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Resum

L’objecte d’estudi dels Sistemes Dinàmics és l’evolució dels sistemes respecte
del temps. Per aquesta raó, els Sistemes Dinàmics presenten moltes aplica-
cions en altres àrees de la Ciència, com ara la Física, Biologia, Economia,
etc. i tenen nombroses interaccions amb altres parts de les Matemàtiques.

Els objectes invariants organitzen el comportament global d’un sistema di-
nàmic, els més simples dels quals són els punts fixos i les òrbites periòdiques
(així com les seves corresponents varietats invariants). Les Varietats In-
variants Normalment Hiperbòliques (NHIM forma abreviada provinent de
l’anglès) són alguns d’aquests objectes invariants. Aquests objectes pos-
seeixen la propietat de persistir sota petites pertorbacions del sistema. Les
NHIM estan caracteritzades pel fet que les direccions en els punts de la
varietat presenten una divisió en components tangent, estable i inestable.
L’índex de creixement de les direccions estables (per les quals la iteració en-
davant del sistema tendeix cap a zero) i inestables (per les quals la iteració
enrere del sistema tendeix cap a zero) domina l’índex de creixement de les
direccions tangents. La robustesa de les varietats invariants normalment
hiperbòliques les fa de gran utilitat a l’hora d’estudiar la dinàmica global.
Per aquesta raó, tant la teoria com el càlcul d’aquests objectes sós molt
importants per al coneixement general d’un sistema dinàmic.

L’objectiu principal d’aquesta tesi és desenvolupar algoritmes eficients pel
càlcul de varietats invariants normalment hiperbòliques, donar-ne resultats
teòrics rigorosos i implementar-los per a explorar nous fenòmens matemàtics.

Per simplicitat, considerarem el problema per a sistemes dinàmics discrets, ja
que és ben conegut que el cas discret implica el cas continu usant operadors
d’evolució. Considerem així difeomorfismes donats per F : Rm → Rm i un
d-tor F -invariant parametritzat per K : Td → Rm. És a dir, existeix un
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difeomorfisme f : Td → Td (la dinàmica interna) tal que satisfà l’equació

F ◦K = K ◦ f, (0.1)

anomenada equació d’invariància.

La nostra finalitat és solucionar aquesta equació d’invariància considerant
dos possibles escenaris: un en el qual no coneixem quina és la dinàmica
interna del tor (on K i f són les nostres incògnites), veure Capítol 4, i un
altre en el qual imposem que la dinàmica interna sigui una rotació rígida amb
freqüència quasi-periòdica (on K és una incògnita i f és la rotació rígida),
pel qual necessitarem, a més a més, afegir un paràmetre ajustador a l’equació
(0.1), veure Capítols 2 i 3. En ambdós casos també estarem interessats en
el càlcul dels fibrats invariants tangent i normals.

A la literatura, molts dels mètodes per a resoldre l’equació d’invariancia
consisteixen en escollir un algun mètode de discretització per a representar
funcions i discretitzar l’equació (0.1) en un sistema, que pot ser de grans
dimensions, d’equacions no lineals pels coeficients de la representació. Un
cop escollit el mètode de discretització, la solució del “large system” està
donada per algun mètode iteratiu. Aquest punt de vista el coneixem com
a “large matrix method”, i depèn fortament del mètode de discretització
escollit, sent adient per a un nombre petit de coeficients de la representació,
com ara 103. Un altra punt de vista està basat en l’anomenada “graph
transform”, que permet calcular les varietats estable i inestable de l’objecte
invariant, i obtenir l’objecte amb la intersecció d’aquestes dues varietats.

L’algoritme que nosaltres usem pel càlcul de varietats invariants normalment
hiperbòliques està basat en el conegut mètode de la parametrització, en el
qual usem algun tipus de reductibilitat (veure Capítol 1). Aquest mètode
consisteix en resoldre l’equació d’invariancia (0.1) usant un mètode “tipus-
Newton” pel qual fem servir un sistema de coordenades adaptat a la dinàmica
i geometria de la varietat invariant, resolent així de forma més eficient cada
pas de Newton. Concretament, utilitzem un sistema adaptat definit per
les direccions tangents del tor (que vénen donades per la derivada de la
parametrització, DK) i les seves direccions normals complementàries. Això
ens dóna un sistema adaptat a la descomposició hiperbòlica del fibrat normal
invariant. Escrivint l’equació invariant linealitzada

DF ◦K ΔK −ΔK ◦ f −ΔK ◦ f Δf = −E (0.2)

en termes d’aquest sistema adaptat, l’equació es converteix en un sistema
triangular a blocs amb el qual evitem resoldre un sistema lineal de grans
dimensions en cada pas de Newton. D’aquesta manera, la correcció del tor,
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ΔK, es produeix en les direccions normals del sistema adaptat, i la correcció
de la dinàmica interna, Δf , es fa en la direcció tangent. Aquest punt de
vista geomètric per a representar les funcions condueix a algoritmes eficients
i ràpids pel càlcul d’aquests objectes invariants. Repetirem aquest pas de
Newton fins que la nova solució tingui un error suficientment petit en funció
de la tolerància que hem imposat al mètode.

També considerem el problema de calcular tors invariants normalment hiper-
bòlics amb dinàmica quasi-periòdica, així com el càlcul dels seus fibrats in-
variants. En aquest cas, el mètode implica tant tècniques KAM com tèc-
niques NHIM. En particular, treballem amb famílies d-paramètriques de
difeomorfismes analítics. El mètode està basat en un esquema KAM per
a calcular la parametrització del tor amb freqüència fixada (una freqüèn-
cia Diofàntica), on hem d’ajustar paràmetres del model per a mantenir fixa
la freqüència (les incògnites són en aquest cas la parametrització del tor i
aquests nous paràmetres). Aquest és un mètode constructiu que ens per-
met elaborar un teorema de validació. Hem desenvolupat un teorema tipus-
KAM en un format “a posteriori”, Teorema 2.21, per a provar l’existència
d’aquests tors quasi-periòdics normalment hiperbòlics: si tenim una bona
aproximació inicial d’un tor quasi-periòdic amb una freqüència Diofàntica
fixada, aleshores, sota certes condicions de hiperbolicitat, no-degeneració i
no-ressonància, existeix un tor invariant vertader proper a l’inicial per a un
cert valor del paràmetre. Emfatitzem que els tors quasi-periòdics obtinguts
pel nostre teorema són analítics, en contrast amb els què s’obtenen amb la
teoria general de varietats normalment hiperbòliques.

Ja hem implementat ambdós algoritmes per tors de dimensió 1 (és a dir,
cercles invariants) en sistemes dinàmics discrets de dimensió 2 i 3, i en el
cas de l’algoritme general, elaborat per a tors amb dinàmica desconeguda,
també pel càlcul d’un cilindre normalment invariant en un sistema dinàmic
discret de dimensió 4. Tots aquests algoritmes han estat implementats per a
la continuació respecte paràmetres de tors (i cilindres) invariants. En el cas
de la continuació de tors quasi-periòdic s’ha fet la continuació per un tor amb
freqüència fixada, mentre que en el cas general s’ha realitzat independent-
ment de la dinàmica interna del tor, permetent-nos així creuar ressonàncies.
Els nostres objectes invariants, ja siguin els tors (o cilindre) o els fibrats, vé-
nen donats per funcions periòdiques. En aquesta tesi hem utilitzat mètodes
d’interpolació Lagrangiana (a trossos) i sèries de Fourier per a aproximar
aquestes funcions. Hem observat que, donat l’elevat nombre de càlculs nec-
essaris per a la composició de dues funcions periòdiques, pel cas en què tenim
el tor amb dinàmica desconeguda (on hem de composar repetidament dues
funcions periòdiques) és molt millor prendre una aproximació usant interpo-
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lació, i per tant produir tots els càlculs sobre un mallat de punts. D’altra
banda, l’aproximació amb sèries de Fourier s’adapten perfectament als ca-
sos amb dinàmica quasi-periòdica, i són extremadament eficients quan es
combinen amb mètodes de “Fast Fourier Transform”.

