by biochemical fluctuations with a
non-null correlation time and show that, while the effect is lessened,
the stochastic modification of the epigenetic landscape also emerges.
We compute the rate of activation of the switch and unveil the inter-
play between the intrinsic noise and the stochastic modification of
the energy landscape. While increasing the intrinsic noise leads to
a higher switching rate, it also modifies the energy barrier between
the low and the high states, resulting in a complex behavior when
varying the noise intensity. Our results shed light on the non-trivial
behavior of the QS activation dynamics found in chapter 3. This
phenomenology is found in a simple one-dimensional model of the
genetic switch as well as in a more detailed model that takes into ac-
count the binding of the protein to the promoter region. Altogether,
we prescribe the analytical means to understand and quantify the
noise-induced modifications of the bifurcation points for a general
class of regulatory processes where the genetic bistable switch is in-
cluded. In a general context, our study raises the intriguing question
of how biochemical fluctuations redesign the epigenetic landscape in
differentiation processes.

The chapter is organized as follows. In the Methods section, I in-
troduce our theoretical approach to analyze the stochastic modifi-
cation of the epigenetic landscape for a general class of regulatory
processes. In the results section, I first apply our finding to a simple
model describing a genetic switch. Subsequently, by means of nu-
merical simulations of a more detailed model, I demonstrate that the
stochastic stabilization effect is generic for this kind of architecture.
Finally, in the Discussion section, I present the main conclusions and
discuss about the applicability and relevance of our study.
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4.3 methods

4.3.1 Stochastic Modification of Bifurcation Points: Perturbative Theory

In the context of gene regulatory circuits, the chemical kinetics for-
malism that addresses the different processes underlying regulation
leads to a Master equation representation [191]. The latter can be
approximated by different expansion techniques to an Itō Langevin
equation for the concentration of the species [191, 58]. Thus, we start
by studying a general stochastic system described by a Itō Langevin
equation of one variable x and control parameter a:

.
x = f(x,a) + g(x,a) • ξ(t) (4.1)

ξ(t) being a Gaussian white noise such that,

〈ξ(t)ξ(t ′)〉 = σ2δ(t− t ′). (4.2)

The symbol • indicates that the stochastic process must be inter-
preted according to Itō.

Under these conditions, the stationary probability density reads
[73],

ρ(x,a) = Ne−
2

σ2
ψ(x,a) (4.3)

N being a normalization constant and,

ψ(x,a) = σ2 log [g (x,a)] −
∫x
0

f(z,a)
g(z,a)2

dz. (4.4)

It is easy to show that the extrema of the probability density are
located at points that satisfy

h (x,a) = f (x,a) − σ2g (x,a)gx (x,a) = 0, (4.5)

where we have used the compact subindex notation for the partial
derivatives, e.g. gxxa = ∂3g

∂x2∂a
.
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On the other hand, the inflection points of the probability density
satisfy

2f (x,a)
[
f (x,a) − 3σ2g(x,a)gx(x,a)

]
+ σ2g2(x,a)

[
fx (x,a)

+σ2
[
3 (gx (x,a))2 − g(x,a)gxx(x,a)

]]
= 0. (4.6)

Thus, if there is a stochastic bifurcation point such that a new ex-
trema appears/disappears, the bifurcation points (x∗,a∗) must sat-
isfy equations (4.5) and (4.6) simultaneously leading to

h (x,a) = hx (x,a) = 0. (4.7)

Notice that in the deterministic case, i.e. σ2 = 0, the bifurcation
points are given by the points (x0,a0) 6= (x∗,a∗), satisfying the equa-
tions f(x,a) = fx(x,a) = 0.

In order to analyze how the bifurcation points vary with to the
presence of fluctuations, we assume that, if the noise intensity is
small, then the following σ2-expansion of the points (x∗,a∗) holds,

x∗ =

∞∑
n=0

xnσ
2n = x0 + σ

2x1 +O
(
σ4
)

(4.8)

a∗ =

∞∑
n=0

anσ
2n = a0 + σ

2a1 +O
(
σ4
)

. (4.9)

Thus, by expanding f (x,a) and g (x,a) in powers of σ2 and collect-
ing terms, the equations (4.7) read

h (x,a) =
∞∑
n=0

h(n)σ2n =

= f0 + σ2
[
x1f

0
x + a1f

0
a − g

0g0x
]
+O

(
σ4
)
= 0 (4.10)

hx (x,a) =
∞∑
n=0

h
(n)
x σ2n =

= f0x + σ
2
[
x1f

0
xx + a1f

0
xa −

[
g0g0x

]
x

]
+O

(
σ4
)
= 0, (4.11)
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where the superindex 0 indicates that the functions are evaluated at
the point (x0,a0). By solving the conditions h(n) = h

(n)
x = 0, we

can obtain the corrections xn and an up to an arbitrary order n. As
expected, at zero order, h(0) = h

(0)
x = 0, we obtain the determinis-

tic conditions for the bifurcation point: f0 = f0x = 0. At order one,
h(1) = h

(1)
x = 0, we get

a1 =
g0g0x
f0a

(4.12)

x1 =

(
g0x
)2

+ g0
[
g0xx −

g0xf
0
xa

f0a

]
f0xx

. (4.13)

The corrections at order 2 read,

x2 =
1

6f3af
3
xx

(−f3xafxxg
2g2x + faf

2
xag

gx(−fxxxggx + 6fxxgxgxx + 2fxxggxxx) + fa(−fxaaf
2
xxg

2g2x+

fa(−fafxxx(g
2
x + ggxx)

2 + 2f2xxggx(2gxgxa + gagxx + ggxxa)

− 2fxx(g
2
x + ggxx)(fxxaggx − 3fagxgxx − faggxxx))) + fxa

(faaf
2
xxg

2g2x + fa(2faf
2
xxggx(gagx + ggxa)

+ 2fafxxxggx(g
2
x + ggxx) + fxx(2fxxag

2g2x + fa(g
4
x − 4gg

2
xgxx

−6g3xgxx+g
2g2xx−6ggxg

2
xx−2g(gx(g+gx)+ggxx)gxxx)))))

(4.14)

a2 = −
1

6f3afxx
(−f2xag

2g2x + faafxxg
2g2x + 2fafxaggx

(3gxgxx + ggxxx) + f
2
a(2fxxggx(gagx + ggxa)

+ (g2x + ggxx)(g
2
x + ggxx − 6gxgxx − 2ggxxx))) (4.15)

Our formalism and results can be applied to a general class of
regulatory processes with feedback described by the following bio-
chemical reactions:

∅
m(x,a)V


k

X (4.16)
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where X stands for the regulatory species (number of molecules),
m (x,a) is the gene regulatory function describing effective produc-
tion (x being the concentration of X), k the degradation rate and V
the cellular volume. It is easy to demonstrate that in this case,

f (x,a) = m (x,a) − kx (4.17)

g (x,a) =
√
m (x,a) + kx (4.18)

σ2 = V−1. (4.19)

A bifurcation point leading to multistability will exist if there are
at least three non-negative real solutions satisfying the equation
m (x,a) = kx. In those cases, the modification of the bifurcation
points of the deterministic system due to the biochemical noise reads

a∗ = a0 +
σ2k

m0a
+O

(
σ4
)

(4.20)

x∗ = x0 +
σ2

2

(
1−

2km0xa
m0am

0
xx

)
+O

(
σ4
)

. (4.21)

While in terms of x∗ it is not trivial to envision the sign of the dis-
placement caused by noise, in terms of a∗ it is easy at least at first
order: its sign is prescribed by the putative role played by a in the
regulation of species X. That is, if a promotes positive regulation (ac-
tivator), ma > 0, then a∗ > a0, as in the case of the auto-activating
genetic switch (see below). Contrariwise, if a is an inhibitor of pro-
duction then noise will advance the location of the bifurcation point
(a∗ < a0).

4.3.2 Birth and Death Process: Exact Solution

The formalism and results presented above, apply to the (approxi-
mated) Itō Langevin description. Yet, the exact solution of the regu-
latory processes described by (4.16) can be also obtained. Thus, by
comparing the exact epigenetic landscape with that resulting from
the Langevin description we can validate the scope of our calcula-
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tions beyond the numerical simulations. Note that the biochemical
reactions (4.16) are equivalent to the birth and death processes [207]

X→ X+ 1 : V m

(
X

V
,a
)

(4.22)

X→ X− 1 : kX (4.23)

The master equation describing this process is

dp (X, t)
dt

=p (X− 1, t)V m
(
X− 1

V
,a
)
+ p (X+ 1, t) k (X+ 1)−

− p (X, t)
[
V m

(
X

V
,a
)
+ kX

]
, (4.24)

where p (X, t) stands for the probability of having X number of mol-
ecules at time t. By imposing that at equilibrium the net flux between
neighboring states becomes null (detailed balance), the stationary
probability, p (X), reads,

p (X) = p (0)

(
V
k

)X
X!

X−1∏
Y=0

m

(
Y

V
,a
)

, (4.25)

where p (0) is a normalization constant such that
∑∞
X=0 p (X) = 1.

4.3.3 Non-null Memory Fluctuations

Single cell level experiments have revealed that intrinsic fluctuations
show a “short” correlation time, i.e. white-noise-like [153]. Yet, the
white noise is an idealization about the actual behavior of fluctua-
tions since it implies a memoryless process. In order to clarify the
consequences of this fact in regard to the modification of the epige-
netic landscape, we also examine the role play by colored fluctua-
tions. The so-called Ornstein-Uhlenbeck (OU) process is defined by
the stochastic differential equation [73]:

.
η =

1

τ
{−η+ σξ (t)} , (4.26)
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where 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = δ (t− t ′). Under these conditions
the mean and the correlation of the OU process read,

〈η (t)〉 = 0 (4.27)

〈η(t)η(t ′)〉 = σ2

2τ
e−

|t−t ′|
τ , (4.28)

where τ stands for the correlation time (memory) of the fluctuations.
In the limit τ → 0 the OU process tends to a white noise process
with intensity σ2, that is,

lim
τ→0

〈
η (t)η

(
t ′
)〉

= σ2δ
(
t− t ′

)
. (4.29)

Importantly, the Wong-Zakai theorem [73] shows that when τ → 0,
and the OU process is multiplicative in the stochastic differential
equation, the right interpretation of the latter is Stratonovich instead
of Itō. In this regard, note that the stochastic differential equation,

.
x = f(x,a) −

σ2

2
g (x,a)gx (x,a) + g(x,a) ◦ ξ(t) (4.30)

〈ξ(t)〉 = 0 (4.31)

〈ξ(t)ξ(t ′)〉 = σ2δ
(
t− t ′

)
, (4.32)

where ◦ indicates that the stochastic integral must be interpreted
according to Stratonovich, represents the same stochastic process as
equation (4.1). Consequently, the stochastic differential equation,

.
x = f(x,a) −

σ2

2
g (x,a)gx (x,a) + g(x,a)η(t), (4.33)

where η (t) stands for the OU process, has the same solution as equa-
tion (4.1) in the limit τ → 0 and the modification of the epigenetic
landscape is the same as in the white noise case (data not shown).

Equation (4.33) cannot be solved analytically for an arbitrary value
of τ. However, we can elucidate the modification of the epigenetic
landscape in the limit τ→∞, that is, for long correlation times. We
notice that in that limit, for a finite noise intensity, the OU process
vanishes and the system behaves as the deterministic system [73],

.
x = f(x,a) −

σ2

2
g (x,a)gx (x,a) . (4.34)
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Therefore, for long correlation times, the bifurcation points are lo-
cated at points (x∗,a∗) satisfying,

ĥ (x,a) = ĥx (x,a) = 0, (4.35)

where,

ĥ (x,a) = f(x,a) −
σ2

2
g (x,a)gx (x,a) . (4.36)

Interestingly, these are the same conditions as (4.7) if in equation (4.5)
g (x,a) → g (x,a) /

√
2 (alternatively if the noise intensity is halved).

Thus, at order one, for long correlation times, the correction of the
bifurcation points read,

â1 =
g0g0x
2f0a

(4.37)

x̂1 =

(
g0x
)2

+ g0
[
g0xx −

g0xf
0
xa

f0a

]
2f0xx

. (4.38)

In summary, as the correlation time of the fluctuation increases, the
shift effect over the bifurcation points is lessened (see numerical sim-
ulation results below). Yet, even in the limit case of infinite memory
fluctuations a shift appears and its sign does not depend on the col-
ored character of the noise.

4.4 results

4.4.1 Our perturbative theory reveals the stochastic stabilization of the
low state in the autoactivating bistable switch

We now apply our theoretical calculations to a well-characterized
system: the auto-activating switch [76, 123]. In this genetic circuit,
a protein forms an oligomer that binds to the promoter region of
its own gene and activates its expression (see figure 4.1). As shown
elsewhere [52], this regulatory process can be effectively described
by the Hill function formalism and leads to the following determin-
istic equation for the concentration, x, of protein:
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Figure 4.1: Scheme of the genetic auto-activating switch model. The expression
of gene x leads to protein X that after oligomerization binds to
its own promoter acting as an self-activator.

.
x = r+

axn

Kd + xn
− k5x (4.39)

where r is the basal expression rate (due to promoter leakiness), a
the maximum production rate (efficiency of the auto-activation), n
the cooperativity (oligomerization index), Kd the concentration of
protein yielding half-maximum activation and k5 the degradation
rate. Notice that the auto-activating regulatory scheme fits within
the general class (4.16): m (x,a) = r + axn

Kd+xn
being the gene reg-

ulatory function. Alternatively, the dimensionless version of equa-
tion (4.39) reads

.
x̃ = r̃+ ã

x̃n

1+ x̃n
− x̃ (4.40)

with x̃ = x
n√Kd

, t̃ = k5t, ã = a
k5

n√Kd
, r̃ = r

k5
n√Kd

.

If n > 2 and
(
3
√
3
)−1

> r̃ > 0 then the system exhibits a bistable
behavior (phenotypic variability) for a range of values of ã. Here
we choose n = 2 and r̃ = 0.12. Notice that the system has two
bifurcation points that define the bistability region. These points cor-
respond to the solutions (x0,a0) of the polynomial equations,

f0 = r̃+
ã0x̃

2
0

1+ x̃20
− x̃0 = 0 (4.41)

f0x =
2ã0x̃0

(1+ x̃20)
2
− 1 = 0. (4.42)
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We now examine how the bifurcation diagram (the epigenetic
landscape) changes due to the biochemical fluctuations. In partic-
ular, we look at the shift of the bifurcation points. The Itō Langevin
equation that corresponds to this system reads [52, 58]

.
x̃ = f(x̃, ã) + g(x̃, ã) • ξ(t) (4.43)

f(x̃, ã) = r̃+ ã
x̃2

1+ x̃2
− x̃ (4.44)

g(x̃, ã) =

√
r̃+ ã

x̃2

1+ x̃2
+ x̃ (4.45)

σ̃2 =
1

Ṽ
(4.46)

where Ṽ = V n
√
Kd is the dimensionless volume. By proceeding as

described in the previous section, see equations (4.20) and (4.21), the
bifurcation points (x̃∗, ã∗) read

ã∗ = ã0 + ã1σ̃
2 + ã2σ̃

4 +O
(
σ̃6
)

(4.47)

x̃∗ = x̃0 + x̃1σ̃
2 + x̃2σ̃

4 +O
(
σ̃6
)

. (4.48)

The corrections at first order read

ã1 = 1+
1

x̃20
(4.49)

x̃1 =
1

2
+

2

3x̃20 − 1
. (4.50)

and the corrections at second order read

x̃2 = −(3(1+ x̃20)
6

+ 2ã0(1+ x̃
2
0)
2(−12+ x̃0(7+ 3x̃0(16+ x̃0(2+ x̃0(−12+ 5x̃0)))))

+ ã20(1+ x̃0(−24+ x̃0(2+ 3x̃0(8

+ 3x̃0(6+ 24x̃0 − 24x̃
3
0 − 7x̃

4
0 + 6x̃

6
0))))))/

(12ã20x̃0(1+ x̃
2
0)
2(−1+ 3x̃20)

3) (4.51)



4.4 results 121

Figure 4.2: Noise-induced shift of the bifurcation points for the simple genetic
switch. Change in the position of the bifurcation points (x̃∗1, ã∗1)
and (x̃∗2, ã∗2) for different values of noise intensity: σ̃2 = 0 (black
symbols), σ̃2 = 0.01 (red symbols), σ̃2 = 0.03 (green symbols)
and σ̃2 = 0.06 (orange symbols). Numerical exact solution (cir-
cles), first order approximation (triangles) and second order ap-
proximation (diamonds). The biochemical fluctuations shift the
position of both bifurcation points but the effect for ã∗2 is more
noticeable and widens the bistability region that ultimately pro-
motes the stability of one phenotype.

ã2 = −
1

12ã0x̃
4
0(1+ x̃

2
0)
3(−1+ 3x̃20)

((1+ x̃20)
5

+ 2ã0x̃0(1+ x̃
2
0)
2(2+ x̃0(12+ x̃0(1+ 3(−4+ x̃0)x̃0)))

+ ã20x̃
2
0(3+ x̃0(24+ x̃0(5+ 3x̃0(16− 3x̃0(−1+ x̃0(8+ x̃0))))))).

(4.52)

Figure 4.2 shows, in agreement with our analytical calculations,
the location of the bifurcation points as a function of the noise inten-
sity σ̃2, at first (triangles) and second (diamonds) orders as well as
the exact solutions (circles) (see also figure 4.3 bottom inset). Note
that in terms of ã∗ the correction due to the noise is always positive.
Consequently both bifurcation points, those defining the bistable re-
gion, are shifted to the right. Moreover, the shift largely increases as
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Figure 4.3: Bifurcation diagram of the simple genetic switch. Deterministic sys-
tem (blue line), white-noise stochastic system (Langevin: green
line; exact solution: red line). The bifurcation diagram of a
system with colored fluctuations in the limit τ̃ → ∞ is also
depicted (cyan line). In all cases Ṽ = 12.5. The results from
stochastic simulations are in agreement with the analytical re-
sults, as can be seen by the detected peaks (orange circles) of the
probability distribution of x̃ at steady state (color code, logarith-
mic scale). The numerical simulations for a non-null correlation
time noisy system, with τ̃ = 0.1, indicate that the effect is less-
ened when memory is considered (purple circles). The top inset
reveals that the probability distributions obtained in numerical
simulations (orange histogram) are in perfect agreement with
the exact solution (red line) and the Langevin description (green
line), ã = 2.3. For that value of the control parameter the deter-
ministic system only have one stable solution and the probabil-
ity distribution corresponds to a Dirac delta (blue arrow). When
the correlation time of the noise is not null, τ̃ = 0.1, the stabil-
ity of the low state decreases with respect to the white noise
case (purple line). The circles in the inset denote the extrema
as detected by the Gaussian peak detection algorithm. Bottom
inset: increasing noise (decreasing volume) clearly extends the
stable branch of the low state, an effect that we call stochastic
stabilization: Ṽ = 100, 50, 30 and 12.5.
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x̃0 approaches to zero, and the bistable region widens with respect to
the deterministic system. In addition, the low state, for which x̃0 & 0,
has a negative correction in terms of x̃∗, i.e. x̃∗ < x̃0. Altogether, our
calculations indicate that one of the states (the low protein concen-
tration one) becomes more stable due to the biochemical noise. We
call this effect the stochastic stabilization of a phenotypic state. Al-
ternatively, this phenomenon can be interpreted as a noise-induced
bistability since there is a range of values of the control parameter
for which the stochastic system displays a bistable behavior in oppo-
sition to the monostable response of the deterministic system.

Figure 4.3 shows the analytical bifurcation diagrams for the deter-
ministic and the stochastic cases. In the stochastic cases, with regard
to the Langevin approximation, we define the stable and unstable
branches by means of the extrema of the probability distribution, i.e.
by numerically solving the condition (4.5) and, in the case of the
exact analytical solution, equation (4.25), by numerically finding the
extrema of p (X). The results support the stochastic stabilization phe-
nomenon: compared with the deterministic system the low protein
concentration state becomes stable for a larger range of values of
the control parameter as the noise intensity increases. Moreover, our
results validate the Langevin approximation since is in good agree-
ment with the exact solution.

In order to gain more insight into the stabilization phenomenon,
we perform stochastic simulations of equations (4.1) and (4.33). In
these cases, the position of the maxima are computed by using a
Gaussian peak detection algorithm over the numerical probability
distributions obtained in the simulations. On one hand, in the white
noise case, the positions of the maxima show a good agreement with
the analytical results. However, our simulations reveal that despite
noise extends the low state stability to higher values of ã, the prob-
ability of residing at the low state quickly drops when increasing
the control parameter. This is the reason why the detected peaks of
the low state from the simulations do not extend as far as the stable
branch of the low state computed from the analytical calculations.
On the other hand, in the case of the colored noise (τ̃ = 0.1), the
simulations confirm the analytical calculations when the biochemi-



124 stochastic stabilization of phenotypic states

cal fluctuations are not memoryless: for the same noise intensity of
the white noise case, the effect is lessen, yet present and the low state
becomes stabilized.

The noise-induced bistable behavior is revealed by the bimodal
shape of the stationary probability density in opposition to the de-
terministic system for which the only stable solution is the high state
(figure 4.3 top inset). The analytical distribution computed from (4.3)
agrees with both the exact solution and the distribution computed
from the stochastic simulations. Notice that when colored noise is
considered the stochastic stabilization effect is lessened as revealed
by the drop of the maximum that correspond to the low state.

Figure 4.4 shows stochastic trajectories for ã = 2.3 when the fluc-
tuations are white. At this value, the low state is unstable in the
deterministic system and the only plausible phenotype is the high
state. Indeed, when the volume is large (low noise intensity) the
system is monostable and stays at the high state (x̃ ∼ 2). However,
when the volume is small (high noise intensity) the system exhibits
a bistable behavior, jumping between the high state and the low
state (x̃ ∼ 0.1). In order to show that the residence time at the low
state is large enough and, as a result, noticeable as a phenotype,
we indicate in figure 4.4 the characteristic duration of a bacterial
cell cycle (40 minutes) in dimensionless time units, under two differ-
ent conditions of the protein degradation rate: stable proteins with
an effective degradation driven by the cellular growth (dilution),
k5 = log(2)/40 min−1, and unstable proteins with fast degradation
induced by tagging [113], k5 = (log(2)/40+ 1.0) min−1.

4.4.2 The stochastic stabilization effect is also found in a more detailed
model of autoactivating switch

Our results towards the understanding of the modification of the
phenotypic landscape due to the biochemical fluctuations are based
on a simplified view of the regulatory process (the genetic switch)
described by a single variable. However, one might wonder if our re-
sults are applicable when a more detailed model is considered, that
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Figure 4.4: Trajectories for the simple genetic switch for small and large volumes.
Trajectories from stochastic simulations of the simple genetic
switch model for small volume Ṽ = 12.5 (orange line) and large
volume Ṽ = 1000 (blue line) for ã = 2.3. For this value of pa-
rameter ã, the system is monostable and stays at the high state
(x̃ ∼ 2) when the noise intensity is small (large volume), while it
is bistable when the noise intensity is high (small volume) and
jumps between the low state (x̃ ∼ 0.1) and the high state (x̃ ∼ 2).
The black bars indicate the characteristic duration of a bacterial
cell cycle (tc = 40 minutes) in dimensionless time units under
two different conditions of the protein degradation rate and
show that the residence time at the low state is large enough to
be noticeable as a phenotype: stable proteins driven by dilution
effects (k5 = log(2)/40 min−1) and unstable proteins with fast
degradation induced by tagging (k5 = (log(2)/40+ 1.0) min−1).
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is, if our predictions are an artifact due to an oversimplified mathe-
matical description. In order to address this question, we consider a
more detailed, yet equivalent, model of the genetic switch using the
chemical kinetics formalism. In particular, we take into account the
basal expression rate, the binding/unbinding events of the protein
oligomer to the promoter, an effective transcription/translation rate,
and the protein degradation:

∅
rV


k5
X (4.53)

P+nX
k3/V

n



k4

P∗ (4.54)

P∗
k2→ P∗ +X (4.55)

where X stands for the protein (number of molecules), n its oligomer-
ization index and P/P∗ the unbound/bound states of the promoter.
These reactions lead to the following deterministic description in
terms of ordinary differential equations describing the concentration
of chemical species,

.
p = k4p

∗ − k3px
n (4.56)

.
p∗ = −k4p

∗ + k3px
n (4.57)

.
x = −k5x+ r+n (k4p

∗ − k3px
n) + k2p

∗. (4.58)

Binding/unbinding events are fast reactions compared to the pro-
tein production and the degradation, i.e. k3,k4 � r,k2,k5. Thus,
a quasi-steady state approximation can be implemented such that
.
p =

.
p∗ ' 0. The latter combined with the conservation law of the

total promoter concentration, p + p∗ = p0, leads to the following
equation,

.
x = r+ k2P0︸ ︷︷ ︸

a

xn

k4/k3︸ ︷︷ ︸
Kd

+xn
− k5x. (4.59)

Therefore, assuming that the binding/unbinding of the protein to
the DNA are fast reaction, this model leads to the same determin-
istic equation as in the simple genetic switch model. However, its



4.4 results 127

stochastic description in terms of the set of reactions 4.53 to 4.55 is
far more complex that equation (4.43) even considering that bind-
ing/unbinding are fast events since P and X are correlated quan-
tities and each species exhibits a fluctuating dynamics [79]. Then,
we perform stochastic simulations of reactions 4.53 to 4.55 using the
Gillespie algorithm [57] and apply the peak detection method to elu-
cidate the bifurcation changes in the epigenetic landscape.

In order to reduce the number of parameters, we use the same
definition of dimensionless variables as above. Compared to the sim-
plified model, the detailed model has two additional parameters, k̃2
and k̃4. Parameter k̃2 is related to the control parameter ã by the rela-
tion k̃2P0 ≡ ã. In order to change ã, we vary the value of k̃2 and keep
fixed the DNA copy number P0 = 1. In our simulations the value of
k̃4 is fixed (k̃4 = 1000) and ensures that equation (4.59), and conse-
quently the deterministic bifurcation diagram, applies when fluctua-
tions are neglected. Yet, when considering the noise, the differences
between the simple and the detailed stochastic model are noticeable
by examining the stationary probability distributions (see figure 4.5).
Nonetheless, in agreement with our theoretical approach, the bifur-
cation diagram, figure 4.6, shows that noise promotes the stability
of the low state compared to the deterministic system. However, the
stochastic stabilization effect is smaller than in the simple genetic
switch model. For example, for a volume Ṽ = 12.5 the maximum in
the distribution corresponding to the low state can be detected up to
the value ã = 2.8 for the detailed model, while in the simple model
it can be detected up to ã = 3.1.

4.4.3 First passage time simulations reveal the interplay between intrinsic
noise and stochastic modification of the energy landscape on the
dynamics of the autoactivating switch

The mean first passage time (MFPT) in a stochastic bistable system
reflects the time that the system remains in the neighborhood of a
stable state before jumping to the other stable state. In the case of the
simple model, we can calculate analytically the MFPT in the Fokker-
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Figure 4.5: Steady state probability distribution for the simple and detailed models.
Probability distribution at steady state for volume Ṽ = 100 for
the simple (purple filled curves) and the detailed (blue filled
curves) genetic switch models, for different values of the con-
trol parameter ã. The distributions match well except in the re-
gion where distributions are bimodal and highlight the fact that
while the deterministic description is the same in both models,
the stochastic one is not.
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Figure 4.6: Bifurcation diagram of the detailed genetic switch. Bifurcation dia-
gram of the detailed genetic switch with fast protein-DNA bind-
ing/unbinding, The results from stochastic simulations at low
volume Ṽ = 12.5 shows that noise induces the same stochas-
tic stabilization effect as in the simple genetic switch model, as
can be seen by the position of the peaks and minima of the
distribution from the simulations (orange circles) compared to
the deterministic system (blue solid line). The same Gaussian
peak detection algorithm is used in order to detect the extrema
in the steady-state distribution (inset, ã = 2.15). Color code de-
notes the probability distribution from stochastic simulations
for Ṽ = 12.5 in logarithmic scale. The stochastic stabilization ef-
fect is less pronounced than in the simple model and is only de-
tectable for low volumes. At intermediate volume (light purple
circles, Ṽ = 30) and large volume (dark purple circles, Ṽ = 100),
the bistable region of the stochastic system is smaller than in
the deterministic case.
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Planck description corresponding to the Langevin equation (4.43).
With a reflecting barrier at x̃ = 0 and an absorbing barrier at the
maximum of the Fokker-Planck potential ψ(x̃max), the MFPT reads
[55]

Tlow = 2

∫ x̃max

x̃low

dy

φ(y)

∫y
0

φ(z)

σ2g(z)2
dz (4.60)

φ(x̃) = e
∫x̃
0 dx

′ 2f(x ′)
σ2g(x ′)2 (4.61)

We also computed the MFPT by means of Gillespie simulations,
starting from the maximum of the steady-state distribution of the
exact solution (4.25) and recording the time needed to reach the
minimum. Panel A in figure 4.7 shows the MFPT as a function of the
control parameter ã for different volumes. The MFPT obtained with
the Gillespie simulations are in agreement with the analytical calcu-
lations of the Fokker-Planck approximation. Notice that the MFPT
of the simulations exhibit some steps at certain values of parameter
ã for low volumes. This is due to the discrete shifts in the position
of the extrema in the steady-state distribution when changing the
control parameter ã. Because there are only a few molecules in the
low state and in the unstable state, a change in the integer value of
its positions induces a step in the resulting MFPT. Depending on
the value of ã, the MFPT increases or decreases with the intrinsic
noise intensity. Here, two different contributions must be identified
to understand the behavior of the first passage time as a function
of the control parameter ã and the intensity of the intrinsic noise
σ2 (inversely proportional to the volume Ṽ). First, we expect that if
the energy landscape was fixed, an increase in the intensity of the
intrinsic noise would lead to a higher switching rate, as shown in
the case of the autoactivating switch [88]. This is what we observe
when the control parameter ã is close to the deterministic bistable
region. However, we observe the opposite effect for higher values
of ã: an increase in the noise intensity decreases the switching rate.
We hypothetize that the second contribution is due to the stochas-
tic modification of the energy landscape. Indeed, we have seen that
the bifurcation diagram is modified when changing the intensity of



4.4 results 131

Figure 4.7: First passage time and switching rate for the simple model. (A) Mean
first passage time (MFPT) for the simple model of genetic
switch from the low stable state to the unstable state, defined
as the maximum and minimum of the steady-state distribution:
analytical solution of the Fokker-Planck description (solid lines)
and Gillespie simulations (circles), for different volume sizes
(see legend). The deterministic bifurcation curve (dashed line)
is depicted with an arbitrary y-scale in order to visualize the
deterministic bistable region. For decreasing volume (increas-
ing noise), the bistable stochastic region increases. Depending
on the value of ã, the MFPT increases or decreases with the
intrinsic noise intensity, due to the combined effect of the modi-
fication of the bistable region and the change in the escape rate
due to noise. (B) Switching rate (inverse of the MFPT) from the
low state to the unstable state in the simple model as a function
of the energy barrier ∆ψ. The energy barrier is the difference of
potential ψ(x̃max, ã) −ψ(x̃low, ã) from the solution (4.3) of the
Fokker-Planck approach. The switching rate clearly increases
with noise intensity for all values of the energy barrier.
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noise. Therefore, for a fixed value of parameter ã, these two con-
tributions determine the behavior of the MFPT. In order to unveil
the importance of these two contributions, we plot on figure 4.7B
the switching rate (inverse of the MFPT) as a function of the en-
ergy barrier ∆ψ. By doing so, we can compare the switching rate
behavior when changing the noise intensity while keeping fixed the
energy landscape. The energy barrier is the difference of potential
ψ(x̃max, ã) −ψ(x̃low, ã) from the solution (4.3) of the Fokker-Planck
approach. For the same value of the energy barrier, the switching
rate increases with the intensity of the intrinsic noise, as expected.
However, in terms of the control parameter ã, the range of bistabil-
ity is shifted to the right and the energy barrier is modified when
increasing the noise. The combination of these two effects result in
the observed behavior of the MFPT as a function of ã, in particular
the MFPT curves for different volumes crossing each other. In the
case of the detailed model, the results are similar (see figure 4.8),
however the bistable region is much narrower and this difficults the
comparison for the different volumes. Moreover, the detailed model
is multi-dimensional and does not allow for the definition of an en-
ergy potential, as in the case of the simple model.

In order to analyze the dynamics of the switch not only in the
bistable region but also for larger values of the control parameter, we
computed the mean time that the system needs to reach a position
close to the high state, at 0.9x̃high, starting from the low state (see fig-
ure 4.9). The low and high stable states are defined as the maxima of
the steady-state distribution of the Fokker-Planck description. This
quantity represents the mean time that a cell would need to activate
the genetic switch starting from the unactivated state. Depending on
the value of the control parameter ã, the maximum production rate
of the protein, we observe two opposite effects of the intrinsic noise:
for ã / ã† the activation MFPT decreases with the intensity of the
intrinsic noise, while for ã ' ã†, the activation MFPT increases with
noise intensity. The activation MFPT lines for different volumes do
not cross at the same point, and therefore the value of ã† cannot be
defined precisely, but is approximately ã† ≈ 3.2 in the simple model
and ã† ≈ 2.5 in the detailed model.
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Figure 4.8: First passage time for the detailed model. Mean first passage time
(MFPT) for the detailed model of genetic switch from the low
stable state to the unstable state, Gillespie simulations (cir-
cles), for different volumes (see legend). The stable and unsta-
ble states are defined as the maximum and minimum of the
steady-state distribution of the Gillespie simulations (see fig-
ure 4.6). The MFPT from the Fokker-Planck approach of the
simple model (solid lines) are also reported for comparison.
The deterministic bifurcation curve (dashed line) is depicted
with an arbitrary y-scale in order to visualize the deterministic
bistable region. The MFPT for the detailed model are similar to
the results for the simple model, except that the bistable region
is smaller.
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Figure 4.9: First passage time from low to high state for the simple and detailed
models. Mean first passage time (MFPT) for the simple (A) and
detailed (B) models of the genetic switch from the low stable
state to a position close to the high state at 0.9x̃high, Gillespie
simulations (circles), for different volumes (see legend). The
low and high stable states are defined as the maxima of the
steady-state distribution of the Fokker-Planck description. The
deterministic bifurcation curve (dashed black line) is depicted
with an arbitrary y-scale in order to visualize the deterministic
bistable region. The FPT is also computed for the deterministic
model outside the bistable region (solid black line). For both
models, we observe that for high values of the control parame-
ter ã the MFPT increases with increasing noise intensity, while
for small ã the MFPT decreases with noise.
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4.5 discussion

The results of the detailed model differ quantitatively from the sim-
ple model when fluctuations are considered. In particular, the prob-
ability distributions and the range of values for which the latter are
bimodal are different. Thus, although the deterministic descriptions
of both models are totally equivalent (as long as the quasi-steady
state approximation holds) this is not true when considering the bio-
chemical fluctuations. We have found that the stochastic stabilization
effects still holds in the detailed model, but that the extension of the
range of bimodality is smaller than in the simple model. Similar dif-
ferences have been found in other studies about genetic switches: for
example in the case of the genetic toggle switch it has been shown
that protein-protein interactions can be safely eliminated (adiabati-
cally) but protein-DNA interactions, even though are also fast, lead
to noticeable changes in the switching rates if neglected [118]. It
is also interesting to place our findings in the context of the role
played by different noisy sources, gene switching, translational and
transcriptional, for defining the global attractor of bistable systems
[79]. Thus, it has been recently shown that the modulation of the
intensity of these fluctuations can actually condition the global at-
tractor (the most represented phenotype) and that the elimination
of gene switching noise by means of the adiabatic approximation
can suppress some phenotypes. Our results are consistent with this
study and provide further means to analyze and understand such
phenomenology.