Els mètodes d’aquesta tesi són de gran utilitat per a l’estudi de propietats
dinàmiques dels sistemes dinàmics. Per exemple, atès que un tor normalment
hiperbòlic és robust sota petites pertorbacions, un dels nostres interessos ha
estat estudiar-ne la seva persistència sota pertorbacions i investigar-ne els
diferents tipus de trencaments, és a dir, investigar com es perd la hiperbol-
icitat normal de l’objecte. Hem vist diferents escenaris de trencament:

• Per a tors quasi-periòdics normalment hiperbòlics, el trencament és
degut a col·lisions no uniformes entre els fibrats, mentre que els mul-
tiplicadors de Lyapunov es mantenen separats els uns dels altres en
el moment de la col·lisió. La pèrdua de la hiperbolicitat és deguda a
la complicada geometria dels fibrats, la qual esdevé molt complexa a
causa de la col·lisió “no-suau” dels fibrats. Hi ha molts contextos en
els quals es produeixen aquestes col·lisions “no-suaus”, referides sovint
com a bundle merging scenario. En aquesta tesi, hem descrit exemples
en els quals el fibrat tangent i el fibrat normal col·lisionen, moment
en què es perd la hiperbolicitat normal i el tor es trenca. En partic-
ular, en una aplicació que preserva volum i que a més a més presenta
certes simetries, com ara reversibilitat, hi hem observat un trencament
degut a una triple col·lisió de fibrats entre el fibrat estable, inestable i
tangent.

• Per a tors normalment hiperbòlics amb dinàmica desconeguda, hem
observat alguns mecanismes globals de trencament de tors deguts a
tangències entre la foliació estable i el tor invariant.

Resumint, hem desenvolupat diverses eines per al càlcul i la validació de tors
invariants normalment hiperbòlics per a sistemes dinàmics discrets i les hem
portat al límit de la seva validesa.

• En el Capítol 2, hem elaborat un teorema tipus-KAM en un format
“a-posteriori” per a l’existència de tors quasi-periòdics normalment in-
variants en famílies de sistemes dinàmics discrets, Teorema 2.21, el
qual és nou en aquest context (teoremes tipus-KAM en formats per-
torbatius són àmpliament coneguts a la literatura). Aquest teorema
ens dóna un suport rigorós per l’elaboració d’algoritmes numèrics de
càlcul de tors invariants quasi-periòdics. Aquests algoritmes numèrics
estan desenvolupats en el Capítol 3.



5

• En el Capítol 3 hem considerat diversos mètodes per al càlcul de tors
quasi-periòdics. El primer mètode està adaptat a tors completament
reductibles, és a dir, a tors en els quals la dinàmica linealitzada pot ser
reduïda a coeficients constants i diagonals (veure Subsecció 3.2.3). El
segon mètode és adient per a tors reductibles (però no completament
reductibles), és a dir, per a tors en els quals la dinàmica linealitzada
pot ser reduïda a coeficients constants (veure Subsecció 3.2.2). Final-
ment, considerem un tercer mètode general en el qual no demanem
cap condició de reductibilitat al tor (veure Subsecció 3.2.1). De cara
a provar la generalitat dels nostres algoritmes, els hem implementat
per al càlcul de tors (reductibles) tipus sella, tors reductibles atractors
(tors “node” i tors “focus”) i tors atractors no reductibles. Les imple-
mentacions d’aquests algoritmes, veure Subseccions 3.4, 3.5, 3.6, 3.7 i
3.8, milloren en gran mesura els resultats donats en treballs anteriors,
aprofitant el fet que esquiven la immensa quantitat de càlculs neces-
saris per resoldre un mètode tipus “large matrix” i que eviten també un
punt de vista pertorbatiu, la qual cosa ens permet apropar-nos molt al
trencament de l’objecte. Part d’aquests resultats apareixen a [19].

• En elCapítol 4, hem desenvolupat un mètode per al càlcul de varietats
invariants normalment hiperbòliques i la seva dinàmica interna. Hem
implementat aquest mètode per al càlcul de tors atractors i tors tipus
sella en exemples ja tractats a la literatura. En particular, ens perme-
ten obtenir resultats més acurats i apropar-nos molt més als paràmetres
crítics de trencament. Això ens ha permès refutar algun dels mecan-
ismes de trencament proposats a la literatura, i donar soport a d’altres.
A més a més, hem implementat el mètode per al càlcul d’un cilindre in-
variant normalment hiperbòlic en una aplicació 4-dimensional. Aquest
és el primer cop que un objecte d’aquest tipus es calcula, i ens obre
una nova línia d’investigació futura dirigida, per exemple, a estudiar
la difusió d’Arnold. El contingut d’aquest capítol de la tesi apareix en
el capítol 5 de la monografia [53].





Abstract

The subject of the theory of Dynamical Systems is the evolution of systems
with respect to time. Hence, it has many applications to other areas of
science, such as Physics, Biology, Economics, etc. and it also has interactions
with other parts of Mathematics.

The global behavior of a dynamical system is organized by its invariant
objects, the simplest ones are equilibria and periodic orbits (and related
invariant manifolds). Normally hyperbolic invariant manifolds (NHIM for
short) are some of these invariant objects. They have the property to persist
under small perturbations of the system. These NHIM are characterized by
the fact that the directions on the points of the manifold split into stable,
unstable and tangent components. The growth rate of stable directions (for
which forward evolution of the system goes to zero) and unstable directions
(for which backward evolution goes to zero) dominate the growth rate of the
tangent directions. The robustness of normally hyperbolic invariant mani-
folds makes them very useful to understand the global dynamics. Both the
theory and the computation of these objects are important for the general
understanding of a dynamical system.

The main goal of my thesis is to develop efficient algorithms for the computa-
tion of normally hyperbolic invariant manifolds, give a rigorous mathematical
theory and implement them to explore new mathematical phenomena.

For simplicity, we consider the problem for discrete dynamical systems, since
it is known that the discrete case implies the continuous case using time one
flow. We consider a diffeomorphism F : Rm → Rm and a d-torus parame-
terized by K : Td → Rm which is invariant under F . This means that there
exists a diffeomorphism f : Td → Td (the internal dynamics) such that it
satisfies

F ◦K = K ◦ f, (0.3)
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called the invariance equation.

Our goal is to solve this invariance equation considering two different scenar-
ios: one in which we do not know the internal dynamics of the invariant torus
(where K and f are our unknowns), see Chapter 4, and the other in which we
impose that the internal dynamics is a rigid rotation with a quasi-periodic
frequency (where K is the unknown and f is the rigid rotation), for which
we also need to add an adjusting parameter to equation (0.3), see Chapters 2
and 3. Additionally, in both cases we are also interested in computing the
invariant tangent and normal bundles.

In the literature, many of the algorithms to solve the invariance equation con-
sist in choosing some method of representation of functions and discretizing
(0.3) into a “large system” of non-linear equations for the coefficients of the
representation. The solution of such a system is done by some iterative
method. This approach, referred to as large matrix method, is very depen-
dent of the discretization method, and only suitable when the number of
coefficients of the representation is small, say 103. Another family of meth-
ods are settled in the graph transform method, and compute the invariant
manifolds as the intersection of its stable and unstable manifolds.

The algorithm we use to compute normally hyperbolic invariant tori is based
on the so called parameterization method in which we use some sort of re-
ducibility of the linearized dynamics to a simpler form (see Chapter 1). It
consists in solving functional equation (0.3) using a Newton-like method but
we choose an appropriate frame adapted to the dynamics and the geome-
try of the invariant manifold in order to efficiently solve each Newton step.
Namely, we use an adapted frame defined by the tangent directions (given
by the derivative of the parameterization, DK) and the complementary nor-
mal directions to the torus. This gives us a global frame for the hyperbolic
splitting of the invariant normal bundle. Writing the linearized invariance
equation

DF ◦K ΔK −ΔK ◦ f −ΔK ◦ f Δf = −E (0.4)

in terms of this frame, it is converted to a block triangular system which
avoids solving a large linear system at each Newton step. That is, the cor-
rection of the torus, ΔK, is made in the normal directions of the adapted
frame and the correction of the dynamics, Δf , is made in the tangent direc-
tion. Hence, this geometrical point of view to represent the functions leads
to efficient and really fast algorithms to compute these invariant objects. We
repeated the Newton step until the new solution has a small enough error
for the tolerance we imposed to the method. We have implemented this
method in several contexts and applied the algorithm to situations in which
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the number of coefficients of the objects is around 106.

We also consider the problem of computing quasi-periodic normally hyper-
bolic invariant tori, as well as their invariant bundles. In this case, the prob-
lem involves tools of KAM theory together with NHIM theory. In particular,
we work with a d-parameter family of diffeomorphisms. The method is based
on a KAM scheme to compute the parameterization of the torus with a fixed
frequency fixed (a Diophantine frequency), where we have to adjust parame-
ters of the model to keep the desired frequency (the unknowns are the torus
K and these parameters). This is a constructive method which allows us to
formulate a validation theorem. We develop a KAM-like theorem in “a pos-
teriori” format, Theorem 2.21, to prove the existence of this quasi-periodic
normally hyperbolic invariant torus: if we have a good enough approxima-
tion of an invariant torus with a fixed Diophantine frequency, then, under
certain hyperbolicity, non-degeneracy and non-resonance conditions, there
exists a true invariant torus near the computed one for a particular vale of
the parameter. We emphasize that, quasi-periodic tori we obtain through
our theorem are analytic, in contrast with the ones obtained through the
general theory of normally hyperbolic invariant manifolds.

We have already implemented both algorithms for one dimensional tori
(which are normally hyperbolic invariant circles) in 2 and 3 dimensional
discrete dynamical systems. We also implemented the general algorithm for
a normally hyperbolic invariant cylinder in a 4 dimensional discrete dynam-
ical system. We implement the algorithms for the continuations of invariant
tori (and cylinder) with respect to parameters. In the quasi-periodic case
we do the continuation for tori with a fixed frequency, whereas in the gen-
eral case we do the continuation regardless its dynamics. Hence, the general
method is able to cross resonances in the internal dynamics. Our invariant
objects, tori (and cylinder) and bundles, are given by periodic functions.
We have used both piecewise Lagrangian interpolation and Fourier series to
discretize periodic functions. We observe that due to the large number of
operations needed for the composition of two periodic functions, for the case
where the dynamics is an unknown (where we need to compose two periodic
functions several times) it is better to use interpolation, thus make all the
computations using grids. On the other hand, Fourier methods are tailored
to the case of quasi-periodic motion, and are highly efficient when combined
with Fast Fourier Transform methods.

So far the methods of this thesis are useful to study dynamical properties
of dynamical systems. For instance, since normally hyperbolic invariant
manifolds are robust under small perturbations, one of our interests is to



10 Abstract

see how tori persist under perturbations and investigate their mechanisms
of breakdown, that is, investigate how normal hyperbolicity is lost. We have
seen different scenarios of breakdown:

• For quasi-periodic NHIT the breakdown is often due to a bundle col-
lision between bundles of different stability type. An interesting thing
about this collision is that Lyapunov multipliers are away from each
other at the moment of the collision, and the loss of the hyperbolicity is
only because the geometry of the bundles gets more complicated since
the bundles collide non-smoothly. There are several contexts in which
bundles collide non-smoothly, referred to as bundle merging scenarios.
In this thesis we describe examples in which the tangent bundle collides
with the stable bundle, and at this moment the torus loses its normal
hyperbolicity, and it is broken. In a volume preserving case with some
extra symmetries on the system (namely reversibility), we observed a
breakdown due to a triple collision between the stable, unstable and
tangent bundles.

• For a NHIT with unknown internal dynamics, we have observed some
global mechanisms of destruction of invariant curves produced by tan-
gencies between the stable foliation and the invariant curve.

Summarizing, we develop several general tools to compute and validate nor-
mally hyperbolic invariant manifolds for discrete dynamical systems.

• In Chapter 2, we elaborate a KAM-like theorem in “a-posteriori”
format for the existence of quasi-periodic normally hyperbolic tori in
families of dynamical systems, Theorem 2.21, which is new in this con-
text (KAM-like theorems in a-perturbative format are well-known in
the literature). This theorem give us a rigorous support for numeri-
cal algorithms of continuation of quasi-periodic tori. These numerical
algorithms are widely developed in Chapter 3.

• In Chapter 3, we consider several methods for computing quasi-
periodic tori. The first method is tailored for completely reducible
tori, that is, tori for which the linearized dynamics can be reduced
to diagonal constant coefficients (see Subsection 3.2.3). The second
one is appropriate for reducible (but not completely) tori, that is tori
for which the linearized dynamics can be reduced to constant coef-
ficients (see Subsection 3.2.2). Finally, the third method is a general
one in which we do not impose any reducibility on the tori (see Subsec-
tion 3.2.1). In their implementations, we compute (reducible) saddle
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tori, reducible attractors (node tori and focus tori) and non-reducible
attractors, in order to test the generality of our algorithms. Imple-
mentations of these algorithms, see Sections 3.4, 3.5, 3.6, 3.7 and 3.8,
largely improve the results given in previous works, by taking advan-
tage of the avoidance of the massive number of computations needed
to solve in a large system method and the avoidance of a perturbative
setting, which allows us to get closer to the breakdown. Part of these
results appear in [19].

• In Chapter 4, we develop a new method to compute normally hy-
perbolic invariant tori as well as its internal dynamics. We implement
it to compute attracting and saddle tori for examples already treated
in the literature, for which we improve the results. Furthermore, we
also implement it to compute a two dimensional normally hyperbolic
invariant cylinder and its internal dynamics in a 4 dimensional map.
This is the first time this object is computed, and opens a line of fur-
ther research, for instance in Arnold diffusion. The contents of this
chapter appears in Chapter 5 of the monograph [53].





Chapter 1

Introduction

The long-term behavior of a dynamical system is organized by its invariant
objects. Hence, it is important to understand which invariant objects persist
under perturbations of the system. It has been known for a long time that
the persistence of an invariant object is related to its hyperbolicity proper-
ties. Roughly speaking, an invariant manifold is normally hyperbolic if the
growth rate of vectors transverse to the manifold dominates the growth rate
of vectors tangent to the manifold. The celebrated theorems of Fenichel [43]
and Hirsch, Pugh and Shub [63] state that a compact invariant manifold
persists under all C1 small changes in the map if it is normally hyperbolic
[43, 63]. The fact that this condition is also necessary for C1 persistence was
proved by Mañé [79]. The monograph [91] revisits the main results of the
theory of normally hyperbolic invariant manifolds. References [6, 41] deal
with non-compact normally hyperbolic manifolds in Banach manifolds.

The previous mentioned results on persistence of normally hyperbolic in-
variant manifolds were proved by using the graph transform method of
Hadamard and, notably, lead to numerical algorithms for computing and
continuing with respect to parameters the invariant manifolds regardless of
the internal dynamics [11, 8, 37, 93]. As far as we now, [11] is the first
reference about computation of normally hyperbolic invariant manifolds of
saddle type (in particular, invariant circles), i.e. manifolds for which the nor-
mal dynamics exhibits both contraction and expansion. A drawback of the
graph transform method is that the derived algorithm computes the stable
and the unstable manifolds, and then the invariant manifold is computed by
intersecting them. Hence, if one is interested only on the normally hyper-
bolic invariant manifold, one has to deal with higher dimensional objects.
Of course, if one wants to compute also the stable/unstable manifolds, this
is not a drawback.
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Another important problem in dynamical systems is the persistence of quasi-
periodic motion. This problem involve the management of the distinguished
KAM Theory. First references to dive into the problem, treated from the
classical Hamiltonian point of view, deal with a perturbative setting in the
sense that the problem is written as a perturbation of an “integrable” map by
using action-angle variables providing from the unperturbed system. This
appears in the groundbreaking work of A.N. Kolmogorov, V.I. Arnold and
J.K. Moser [4, 5, 75, 86, 88, 87]. Later on, the problem has been treated
in a general case, referred as dissipative context, where it appears the usage
of extra parameters to proof the existence of quasi-periodic tori, also in
a perturbative sense [7, 9, 89]. Beside of that, most of the references to
the numerical computation of quasi-periodic invariant tori deals with the
necessity to solve a large system without using a perturbative methodology
[23, 97, 90], or by using a parameterization method to rewrite the system
to solve by taking advantage of its dynamics and geometrical properties
[52, 57, 16, 47].

In this thesis, we present several Newton-like methods for solving the in-
variance equations arising from a parameterization method formulated in
[54] for computing normally hyperbolic invariant manifolds. We focus on
normally hyperbolic invariant manifolds modeled by the standard torus, to
which we will refer to as normally hyperbolic invariant tori (NHIT for short),
whereas also a normally hyperbolic invariant cylinder (NHIC for short) has
been computed. These invariant manifolds has been computed both in the
case in which their internal dynamics is an unknown of our computations,
or it is fixed, as a rigid rotation, and there is the necessity to add adjusting
parameters.

1.1 On the numerical computation of normally hy-
perbolic invariant manifolds

As we mention at the beginning of this chapter, even though the main the-
oretical results on normally hyperbolic invariant manifolds appeared in the
seventies [43, 63, 79], the first numerical methods for computing these ob-
jects were not presented until the eighties. Most of these incipient methods
dealt with attracting invariant circles [2, 102], and computing either higher
dimensional invariant tori or “truly" hyperbolic invariant tori (i.e. with sta-
ble and unstable manifolds) were considered a challenging problem. Since
then, a large variety of methods have been designed and implemented to deal
with such a problem.
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Most often in the literature the invariant manifold is represented as a graph
of a function over a set of variables, and one considers an equation for such
function expressing that its graph is invariant. In the case of invariant tori,
the function is periodic. For discrete dynamical systems, described by diffeo-
morphisms, the invariance equation is a functional equation, and for contin-
uous dynamical systems, described by vector fields, the invariance equation
is formulated as a (multidimensional) quasi-linear first order partial differen-
tial equation. For this reason, these strategies are usually referred to as the
Functional Equation (FE) approach and the Partial Differential Equation
(PDE) approach, respectively. The ways these equations are numerically
solved give rise to many different methods.