In this study, we have modulated the intensity of intrinsic fluctua-
tions keeping the same concentration and varying the volume of the
system. One may wonder how the number of proteins in our model
and the intensity of the fluctuations compares with the situation
found in real biological systems. The maximum intensity of noise
we have used corresponds to a volume of V ≈ 2 µm3 (Ṽ ≈ 10), for
which the average number of protein X in the low state is ∼ 1. Such
volume is in fact the typical volume of an E. coli cell [187] and this
very low copy number of proteins has been measured in bacteria. For
example, the number of LacY repressors in the lactose operon of E.
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coli, an auto-activating genetic switch, has been found to be between
0 and 10, most of the cells having zero or very few molecules [36],
and single molecule measurement of β-galactosidase in E. coli [30]
have also reported an average level of ∼ 1 enzyme per cell. Conse-
quently, the number of molecules, and therefore the noise intensity,
used in our study is consistent with experimental data on bacterial
regulatory networks. Moreover, the intensity of intrinsic noise may
be even larger when considering protein expression bursts [133], a
phenomenon that we have not included in our modeling.

We have observed that the switching rate exhibits a complex be-
havior when varying the intensity of intrinsic noise. For values of
the control parameter close to the deterministic bistable region, an
increase in the noise intensity leads to a higher switching rate, while
for larger values of the control parameter, we observe the opposite
effect. This behavior is found in both the simple and the detailed
models and the phenomenology is similar to the one described in
the activation circuit of the QS bacteria in chapter 3. Our results
indicate that the modification of the energy landscape due to the in-
trinsic noise is the main contribution to this behavior. While most of
theoretical studies neglect this modification, it would be interesting
to study the stochastic modification of the energy landscape in other
biological switches. In the experimental study of Avendaño et al.
[10], the coupled positive and negative feedback loops of a modified
galactose-uptake control system of Saccharomyces cerevisiae produce
a bistable switch with tunable switching rate and range of bistabil-
ity. The authors suggest that the negative feedback allows separate
tuning of the switching rates, possibly by modulating the intrinsic
fluctuations of the system. In such cases, we hypothetize that the
modification of the energy landscape due to intrinsic noise could
play a role in the behavior of the switching rate.

4.6 conclusions

By using the auto-activating genetic switch as a case study, we have
shown that the biochemical intrinsic noise may induce a shift in the
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position of the bifurcation points such that the region of parameter
values for which the stationary probability distribution is bimodal
increases with fluctuations with respect to the deterministic situa-
tion. In particular, the low state stability is extended; an effect that
we call stochastic stabilization and that we have shown that, in essence,
does not depend on the colored character of the fluctuations. The
perturbative method that we have introduced is general and can be
applied to any stochastic system describing a gene regulatory net-
work. Yet, we point out that the method is limited to the case of
one-dimensional stochastic differential equations for which the gen-
eral solution of the stationary probability density can be written ex-
plicitly. Nonetheless, we have shown by means of simulations of a
more detailed model, that the stochastic stabilization phenomenon
does not depend on this particular detail thus suggesting a generic
phenomenon in positive feedback switches (see also chapter 3). Pre-
vious studies [162, 203] have also found that noise changes the po-
sition and even the number of stable states [22]. In this regard, our
study provides a theoretical framework to predict and understand
such phenomenology. Whether our results are applicable or not to
complex fate decision and differentiation processes is a matter of
further research. In that regard, fate decisions in some embryonic
stem cells are driven by an excitable dynamics that includes positive
feedback loops as the one we have considered herein [83]. Hence,
we speculate that noise would be also playing a role in redesigning
the epigenetic landscape in those cases.

As we have seen, intrinsic noise can induce spontaneous transi-
tions between the two stable states of the autoactivating switch. This
is also true for other genetic switches such as the toggle switch [194]
and has important implications in the design of new synthetic biol-
ogy applications [141]. In the next chapter, we will study how the
intrinsic noise in a biological system with bistability and cell-cell
communication can lead to a phase transition similar to the Ising
model in statistical physics.





5
P H A S E T R A N S I T I O N I N T H E T O G G L E S W I T C H
C O U P L E D B Y Q U O R U M S E N S I N G : A N I S I N G
M O D E L I N B A C T E R I A

5.1 introduction

Coordinated behavior in a population of cells is one of the funda-
mental process in nature, from bacteria which optimize their re-
sources by activating costly genetic programs only in favorable con-
ditions, to eukaryotes which coordinate groups of embryonic cells to
form well-structured differentiated tissues during development. Col-
lective cell differentiation can be driven by environmental signals
like morphogens [151] which form a gradient of concentration by
diffusing through a tissue. In this case, cells are exposed to different
signal levels depending on their distance from the source of mor-
phogens which leads to region-specific cell differentiation. However,
coordinated behavior has also been shown to arise solely from the
interaction between cells, without the need of external signals, in a
process similar to self-organization. At the basis of this phenomenon
is cell-cell communication, which allows cells to coordinate and syn-
chronize the expression of genes. During embryonic development,
groups of precursor cells generated by an embryonic induction tend
to stay together and maintain the expression of the same set of genes,
even in the absence of external signal, a mechanism called the com-
munity effect [25, 157]. In this case, cell-cell communication has been
shown to play a crucial role in maintaining stable differentiation in-
side the territory, showing that the coordination of the cell in the
group relies on the interaction between the cells. In prokaryotes,
many synthetic and natural systems based on the QS communica-
tion exhibit coordinated behavior (see section 1.2). Synthetic genetic
oscillators have been synchronized by QS signaling [41], leading to
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the emergence of autonomous gene expression oscillations at the
level of a cell population similar to the circadian rhythms in higher
organisms. By coupling cell density and cell motility by QS com-
munication, E. coli cells have been shown to exhibit spatiotemporal
patterns of cell density during the growth of a colony [104]. The
formation of these patterns is solely due to the interaction between
cells mediated by the QS signal and does not depend on any external
signals.

All these processes must take place in the presence of fluctuations
that unavoidably affect cellular functions. One central question is
therefore how cells robustly coordinate in the presence of noise. This
question has been studied in chapter 3 in the case of the activation
of a positive-feedback switch by QS communication. In this chapter,
I focus on the collective behavior of a population of toggle switches
that are coupled by two QS signaling pathways and I show that the
interplay between noise, bistability and cell coupling leads to a new
mechanism of coordination at the level of the population. Depend-
ing on the diffusion rate, the cell population exhibits a disordered
behavior or a totally coordinated behavior. The sudden transition in
the degree of coordination in the cell population appears very simi-
lar to a second order phase transition. From the point of view of sta-
tistical physics, a phase transition is described as an abrupt change
in the degree or type of order in the system. This change originates
from cooperative phenomena due to the interaction between indi-
vidual elements of the system. For example, attractive interaction
between water molecules leads to transitions between the gas phase
(vapor), the liquid phase and the solid phase (ice), depending on the
temperature and the pressure. Phase transitions may also be a driven
force in many biological processes. For example, lipids and proteins
in the cell membrane segregate and form two-dimensional liquid
rafts that are nanoscale assemblies that function in membrane sig-
naling and trafficking [102]. Biophysical experiments on lipid mem-
brane model systems suggest the coexistence of two liquid phases
with different compositions of raft lipids [168, 102]. A key study on
giant plasma membrane vesicles isolated from living cells has shown
that the membrane organization exhibits a phase transition from one
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liquid phase at high temperature to two liquid phases at low temper-
ature [192]. Typical behaviors of phase transition such as critical fluc-
tuations have been observed in this system. Moreover, the proximity
of the critical point temperature to the physiological temperature
suggests that mammalian plasma membranes are tuned to reside
near the miscibility critical point and that critical fluctuations might
explain some of the heterogeneity of membrane composition. Other
examples include the localization of P granules during the asymmet-
ric cell division in the Caenorhabditis elegans zygote, a phenomenon
similar to liquid-gas phase transition [97, 27]. While these examples
describe transitions at the level of the molecular organization in the
cell, much less studied are phenomena of phase transitions at the
level of cell populations, induced by the interaction between cells in
a tissue or in a bacterial colony. In this chapter I present a theoreti-
cal model of a population of bacteria that exhibits a phase transition.
I will show that cell- cell coupling mediated by QS communication
can lead to a transition from a disordered phase to an ordered phase
with all the cells in the same state.

The toggle switch is one of the simplest genetic circuit exhibit-
ing bistable behavior [56] and represents a minimal example of cel-
lular decision making. Theoretical works have shown that cell-cell
communication could coordinate a population of toggle switches
[91]. In the experimental work of Kobayashi et al. [90], the authors
designed a toggle switch circuit interfaced with the QS signaling
pathway of Vibrio fischeri. In addition to the toggle switch plasmid,
cells also carried a plasmid where lacI was under the control of
an autoinducer-dependent promoter. By adding exogenous autoin-
ducer to the environment, the total expression level of LacI was tem-
porarily increased, driving the switch from the low LacI state to the
high LacI state. A similar transition was achieved by inserting the
luxI gene into the plasmid and allowing a growing colony to trigger
the transition in a cell density dependent manner. In this case, each
cell would start producing the autoinducer during the colony expan-
sion, initiate the QS activation, and produce the additional amount
of LacI proteins that would flip the switch. However, these designs
only allowed to trigger the transition into one direction, from the



142 phase transition in the toggle switch coupled by qs

low LacI activity state to the high LacI activity state. In the follow-
ing, I show that coupling by two parellel QS pathways leads to a
different kind of transition at the level of the cell population.

5.2 objectives and summarized results

In this chapter, I introduce a simplified model of a toggle switch in-
terfaced by two different QS signaling pathways, such that the two
stable states of the switch are coupled across the cell population. In
this design, cells in the low LacI state can induce the low LacI state
in the other cells, and cells in the high LacI state can induce the high
LacI state. Therefore, each cell tends to induce the other cells in the
colony to adopt the same state as its own, a phenomenon similar
to the coupling between ferromagnetic spins. In the absence of QS
signaling, cells behave like noisy switches, spontaneously jumping
between the two stable states. I show that increasing the rate of dif-
fusion (the coupling strength) leads to a phase transition from an
unordered population to a globally coordinated population with all
the cells in the same stable state, a transition similar to the second
order phase transition in the mean-field Ising model. The existence
of the phase transition is further supported by the presence of a peak
in the susceptibility and by the computation of the critical exponents
by finite size scaling. The same transition is found in a population
of cells growing exponentially in a closed volume, with all the cells
entering the ordered state upon reaching a critical system size.

In addition, the response of the cells to an external signal that
introduces an asymmetry in the switch is studied. We find that for
a diffusion rate below the critical point, cell-cell coupling enhances
the sensitivity of the population response, while for a diffusion rate
above the critical point, the response exhibits hysteresis, with the
existence of two metastable states. Thus, the overall behavior of the
system resembles the response of the ferromagnetic Ising model to
an external magnetic field.

The change in the behavior of the cells arise from the interplay
between fluctuations, the bistability of individual cells and cell-cell
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communication. This phenomenon of phase transition suggests a
new mechanism for collective cell decision making and sets the the-
oretical basis for new applications as increasing the sensitivity and
robustness of biosensors.

5.3 methods

5.3.1 Toggle switch

The genetic toggle switch is composed of two genes, lacI and λ cI,
that encode for two regulatory proteins, LacI and λ CI, respectively
[56]. Each gene is controlled by a promoter that is inhibited by the re-
pressor that is transcribed by the opposite promoter. This design has
been extensively studied, both experimentally [56, 8, 90] and theoret-
ically [196, 184, 194, 105], and has been shown to exhibit bistability
over a wide range of parameter values. This system has two distinct
stable states: one with a high expression level of lacI and low expres-
sion level of λ cI, and vice-versa. The dynamics of the toggle switch
are usually described [56, 194] by the deterministic rate equations

.
u(t) = α1 +

β1K
3
1

K31 + v
3
− kd1u (5.1)

.
v(t) = α2 +

β2K
3
2

K32 + u
3
− kd2v (5.2)

where u and v are the concentrations of repressor proteins U (LacI)
and V (λ cI), α1 and α2 the basal rates of expression of the proteins
U and V when the promoter is fully repressed, α1 +β1 and α2 +β2
the maximal expression rates in absence of repression, kd1 and kd2
the degradation rates, and K1 and K2 the concentrations of repressor
proteins that lead to half maximum repression. The cooperativity in
the repression of both regulatory proteins is reflected in the Hill
coefficient, n1 = n2 = 3, which leads to the bistable behavior.

Herein we only consider the symmetric case, where all parame-
ters are equal for both proteins, i.e. α1 = α2 = α, β1 = β2 = β,
K1 = K2 = K and kd1 = kd2 = kd. We set the time scale such
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Figure 5.1: Phase plane of the symmetric toggle switch model. In the simple
model of the symmetric toggle switch (equations (5.3) to (5.4)),
the nullclines defined by

.
u = 0 (red line) and

.
v = 0 (blue line)

intersect at three points: two stable states (s1 and s2) and one
unstable state (su). Values of the parameters are α = 0.5 nM,
β = 10 nM and K = 0.5 nM.

that the degradation rate kd = 1 and in the following we write all
the equations in dimensionless time units. We use nM units for the
protein concentrations and rates of production, in order to compare
them more easily to the number of molecules present in the cell,
which influence the intensity of intrinsic fluctuations. The equations
reduce to

.
u(t) = α+

βK3

K3 + v3
− u (5.3)

.
v(t) = α+

βK3

K3 + u3
− v. (5.4)

By setting the parameters values to α = 0.5 nM, β = 10 nM
and K = 0.5 nM, we observe two stable states s1 = (us1 , vs1) =

(0.508, 5.38) nM and s2 = (us2 , vs2) = (5.38, 0.508) nM, and one un-
stable state su, as shown by the intersections of the nullclines (see
figure 5.1).

In the original experimental design [56], the toggle switch is ro-
bust to fluctuations and noise-induced transitions between the two
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stable states are extremely rare. In the experiments, the switch is
usually flipped by using a transient signal that changes the activ-
ity of one of the two regulatory proteins [90]. Spontaneous transi-
tions, however, could also occur theoretically if the intensity of the
noise is high enough. Stochastic simulations have shown that the
rate of spontaneous transitions is inversely proportional to the aver-
age number of transcription factor molecules involved in the switch
[196]. In our model, we choose the parameters set such that the num-
ber of molecules in the stable states is low enough to observe noise-
driven transitions on a reasonable timescale. With the values of ki-
netic rates described above and a typical cell volume for an E. coli
bacterium of Vcell = 1.5 µm3, the average number of molecules in the
two stable states of the toggle switch are 0.46 and 4.9 (stable states
are symmetric in u and v). We use the Gillespie algorithm [57] to
simulate the stochastic dynamics of the reactions described by equa-
tions (5.3) to (5.4). The stochastic trajectory on figure 5.2 shows that
the intrinsic noise drives spontaneous transitions between the high
u / low v state to the low u / high v state. Such transitions might be
observed experimentally in the toggle switch network by decreasing
the expression rate of both proteins, for example by changing the
ribosome binding sites. The behavior of individual cells is therefore
determined by the random switching driven by noise. In the follow-
ing, we will show that new behavior can arise at the level of a cell
population when cells are coupled by means of chemical signaling
(QS).