The most straightforward way of solving the invariance equations essentially
consist in choosing a method of representation of functions and then dis-
cretizing the invariance equation into a large system of nonlinear equations
for the coefficients of the representation. We refer to these methods as large
matrix methods, as in [57]. The solution of such a system is usually made by
using a Newton method. The way the linear system is solved at each step of
Newton method, taking advantage of its structure and (possible) sparseness,
adds another characteristic to a large system method.

In this circle of ideas, the Functional Equation (FE) approach was imple-
mented in [2] to compute invariant circles using grid interpolation meth-
ods. See also [77] and [64] for methods to solve the corresponding linearized
equations, either using grid interpolation methods or Fourier methods, re-
spectively. The PDE approach to compute invariant tori for flows was intro-
duced in [38]. This method consists in solving numerically a partial differ-
ential equation subject to periodic boundary conditions, since the unknown
is a periodic function. For instance, finite-difference and orthogonal collo-
cation methods for PDE are derived from grid polynomial interpolation of
periodic functions [35, 36, 38, 40], and spectral methods for PDE are derived
from Fourier approximations of periodic functions [50, 101]. A modification
of the PDE approach is considered in [85, 92], in which the invariant torus is
considered as a graph in a tubular neighborhood of a given reference torus
embedded in phase space (considering a normal bundle to the torus). Again,
the discretized PDE gives rise to a large system of nonlinear equations that
is solved using a Newton method. Once more, different strategies for solving
the linear systems arising from the Newton method are applied, depending
on the structure of the matrices. Even if these methods are intended to com-
pute normally hyperbolic invariant tori, all the examples considered in these
references are attracting tori. We do not claim that the list of methods given
above is complete. A plethora of large system methods can be generated by
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changing the method of representation, the way the discretized invariance
equation is solved or the method used to solve the linearized equation aris-
ing from Newton method. Large system methods have also been profusely
applied in computation of invariant tori with quasi-periodic dynamics, us-
ing Fourier discretizations [23, 39, 69, 82, 83, 98]. In these examples, the
linearized equations possess full (i.e. non-sparse) matrices. So far in all the
previous references only invariant tori (of dimensions 1 or 2) has been con-
sidered in the examples. More recently, [62] describes a large system method
to compute normally hyperbolic invariant manifolds for flows via flow box
tilings, based on the “fat trajectories” introduced in [61]. The algorithm is
not limited to a particular dimension or topology, and [62] illustrates an
example of a 2D torus in a 4D space and an attracting 2D sphere in a 3D
space. But one has to keep in mind that large matrix methods suffer from
the curse of dimensionality.

Another strategy for computing invariant manifolds is using the graph trans-
form. While the large system methods mentioned above are, say, “purely
numerical”, the graph transform methods are more geometrical, and can be
regarded as implementations of proofs of theorems of existence of normally
hyperbolic invariant manifolds (see [43, 63] for the theoretical results). The
graph transform computes both the stable and the unstable manifolds of the
normally hyperbolic invariant manifold, using contractions in appropriate
spaces, and then the invariant manifold is the result of their intersection. A
primitive version of an algorithm based on the graph transform appeared in
[102], in which simple iteration is used to compute an attracting invariant
curve, using a FE discretization. Later on, [37, 93] implemented methods
based on discretizations of the graph transform for computing attracting
invariant tori for flows, that is, in the PDE approach. To the best of our
knowledge, the first examples of computation of saddle-type invariant circles
appeared in [11] (see also [8]). These were made by using implementations
of the graph transform by adapting coordinates for computing the stable
and unstable manifolds, and then using a separate algorithm for intersecting
them.

Due to the robustness of normally hyperbolic invariant manifolds, all these
methods allow us to continue an invariant torus with respect to parameters,
regardless of its dynamics. For instance, the methods allow us to continue an
invariant circle through resonance tongues in which the internal dynamics on
the circle possesses periodic orbits, and cross non-resonant hairs in which the
internal dynamics have irrational rotation numbers. This was already a main
motivation for developing numerical algorithms to calculate invariant circles
in the pioneering paper [2]. We emphasize that the internal dynamics on an
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invariant torus is implicitly derived from these methods, but in the above
mentioned references, the explicit computation of the internal dynamics is
not carried out.

We can design specific methods according to the properties of the internal dy-
namics on the invariant manifold. For example, we can compute a resonant
invariant circle simply by computing the invariant manifolds of the internal
periodic orbits (see e.g. [12], and Figure 4.6 in Section 4.4), although this
can be a difficult task if the periodic orbits have a very high period. In
addition, we can design a specific method to compute non-resonant invari-
ant circles, computing a parameterization of the invariant circle in which
the internal dynamics is an irrational rotation. The unknowns are both the
parameterization and the rotation. Such a parameterization method was al-
ready implemented in [24] for the discrete case and using Fourier methods
and, much more recently, in [97, 98] for the case of flows, using grid methods
and Fourier methods, respectively. Notice however that, in a continuation
setting, these methods fail to converge when crossing “strong” resonances,
but are able to cross weak resonances. A suitable way of avoiding that prob-
lem is fixing the irrational rotation and adjusting parameters of the system
which enter now in the equations as unknowns [90]. A proper justification
of this strategy, using a parameterization method and adjusting parameters,
enters into the realm of KAM theory [9, 19, 31, 89], and leads to reducibility
methods that avoid solving large linear systems (see Chapters 3 and 2 of this
thesis).

The object of Chapter 4 is to design general purpose parameterization meth-
ods for computing normally hyperbolic invariant tori for diffeomorphisms,
avoiding the restrictions mentioned in the previous paragraph. A similar
methodology can be developed for the case of flows, or one can use an ap-
propriate Poincaré map for leading to the FE approach and reduce the di-
mension of the tori and the phase space by one. The algorithms in Chapter 4
are intended to compute the invariant torus and its internal dynamics using
a Newton-like method, as well as the stable and the unstable bundles. In
principle, one can use any method of approximation for the periodic func-
tions describing the tori without changing the framework, in contrast with
the purely numerical methods that dramatically depend on such choice, e.g.
as happens in large matrix methods. For example, we have tested local inter-
polation methods in grids and Fourier methods, but other methods can also
be easily implemented (e.g., spline interpolation methods) preserving most
of the codes. We should emphasize that the choice of the method of approx-
imation for the periodic functions is at the lower level of the method, in such
a way that can be easily changed according to our goal. In a continuation
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setting, we can monitor some dynamical observables, such as Lyapunov mul-
tipliers (the growth rates of the linearized dynamics) and the minimum angle
between the tangent, stable and unstable bundles, in order to measure the
quality of the normal hyperbolicity. In continuing invariant circles, we can
compute the rotation number of the internal dynamics, in order to detect
resonance crossings. We illustrate the application of the parameterization
method for the computation of normally hyperbolic invariant circles, and
in particular to the examples in [8, 11, 12]. We do not consider here the
computation of the stable and the unstable manifolds, but we mention that
the parameterization method in [13, 14, 15] is also appropriate to accomplish
this task (see [57, 58, 59] for rigorous, algorithmic and numerical results on
the parameterization method for invariant tori and their whiskers in quasi-
periodic maps). Besides that, we compute the linearized foliations of the
torus, which are given by the stable and unstable bundles. The last example
of Chapter 4, see section 4.6, illustrates the algorithms in the challenging
problem of computing a 2 dimensional object for a higher dimensional map;
the object is a normally hyperbolic invariant cylinder and the map is a 4 di-
mensional symplectic map. Normally hyperbolic invariant cylinders are very
important in recent rigorous studies of Arnold diffusion [32, 33]. We think
of this example as a first step to apply these techniques to Arnold diffusion.

Finally, we mention that the possibility of implementing computer assisted
proofs of existence of invariant objects is also a feature of the parameteri-
zation method. The theorems in [54] on the parameterization method for
normally hyperbolic invariant manifolds are intended to validate the numer-
ical computations. Notice however that validating an invariant object is
independent of the specific discretization method to compute the invariant
object, so these validation theorems could validate the numerical compu-
tations performed in this thesis. Other validation theorems can be found
in [20, 21, 22], based on a topological approach, using cone conditions and
covering relations.