5.3.2 Toggle switch interfaced by quorum sensing

In order to study the collective behavior of a population of coupled
genetic switches, we build a simplified model of a toggle switch
interfaced by QS. We assume that the main regulatory proteins of
the switch, U and V , can diffuse into and out of the cell and act
as QS signals. In the toggle switch, the LacI and λ CI proteins can-
not diffuse and an additional genetic module is needed to interface
the switch with the QS signaling mechanism [90]. However, the QS
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Figure 5.2: Noise-driven transitions in the individual toggle switch. Stochastic
trajectory of an individual toggle switch system simulated us-
ing the Gillespie algorithm, concentrations of u (blue line) and v
(green line). The switch undergoes spontaneous transitions be-
tween the two stable states, driven by the intrinsic noise due to
the low number of molecules. Stable states of the deterministic
model (dashed lines). Cell volume is Vcell = 1.5 µm3. Time is in
units of the protein lifetime 1/kd.

module could be designed in such a way that the QS signal act at the
same time as a reporter and as an inducer of the state of the switch
(see section 5.5). In this case, a cell in the high u / low v state would
produce and release the first QS signal, which would diffuse into
the other cells and induce the production of u on the receptor mod-
ule, therefore promoting the high u stable state. The same would be
true for the second QS signal inducing the low u / high v state. We
assume that we can simplify this genetic network by neglecting the
details of the two QS modules and let the regulatory proteins U and
V act directly as QS signals. We use this simplified model as a first
approach to study the behavior of a population of genetic switches
coupled by two QS communication mechanisms.
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We consider a population ofN identical cells, each carrying a copy
of the same genetic network, communicating by the diffusion of mol-
ecules U and V (see figure 5.3). The reactions for each cell write

∅ ku←→
1
Ui (5.5)

∅ kv←→
1
Vi (5.6)

Ui
D←→
rD

Ue (5.7)

Vi
D←→
rD

Ve (5.8)

with ku = α+ βK3

K3+v3i
, kv = α+ βK3

K3+u3i
, D is the diffusion rate across

the cell membrane, r = Vcell/Vext, Ue and Ve the symbols for the
molecules in the external volume and i = 1, . . . ,N the cell number.
The rate equations for the whole population of cells write

.
ui(t) = α+

βK3

K3 + v3i
− ui +D(ue − ui) for i = 1, . . . ,N (5.9)

.
vi(t) = α+

βK3

K3 + u3i
− vi +D(ve − vi) for i = 1, . . . ,N (5.10)

.
ue(t) = −ue + rD

N∑
i=1

(ui − ue) (5.11)

.
ve(t) = −ve + rD

N∑
i=1

(vi − ve) . (5.12)

It is clear that the diffusion of the molecules U and V offers a mech-
anism of global coupling between all the cells. A cell in the high u
state exports molecules of U into the environment, which then enter
into all the other cells and favor the high u state. The same mecha-
nism holds for the high v state. The genetic switches tend to behave
as ferromagnetic spins in the Ising model, interacting together to
align their states. However, in opposition to the Ising model, the cou-
pling between the cells is not restricted to the nearest neighbors. The
external concentrations ue and ve act as two mean fields that couple



148 phase transition in the toggle switch coupled by qs

Figure 5.3: Scheme of the model of toggle switch interfaced by quorum sensing.
The system is composed of N cells carrying the same symmet-
ric toggle switch network. Expression of U (V) is described
by a Hill function ku(v) (kv(u)) with cooperativity number
n = 3. Proteins U and V act as signaling molecules by diffusing
through the cell membrane with rate of diffusion D. A cell in
the high u (v) stable state produces and exports the signaling
molecule U (V), which then enters into the other cells and pro-
motes the high u (v) state. The mechanism of diffusion of both
signaling molecules leads to a system of cells with coupling
similar to the mean-field ferromagnetic Ising model. Moreover,
an external signal may introduce a bias in the switch by chang-
ing the basal rate of production of protein U by an increment h
which can be positive or negative.
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all the cells together. This coupling is similar to the mean field ap-
proach in the Ising model in that each cell senses the same concen-
tration of signaling molecules in the environment and is therefore
subject to the same interaction.

As shown in the model of individual toggle switch, intrinsic noise
drives stochastic transitions between the two stable states. The dy-
namics of an individual cell are therefore inherently random, con-
stantly jumping between states s1 and s2. In this chapter, we seek to
unveil how cell-cell communication can lead to global coordination
in such a noisy system. In chapter 3, we studied the coordinated acti-
vation of a population of cells in which the QS signal, when reaching
a threshold concentration, activated the regulatory circuit in all cells.
In this chapter, however, the toggle switch is interfaced by two QS
signals that drive the switch into opposite directions, such that the
global outcome of a population of cells is not known a priori.

Motivated by the analogy with the Ising model, we explore the dy-
namics of a population of cells by varying the rate of diffusion while
maintaining the same level of intrinsic noise. In the Ising model,
a phase transition between an unordered state to an ordered state
emerges when increasing the coupling strength (coupling coefficient
J). This phase transition is similar to the one obtained when decreas-
ing the temperature T (see appendix A.2). In our model of toggle
switch interfaced by QS, the strength of the cell-cell coupling is di-
rectly related to the rate of diffusion. In order to illustrate the role of
the diffusion in the cell to cell coupling, we consider a system com-
posed of one sender cell that produces U at a constant rate α+ β

(maximum production rate of the toggle switch) and N− 1 receiver
cells with no genetic circuit. The sender cell produces and exports U
molecules into the environment, which enter the receiver cells. We
report on figure 5.4 the concentration of U in the receiver cells as a
function of the diffusion rate D. For D = 0, the signaling molecule
cannot cross the cell membrane and there is no cell communication.
At intermediate values of D, only part of the signaling molecules
produced by the sender cell diffuses into the environment and en-
ters the receiver cells. The other part of the signaling molecules gets
degraded in the environment. The faster the diffusion rate is, the
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Figure 5.4: The level of signaling molecule reaching the cells increases with the dif-
fusion rate. System composed of one sender cell that produces
U at constant rate α+ β (maximum production rate of the tog-
gle switch) and N− 1 cells with no genetic circuit (inset). When
increasing the diffusion rate D, the concentration of U in the
receiver cells (dashed blue line) increases, while it decreases in
the sender cell (solid blue line), due to the degradation of U in
the environment and in the cells. For D → +∞, the concentra-
tion of u in the receiver cells reaches a maximum and equals
the concentration in the sender cell. Increasing the rate of dif-
fusion leads to a higher concentration of signal in the receiver
cells and thus to a stronger coupling between cells.
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faster the signaling molecules reach the receiver cells, the less they
get degraded during their travel. For D → +∞, cell membranes
can be disregarded and the system is equivalent to one unique vol-
ume containing all the cells. In this case, the concentration of U is
the same in all the cells and the concentration in the receiver cell
reaches its maximum. Therefore, in this simple case of one sender
cell producing the signal, increasing the rate of diffusion leads to a
higher concentration of signal in the receiver cells. The effect of the
signal on the receiver cell will depend on the details of its genetic
network. In the case of the toggle switch, we assume that a higher
concentration of molecules U or V coming from the other cells will
have an influence on the final state of the switch, either promoting
the high u state or the high v state.

Notice that the size of the external volume also modifies the cou-
pling strength, as a smaller external volume leads to a higher concen-
tration of signaling molecules in the environment (data not shown).
In the following, we choose a relatively small external volume in
order to get a strong coupling between the cells and fix the ratio
Nr = NVcell/Vext = 1. Thus, when changing the number of cells in
the population, we keep constant the ratio between the total volume
of the cells to the external volume. This value of the external volume
corresponds to a very high cell density of 3.33 · 1011 cells/ml. High
cell densities has been observed in microfluidic traps of small colony
size (about 1000 to 10’000 cells), reaching up to 2.2 · 1011 cells/ml
[38].

We now consider a population ofN cells carrying the toggle switch
network and interfaced by two QS pathways. If the diffusion allows
the signaling molecules to travel to the receiver cells and increase
their concentration, it also removes molecules in the producer cell,
leading to a lower steady-state concentration (see figure 5.4). The in-
tensity of the intrinsic noise mainly depends on the number of mol-
ecules (see section 1.1). We seek to analyze the behavior of the sys-
tem when the intensity of noise is constant (constant temperature)
and the diffusion rate is varying (changing coupling coefficient). In
order to keep approximately the same level of noise, we maintain
constant the average level of the stable states s1 = (us1 , vs1) and
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s2 = (us2 , vs2) (see definition on page 144) of the switch by increas-
ing the production rates α and β when increasing the diffusion. We
consider a population of N cells that we assume are in the high u
state (see figure 5.5). At steady-state, the rate equations (5.9) to (5.12)
reduce to

.
u(t) = α+

βK3

K3 + v3
− u+D(ue − u) = 0 (5.13)

.
v(t) = α+

βK3

K3 + u3
− v+D(ve − v) = 0 (5.14)

.
ue(t) = −ue +NrD(u− ue) = 0 (5.15)

.
ve(t) = −ve +NrD(v− ve) = 0 . (5.16)

We fix the value of u and v to be the same in all the cells and equal
to the steady-state s1 = (us1 , vs1). With the value of the parameters
described above, K = 0.5 nM and Nr = 1, we can solve numerically
the equations for α and β as a function of the diffusion rate

α =
0.5+D (1.5+D)

(D+ 1)2
(5.17)

β = 20−
10

1+D
. (5.18)

In summary, we study the behavior of a system of N cells carry-
ing the toggle switch network interfaced by QS described by reac-
tions 5.5 to 5.8 by means of stochastic simulations using the Gillespie
algorithm (see appendix A.1). We vary the diffusion rate D while
maintaining the average level of the stable states of the switch by
changing the production rates α and β, such that the intensity of
intrinsic noise remains approximately constant. Increasing the diffu-
sion rate leads to a stronger cell-to-cell coupling which may change
the global behavior of the cell population.
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Figure 5.5: Tuning of production rates α and β as a function of the diffusion rate
to keep the average level of stable states constant. In the system of
N toggle switches interfaced by QS (inset), we increase the pro-
duction rates α and β as a function of the diffusion rate D, such
as to maintain constant the average level of the stable states of
the switch and therefore the intrinsic noise. The functions α(D)

(solid line) and β(D) (dashed line) are derived by assuming
that all the cells are in the high u state and solving the rate
equations (5.13) to (5.16) for α and β. Note that parameter K is
not changed.
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5.3.2.1 Definition of observables

In order to quantify the state of the system, we introduce the follow-
ing definitions of observables. By analogy with the Ising model, the
local order parameter is defined as

Si =
ui − vi
us1 − vs1

≈ ±1 (5.19)

where Si is equal to +1 when the cell is in the stable state s1 and
−1 when the cell is in the stable state s2 (the two stable states are
symmetric). We define the magnetization

M =

N∑
i=1

Si , (5.20)

the magnetization per cell,

M =
1

N

N∑
i=1

Si , (5.21)

and the average magnetization per cell as

〈M〉 = 1

u1 − v1
〈

∣∣∣∣∣〈 1N
N∑
i=1

ui − vi〉time

∣∣∣∣∣ 〉traj . (5.22)

where 〈·〉time is the average over time and 〈·〉traj is the average over
different trajectories. In the ordered phase, two possible fully or-
dered states can be achieved: either all the cells in the stable state
s1 (magnetization per cell +1) or all the cells in the stable state s2
(magnetization per cell −1). The average magnetization per cell is
the parameter measuring the order of the system (order parameter).
Due to the symmetry of the system, we use the absolute value in the
calculation of 〈M〉 such that both the +1 and the −1 magnetization
states, which are fully ordered, yield a positive order parameter of
value +1.

In the Ising Model, the susceptibility is defined as

χIsing =
1

N

∂M

∂h
(5.23)



5.3 methods 155

where h is the external magnetic field, N the size of the system and
M =

∑N
i=1 Si, the magnetization. This expression is evaluated at

zero external field h = 0. In numerical simulations, the susceptibility
is usually computed as (using the fluctuation-dissipation theorem)

χIsing =
1

kBT

1

N

(
〈M2〉− 〈M〉2

)
. (5.24)

We define a similar susceptibility for the population of toggle switches
interfaced by QS, assuming that the effective temperature remains
constant,

χ =
1

N

(
〈M2〉− 〈M〉2

)
. (5.25)

5.3.2.2 Critical behavior

We define the reduced control parameter ε = −(D/Dc − 1), which
equals zero at the critical value of the control parameter Dc, is posi-
tive in the disordered phase and negative in the ordered phase. The
finite-size scaling theory assumes that, for sufficiently large system
sizes and for control parameter close to Dc, the following scaling
relations hold,

M(ε,L) = L−β/νM̂
(
εL1/ν

)
(5.26)

χ(ε,L) = Lγ/νχ̂
(
εL1/ν

)
(5.27)

where M̂ and χ̂ are the rescaled magnetization per cell and suscep-
tibility. The critical exponents of the phase transition are defined as

M ∼ (−ε)β for ε < 0 (ordered phase) (5.28)

χ ∼ |ε|−γ (5.29)

ξ ∼ |ε|−ν . (5.30)

We first locate the critical order parameter Dc by using the cumu-
lant intersection method [21]. This method is useful for determining
the location of the transition when the critical exponents are not
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known. We define the fourth-order cumulants, or Binder cumulants,
as

UL = 1−
〈M4〉L
3〈M2〉2L

(5.31)

where 〈·〉L is the average value for a system size ofN = L cells. It can
be shown that the Binder cumulant does not depend on the system
size at the critical point. Moreover, as the system size goes to infinity,
the Binder cumulants converge to the following universal values:

• In the symmetric phase, ε > 0, UL = 0+O(1/L).

• In the ordered phase, ε < 0, UL = 2/3+O(1/L).

• At the critical point, ε = 0, UL tends toward a universal fixed
point 0 < U∗L < 2/3.

5.4 results

5.4.1 The stochastic dynamics of the cell population exhibits an unordered
phase for low diffusion rate and an ordered phase for high diffusion
rate

As we have seen previously, the stochastic dynamics of the toggle
switch in a single cell exhibits continuous jumps between the two
stable states. In order to study the effect of the cell communication
on the dynamics of the switches, we run stochastic simulations of a
population of N = 100 cells for two different values of the diffusion
rate, D = 0.1 and D = 5. Initial conditions are stable state s1 for
half of the cells in the population and stable state s2 for the other
half. The stochastic dynamics of all the individual cells in the pop-
ulation are plotted on figure 5.6. For D = 0.1, the individual cells
exhibit uncorrelated dynamics similar to the isolated toggle switch,
spontaneously jumping between the two stable states. The popula-
tion is in an unordered phase, with no global coordination among
cells. The external concentrations ue and ve are almost equal and
fluctuate around their average level. This shows that the levels of
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signaling molecules Ue and Ve in the environment are equilibrated,
with more or less half of the cells exporting u molecules and the
other half exporting v molecules. The same behavior is observed for
the population averages u and v. For D = 5, we observe that in this
simulation trajectory all the cells lock into the high u state and fluctu-
ate around this stable state, leading to an ordered phase. Individual
cell transitions are very rare (data not shown). The concentration
of U in the environment and in the cells is much higher that the
concentration of V , showing that cells exchange U molecules and
reinforce the high u state. Thus, we observe two different behaviors
depending on the rate of diffusion.

5.4.2 The toggle switch interfaced by QS exhibits a phase transition when
varying the diffusion rate

We compute the stochastic dynamics of a population of toggle switches
interfaced by QS for different values of the diffusion rate and the
system size. For each set of parameters, we run 10 trajectories with
simulation time 104 to 5 · 104. The magnetization per cell and sus-
ceptibility are reported on figure 5.7. We clearly observe a second-
order phase transition where the system goes from an unordered
phase for low diffusion rates with nearly zero magnetization (cells
are randomly distributed between the two stable states) to an or-
dered phase for high diffusion rates with near unity magnetization
(where all the cells are in the same stable state). The susceptibility
presents a peak around the critical diffusion rate, a characteristic of
second-order phase transitions. As the system size increases from
N = 10 to N = 1000 the transition gets more abrupt and the peak in
the susceptibility increases. Notice that the magnetization reaches a
maximum value that is slightly higher than unity. This could be due
to the fact that the position of the stable states in the stochastic sys-
tem might differ from the position of the deterministic stable states
s1 and s2, an effect that we have observed in chapter 4.

In order to characterize better the phase transition, we use finite-
size scaling theory [54] to compute the position of the critical point
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and the values of the critical exponents. Due to the finite system size
of the numerical simulations, we do not observe the non-analytical
behavior predicted by the theory of phase transitions. The disconti-
nuity in the first derivative of the magnetization and the divergence
in the susceptibility appear as a smooth change in the increase of M
(resulting in a sigmoidal shape curve) and a rounded peak for χ. As
the system size increases, the apparent critical point shifts to the left,
the transition in the magnetization becomes sharper and the peak
in the susceptibility gets higher and narrower, resembling more and
more the situation of an infinite system.

We compute the Binder cumulants for all the simulations and plot
it as a function of the control parameter D (see figure 5.8). We ob-

Figure 5.6 (following page): Stochastic dynamics of a population of toggle switch
interfaced by quorum sensing for low and high diffusion rates.
Stochastic dynamics of a population of N = 100 cells carrying
the toggle switch network interfaced by QS for diffusion rate
D = 0.1 (left column) and D = 5 (right column). Time series of
concentration u for all the cells in the population (density plots
A and E), time series of u (blue line) and v (green line) with de-
terministic stable states (dashed lines) for cell #1 (B and F), time
series for external concentrations ue (blue line) and ve (green
line) (C and G) and time series for concentration averaged over
the population of u (blue line) and v (green line) (D and H).
Initial conditions are stable state s1 for half of the cells in the
population and stable state s2 for the other half. For D = 0.1,
the individual cells exhibit uncorrelated dynamics similar to the
isolated toggle switch, spontaneously jumping between the two
stable states, leading to an unordered phase. The external con-
centrations ue and ve are almost equal and fluctuate around
the same average level (same for the average concentrations u
and v), showing equilibrated levels of signaling molecules Ue
and Ve. For D = 5, all the cells lock into the high u state and
fluctuate around this stable state, leading to an ordered phase.
External concentrations ue is much higher than ve, showing
that cells exchange U molecules and reinforce the high u stable
state in the whole population. Population average indicates that
almost all the cells are in a the high u state.
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serve that all the UL(D) curves cross approximately at the same
point, which is the critical point Dc. The intersection points of suc-
cessive pairs of UL(D) curves for increasing system sizes L (see inset
in figure 5.8) converge to the critical fixed point. We use the intersec-
tion point of the two largest system sizes as the computed value of
the critical point and obtain Dc = 0.797.