1.2 On the computation of quasi-periodic normally
hyperbolic invariant tori

In the previous section we have introduced the significance of normally hy-
perbolic invariant manifolds. Here, we are focused on normally hyperbolic
invariant manifolds with a specific internal dynamics: normally hyperbolic
invariant tori with internal dynamics conjugated to a (Diophantine) rotation.
The study of these objects involve KAM techniques, which appears firstly in
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the celebrated KAM theory, named after its founders A.N. Kolmogorov [75],
V.I. Arnold [4, 5], and J.K. Moser [86, 88, 87]), which originally dealt with
persistence of quasi-periodic motion in Hamiltonian systems.

It is well known that classical KAM theory deals with the effect of small per-
turbations in integrable Hamiltonian dynamical systems, and it is remarkable
that these systems allow invariant tori carrying quasi-periodic motion. The
importance of these quasi-periodic invariant tori deals with the fact that, un-
der sufficiently small perturbations on the system, KAM theory state that
“most” of the previous invariant tori will persist, even though they can be
slightly deformed. We have to recall that in these perturbation analysis of
quasi-periodic tori, we have a torus with a prescribed frequency and we fol-
low it through the perturbation. Nowadays, KAM techniques have expanded
their range and are applied in many contexts. We think of KAM theory as
the study of persistence of quasi-periodic motion in (families of) dynamical
systems. Otherwise, we think of “a-posteriori” KAM theory as the study of
the existence of quasi-periodic motion in (families of) dynamical systems.

In the literature, this problem has been treated from many points of view.

From the theoretical point of view, classical (Hamiltonian) KAM methods
for studying persistence of quasi-periodic objects, with a prescribed fixed fre-
quency are based on the use of canonical changes of coordinates to simplify
the expression of the map. These methods typically deal with a perturba-
tive setting in the sense that the problem is written as a perturbation of
an “integrable” map (in which “everything” is known) and then it take ad-
vantage of the existence of action-angle-like coordinates for the unperturbed
problem. In this classical Hamiltonian context, the fixed frequency vector of
the torus can be treated as the parameters of the system and explained by
these action-angle variables. On the other hand, in the context of general
systems where no structure at all is present, also referred as a “dissipative
context”, we find attracting quasi-periodic tori which are isolated in the phase
space. With the goal of studying the persistence of quasi-periodic solutions
in families of dynamical systems (preserving or not some kind of geometric
structure), hence without action angle variables, the necessity of explicit ex-
ternal parameters to adjust the frequencies is considered in order to prove the
existence of quasi-periodic orbits. This first work with external parameters
appears in the work of Moser [89], where the “counterterms” are introduced
as the use of extra parameters in the system to proof the existence of a
quasi-periodic torus, with the same frequency vector that the unperturbed
one. Later on, the work with extra parameters has been performed in [9],
where they consider, in particular, the reducible case, referred by them as
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“Floquet torus”. However, these results have a perturbative nature and are
hardly applicable in numerical computations far from perturbative regime,
in the meaning that, even that in some cases it is possible to identify an
integrable approximation of a given system, the remaining part cannot be
considered as an arbitrarily small, so a perturbative argument is difficult to
implement.

From the numerical point of view, there are many references that consider
the numerical computation of quasi-periodic invariant tori. As we argue in
the previous paragraph, handling a perturbative argument leads to difficult
algorithms to compute quasi-periodic tori. Certainly, the more usual nu-
merical methods for computing invariant tori with quasi periodic dynamics
are based on solving a large system of non-linear equations arising from a
Fourier discretization of the invariance equation, referred, as in previous sec-
tion 1.1, large matrix method. This big system is usually solved by using a
Newton Method, see e.g. [23, 39, 68, 69, 82, 83, 98] for several examples.
Reference [97] uses continuation methods without adjusting parameters but
having the frequency as an unknown, but the method fails when it crosses
strong resonances. On the other side, [90] adjusts parameters, but the use
of a large matrix method runs into troubles when approaching breakdown
because of the colossal computation time and the memory needed to store
the large matrices arising from the straightforward application of a Newton
method.

To avoid the massive number of computations needed to solve the large sys-
tem and to avoid a perturbative setting, we use a parameterization method
(also explained in previous section 1.1 for a normally hyperbolic invariant
tori with general dynamics) for a quasi-periodic motion adapted to a KAM
setting. In this particular case, the parameterization method in KAM theory
avoids the use of transformations by adding a small function to the previous
approximation of the torus and an adjusting parameter. This added func-
tion is obtained by approximately solving the linearized equation around the
approximated torus, which leads to a Newton-like iterative method to solve
the invariance equation. Such kind of approach, which takes advantage of
the geometry of the problem, also referred to as KAM theory without action-
angle variables in a Hamiltonian context, was first suggested in [29], and a
complete proof for the existence of quasi-periodic invariant tori without us-
ing neither action-angle variables nor a perturbative setting was presented in
[30]. Using this methodology in our dissipative case and adding parameters
as in [9, 89], we are able to prove the convergence of the algorithms which
deals to a validation theorem in an a posteriori format. We show that if there
is an approximate solution of the invariance equation that satisfies some non-
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degeneracy conditions, then there is a true solution nearby. The proofs of the
existence of quasi-periodic solutions in this context consists of the following
steps: start from an approximate solution of a suitable invariance equation,
apply a Newton’s method to get a better approximate solution, provide es-
timates for the norms of the different objects and quantities involved, show
that the process can be iterated and finally that it converges. There are other
several works following this strategy, for instance for non-twist tori [52], for
skew-products with frequency given by an external forcing [57, 58, 59] (there
are also computer assisted proofs in [45, 44]), for whiskered tori in symplectic
maps [66], for the computation of limit cycles and their isochrons [65], or for
attracting tori in conformally symplectic systems [16]. Notice that to solve
the invariance equation with the prescribed fixed frequency (in particular
[16]) it considers families depending on some extra parameters, where the
idea goes back to [9, 89].

In this thesis, we also consider the need of external parameters to keep the
frequency fixed, as in [9, 16, 89]. From the theoretical point of view, we
present a KAM-like Theorem (Theorem 2.21) based on the parameteriza-
tion method for quasi-periodic normally hyperbolic invariant tori for smooth
families of real analytic maps (see Chapter 2). The convergence of the al-
gorithm enters in the realm of KAM theory, and the proof of the result is
constructive and leads to an efficient numerical method to compute quasi-
periodic invariant tori (see Chapter 3). In addition, the hypotheses of the
Theorem 2.21 depend explicitly on the different objects involved and it is
not required to perform transformations nor normal forms. Thus we can
obtain a suitable scheme to perform computer assisted proofs in particu-
lar problems. We plan to come back to computer assisted proofs in a near
future. On the other hand, we emphasize that Theorem 2.21 leads us to
efficient algorithms to compute invariant tori and their adjusting parame-
ters. Therefore, from the numerical point of view, we consider the problem
of numerically computing normally hyperbolic invariant tori with a fixed ro-
tation of Diophantine frequency as well as its invariant bundles, which are
the stable and unstable (linearized) foliations, where we needed to adjust
parameters to keep the frequency fixed (see Chapter 3). In particular, we
will explain different efficient algorithms, ones based on the reducibility of
the normal dynamics, and so leading to very efficient and fast algorithms to
compute the torus, and another for a general non-reducible case, in which
we only need conditions of hyperbolicity on the system. For that reason, our
algorithms allows us to obtain accurate results up to parameter values even
very close to the torus breakdown, where we can use computations with
even 106 terms to approximate the objects. We should mention that our
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implementations for quasi-periodic tori are done for one dimensional torus,
whereas the algorithms are formulated for d-dimensional tori and any d.

Finally, we remark that these quasi-periodic tori with a fixed frequency are
isolated in the phase space, for an specific adjusting parameter, but that
nearby (in parameter space) there are other normally hyperbolic invariant
tori with other internal dynamics, which could be quasi-periodic or not.
Then, if we modify one parameter we will obtain another normally hyperbolic
invariant torus, which can have a quasi-periodic dynamics or another general
dynamics. Then, we can follow this new torus by using the general method
explained in Section 1.1 (see Chapter 4) or by using again the method for
a quasi-periodic dynamics explained in this section (see also Chapter 2 and
3). Therefore, we can cover the search of normally hyperbolic invariant tori
in the whole phase space for whatever the internal dynamics is.

1.3 Introducing the general setting

We start by reviewing some general definitions.

Let A be a m-dimensional Finslered manifold, i.e. assume that the fibers of
the tangent bundle TA are endowed with a norm that depends continuously
with respect to the state variable in A. We refer to A as the ambient space.
Let F : A → A be a diffeomorphism generating a discrete dynamical system
in A. Let Θ be a d-dimensional manifold referred to as the model manifold.

Definition 1.1 Let K be a (parameterized) submanifold of A modeled by Θ,
that is K = K(Θ) where K : Θ→ A is an injective immersion (also referred
to as an embedding). Let f : Θ→ Θ be a diffeomorphism.

We say that K = K(Θ) is F -invariant, with internal dynamics f , if its
parameterization K and f meet the invariance equation:

F◦K = K◦f. (1.1)

Notice that a point z = K(θ) of K, parameterized by θ ∈ Θ, is mapped to a
point of K, parameterized by f(θ) ∈ Θ, since

F (K(θ)) = K(f(θ)), (1.2)

We can think of K as a semiconjugacy, and f as a subsystem of F . The map
f is the internal dynamics in the model manifold Θ. We can see a pictorial
representation in Figure 1.1.
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F

K(θ)

F (K(θ))

K

K = K(Θ)

A

f

θ

f(θ)

Θ

Figure 1.1: Pictorial representation of an F -invariant manifold parameterized by K, with
internal dynamics f .

The invariance condition (1.1) lifts to the corresponding tangent maps, TF :
TA → TA, TK : TΘ→ TA, Tf : TΘ→ TΘ, so that,

TF◦TK = TK◦Tf.

That is, the tangent bundle TK, parameterized by TK, is TF -invariant with
internal dynamics Tf . In coordinates the previous equation is expressed by
the relation

DF (K(θ))DK(θ) = DK(f(θ))Df(θ).

The key point in the robustness of K under (bounded) C1-perturbations of
F is that the linearized dynamics, given by the tangent map TF , possesses
hyperbolicity properties. Heuristically, this means that there exist a normal
bundle NK that dominates the dynamics on the tangent bundle TK: NK
splits in two invariant subbundles NSK and NUK such that TF contracts
NSK more sharply than TK and TF expands NUK more sharply than TK.
This is the concept of normal hyperbolicity.

Definition 1.2 We say that the manifold K is a Normally Hyperbolic In-
variant Manifold (NHIM for short) of F if it is F -invariant and the linearized
dynamics TF is uniformly exponentially trichotomic, i.e., the tangent bundle
TKA, splits into three continuous invariant subbundles

TKA = NSK ⊕ TK ⊕NUK (1.3)

that are characterized by the spectral gap conditions

0 < ρS < ρL,− ≤ 1 ≤ ρL,+ < ρU , (1.4)
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in such a way that the following uniform rates of growth hold:

v ∈ NSK ⇔ ∀k > 0, |TF kv| ≤ CρkS|v|,

v ∈ NUK ⇔ ∀k < 0, |TF kv| ≤ CρkU |v|,

v ∈ TK ⇔
{
∀k > 0, |TF kv| ≤ CρkL,+|v|,
∀k < 0, |TF kv| ≤ CρkL,−|v|,

where C > 0. Bundles NSK and NUK are referred to as the stable and
the unstable subbundles of K, respectively. The tangent bundle TK is also
referred to as the center bundle.

K

Figure 1.2: Pictorial representation of a normally hyperbolic manifold parameterized by K,
with normal bundles in green and orange, and tangent bundle in blue.

Remark 1.3 Notice that, for v ∈ TK, there exists u ∈ TΘ so that v = TKu.
Hence, the growth rate condition on the center bundle can be rephrased on
the tangent bundle of model manifold by using that TF kv = TK◦Tfku.

Remark 1.4 Higher regularity of the normally hyperbolic invariant mani-
fold follows from stronger spectral gap conditions. In particular, if we sub-
stitute (1.4) in Definition 1.2 by

0 < ρS < ρrL,− ≤ 1 ≤ ρrL,+ < ρU , (1.5)

where r ≥ 1 and F is of class Cr, then there is a bootstrap on the regularity
of the normally hyperbolic invariant manifold K and it is also of class Cr.
We say that K is a r-normally hyperbolic invariant manifold.

Remark 1.5 The definition of normal hyperbolicity can be stated in func-
tional terms, by considering the transfer operator T acting, in a natural way,
on continuous sections ν : A → TKA of the bundle TKA, that is,

T ν(θ) = DF (K(f−1(θ)))ν(f−1(θ)).
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In this setting, Definition (1.2) is rephrased as saying that the spectrum of
the transfer operator splits in three components: the stable component corre-
sponding to the spectral values smaller than ρS, the unstable component cor-
responding to the spectral values larger than ρU , and the central component
corresponding to the spectral values between ρL,− and ρL,+. The correspond-
ing spectral projections are linked with the corresponding bundle projections
onto the stable, unstable and tangent subbundles. In particular, the central
bundle is the tangent bundle TK. The relations between functional analysis
of transfer operators and dynamics of linear skew-products have been suc-
cessfully exploited since Mather’s work on characterization of Anosov diffeo-
morphisms [80]. We refer to [100] for spectral characterizations of normal
hyperbolicity. Interestingly, dynamical phenomena of collapse of invariant
bundles leading to breakdown of invariant tori can be explained by a sudden
growth of spectra of transfer operators [57, 59].

In this thesis, we consider that the ambient space is a m-dimensional annulus
A ⊂ Td × Rm−d, endowed with coordinates z = (x, y), with x ∈ Td and
y ∈ Rm−d. From now on, we consider a discrete dynamical system generated
by a diffeomorphism F : A → A of the form

F

(
x
y

)
=

(
Ax
0

)
+ Fp

(
x
y

)
, (1.6)

where A ∈ GLd(Z) and Fp : A → Rm is 1-periodic in x, that is, Fp(x +
e, y) = Fp(x, y) for all e ∈ Zd. Notice that matrix the A gives the homotopy
class of F . Our interest is finding an invariant rotational torus K, that is
a d-dimensional manifold modeled on the d-dimensional torus Θ = Td, and
parameterized by an immersion K : Td → A of the form

K(θ) =

(
θ
0

)
+Kp(θ), (1.7)

where Kp : Td → Rm is 1-periodic in θ, that is Kp(θ + e) = Kp(θ) for all
e ∈ Zd. Notice that, if K satisfies

F◦K −K◦f = 0,

then f has to be of the form

f(θ) = Aθ + fp(θ), (1.8)

where fp : Td → Rd is 1-periodic in θ. This is just a consequence of the
topological assumptions, chosen for the sake of concreteness. The point is
that the homotopy classes of F , K and f have to match.
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K(θ)

L(θ1)

N(θ1)

θ1

L(θ2)

N(θ2)

θ2

L(θ3)

N(θ3)

θ3

Figure 1.3: Pictorial representation of the adapted frame, with normal bundle in green and
tangent bundle in blue.

Remark 1.6 Recall that for any d-dimensional torus embedded in a m-
dimensional ambient manifold, we have a tubular neighborhood of the torus,
that is an open set around it resembling a neighborhood of the zero section
in the normal bundle. Therefore, one can introduce coordinates x ∈ Td and
y ∈ Rn around the torus in where they adopt the form of tubular coordinates.
In this tubular coordinates, the ambient space is an annulus A, and F , K
have the form (1.6) and (1.7), respectively.

Remark 1.7 In applications, finding tubular coordinates can be a difficult-
expensive task. The point is writing invariance equation

F ◦K = K ◦ f

in such a way that the homotopy classes of F , K and f match.

The tangent bundle TK of the parameterized torus K is trivial. In particular,
the d column vectors of the matrix map L : Td → Rm×d, where L(θ) =
DK(θ), provide a global frame for the tangent bundle. Here, it is important
that K is a parallelizable manifold. In fact, it is important in the sequel that
a normal bundle NK is also trivial, that is, it is generated by the n = m− d
column vectors of a matrix map N : Td → Rn×d. In this case, we say that
K is a framed manifold. The columns of the matrix map P : Td → Rm×m,
obtained by juxtaposing the matrix valued maps L and N so that

P (θ) = (L(θ) N(θ)),

provide an adapted frame around K.
Assume now that K, parameterized by K, is F -invariant with internal dy-
namics f . By differentiating the invariance equation of the parameteriza-
tion K, (1.2) we obtain the invariance equation of the linearization L(θ) =
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DK(θ),
DF (K(θ))DK(θ)−DK(f(θ))Df(θ) = 0. (1.9)

This is just a manifestation of the TF -invariance of the tangent bundle
TK. We will write ΛL(θ) = Df(θ), which is the internal dynamics on TK.
Hence, the linearized dynamics DF around K in the frame provided by P is
given by a block triangular linear skew-product (Λ, f) : Rm × Td → Rm ×
Td. Specifically, the matrix valued map Λ : Td → Rm×m is defined by the
linearized equation

Λ(θ) = P (f(θ))−1DF (K(θ))P (θ), (1.10)

which, employing the form of the tangent bundle given by equation (1.9), Λ
has a particular form given by

Λ(θ) =

(
ΛL(θ) T (θ)
0 ΛN(θ)

)
, (1.11)

where T : Td → Rd×n and ΛN : Td → Rn×n are matrix valued maps.