As can be seen in figure 5.7, the apparent critical point or pseudo-
critical point shifts to the left when increasing the system size and
converges to the critical point Dc for infinite system. From the scal-
ing relation (5.27), one can write that the position of the maximum
in the susceptibility changes with the system size as

Dχc (L) = Dc + aχL
−1/ν + . . . (5.32)

Using the value of the Dc we have found by the cumulants method,
we fit the values of Dχc (L) (see figure 5.9A) to the expression above
and find the critical exponent ν = 1.70± 1.15 (the error is the stan-
dard error for parameter estimates from least square regression). Fol-
lowing the expression (5.27), we can also write a scaling relation for
the height of the peak in the susceptibility,

χmax(L) = bχL
γ/ν + . . . (5.33)

After fitting the values of the height of the peaks (see figure 5.9B)
to this scaling relation and using the value of the exponent ν found
above, we extract the critical exponent γ = 0.751± 0.099. Next, we
use the scaling relation for the magnetization per cell at the pseudo
critical point (see figure 5.9C),

M(Dχc (L)) = cL
−β/ν , (5.34)

to fit the value of the critical exponent β = 0.060± 0.396, using the
value of ν found above. We also plot on figure 5.9E the rescaled sus-
ceptibility χ̂(εL1/ν) = χ(ε,L)L−γ/ν using the values of exponents ν
and γ. The rescaled susceptibility for different system sizes N all col-
lapse onto the same curve. The rescaled magnetization (figure 5.9D)
defined in the scaling relation equation (5.26) also collapse onto the
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Figure 5.7: Phase transition in the toggle switch interfaced by QS system. Mag-
netization per cell M (cyan to blue color gradient lines) and sus-
ceptibility χ (yellow to red color gradient lines) for a population
of toggle switches interfaced by QS as a function of diffusion
rate D. The susceptibility is rescaled by an arbitrary factor for
ease of visualization. We observe a clear second-order phase
transition from an unordered state with near zero magnetiza-
tion (cells randomly distributed between the two stable states)
to an ordered state with near unity magnetization (all the cells
in the same stable state). The abruptness of the phase transition
increases with system size, from N = 50 to N = 1000, as can
be seen by the increase in the peak of the susceptibility and the
slope of the magnetization curve.
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Figure 5.8: Critical control parameter estimate from intersection of Binder cumu-
lants curves. Binder cumulant UL vs control parameter D (diffu-
sion rate) for different system sizes N (orange to purple color
gradient lines). In the finite-size scaling theory, the Binder cu-
mulant reaches a fixed point U∗L at the critical value of the con-
trol parameter Dc. The fixed point does not depend on the
system size neither on the critical exponents. The intersection
of UL(D) curves for different system sizes gives the position
of the critical control parameter. Intersection points for succes-
sively increasing pairs of system sizes L (inset) converge to the
fixed point, Dc = 0.797 for the pair N = 1000/N = 500.
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Figure 5.9: Fitting critical exponents using finite-size scaling of the susceptibil-
ity peak. (A) Position of the peak in the susceptibility Dχc as a
function of system size L. A fit to the finite-size scaling relation
D
χ
c (L) = Dc + aL

−1/ν gives the value of the critical exponent
ν = 1.70. We use the value of Dc found with the Binder cu-
mulants method. (B) Height of the peak in susceptibility χmax
as a function of the system size L. A fit to the finite-size scal-
ing relation χmax(L) = bLγ/ν gives the value of critical expo-
nent γ = 0.751. (C) Magnetization per cell M at the finite-size
critical point Dχc (L) as a function of the system size L. A fit
to the finite-size scaling relation M(Dχc (L)) = cL−β/ν using
the value of exponent ν yields the critical exponent β = 0.060.
(D) Rescaled magnetization M̂(εL1/ν) = M(ε,L)Lβ/ν using
the values of exponents ν and β. (E) Rescaled susceptibility
χ̂( epsilonL1/ν) = χ(ε,L)L−γ/ν using the values of exponents
ν and γ. The rescaled susceptibility for different system sizes N
all collapse onto the same curve.
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same curve near the critical point. In summary, we found the follow-
ing critical control parameter and critical exponents for the phase
transition in the population of toggle switches interfaced by QS,

Dc = 0.797 (5.35)

ν = 1.70± 1.15 (5.36)

γ = 0.751± 0.099 (5.37)

β = 0.060± 0.396 (5.38)

Notice that the error on the critical exponent β from the nonlinear
regression are quite large and that the standard error calculated here
does not take into account the propagated error from the estimated
value of ν, such that the final error for all critical exponent should
be very large.

These critical exponents differ from the mean field theory of the
Ising model when varying the coupling coefficient J (see appendix A.2):

νM.F. Ising = 1/2 (5.39)

γM.F. Ising = 1 (5.40)

βM.F. Ising = 1/2 (5.41)

We point out that while more data are needed in order to obtain
precise estimates, the critical exponents in our model differ from the
critical exponents of the Ising model, within the errors calculated
above. Thus, our results suggest that the phase transition observed
in the toggle switch interfaced by QS does not belong to the same
university class as the mean field Ising model.

5.4.3 The toggle switch interfaced by QS exhibits a phase transition dur-
ing exponential growth of a colony

In section 5.4.2, the global behavior of a population of toggle switches
interfaced by QS has been shown to exhibit a phase transition when
varying the diffusion rate. The population size N was fixed and
stochastic simulations were performed for different values of the dif-
fusion rate. In natural environments and in laboratory cultures, how-
ever, cells constantly grow and divide. In this section, we will show
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that a phase transition can occur in a population of proliferating
cells in a closed volume. In this case, the phase transition is driven
by two concurrent effects: the increase of the coupling strength due
to the decrease in the external volume and the increase in the system
size.

We run stochastic simulations of a population of cells carrying the
toggle switch network interfaced by QS. The dynamics of the cell
growth and division are the same as in section 3.3.2 and we use
the Colony software (see appendix A.1) to perform the stochastic
simulations using the Gillespie algorithm. Notice that for these sim-
ulations there is no external dilution protocol and we keep the total
volume of the system constant and closed. We use the same param-
eter values as above, starting with one cell in an external volume of
Vext = 600µm3, with a diffusion rate D = 2 that is above the critical
point and α and β are kept constant during the whole simulation as
determined by expressions (5.17) and (5.18). The deterministic part
of the cell cycle is τ = 50 and the deterministic/stochastic weight
coefficient λ = 0.8 ( see expression (3.4)). The time evolution of the
cells state is reported in figure 5.10A. The color code denotes the
concentration of u in each cell. We observe that during the popula-
tion proliferation, cells randomly jumps between the high u and the
low u states. However, upon reaching a critical colony size at t ∼ 349
and N ∼ 144, the majority of cells enter the high u state. This cell
coordination at the level of the population can be observed in the
time evolution of the magnetization per cell

∣∣M∣∣(t) (figure 5.10B).
In the first part of the simulation (till t ∼ 349), cells do not exhibit
any synchronization and randomly jumps between the two stable
states of the switch. At the very beginning of the simulation, the
very small size of the system (N . 10) leads to large fluctuations in
the magnetization. When the number of cells increases, the instanta-
neous average of the magnetization remains close to zero, showing
that the states of the cells are not coordinated. Upon reaching a crit-
ical system size at t ∼ 349 and N ∼ 144, the magnetization per cell
increases to one, showing that cells enter a coordinated state. Notice
that in this simulation run, cells end up in the high u state, but re-
peating the simulation with different random numbers can lead to
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the a global low u state (see figure 5.11), due to the symmetry of the
toggle switch model.

In this case the phase transition is driven by two concurrent effects.
First, the external volume decreases at the same rate that the number
of cells increases (figure 5.10C). As mentioned on page 151, a smaller
external volume leads to higher concentration of signaling molecules
in the environment and to a stronger coupling between the cells.
Therefore, even if the rate of diffusion is fixed, the coupling strength
increases during the exponential growth of the population. In the
previous simulations, we have chosen a ratio of external volume of
Nr = NVcell/Vext = 1, such that the sum of the volume of the cells
is equal to the external volume. On figure 5.10C, we have plotted
the evolution of the external volume Vext(t) and of the total volume
of the cells

∑N(t)
i Vi(t). The intersection of these two lines shows

Figure 5.10 (following page): Phase transition in a growing population of toggle
switches interfaced by QS leading to the high u state. (A) Time
evolution of concentration u in color code for an exponentially
growing population of toggle switches interfaced by QS.D = 2,
cell cycle τ = 50, cell cycle deterministic/stochastic weight co-
efficient λ = 0.8, Vext = 600 µm3, α and β are kept constant.
During exponential growth, cells randomly jump between the
two stable states, upon reaching a critical population size at
t ∼ 349 and N ∼ 144, beyond which the majority of cells lock
into the high u state. |M|(t) exhibits large fluctuations at the
beginning of the simulation due to small system size, then re-
mains close to zero in the unordered state and finally reaches
unity when entering the ordered state. (C) External volume
Vext(t) (solid line) and total volume of the cells

∑N(t)
i Vi(t)

(dashed line). Cell coupling gets stronger when the external
volume decreases, due to higher concentration of signaling
molecules in the environment. Intersection of both lines indi-
cates a ratio of cell volume to external volume r equal to the
previous simulation with fixed system size. Beyond this point
the coupling strength is stronger and leads to the phase transi-
tion. The increase in the system size N with time enhances the
phase transition.
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Figure 5.11: Phase transition in a growing population of toggle switches inter-
faced by QS leading to the low u state. Same plots as in figure 5.10

but for a simulation run with different random numbers, lead-
ing to an ordered state where all the cells are in the low u state.
(A) Time evolution of concentration u in color code, indicating
that all cells reach the low u stable state (blue color). (B) At the
end of the simulation the magnetization per cell |M|(t) reaches
unity, showing the global coordination of the state of the cells
in the population.
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that at t = 349 the total volume of the cells is equal to the external
volume and the ratio r is the same as in the previous simulations
of fixed-size population. For t > 349, r gets larger and leads to a
stronger coupling strength. Second, the increase in the system size
enhances the phase transition. As we have seen in the case of a fixed
system size, the phase transition can only be observed for a system
that is large enough. When the system size is very small, for example
for N = 10 (data not shown), the magnetization

∣∣M∣∣ increases very
slowly with the diffusion rate D. When increasing the system size,
the pseudo-critical point shifts to the left, towards smaller diffusion
rates, and the transition in the magnetization becomes sharper. For
the exponential growth simulation, we have chosen a diffusion rate
D = 2 above the critical point. As the system size increases, the
pseudo-critical point shifts to the left till crossing the fixed value
of the diffusion rate. Therefore, we can expect the magnetization to
increase when the system size increases till reaching the ordered
state (

∣∣M∣∣ ∼ 1) for a sufficiently large N.

5.4.4 Cell-cell coupling enhances the population response to an external
signal and leads to hyper-sensitive and hysteretic responses depend-
ing on the diffusion rate

The model of toggle switch interfaced by QS is perfectly symmet-
ric, the parameter values being equal for proteins U and V . As can
be seen in the simulations for the population of fixed size (see fig-
ure 5.6), in the unordered phase cells have equal probability to be
in the high u state or in the low u state. In the following, we ana-
lyze the response of the cells to an external signal that introduces
an asymmetry in the switch. We assume that cells respond to the
signal by changing the basal rate of production of protein U to α+h

(see figure 5.3). By analogy with the response of the spins to an ex-
ternal magnetic field in the Ising model, we expect the response of
the cells to the external signal to change when the diffusion rate is
either below, close to, or above the critical point.
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We run simulations of a population of a fixed size of N = 1000

cells (see figure 5.12). For 0 6 t < t1, the external signal is switched
off, h = h0 = 0. At t1 = 500, the external signal is switched on
to a constant value h = h1 and the dynamics are computed till
tend = 1000. We compute the average magnetization 〈M〉 of the cell
response to the external signal for t1 + 50 < t < tend. The response
of the cells is computed for a range of external signals h1 from −0.5

Figure 5.12 (following page): Response of a fixed-size population of toggle
switches interfaced by QS to an external signal. The external sig-
nal changes the basal rate of protein U production to α + h,
introducing a bias in the toggle switch circuit of all cells. (C)
Average magnetization 〈M〉 in a population of N = 1000 cells
coupled by QS in response to the external signal h1, for diffu-
sion rate D = 0 (black line), D = 0.7 below the critical point Dc
(orange line) and D = 1 above the critical point Dc (red and
purple lines). At D = 0 there is no cell communication and
the response of the population is the average of single cell re-
sponse. (D) From top to bottom, time series of external signal
h(t), concentration ui(t) in 100 sample cells in the population
(see color code in figure 5.6), population-averaged concentra-
tions u(t) (blue line) and v(t) (green line) and instantaneous
magnetizationM(t), atD = 0.7 for h1 = −0.2,−0.05, 0, 0.05, 0.2
(from left to right). The signal is introduced at t = t1 at con-
centration h1 and the response of the cells is computed for
t > t1+ 50. The population response is stronger and more sen-
sible than the caseD = 0 due to the enhancing effect of the cell-
cell coupling. (A) Time series for D = 1 and h1 = −0.02, 0.02
(from left to right). The external signal is introduced at t1 = 0.
For D > Dc, an very small external signal is enough to induce
a large magnetization and the population response curve is
discontinuous at h1 = 0. (B) Time series for D = 1 and vary-
ing h1 from −0.5 to +1 and back to −0.5 (purple line in (C)).
When varying the external signal the population get stuck into
a metastable state of negative (positive) magnetization when
increasing (decreasing) h beyond zero, resulting in a hystere-
sis loop.
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nM to 1 nM. In order to limit computation time, we run only one
trajectory per parameter set.

For D = 0, there is no cell-cell communication and the response
of the population is identical to the average of the response of a
single cell. At h1 = 0, the switches randomly jump between the
two stable states and the average of the population magnetization
(averaged over cells and averaged over time) is zero. When h1 < 0
(h1 > 0), the external signal introduces a bias in the switch and the
averaged magnetization becomes negative (positive). The resulting
average magnetization exhibits a monotonous response curve to the
external signal.

For D = 0.7 below the critical point, we observe the same quali-
tative behavior (see figure 5.12D). At h1 = 0, cells randomly jump
between the two stable states. As we have seen (see figure 5.7), the
cell-cell coupling atD = 0.7 is not strong enough to produce a global
cell response and the average magnetization is zero. For non-zero ex-
ternal signals, the average magnetization presents a sigmoidal shape
that is much more sensitive than the diffusion-less case for small h.
Cell-cell communication enhances the cells response to the external
signal at the level of the population. The slope of the response curve
for the diffusion-less case is dMD=0/dh1(h1 = 0) = 2.23 nM−1

while for D = 0.7 it is 4 times larger, dMD=0.7/dh1(h1 = 0) =

10.7 nM−1.
For D = 1, above the critical point, all cells are stuck into the same

stable state and present a finite magnetization even in the absence
of external field. In the previous simulations of a fixed population
size (see figure 5.7), we have computed the spontaneous magnetiza-
tion that arises due to the cell-cell coupling. In the ordered phase
at D = 1 and for N = 1000 cells, the absolute average magnetiza-
tion was 0.79. However, due to the symmetry of the toggle switch,
the cell population ended either with a magnetization of approxi-
mately +0.8 or −0.8, depending on the random numbers used for
the computation of the trajectory. In this regime, the cell popula-
tion is stuck into a metastable state and it is very difficult for the
system to switch from the −1 to the +1 magnetization state and
vice versa. Fluctuations in individual cells are not strong enough to
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overcome the cell-cell interactions that maintain the population in
the ordered state. The lifetime of this metastable state is very large
and surpasses the computational limits of our simulations. In order
to minimize this effect and get a better estimate of the long-term re-
sponse of the cell population to the external signal, we switch on the
signal h at the beginning of the simulation at t1 = 0, such that the
bias applies before the cell population has reached the metastable
state. We observe (see figure 5.12A) that an external signal level as
low as 0.01 nM (−0.01 nM) is enough to drive the cell population to
the metastable state with magnetization 〈M〉 = 0.82 (〈M〉 = −0.84).
Therefore, as in the response of the spins to an external magnetic
field in the thermodynamic limit of the Ising model, we observe a
discontinuity in the average magnetization 〈M〉 in response to the
external signal h.

It is well known that the response of a system of interacting spins
to a varying external magnetic field can exhibit hysteresis. ForD = 1,
we compute the response of the cell population to an external signal
varying linearly from h(t = 0) = −0.5 to h(t = 10 ′000) = +1 and
back to h(t = 20 ′000) = −0.5. The magnetization clearly exhibits
a hysteresis loop (see figure 5.12, panel B and purple line in panel
D), with the cell population’s magnetization following a different
trajectory for increasing h than for decreasing h. The cell popula-
tion remains in the metastable state of negative magnetization till
h ∼ 0.05 when increasing h and remains in the metastable state of
positive magnetization till h ∼ −0.08 when decreasing h. Notice that
this hysteresis phenomenon is not due to the bistability of the toggle
switch in single cells, since in the case of zero diffusion, the magne-
tization is zero for h = 0 and there is only one global attractor for
every value of h.

5.5 discussion

In this chapter, we have presented a model of a toggle switch net-
work in bacteria interfaced by QS such that cells tend to align the
state of their switch. We have used a highly simplified topology for
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the network in order to contain the computational complexity and
restrict the number of parameters. In the real toggle switch circuit,
LacI and λ cI proteins cannot diffuse through the cell membrane
or act as QS signals. However, the set of reactions 5.5 to 5.8 can be
viewed as a first approximation to a more complex genetic network.
In the following we suggest a model of a more realistic circuit that
uses genetic components that have been successfully used in syn-
thetic biology experiments.

The toggle switch circuit has already been interfaced by QS com-
munication in the experimental work of Kobayashi et al. [90] using
an additional communication module based on the LuxI/LuxR QS
system. However, the coordinated transition of the population of
switches was unidirectional, only allowing for the collective activa-
tion (high LacI state) of the cells. Herein we propose a design of
genetic circuit composed of the toggle switch coupled to two QS
communication modules (see figure 5.13). The two additional small
genetic circuits act as communication modules using two different
QS pathways. The first QS module produces a LuxI-type protein
(LuxI1) which synthetases the first QS signaling molecule (AI1). The
luxI1 gene is repressed by λ cI protein. The first module also car-
ries a biosensor of AI1 molecules and activates expression of a lacI
gene copy in the presence of the autoinducer. Therefore, low lev-
els of λ cI proteins in the cell activates the production of LacI pro-
teins. When the toggle switch is in the low λ cI / high LacI state,
the cell produces additional LacI proteins, reinforcing this stable
state. However, because the autoinducer molecules can diffuse, the
high LacI state is also reinforced in the other cells in the popula-
tion. The second module works in the same way, by producing the
second signaling molecule AI2 when the concentration of LacI is
low, and producing λ cI proteins when detecting presence of AI2
molecules. In order to avoid crosstalks between the two signaling
modules, two independent QS pathways are needed. Several QS
modules have been used in synthetic biology applications, such as
the LasI/LasR and RhlI/RhlR systems from Pseudomonias aeruginosa,
which regulate biofilm formation, virulence, swarming motility and
antibiotic efflux pumps [199]. LasI is the synthetase of the autoin-
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Figure 5.13: Scheme of a toggle switch circuit with two QS communication mod-
ules. Experimentally, the toggle switch network could be in-
terfaced by two QS communication modules using different
QS signaling molecules. The first QS module produces a LuxI-
type protein (LuxI1) which synthetases the first QS signaling
molecule (AI1). The luxI1 gene is repressed by λ cI protein.
The first module also carries a biosensor of AI1 molecules and
activates expression of a lacI gene copy in the presence of AI1.
When the toggle switch is in the low λ cI / high LacI state, the
cell produces AI1 molecules which diffuses into the other cells
and induce the low λ cI / high LacI state. The second mod-
ule works in the same way, by producing the second signaling
molecule AI2 when the concentration of LacI is low, and pro-
ducing λ cI proteins when detecting presence of AI2 molecules.
A response to an external signal could also be implemented by
adding an externally controlled additional production of LacI
protein (positive bias) or by introducing IPTG into the cells to
partially inhibit LacI activity (negative bias).
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ducer N-(3-oxo-dodecanoyl)-homoserine lactone (3oC12HSL) which
is recognized by LasR. The other autoinducer synthetase, RhlI, pro-
duces N-(butanoyl)-homoserine lactone (C4HSL) that activates its
cognate receptor RhlR. These QS modules have been used in appli-
cations of synthetic biology, either individually by using one com-
munication module [72] or using both modules working in conjunc-
tion. Communication systems have been created by combining the
two QS systems, producing a consensus QS response dependent on
the cell densities of two strains of E. coli [28], or creating a synthetic
predator-prey ecosystem [11]. Notice that in these two experimen-
tal works, two different bacterial strains each carries a part of the
genetic network, such that the genetic circuit introduced in each bac-
terium is relatively small. It would be probably more difficult to
integrate the two communication modules together with the toggle
switch in the same bacterial strain, due to the limitations of genetic
engineering. However, the fact that the toggle switch has already
been interfaced successfully with one QS module [90] suggests that
it would be possible to design and implement a circuit with two QS
modules. In addition, different ways to implement the response to
an external signal could be envisioned. Any bias in the production
or degradation rates of proteins U and V could in principle result
in a population-level response. For example, one could change the
promoter controlling transcription of gene u, resulting in a change
in the repression strength. A positive bias in the production of pro-
tein U could be achieved by introducing a genetic module with the
lacI gene under the control of a promoter that is activated by the
external signal, producing an additional positive production of U. A
negative bias could be implemented by directly introducing IPTG
into the environment, which enters the cells and inhibits the activity
of LacI.

The phase transitions observed in the fixed population and grow-
ing population simulations arise from the interplay between the in-
trinsic fluctuations, the bistability of the toggle switch and the cell-
cell coupling. Models of bistable systems coupled by QS have been
previously proposed but rely on only one coupling mechanism by
the diffusion of one QS signal. For example, in the study of synthetic
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gene relaxator oscillators coupled by QS [91], the authors show that
the intensity of noise is reduced when increasing the system size,
leading to the restoration of bistability. For small system sizes, the
cells are continuously jumping between two stable states. When the
system size reaches a critical size, the population separates into two
clusters of cells stuck into one of the two stable states. In this case,
the response of the cell population is not fully coordinated but con-
serves some heterogeneity. The coupling by QS has also been pro-
posed [194] to induce collective oscillations in a population of toggle
switches when considering fluctuations in the degradation rates in-
side cells. As mentioned before, the synthetic circuit in [90] leads to a
unidirectional transition of a population of toggle switches, driving
the activation of the high LacI state in all the cells, but not the deacti-
vation. Our model, on the other hand, relies on two parallel coupling
mechanisms mediated by two QS signals. The competition between
the intrinsic fluctuations driving the switch flipping and the cell-cell
coupling leads to a phase transition from an unordered phase to an
ordered phase with all the cells stuck in the same stable state. This
phase transition can be observed when increasing the diffusion rate
or the system size and offers a novel mechanism of global and coor-
dinated phenotypic change at the level of a cell population. The two
parallel coupling mechanisms allow for two possible states in the or-
dered phase while maintaining full coordination in the population.
Moreover, for diffusion rates below the critical point, the sensibility
of the response of the cells to an external signal is enhanced while
maintaining the magnetization to zero in the absence of signal. We
believe that all of these features would not be possible to achieve
with only one QS coupling mechanism.

The response of a population of cells to an external signal is
greatly enhanced by the two parallel cell-cell coupling mechanisms.
For a diffusion rate below the critical point, the slope of the response
curve (average magnetization) for small signal concentrations is 4

times larger than in the case of zero diffusion. This increase in the
sensitivity of the response is due to the noise-suppression effect of
the cell-cell coupling [91] (see also chapter 2). In the presence of the
external signal, the cells still randomly jump between the two sta-
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ble states, but the proportion of cells in the +1 (−1) magnetization
state is higher when the signal is positive (negative). The cell-cell
coupling reinforce the response by inducing more cells into the +1

(−1) state. Thus, the response of the toggle switch interfaced by QS
at the level of the population is higher compared to the toggle switch
without QS, because the intercellular coupling increases the stability
of the +1 (−1) state. Such a hypersensitive response could be used
for the development of biosensors, overcoming the level of intrinsic
noise present in small bistable genetic circuits. In this case, cell-cell
coupling by QS could enhance greatly the measurement of the aver-
age fluorescence of a large cell population in response to an external
signal, that would otherwise be diminished by the random switch-
ing of individual cells. For a diffusion rate above the critical point,
the response of the population exhibits hysteresis when varying the
external signal and recovers the subjacent bistable behavior of the
single cells that was partially destroyed by noise. The strong cell to
cell coupling leads to the existence of two metastable states of ∼ +1

and ∼ −1 magnetization with a switching time that increases with
the system size. The combination of two parallel cell-to-cell coupling
could therefore be useful for the design of memory units in synthetic
biology applications to increase the robustness of the memory state
at the level of the population.

We have shown that several parameters can control the phase tran-
sition in a population of toggle switches interfaced by QS: the diffu-
sion rate, the system size and the external volume. The number of
cells in the population really acts as the system size in the statistical
physics meaning: increasing the number of cells increases the num-
ber of interacting constituents in the system and leads to a phase
transition progressively resembling the one of the thermodynamic
limit. On the other hand, the diffusion rate and the external vol-
ume both modify the characteristics of the communication mecha-
nism and effectively change the coupling strength between the cells.
Changing the diffusion rate experimentally would be probably dif-
ficult to achieve because the diffusion of the small autoinducer mol-
ecules is determined mainly by their size and the permeability of
the cell membrane. However, any other parameter of the system
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that modifies the diffusion of signalling molecules could be used to
control the phase transition. In many synthetic biology experiments,
bacteria are cultured and imaged in microfluidic devices, allowing
for well-controlled fluorescence imaging over long periods of time.
In the experiment of Prindle et al. [140], QS-communicating bacte-
ria are trapped in small chambers opened on one side on a channel
where a continuous flow brings fresh nutrients and take away cells
growing outside the chamber. The geometry of the chambers and
the flow rates are key parameters that modulate the concentration
of autoinducer inside the colonies. In this context, another way of
changing the coupling strength could be to modulate the flow rate
around the cell colonies, which can be easily achieved by changing
the input pressure in the microfluidic channels.

5.6 conclusions

Cell-cell communication can lead to the emergence of population-
level behaviors that achieve important functions in biological sys-
tems and offers a range of new applications in synthetic biology
[126]. In this chapter, I have presented a computational model of a
population of toggle switches interfaced by two QS signaling path-
ways, such that a global coordination in the population appears
when varying the control parameter of the system. We believe that
this is the first model showing a global phenotypic change in a pop-
ulation of bacteria as a consequence of a phase transition in the sta-
tistical physics meaning. The change in cells behavior does not rely
on any intrinsic properties of individual cells, but rather emerges
from their interaction via QS signaling. We have shown that the
emergence of global coordination requires a minimal system size
and that the transition becomes more abrupt when increasing the
number of cells.

The cell-cell communication has been modeled by allowing the
two regulatory proteins of the toggle switch to diffuse through the
cell membranes, such that the “on” state in one cell induces the “on”
state in all the other cells; the same for the “off” state. We have
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shown that increasing the diffusion rate, which increases the cou-
pling strength, leads to a phase transition from an unordered phase
where the cells randomly jump between the two states of the switch,
to an ordered phase with all the cells locked into one of the sta-
ble states. We have defined the magnetization per cell as the order
parameter of the system, such that the magnetization is +1 when
all the cells are in the “on” state, −1 when all the cells are in the
“off” state, and 0 when cells are randomly distributed between the
two states. The absolute value of the magnetization per cell exhibits
the typical behavior of the order parameter in a second-order phase
transition when varying the diffusion rate, remaining at zero till the
critical value of the diffusion rate Dc and then suddenly increasing.
The existence of a phase transition is further supported by the pres-
ence of a peak in the susceptibility and by the computation of the
critical exponents by finite size scaling. The same transition has been
found in a population of cells growing exponentially in a closed vol-
ume, with all the cells entering the ordered state upon reaching a
critical system size.

We have analyzed the response of the cells to an external signal
that introduces an asymmetry in the switch. For a diffusion rate
below the critical point, cell-cell coupling enhances the cell response
to the external signal and increases the sensitivity. For a diffusion
rate above the critical point, the cell population is always stuck in
one of the two metastable states of +1 or −1 magnetization. In this
case, the response to a varying external signal leads to hysteresis.
We suggest that such a mechanism could be used to increase the
robustness and sensitivity of biosensors.

In summary, we have shown that a population of toggle switches
coupled by QS signaling undergoes a phase transition similar to
the mean-field Ising model, when varying the coupling strength
between cells. The change in the behavior of the cells arises from
the interplay between fluctuations, bistability of individual cells and
cell-cell communication. The coordinated state achieved for strong
coupling is another example of noise reduction mechanism medi-
ated by cell-cell signaling [91, 179] (see chapter 2). The phenomenon
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of phase transition suggests a new mechanism for collective cell de-
cision making (see also section 6.1).

Herein we have assumed that the diffusion inside the external vol-
ume is fast and that the concentration of QS signals is homogeneous.
We hypothesize that finite diffusion could lead to spatiotemporal
patterning as the formation of clusters. Such pattern formation has
already been observed in population of synchronized oscillators us-
ing QS signaling [41] and in wild-type V. fischeri [44]. However, we
believe that for long time scales, the same phase transition should
be observed in our model, since in the Ising model the main char-
acteristics of the phase transition do not depend on the interaction
length.

We have shown that the response of the cells to an external sig-
nal exhibits a ferromagnetic-like behavior. It would be interesting to
study the response of a population of cells to an oscillating external
signal. As shown theoretically [139] in the case of an ensemble of
coupled noisy oscillators, the response of the system to a small peri-
odic force shows a maximum at a certain system size. Such a system
size resonance phenomenon also appears in the Ising model [139].

Another interesting effect is the interplay between the dynamics
of a growing population and the pase transition. We have shown
that a growing population can exhibit a phase transition to a fully
coordinated state. Upon reaching a critical system size, the coupling
between the cells is strong enough to overcome the intrinsic noise
and lock the cells into the same state. It would be interesting to
study the effects of cell growth rate and cell cycle on the behavior
of the population. It has been shown experimentally in the case of
a bistable genetic circuit [108] that the dynamics of cell proliferation
can have a profound effect on the global state of the cell culture,
due to the combined effects of stochastic switching and the logistic
growth of bacteria.





6
C O N C L U S I O N S A N D P E R S P E C T I V E S

6.1 summary of original results

In this thesis we have explored the roles of fluctuations and cell-cell
communication in several gene regulatory networks in bacteria, at
the level of the single cell and at the level of the cell population. We
have focused on genetic switches as a paradigm of cellular decision
making in both natural and synthetic bacterial systems. We have
studied the effects of stochasticity in the emergence of collective be-
havior in populations of bacteria communicating by QS.

Our approach has been based on mathematical modeling and
stochastic simulations, relying as much as possible on quantitative
experimental data. We have used well-established deterministic meth-
ods, such as chemical rate equations, and stochastic methods, such
as the Gillespie algorithm [57], together with analytical stochastic
calculus, to describe the gene regulatory networks and the QS signal-
ing mechanism. In order to study the collective behavior of bacteria,
we have developed a computational software capable of simulating
the stochastic dynamics of a population of cells communicating by
diffusible signals that takes into account the cell growth and division
(see appendix A.1). This computational tool is original in the sense
that it combines stochastic dynamics of gene regulatory networks,
cell-cell communication and cell proliferation dynamics. This soft-
ware has been used throughout the thesis and has allowed us to
analyze the effects of biochemical noise in the single cell and in the
cell population.

Herein, we have applied our modeling approach to different bio-
logical systems. While in this thesis we have presented our research
studies in the chronological order, in the following we describe the
main results of each chapter from the perspective of model com-
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plexity. Thus, fluctuations affect the cell behavior at different levels,
from a single isolated cell to a population of cells communicating by
several QS signals. We have studied systems of increasing complex-
ity: from an autoactivating genetic switch in an isolated cell (chap-
ter 4), a population of cells with constitutive expression of a QS
diffusible signal (chapter 2), a population of cells with the canonical
LuxR/LuxI genetic switch communicating by QS (chapter 3), to a
population of cells with a negative feedback switch interacting by
the exchange of two different QS signals (chapter 5). In each of these
systems, our study has contributed to a better understanding of the
role of fluctuations in individual and collective cell behavior. In the
following we summarize the main results of each chapter, in the or-
der defined above. An illustrated overview of the main results of the
thesis can also be found in figure 6.1.

In chapter 4, we have analyzed the effects of intrinsic noise in
an autoactivating switch in an isolated single cell. While previous
studies have shown that fluctuations can modify the epigenetic land-
scape of the genetic switch, there has been a lack of theoretical
formalism to understand how those changes are driven by the bio-
chemical fluctuations. We have developed a perturbative theory that
shows that noise promotes the stability of the low-state phenotype of
the switch and that the bistable region is extended when increasing
the intensity of the fluctuations (see figure 6.1A), an effect that we
have called stochastic stabilization. By performing stochastic simula-
tions, we have demonstrated that this effect exists both in the simple
model used in the analytical approach and in a more detailed model
that takes into account the binding of the protein to the promoter,
suggesting that the stochastic stabilization is a generic phenomenon
in positive feedback switches. We have shown that increasing the
intrinsic noise leads to a higher switching rate, but also modifies
the energy barrier between the low and the high states, resulting in
a complex behavior when varying the noise intensity. Our results
indicate that the modification of the epigenetic landscape due to in-
trinsic noise not only modifies the steady states of the switch but also
its switching dynamics, a phenomenon that is rarely taken into ac-
count in other theoretical studies. The results presented in chapter 4
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have shed light on the effects of intrinsic noise in the autoactivat-
ing genetic switch, by i) providing a theoretical approach to explain
why and how the epigenetic landscape is modified due to biochemi-
cal fluctuations, ii) explaining the complex behavior of the stochastic
switching when varying the intensity of noise. Thus, at the level of a
single cell, intrinsic noise contributes to the cell-to-cell variability of
the genetic switch and can modify its stable states and its dynamics.

In chapter 2, we have studied the interplay between intracellular
noise and the diffusion process of the QS signaling mechanism. Pre-
vious studies have shown that diffusion can reduce the noise at the
level of the signaling molecule. However, the role played by the dif-
ferent sources of stochasticity in the cell and their contribution to the
dynamics of the autoinducer have not been characterized. We have
built a model describing the expression of the signaling molecule
and its diffusion in a population of cells. We have focused on the
situation where the luxI gene is expressed at a low constitutive level,
such that i) the feedback regulation of the luxI gene can be disre-
garded and ii) the transcription level is low enough to assume that
at most one mRNA molecule can be present in the cell. Moreover,
we have assumed that the production of the autoinducer from the
mRNA can be described by a single reaction step. Based on these
assumptions, we have been able to derive the analytical expression
of the autoinducer distribution. By comparing the analytical results
with stochastic simulations, we have determined the contributions
of the transcriptional noise (mRNA copy number fluctuations) and
the intrinsic noise in the fluctuations of the autoinducer. We have
shown that varying the diffusion rate produces a repertoire of dy-
namics for the signaling molecule (see figure 6.1B). We have found
that the transcriptional noise is the main contribution to the total
noise for a large range of values of the diffusion rate. Moreover, we
have observed that the total noise exhibits a maximum as a function
of the diffusion rate, in contrast to previous studies. By observing
the experimental values of diffusion rates in QS bacterial species,
our results point toward the direction that bacteria have evolved to
adapt their communication mechanism and avoid the diffusion rates
that maximize the noise. In summary, in chapter 2 we have pre-
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sented a reduced model of gene expression and QS signaling that
allowed us to i) reveal the contribution of intrinsic noise and tran-
scriptional noise in the fluctuations of the signaling molecule, and
ii) show that the competition of temporal scales between the mRNA
dynamics and the diffusion process can lead to a variety of dynam-
ics and fluctuations level for the autoinducer molecule. Thus, the QS
communication mechanism modifies the fluctuations of the signal-
ing molecule inside the cell and interacts with the gene expression
noise.