Notice that equation (1.10) splits into a tangent and a normal components,
and the system can be simplified, in general to

DK(f(θ))ΛL(θ) = DF (K(θ))DK(θ), (1.12)
DK(f(θ))T (θ) +N(f(θ))ΛN(θ) = DF (K(θ))N(θ), (1.13)

where we multiplied equation (1.10) by P (f(θ)).

Remark 1.8 Notice that the normal bundle, given in equation (1.13), is not
assumed to be invariant, since T (θ) is not necessary zero.

Until this moment, we have introduced a general description of the needed
equations involving the parameterization method for the case of normally
hyperbolic invariant manifolds:

• one equation for the invariant torus (1.2),

• one equation for the bundles of the torus (1.10), whereas only the part
of the normal bundle (1.13) has to be considered, since (1.12) is always
given for free from the derivative of (1.2),

where the unknowns are f and K for equation (1.2) and N and ΛN for
equation (1.13).
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Along this thesis, we will deal with several different situations involving
normally hyperbolic invariant tori, where equations (1.2) and (1.13) has to
be solved and treated in a different way.

In chapters 2 and 3, we consider the particular case in which we deal with
a quasi-periodic invariant torus. In that case, the internal dynamics is pre-
scribed by a rigid rotation of frequency ω ∈ Rd,

f(θ) = θ + ω,

so that equation (1.2) is now

F (K(θ))−K(θ + ω) = 0.

We should remark that as we have fixed the internal dynamics, we have lost
the unknown f of equation (1.2), which is now already given. To avoid this
overdeterminacy, we have to add some extra parameters to equation (1.2)
in order to fix the frequency and obtain a solvable system. Then, equation
(1.2) is turned into

Fa(K(θ))−K(θ + ω) = 0, (1.14)

where the unknowns are now K and a parameter a ∈ Rd. Notice that
the dimension of parameter a has to meet with the dimension of the fixed
frequency ω.

This particular internal dynamics implies an internal dynamics on TK given
by the identity ΛL(θ) = Id. Then, we get that the matrix valued map Λ(θ),
given by equation (1.11), is a block-triangular matrix with the identity in
the top-left corner

Λ(θ) =

(
Id T (θ)
0 ΛN(θ)

)
.

To get a quasi-periodic normally hyperbolic invariant torus, so that it is a
solution of (1.14), the only restriction in the matrix valued map Λ(θ) is that
the cocycle (ΛN , Rω) has to be hyperbolic. This is the assumption we use
in Chapter 2, where in particular, the dynamics on the normal bundle is
written as

H(θ) := ΛN(θ).

Moreover, using this assumption, some non-degeneracy conditions and a
KAM strategy, we prove the existence of the solution of (1.14), which is the
goal of Chapter 2. We present there a KAM-like theorem (Theorem 2.21) in a
posteriori format for the existence and local uniqueness of quasi-periodic nor-
mally hyperbolic tori in families of dynamical systems. This theorem shows
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that a computed approximation (K, a) of the invariance equation (1.14), sat-
isfying appropriated non-degeneracy and hyperbolicity conditions, implies
the existence of a true solution (K∗, a∗) of equation (1.14). The proof of
Theorem 2.21, gives us an efficient algorithm to compute a quasi-periodic
normally hyperbolic invariant torus and the adjusting parameter, which is
the goal of Chapter 3.

Remark 1.9 To validate a numerical computation we should check that the
computed approximation verifies the hypotheses of our Theorem 2.21. Even
if in some close to “integrable” examples these checks could be made by hand,
far from this integrable cases, this could be made with the aid of computers,
leading to computer assisted proofs.

Apart from computing the invariant torus, we will also compute the invariant
normal bundle and its splitting into stable and unstable bundles. For that
reason, we will require the invariance on the normal bundle by assuming
T (θ) = 0,

DFa(K(θ))N(θ)−N(θ + ω)ΛN(θ) = 0, (1.15)

so that the matrix valued map Λ(θ) has a block diagonal form

Λ(θ) = blockdiag(Id,ΛN(θ)),

and the system to solve is turned into

Fa(K(θ))−K(θ + ω) = 0,

DFa(K(θ))N(θ)−N(θ + ω)ΛN(θ) = 0,

given by (1.14) and (1.15).

In a general (non-reducible) setting, we solve that system without imposing
reducibility on the torus, so that the only requirement is the hyperbolicity on
ΛN(θ). In that case, the hyperbolicity condition allows us to solve equation
(1.15) as a fixed point problem, by using contractions which are given by
ΛN .

We can impose some restrictions on the system, by imposing reducibility (to
constants) on the torus, to speed up the method. This means that, there
exists a matrix M : Td → Rm×m and a constant matrix Λ ∈ Rm×m such
that

DFa(K(θ))M(θ)−M(θ + ω)Λ = 0,

where M(θ) = P (θ) in our case. This reducibility can be understood as
a change of variables in the total tangent space TK(θ)M in such a way
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that DF (K(θ)) corresponds to a constant linear cocycle. Then, by the new
expression of Λ, given by

Λ =

(
Id 0
0 ΛN

)
,

we can express equation (1.15), which now reads as

DFa(K(θ))N(θ)−N(θ + ω)ΛN = 0, (1.16)

in a Fourier basis. Equation (1.16) can be solved fast when it is discretized.

In particular, we will consider two reducible cases: one in which the constant
matrix ΛN is diagonalizable (referred as completely reducible method) and
another in which we do not require it (referred as non-completely reducible
method). The particularity of the completely reducible method is that we
can split completely equation (1.16) into n subequations, so that the com-
putations can be done with a linear cost (with respect to the number of
Fourier coefficients), and they become extremely fast. The non-completely
reducible method is also linear, but the factor grows as n2 (instead of n with
the method for completely reducible tori). Of course, these two methods
fail when the assumptions, that is reducibility properties, does not hold, but
we can switch to the other general non-reducible method and so cover the
computation of quasi-periodic tori regardless the reducibility property. We
should emphasize that by using the reducible methods we obtain, directly,
more information about the torus, whereas using the non-reducible one we
need to produce more extra computations to get the information.

We emphasize that neither in the rigorous results nor in the general algorithm
explained here, we use hypothesis of reducibility of the cocycle (ΛN ,Rω) to
a constant cocycle (using a so called Floquet transformation), which is a
rather standard assumption in the area (see e.g. [9, 89]).

Finally, in Chapter 4 we present a general method for the computation of
normally hyperbolic invariant manifolds, in which the dynamics can be any-
thing and not given. As it is useful to compute the torus and the stable and
unstable bundles, we use a restriction in equation (1.13) by imposing that
the normal bundle has to be invariant, so that we take again T (θ) = 0, and
the system to solve is now

F (K(θ))−K(f(θ)) = 0,

DF (K(θ))N(θ)−N(f(θ))ΛN(θ) = 0.

We should remark that this restriction is not mandatory to compute the
torus, since we could implement the algorithm without imposing this con-
dition. Besides of that, we consider more interesting to compute stable and
unstable invariant bundles.
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In the numerical computations one has to choose a method of approximation
of periodic functions, in order to approximate the parameterizations of the
torus. It is well known that Fourier series are very specialized for quasi-
periodic dynamics, since they leads to a fast and efficiently computations
to solve the cohomological equations providing from the invariance equa-
tion. But in the general normally hyperbolic case, due to the hard cost of
the composition of two periodic functions in the computation, for instance
the composition of the parameterization K with the internal dynamics f ,
K(f(θ)), other (local) interpolation from grid points, splines, simplicial ap-
proximations, has to be considered. In Chapter 4, we choose a Lagrangian
local interpolation.

Remark 1.10 In this thesis we develop the methods for the computation of
normally hyperbolic invariant manifolds for a discrete dynamical system, but
a similar methodology can be developed for the case of flows.





Chapter 2

A KAM-like theorem for
Quasi-Periodic Normally

Hyperbolic Invariant Tori

In this chapter, we present a KAM-like theorem in a posteriori format for the
existence of quasi-periodic normally hyperbolic tori in families of dynamical
systems. It is based on a KAM scheme to find the parameterization of a
torus with fixed Diophantine frequency and adjusting of parameters of the
family. This is a constructive method which allow us to formulate a theorem
to prove the existence of an invariant normally hyperbolic invariant torus
carrying quasi-periodic dynamics.