In chapter 3, we have studied the effects of gene expression noise
on the precision of the population coordination in the QS activation
of the LuxR/LuxI system. The heterogeneity in the QS response ob-
served experimentally in many bacterial species raises the question
of how the precision of cells coordination depends on the intracellu-
lar noise sources. In order to answer this question, we have focused
on one of the simplest QS regulatory network, the LuxR/LuxI sys-
tem. By using both deterministic and stochastic models, we have
analyzed the response and dynamics of a population of cells to dif-
ferent levels of autoinducer. We have shown that the activation of
the QS switch near the critical concentration of autoinducer is very
slow compared to the cell cycle duration, and, as a consequence, the
non-stationary effects are important during the QS transition. Our
results have shown that gene expression noise in LuxR is the main
factor that controls the transient variability of the QS activation ( see
figure 6.1C): increasing the burst size in LuxR decreases the preci-
sion of the QS activation. These results, together with experimental
evidences on LuxR regulation in wild-type species, suggest that bac-
teria have evolved mechanisms to regulate the intensity of noise in
LuxR and control the variability in the QS activation. Our study has
shed light on the relation between the single cell stochastic dynamics
and the collective behavior in a population of communicating cells.

In chapter 5, we have studied a new mechanism of coordination in
a model of toggle switch interfaced by two QS signaling pathways.
Application of the QS signaling mechanism in synthetic biology has
led to the creation of genetic circuits that display a variety of col-
lective behaviors. We have presented a computational model of a
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population of toggle switches communicating by the exchange of
two diffusible QS signals. The key feature of our model resides in
the coupling of both the “on” and the “off” states between the cells.
We have shown that increasing the diffusion rate, which increases
the coupling strength between the cells, leads to a phase transition
from an unordered phase where the cells randomly flip between
the two states of the switch, to an ordered phase with all the cells
locked into the same stable state (see figure 6.1D). The existence of
the phase transition has been further supported by the presence of
a peak in the susceptibility and by the computation of the critical
exponents by finite size scaling. The same transition has been found
in a population of cells growing exponentially in a closed volume,
with all the cells entering the ordered state upon reaching a critical
system size. Moreover, we have analyzed the response of the cells
to an external signal that introduces an asymmetry in the switch
and we have shown that the cell response exhibits a hysteresis loop,
similar to the response of the ferromagnetic Ising model to an ex-
ternal magnetic field. We have found that for a diffusion rate below
the critical point, the cell-cell coupling enhances the sensitivity of
the population response and we have suggested that this new mech-
anism could be used to increase the robustness and sensitivity of
biosensors. Our results suggest a new mechanism for collective cell
decision making based on the phenomenon of phase transition.

From a broader point of view, the results presented in this thesis
have shown that collective cellular decision making can be achieved
by means of cell-cell communication, despite the unavoidable fluctu-
ations in the individual cells. Our study has contributed to a better
understanding of how cells in a population coordinate their behavior
by exchanging small diffusible signaling molecules. We have shown
that, when the diffusion is large, the QS mechanism effectively re-
duces the noise in the signaling molecule by averaging the fluctua-
tions over the population and increasing the effective degradation
rate of the autoinducer. This noise reduction mechanism enhances
the cell coordination, as reported in previous studies. However, we
have also shown that the interplay between intracellular noise and
QS communication is more complex than first thought. Our results
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have shown that while the QS mechanism can reduce the fluctua-
tions in the signaling molecule and lead to population-level coordi-
nation, it cannot suppress totally the effects of noise. The QS diffu-
sion process only acts on the signaling molecule, and other sources
of noise, such as gene expression noise, affect the reliability of the
cell coordination. Thus, we have shown that both the time scale and
the fluctuations in gene expression interfere with the communica-
tion process and lead to variability in the activation of the genetic
switch. In the case of the LuxI/LuxR canonical system, the gene
expression noise in LuxR reduces the precision of the cell coordina-
tion. Our results have shed light on the structure of some natural
QS systems. In order to control the variability of the QS activation,
cells may use additional regulatory mechanisms to control the fluc-
tuations of the main components of its QS network, as for example
negative feedback loops for LuxR. The effects of stochasticity in the
mechanism of QS coordination can therefore be seen as a competi-
tion between the intracellular fluctuations, which drive the stochas-
tic switching of the cells and produce variability, and the cell-cell
communication, which reduces the noise and synchronizes cells in
the population. In addition, we have shown that, when coupling a
genetic switch by two QS signaling pathways that drive the switch
into opposite directions, global coordination in the population can
be achieved. The coordination in this system emerges when the cou-
pling between the cells gets stronger than the intracellular noise, in
a phenomenon similar to a phase transition. When the diffusion rate
is small, the coupling between cells is weak and the intracellular
noise dominates. When the diffusion rate is large, the coupling is
strong and the cell-cell communication locks the cells into the same
state. Therefore, we have taken advantage of the interplay between
intrinsic noise and QS diffusion to design a system that exhibits a
phase transition. We have shown that this transition from a disor-
dered phase to a fully ordered phase could be used by bacteria to
achieve robust collective cellular decision making in a growing pop-
ulation.
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Figure 6.1: Illustrated overview of the main results of the thesis. The main re-
sults of each chapter are illustrated, from the simpler model to
the more complex model. See main text for details. (A) Stochas-
tic stabilization of phenotypic states: the genetic bistable switch
as a case study (chapter 4). (B) Noise regulation by quorum
sensing in low mRNA copy number systems (chapter 2). (C)
Dynamics of the quorum sensing switch: stochastic and non-
stationary effects (chapter 3). (D) Phase transition in the toggle
switch coupled by quorum sensing: an Ising model in bacteria
(chapter 5).
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6.2 perspectives

The results presented in this thesis have opened a series of new ques-
tions. On whats follows, I present some of these questions and dis-
cuss on their implications both in the fields of mathematical model-
ing and biology.

In this thesis I have focused on the role of intrinsic noise in cells
communicating by QS. While biochemical noise is one of the main
sources of fluctuations in the cell, other sources of noise can influ-
ence cell functioning. In the context of our modeling approach, ex-
ternal fluctuations could also have important effects on the behavior
of QS systems. Cell-to-cell variations in the rate of diffusion or in
the rate of protein production could induce additional fluctuations
in the level of molecules in the cell. Moreover, spatial variations of
the concentration of autoinducer in the environment would result
in different levels of signaling molecules sensed by each cell. While
theoretical studies [71, 116] have suggested that the QS coordination
mechanism is robust to such variations, further research is needed
in order to understand the effects of external fluctuations in QS sys-
tems.

Many interesting aspects of the QS mechanism could be further
studied and included in our modeling approach. Spatial effects as
the finite diffusion of the autoinducer into the medium, can produce
spatiotemporal patterns of activation of the QS genes in a popula-
tion of bacteria. This phenomenon has been studied experimentally
and theoretically. Signal diffusion in a narrow agar lane filled with
QS reporter strain showed spatial and temporal patterns that dif-
fer significantly from the simple diffusion [44]. Dilanji et al. showed
by mathematical modeling that the non-linearity of bacterial growth
and of transcription activation lead to enhanced synchrony over the
length scale of one centimeter. Diffusion of the autoinducer has also
been shown to produce traveling waves of gene expression in a pop-
ulation of genetic oscillators coupled by QS [41]. How these coor-
dinated behaviors remain robust to intra-cellular and extra-cellular
noise sources remains a open field of study.
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Stochastic effects are expected to be especially relevant when the
number of cells is very small. Groups of two or three Pseudomonas
aeruginosa bacteria have been shown to initiate QS activation when
confined in sub-picoliter volumes [24]. The confinement in a very
small volume allows for the accumulation of the autoinducer which
can reach the threshold concentration even with a few cells. In such
conditions, the heterogeneity of the QS activation is even higher than
in liquid cultures and fluctuations in the number of autoinducer
molecules in the environment, in addition to the intra-cellular noise,
could play a role in the variability of the activation. Our simulation
software could be useful to study such systems, as it already takes
into account the stochasticity in the levels of autoinducer in the en-
vironment. Moreover, confinement within small volumes could be
highly relevant for studying wild-type bacterial species that often
live in small numbers and in enclosed spaces, as in early stages of
infection, biofilm formation or in soils [24, 33, 65].

The results presented in our study could be useful for Synthetic
Biology approaches that exploit the QS mechanism. The fact that
some important features of the QS mechanism, e.g. precision, rely on
the burst size of one component, opens the door to modifications of
the LuxI/LuxR operon for regulating the response depending on the
problem under consideration. For example, the transcription rate of
luxR could be increased and its translational rate decreased, which
would lead to an higher precision of the QS activation.

Our results on the phase transition in chapter 5 suggest a new pos-
sible mechanism for cellular decision making in development. The
global coordination between cells appears upon reaching a critical
system size or a critical coupling strength between cells. Such condi-
tions could appear in a developing tissue due to the variations in the
geometric constrains [75] or in the diffusion properties of the inter-
cellular medium. In our results, we have shown that the final state
of the cells can be influenced by a small external signal introducing
a bias into the switch. A population of cells coupled by diffusible
signaling responds in a hypersensitive way to the external signal,
and may even display a response depending on the history of the
signal concentration (hysteresis effect). One could envision that this
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phenomenon could be used in a developing tissue to achieve a ro-
bust and coordinated cell differentiation in response to small exter-
nal signal, as for example a morphogen concentration. In a growing
tissue, cells would be randomly switching between the stable states
till reaching the critical size, and then transition to a fully coordi-
nated population. In this case, the final fate of the cells could be
determined by the concentration of the external signal. The process
described here is purely hypothetical. Nevertheless, a phenomenon
such as the community effect suggests that eukaryotic cells, during
embryonic development, use cell-cell communication to coordinate
the expression of a set of genes inside a group of cells. Whether cells
in a developing tissue could differentiate collectively in a process
similar to the Ising phase transition is an open question.
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A P P E N D I X

a.1 dynamic cell population stochastic simulation soft-
ware : colony

The Colony simulation software is a custom-developed software ca-
pable of simulating the stochastic dynamics of a population of cells
communicating by QS diffusible signals and that includes cell growth
and division. I have developed this software during my Ph.D. and
have frequently updated it to add new functionalities. In the fol-
lowing I briefly describe its structure, its capabilities, and its use in
producing the results presented in this thesis.

The code was written in C++ in order to take advantage of the flex-
ibility of classes to facilitate the writing and updating of the code. A
summarized class diagram can be found in figure A.2. The basic idea
behind the structure of the program is to separate the data structure
defining the state of the cells from the algorithm used to compute
the dynamics. The management of the changes in data structure due
to cell division and cell deletion are made easier by the use of classes
such as CellCollection. Another important point is that the cell data
is kept together in a fixed-sized memory array in order to speed up
the computation. This array is only modified when a cells divides
or a cell is deleted. Several integrators are implemented and allow
to compute the stochastic dynamics of cells using the Gillespie algo-
rithm or a chemical Langevin algorithm. The definition of the sys-
tem of reaction, parameters of the simulations and some analytical
calculation are performed in Mathematica (version 9, Wolfram Re-
search) which writes the input files and part of the source code for
the stochastic algorithms. The software describes a homogeneous
concentration of chemical species in the environment (milieu class),
assuming well-mixed conditions in all the external volume. How-
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Figure A.1: Graphical user interface of the Colony software. The GUI allows
the visualization in real-time of the species concentration in
the population and in the environment, as well as parameters
values and other relevant information.

ever, spatial diffusion of the autoinducer in the environment could
be easily implemented. Although the modeling approach used in
this thesis does not take into account spatial effects, the Colony soft-
ware can compute cell movement using a rigid body dynamics en-
gine. The cells movements have been computed in order to produce
realistic movies of the growing population simulations, and are only
used for graphical representation purposes with no scientific mean-
ing. Nevertheless, this ability shows that the software would only
need minimal modifications to implement spatial dynamics for cells
(cell movement rules) and signaling molecules (diffusion). The soft-
ware also integrates a graphical user interface which allows the vi-
sualization in real-time of the cell population and species concentra-
tions (see figure A.1). More details on the software can be provided
upon request to the author.
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Figure A.2: Class diagram of the Colony software. The structure of the pro-
gram allows to separate the data structure defining the state
of the cells from the algorithm used to compute the dynam-
ics. The management of the changes in data structure due to
cell division and cell deletion are made easier by the use of
classes such as CellCollection. Several stochastic integrators
can be used, such as the Gillespie algorithm and the chemical
Langevin algorithm.
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a.2 calculation of the critical exponents in the mean

field ising model with varying coupling coefficient

In chapter 5, the QS mechanism introduces a global coupling by al-
lowing diffusible signals produced by one cell to reach all the other
cells in the population. We seek to compare these results to the be-
haviour of the Ising model in the mean-field approach, where each
spin is subjected to the same average interaction with the system.
The Ising model presents a phase transition in the mean-field ap-
proach when varying the temperature T . However, the same phase
transition can also be observed when varying the coupling coeffi-
cient J. In the following, we calculate the critical exponents of the
mean-field Ising model when varying the coupling coefficient J.

Consider the general spin half Ising model given by the Hamilto-
nian,

H = −
∑
i

hiSi −
1

2

∑
i,j

JijSiSj (A.1)

where Si = ±1, hi is the external magnetic field at site i, Jij the
coupling coefficient between sites i and j. We define the local mag-
netization

mi = 〈Si〉 (A.2)

The mean field approximation makes an expansion in the fluctua-
tions,

SiSj = [mi + (Si −mi)]
[
mj +

(
Sj −mj

)]
(A.3)

so that

SiSj = mimj +mi
(
Sj −mj

)
+mj (Si −mi)

+ (Si −mi)
(
Sj −mj

)
(A.4)

The mean field approximation drops the term (Si −mi)
(
Sj −mj

)
which is quadratic in the fluctuations, so that,

SiSj ≈ mimj +mi
(
Sj −mj

)
+mj (Si −mi) (A.5)
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The mean field Hamiltionian is then

Hm.f. = −
∑
i

hiSi −
1

2

∑
i,j

Jij
(
miSj +mjSi −mimj

)
(A.6)

We consider now the case of the Ising ferromagnet with a transla-
tionally invariant lattice. In this casemi = m is the same everywhere
and

∑
j Jij = Jz is also assumed to be the same everywhere, with z

the coordination number of the lattice. The Hamiltonian reduces to

Hm.f. = −
1

2
JzNm2 −

∑
i

Si (Jzm+ h) . (A.7)

The partition function writes

Zm.f. = e
− 1
2βJzNm

2

[2 cosh (βJzm+βh)]N , (A.8)

the mean field Helmotz free energy,

Fm.f. = N

[
1

2
Jzm2 −

1

β
ln(2) −

1

β
ln [cosh (βJzm+βh)]

]
. (A.9)

We can write the mean field equation by deriving the value of the
magnetization per spin,

m = −
1

N

(
∂Fm.f.

∂h

)
= tanh (βJzm+βh) (A.10)

For βJz > 1, there are three solutions, while for βJz < 1, the only
solution is m = 0. The condition βJz = 1 defines the critical tem-
perature below which there is a finite magnetization at h = 0. The
critical temperature is Tc = Jz

k . However, we are interested in calcu-
lating the critical exponents when varying the coupling coefficient
J, not the temperature. Thus, we will consider the temperature T as
a constant parameter of the system and define J̃ = Jz as the control
parameter. Hereafter we drop the tilde notation and use J. Then, the
critical coupling coefficient is Jc = kT = 1

β .
We analyse the ferromagnetic solutions when J is near the critical

Jc, where |m| ∼ 0. Equation (A.10) writes, with h = 0

m = tanh
(
J

Jc
m

)
(A.11)
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which we develop for small m, tanh(x) ' x− x3

3 ,

m =
J

Jc
m−

1

3

(
J

Jc
m

)3
(A.12)

Thus, either m = 0 or

m2 = 3

(
Jc

J

)3(
J

Jc
− 1

)
(A.13)

We define the reduced coupling j = J−Jc
Jc

,

m2 = 3
j

(1+ j)3
(A.14)

and when j is small, we have

m2 ' 3j (A.15)

Thus,

J < Jc m = 0 (A.16)

J > Jc m = ±(3|j|)1/2 (A.17)

and the critical exponent is β = 1/2, the same as in the temperature
varying case.

We now compute the susceptibility,

χ =
∂m

∂h

∣∣∣∣
h=0

(A.18)

We expand (A.10) at third order in m at first order in h,

m ' βh+βJm−β3J2hm2 −
1

3
β3J3m3 (A.19)

Substitute β by 1/Jc, then we derive w.r.t. h at h = 0,

χ =
∂m

∂h

∣∣∣∣
h=0

= −
J3m2χ

J3c
−
J2m2

J3c
+
Jχ

Jc
+
1

Jc
(A.20)
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We find

χ =
J2c − J

2m2

−JJ2c + J
3
c + J

3m2
(A.21)

using the definition of the reduced coupling,

χ =
1− (j+ 1)2m2

(j+ 1)3m2Jc − jJc
(A.22)

Then we find for small j and using the appropriate expression for m
(either above or below the critical Jc)

J < Jc m = 0 χ = −
1

Jcj
(A.23)

J > Jc m = ±

(
3

j

(1+ j)3

)1/2
(A.24)

χ+ =
1− 2j

2Jc(j+ j2)

j→0
' 1

2Jcj
(A.25)

χ− =
1+ 4j

−4Jc(j+ j2)

j→0
' −1

4Jcj
(A.26)

In both cases the critical exponent is γ = 1, the same as in the tem-
perature varying case.

The behavior of the magnetization as a function of the external
field at the critical temperature is the same as in the classical case
because both the coupling coefficient and the temperature are fixed,
we only look at the variation of the field h. Thus, δ = 1/3.

The critical exponent α is defined as Ch ∼ t−α, or how the heat
capacity at zero field behaves when approaching the critical temper-
ature. For J < Jc (T > Tc) we have m = 0 and the free energy (A.9)
writes

Fm.f.(N,h, T) = −NkT ln 2 (A.27)

Here we consider the temperature as a parameter of the system but
we still consider derivatives w.r.t. T in order to define the thermody-
namic quantities. The heat capacity at constant field then reads

Ch = −T
∂2Fm.f.

∂T2
= 0 (A.28)
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and the critical exponent is α = 0. For J > Jc (T < Tc) the depen-
dence on T is the same, so that α is still zero. Thus, the exponent
α = 0 is the same as in the temperature varying case.

In summary, the critical exponents of the ferromagnetic Ising model
in the mean-field approach when varying the coupling coefficient J
are

γ = 1 (A.29)

β = 1/2 (A.30)

α = 0 (A.31)

δ = 1/3 (A.32)



B
S U M M A RY I N C ATA L A N

b.1 introducció

Des del punt de vista d’un físic, els sistemes biològics sorprenen
per la seva gran complexitat a diferentes escales, des de el nivell
molecular de proteïnes i ADN, fins a l’escala macroscòpica d’an-
imals i plantes. A nivell molecular, les cèl·lules operen lluny de
l’equilibri i es componen de xarxes complexes de gens i proteïnes
que interactuen. La seva descripció des d’un punt de vista teòric és
complexa. Tot i això, es necessiten mètodes i conceptes de la física
per poder integrar tota la gran quantitat de dades que provenen de
noves tècniques experimental i per poder entendre com funcionen
els sistemes biològics. En aquesta tesi presentem el nostre model
teòric i computacional per estudiar el funcionament d’alguns pro-
cessos bàsics en els sistemes biològics: el soroll i la communicació
entre cèl·lules.

Les fluctuacions estocàstiques, o soroll, son omnipresents en els
sistemes biològics. Al llarg de la dècada passada, alguns estudis van
mostrar que fluctuava el nivell i activitat de les espècies en molts
circuits reguladors [143]. Aquestes fluctuacions tenen el seu origen
en el caràcter probabilístic de les reaccions químiques, que arrib-
ar a ser significatiu quan el número de molècules de les espècies
químiques són molt baixos [82]. Es creu que els efectes estocàstics
juguen també un paper important en la diferenciació cel·lular [12].
Així, el soroll permet a les cèl·lules que estan exposades al mateix
entorn triar entre destins diferents i, per tant, incrementa la diversi-
tat fenotípica. En aquest sentit, el sistema regulador més simple i no
trivial que mostra la multiestabilitat fenotípica correspon a un inter-
ruptor genètic amb dues possibles solucions estables: alta/baixa con-
centració de una proteïna reguladora. Aquest comportament s’ha
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trobat en sistemes biològics com per example la xarxa de regulació
del metabolisme de la lactosa en E. coli [123], i també s’ha utilitzat en
circuits sintètics [56, 76, 8]. En conseqüència, la caracterització dels
interruptors genètics és important tant pel desenvolupament de cir-
cuits sintètics més grans i fiables [141] com per entendre processos
complexes com la diferenciació cel·lular.

Durant molt de temps, s’ha pensat que els bacteris tenien una
existència solitària. Ara, se sap que es comuniquen entre ells en-
viant i rebent missatges químics [13]. Aquest mecanisme de comuni-
cació permet als bacteris sincronitzar la seva activitat a tota la colò-
nia. A més a més, aquest comportament coordinat en alguns casos
s’assembla al comportament d’organismes multicel·lulars, com per
exemple l’anomenat “efecte de comunitat” en el desenvolupament
[157]. En el mecanisme de quorum sensing (QS), les cèl·lules pro-
duixen, exporten i importen senyals moleculars (molècules autoin-
ductores). Quan la colònia creix, hi ha més cèl·lules que produix-
en i exporten molècules autoinductores, produiint un increment de
la concentració de senyals moleculars en l’entorn i en les cèl·lules.
Quan la concentració de molècules autoinductores arriba a un límit,
aquestes activen la expressió dels gens controlats pel QS, coordi-
nant les cèl·lules segons la densitat cel·lular en el medi. És important
destacar, que el mecanisme de QS controla diversos canvis fenotípics
important en els bacteris, com per exemple la virulència en S. aureus
[7]. Actualment, aquest mecanisme es considera un sistema model
per l’estudi de l’aparició del comportament coordinat entre cèl·lules
que es comuniquen. A més a més, el QS ha obert tot un camp de
recerca plena d’aplicacions tecnològiques molt prometadores [126],
com per exemple la invasió de cèl·lules cancerígenes controlada de
manera externa per l’entorn [3].

La coordinació per la comunicació de QS d’un gran nombre de
bacteris, que expressen el mateix conjunt de gens d’una manera sin-
cronitzada, comporta la qüestió de com aquesta coordinació es pot
portar a terme malgrat les fluctuacions que afecten totes les xarx-
es biològiques de cada cèl·lula individual. Queden interessants pre-
guntes sense respondre al voltant de la funció del soroll en sistemes
de QS naturals i sintètics. Per exemple, la heterogeneïtat de la re-
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sposta cel·lular en moltes espècies de bacteris [136] al llarg de la
transició de QS podria ser conseqüència de diferentes fonts de soroll,
conegudes i desconegudes.

En aquesta tesi, intentem respondre aquestes preguntes utilitzant
models matemàtics i simulacions estocàstiques. Ens centrem en inter-
ruptors genètics com a paradigma dels processos de decisió cel·lulars
tant en sistemes de bacteris naturals com sintètics. Tenim com a ob-
jectiu l’estudi dels efectes del soroll en una cèl·lula individual i en
l’aparició de comportament col·lectiu en poblacions de cèl·lules que
es comuniquen.

b.2 resum dels principals resultats

A continuació, farem un resum dels principals resultats de la tesi. El
corresponent llistat de publicacions relacionat amb aquest treball es
troba a la pàgina v.

El nostre mètode es basa en la modelització matemàtica i en les
simulacions estocàstiques, utilitzant tant com sigui possible dades
experimental quantitatives. Hem usat mètodes determinístics ben
establerts com les equacions cinètiques de reaccions químiques, mè-
todes estocàstics com l’algoritme de Gillespie [57], i mètodes de
càlcul estocàstic analític per descriure les xarxes reguladores genè-
tiques i el mecanisme de comunicació de QS. Per poder estudiar el
comportament col·lectiu dels bacteris, hem desenvolupat un progra-
ma computacional capaç de simular la dinàmica estocàstica d’una
població de cèl·lules que es comuniquen a través de senyals difu-
sius i que te en compte el creixement i la divisió cel·lular (veieu
appendix A.1). Aquesta eina computacional és original en el sentit
que combina la dinàmica estocàstica de les xarxes reguladores genè-
tiques, la comunicació entre cèl·lules i la dinàmica de proliferació
cel·lular. Aquest programa ha estat usat al llarg de la tesi i ens ha
permès analitzar els efectes del soroll bioquímic en la cèl·lula indi-
vidual i en la població cel·lular.

Hem aplicat el nostre anàlisi a sistemes de diferents complexitats.
Hem analitzat els següents sistemes, del més simple al més com-
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plexe: des d’un interruptor genètic autoactivador en una cèl·lula aïl-
lada (capítol 4), una població de cèl·lules que expressen un senyal
difusiu de QS de manera constitutiva (capítol 2), una població de
cèl·lules amb l’interruptor genètic del sistema model LuxR/LuxI que
es comuniquen a través del QS (capítol 3), fins a una població de
cèl·lules amb un interruptor genètic de feedback negatiu que inter-
actuen a través de l’intercanvi de dos senyals diferents de QS (capí-
tol 5). En cadascun d’aquests sistemes, el nostre estudi ha contribuit
a entendre millor els efectes de les fluctuacions en el comportament
individual i col·lectiu de les cèl·lules. A continuació, resumim els re-
sultats principals de cada capítol, en el ordre definit anteriorment.
En la figura B.1, trobarem una visió de conjunt dels resultats de la
tesi.

Al capítol 4, hem analitzat els efectes del soroll intrínsec en un
interruptor genètic autoactivador en una cèl·lula aïllada. Mentre els
estudis previs mostraven que les fluctuacions poden modificar el
paisatge epigènetic de l’interruptor genètic, faltava un formalisme
teòric per entendre com les fluctuacions generen aquells canvis. Nos-
altres hem desenvolupat una teoria perturbacional que mostra que
el soroll afavoreix l’estabilitat del fenotip de l’estat “baix” de l’inter-
ruptor i que la regió de biestabilitat s’estén quan creix la intensitat
de les fluctuacions (veieu figura B.1A), un efecte que hem anom-
enat estabilització estocàstica. Les nostres simulacions estocàstiques
demostren que aquest efecte existeix tant en el model simple, util-
itzat en l’anàlisi analític, com en un model més detallat que té en
compte la reacció d’unió de la proteïna amb el promotor, suggerint
que la estabilització estocàstica és un fenomen genèric en els inter-
ruptors de feedback positiu. Hem calculat la velocitat de l’activació
de l’interruptor que ens ha permès entendre la relació entre el soroll
intrínsec i la modificació estocàstica del paisatge epigenètic. Hem
mostrat que incrementar el soroll intrínsec comporta incrementar
la velocitat de les transicions de l’interruptor, però també modifica
la barrera energètica entre els estats baix i alt, donant com a resul-
tat un comportament complexe quant varia la intensitat del soroll.
Els nostres resultats indiquen que la modificació del paisatge epi-
genètic deguda al soroll intrínsec, no només modifica els estats es-
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tables de l’interruptor, sinó també la dinàmica de les seves transi-
cions. Aquest fenomen no acostuma a tenir-se en consideració en
altres estudis teòrics. Els resultats presentats en el capítol 4 porten
llum als efectes del soroll intrínsec en l’interruptor genètic autoac-
tivador, de les següents maneres: i) aportant un anàlisi teòric que
explica com i per què les fluctuacions bioquímiques modifiquen el
paisatge epigenètic, i ii) explicant el comportament complexe de les
transicions estocàstiques de l’interruptor quant varia la intensitat del
soroll. Així, a nivell d’una cèl·lula individual, el soroll intrínsec con-
tribueix a la variabilitat intercel·lular de l’interruptor genètic i pot
modificar els seus estats estables i la seva dinàmica.

En el capítol 2, hem estudiat la interacció entre el soroll intra-
cel·lular i el procés de difusió del mecanisme de comunicació del
QS. Estudis previs mostren que aquesta difusió pot reduir el soroll a
nivell del senyal molecular. Tot i això, el paper que juguen les difer-
ents fonts estocàstiques en la cèl·lula i les seves contribucions a la
dinàmica de l’autoinductor no ha estat caracteritzada. Hem constru-
it un model que descriu la expressió de la molècula autoinductora
i la seva difusió en una població de cèl·lules. Ens hem centrat en la
situació on el gen luxI s’expressa a un nivell constitutiu baix, de tal
manera que podem assumir que: i) la regulació del feedback del gen
luxI pot ser ignorat i ii) el nivell de transcripció és prou baix per as-
sumir que com a màxim una molècula d’ARNm pot estar present en
la cèl·lula. A més a més, assumim que la producció de l’autoinductor
des de l’ARNm es pot descriure per una reacció d’un sol pas.

Basant-nos en aquestes suposicions, hem pogut derivar la expres-
sió analítica de la distribució de l’autoinductor. Comparant els resul-
tats analítics amb les simulacions estocàstiques, hem determinat les
contribucions del soroll transcripcional (fluctuacions del número de
còpies d’ARNm) i del soroll intrínsec en les fluctuacions de l’autoin-
ductor. Hem mostrat que cambiar la velocitat de difusió produeix un
repertori de dinàmiques per la molècula autoinductora (mireu figu-
ra B.1B). Els nostres resultats indiquen que la competició d’escales
temporals entre la dinàmica de l’ARNm i el procés de difusió juga
un paper crucial en la regulació de la quantitat total de soroll en
el número de molècules autoinductores. Hem trobat que el soroll
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transcripcional és la principal contribució al soroll total per un rang
ampli de valors de la velocitat de difusió. A més a més, hem obser-
vat que el soroll total presenta un màxim en funció de la velocitat
de difusió, en contrast als estudis previs. Observant els valors ex-
perimentals de les velocitats de difusió en espècies bacterianes de
QS, els nostres resultats apunten en la direcció que els bacteris han
evolucionat per adaptar el seu mecanisme de comunicació i evitar
les velocitats de difusió que maximitzen el soroll. En resum, al capí-
tol 2, hem presentat un model reduit de la expressió genètica i de
la comunicació del QS que ens ha permès: i) revelar la contribució
del soroll intrínsec i del soroll transcripcional en les fluctuacions de
la molècula autoactivadora, i ii) mostrar que la interacció entre la
dinàmica de l’ARNm i el procés de difusió pot portar a una varietat
de dinàmiques i de nivells de fluctuacions per la molècula autoin-
ductora. Per tant, el mecanisme de comunicació del QS modifica les
fluctuacions de la molècula autoinductora dins la cèlula i interactua
amb el soroll de la expressió genètica.

En el capítol 3, hem estudiat els efectes del soroll de l’expressió
genètica en la precisió de la coordinació de la població en la activació
del sistema de QS LuxR/LuxI. La heterogeneïtat en la resposta de
QS observada experimentalment en moltes espècies bacterianes por-
ta a preguntar-se com la precisió de la coordinació de les cèl·lules
depen de les fonts de soroll intracellular. Per respondre aquesta pre-
gunta, ens hem centrat en una de les xarxes reguladores de QS més
simples, el sistema LuxR/LuxI. A partir de models determinístics i
estocàstics, hem analitzat la resposta i la dinàmica d’una població de
cèl·lules a diferents nivells d’autoinductor. Els nostres resultats han
mostrat que el soroll en la expressió genètica de LuxR és el principal
factor que controla la variabilitat de l’activació del QS (mireu figu-
ra B.1C). Analitzant la dinàmica de la població, hem demostrat que
la activació de l’interruptor del QS a prop de la concentració críti-
ca d’autoinductor és molt lenta comparada amb la duració del cicle
cel·lular, i, per tant, els efectes no-estacionaris són importants al llarg
de la transició del QS. Hem mostrat que incrementar el soroll de la
expressió genètica en LuxR disminueix la precisió transitòria de l’in-
terruptor del QS. Aquests resultats, juntament amb algunes evidèn-
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cies experimentals sobre la regulació de LuxR en espècies de tipus
silvestre, sugereixen que els bacteris han evolucionat cap a mecan-
ismes per regular la intensitat del soroll en LuxR i per controlar la
variabilitat en l’activació del QS. El nostre estudi aporta llum en la
relació entre la dinàmica estocàstica d’una cèl·lula individual i el
comportament col·lectiu en una població de cèl·lules que es comu-
niquen.

En el capítol 5, hem estudiat un nou mecanisme de coordinació
en un model de toggle switch interconnectat amb dos vies de co-
municació de QS. L’aplicació del mecanisme de comunicació del QS
en biologia sintètica ha portat a la creació de circuits genètics que
mostren una varietat de comportaments col·lectius. Hem presentat
un model computacional d’una població de toggle switch que es
comuniquen a través de l’intercanvi de dos senyals difusius de QS.
La característica clau del nostre model resideix en l’acoblament tant
dels estats “on” com “off” entre les cèl·lules. Hem mostrat que l’in-
crement de la velocitat de difusió, que augmenta la força de l’acobla-
ment entre les cèl·lules, porta a una transició de fase: va des d’una
fase desordenada on les cèl·lules salten de manera aleatòria entre
els dos estats de l’interruptor, fins a una fase ordenada amb totes les
cèl·lules bloquejades en el mateix estat estable (mireu figura B.1D).
La presència d’un pic en la susceptibilitat i el càlcul dels exponents
crítics per finite size scaling confirmen l’existència de la transició de
fase. La mateixa transició s’ha trobat en una població de cèl·lules que
creixen exponencialment en un volum tancat, amb totes les cèl·lules
entrant en l’estat ordenat quan arriben a una mida crítica del sistema.
A més a més, hem analitzat la resposta de les cèl·lules a un senyal ex-
tern que introdueix una asimetria en l’interruptor i hem mostrat que
la resposta de les cèl·lules segueix una trajectòria d’histèresi, similar
a la resposta del model ferromagnètic d’Ising a un camp magnètic
extern. Hem trobat que per una velocitat de difusió per sota del
punt crític, l’acoblament entre cèl·lules intensifica la sensibilitat de
la resposta de la població i hem suggerit que aquest nou mecanisme
podria ser usat per augmentar la fiabilitat i sensibilitat de biosensors.
Els nostres resultats suggereixen un nou mecanisme per la decisió
cel·lular col·lectiva basat en el fenomen de la transició de fase.
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Figura B.1: Il·lustració dels principals resultats de la tesi. Els principals resul-
tats de cada capítol es presenten segons la complexitat del mod-
el. Veieu el text principal pels detalls. (A) Estabilització estocàs-
tica dels estats fenotípics: l’interruptor genètic biestable com a
exemple (capítol 4). (B) Regulació del soroll pel quorum sens-
ing en sistemes amb baix número de còpies de ARNm (capítol
4). (C) Dinàmica de l’interruptor de QS: efectes estocàstics i no-
estacionaris (capítol 3). (D) Transició de fase en el toggle switch
acoblat per QS: un model de Ising en bactèries (capítol 5).
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