The proof of this theorem gives us an efficient algorithm to compute the
torus and the adjusting parameter (see Chapter 3 for related algorithms
and implementations). To give a brief idea of the method, under normal
hyperbolicity and additional non-degeneracy conditions on an approximate
invariant torus and on the adjusting parameter a, if the error estimates are
small enough (in suitable Banach spaces of real-analytic periodic functions),
the theorem ensures that there is a true invariant torus and an adapting
parameter nearby.

2.1 The setting

Consider the phase space an annulus A, that is an open set A ⊂ Td ×Rn =
{z = (x, y) | x ∈ Td, y ∈ Rn} that is homotopic to Td ×V , where V ⊂ Rn is
open. Let F : A×U → Td×Rn be a family of smooth maps, where U ⊂ Rd
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is the open set of parameters. We will assume that for each parameter a ∈ U ,
Fa : A → Td × Rn, defined by Fa(z) = F (z, a) is homotopic to the identity :

Fa(z) =

(
x
0

)
+ Fp(z, a) (2.1)

where Fp(z; a) = Fp((x, y), a) is 1-periodic in x. To avoid an abuse of no-
tation, we will denote by DFa the derivative of Fa with respect to z, we
will denote ∂Fa

∂a the derivative of Fa with respect to the parameter a and by
DF the derivative of F with respect the variables z and a. For instance,
DFa(z) = DzF (z, a) and ∂Fa

∂a (z) = ∂F
∂a (z, a).

Let K be a (parameterized) submanifold of Td × Rn modeled by Td, that is
K = K(Td) where K : Td → Td×Rn is an injective immersion (also referred
to as an embedding). This embedding is assumed to be homotopic to the
zero section of Td × Rn:

K(θ) =

(
θ
0

)
+Kp(θ) (2.2)

where Kp(θ) is 1-periodic in θ.

Definition 2.1 We say that the torus parameterized by K, K, is Fa-invariant
with a quasi-periodic motion given by the frequency ω ∈ Rd if K satisfies the
invariance equation:

Fa ◦K(θ) = K(θ + ω). (2.3)

Note that (2.3) is an equation for (K, a) given the family F .

Remark 2.2 Notice that the dimension of the parameter space equals the
dimension of the torus, d. This is to fix the dynamics on an invariant torus
as a d-dimensional rotation.

Remark 2.3 Notice that Kα(θ) = K(θ + α) is also a solution of (2.3). In
order to avoid this non-uniqueness, we can fix an initial phase on the torus
by imposing the following condition:

〈Kx(θ)− θ〉 = 0 (2.4)

where the superindex x represents the projection on the angle variables. In
that case, in order to get this zero average, we select α = −〈Kx

p (θ)〉.
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The purpose of this chapter is, then, solving the system of equations

Fa(K(θ))−K(θ + ω) = 0,

〈Kx(θ)− θ〉 = 0,
(2.5)

in appropriate functional spaces. Note that we assume ω given and that the
unknowns are the embedding K and the adjusting parameter a.

Let us consider K invariant with a quasi periodic internal dynamics Rω :
Td → Td given by Rω(θ) = θ + ω. An immediate consequence is that the
tangent bundle of K, TK, is invariant under the tangent map. That is, the
matrix-valued function DK : Td → R(d+n)×d provides a global frame of the
tangent bundle and satisfies:

DFa ◦K(θ) = DK(θ + ω), (2.6)

which is just the derivative of equation (2.3).

The key point in proving the robustness of an invariant manifold under per-
turbations of Fa, is that there exists a normal bundle NK that dominates the
linearized dynamics given by DFa. More specifically, NK splits in two invari-
ant subbundles NsK and NuK such that DFa contracts NsK more sharply
than TK and DFa expands NuK more sharply than TK. This is the concept
of normal hyperbolicity.

Then, a normal bundle NK will be generated by a matrix valued map N0 :
Td → R(d+n)×n such that for each θ ∈ Td, the column vectors of DK(θ)
join with the column vectors of N0(θ) form a basis of TK(θ)A  Rn+d. In
other words, the matrix valued map P : Td → R(d+n)×(d+n), obtained by
juxtaposing the matrix valued DK and N0 so that

P (θ) =
(
DK(θ) N0(θ)

)
, (2.7)

provides an adapted frame around the torus.

In these coordinates, the linearized dynamics around the torus is given by
the matrix valued map Λ : Td → R(d+n)×(d+n) given by

Λ(θ) = P (θ + ω)−1DFa(K(θ))P (θ). (2.8)

From the invariance of the tangent bundle and equation (2.6), we obtain
that Λ is a block-triangular matrix with the identity in the top-left corner

Λ(θ) =

(
Id T (θ)
0 H(θ)

)
,
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where T (θ) is a d × n matrix and H(θ) is a n × n matrix. We emphasize
that the normal bundle is not assumed to be invariant, since T (θ) is not
necessary zero. On the other hand, the normal bundle is not invariant but
fixed, which in fact is transported by DFa as:

DFa(K(θ))N0(θ) = DK(θ + ω)T (θ) +N0(θ + ω)H(θ)

= P (θ + ω)

(
T (θ)
H(θ)

)
.

(2.9)

So, we have explicitly defined both matrix T and H as(
T (θ)
H(θ)

)
= P (θ + ω)−1DFa(K(θ))N0(θ). (2.10)

The hypothesis of normal hyperbolicity is formulated in terms of the hyper-
bolicity of the cocycle (H,Rω), as we will see in the following section.

Our goal in this chapter is to show that if there is an approximate quasi-
periodic invariant normally hyperbolic torus, K, for a given Fa, then under
some specific conditions there exists a true invariant torus K∞ near it for
Fa∞ near Fa.

2.2 Preliminary definitions and results

Let us introduce the functional analytical tools that we will use in the proofs
of this chapter.

We will denote a complex strip of Td of width ρ > 0 by

Td
ρ = {θ ∈ Td

C : Im|θi| < ρ, i = 1, . . . , d},
where Td

C = Td + iRd is the complex d-dimensional torus. We consider
Aρ the Banach space of functions f : T̄d

ρ → C that are continuous in T̄d
ρ,

holomorphic in Td
ρ and such that f(Td) ⊂ R, endowed with the norm

||f ||ρ = sup
θ∈Td

ρ

|f(θ)|.

We will also denote by A1
ρ the Banach space of functions f : T̄d

ρ → C that
are continuous in T̄d

ρ, holomorphic in Td
ρ, such that f(Td) ⊂ R, and that also

their derivatives ∂f
∂θi

, i = 1, . . . , d, are continuously extended to the boundary
of Td

ρ, endowed with the norm

||f ||ρ,C1 = sup
θ∈Td

ρ

max

(
|f(θ)|,

∣∣∣∣ ∂f∂θ1 (θ)
∣∣∣∣ , . . . ,

∣∣∣∣ ∂f∂θd (θ)
∣∣∣∣
)
.
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Remark 2.4 The previous definitions extend component wise to functions
f : Td

ρ → Cm. In particular, for f ∈ (Aρ)
m we consider the norm

||f ||ρ = sup
θ∈Td

ρ

|f(θ)|,

where | · | is the maximum norm in Cm.

We will denote the norm of a pair of objects (f, a), where f ∈ (Aρ)
m and

a ∈ Rd, by ||(f, a)||ρ defined as

||(f, a)||ρ := max{||f ||ρ, |a|}.

Lemma 2.5 (Cauchy estimates) Given ρ > 0, let f ∈ Aρ. Then, for any
0 < δ < ρ, f ∈ A1

ρ−δ, so then ∂f
∂θi

∈ Aρ−δ, for i = 1, . . . , d, and the partial
derivatives satisfy inequalities∥∥∥∥ ∂f∂θi

∥∥∥∥
ρ−δ

≤ 1

δ
||f ||δ. (2.11)

In particular,

||Df ||ρ−δ =
d∑

i=0

∥∥∥∥ ∂f∂θi
∥∥∥∥
ρ−δ

≤ d

δ
||f ||ρ. (2.12)

Remark 2.6 Estimate (2.12) is extended to vector functions f ∈ (Aρ)
m as

follows

||Df ||ρ−δ = max
j=1,...,m

d∑
i=0

∥∥∥∥∂fj∂θi

∥∥∥∥
ρ−δ

≤ d

δ
||f ||ρ. (2.13)

In the meaning of distances, given A,B subsets of a metric space X, we will
denote by dist(A,B) the distance between two subspaces A and B as

dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B},

where d(·, ·) is the distance in X.

The following definitions and classical results are important in KAM theory.
See the tutorial [29] and papers [95, 94] for completeness.

Definition 2.7 We say that ω ∈ Rd is ergodic if

|ω · q − p| > 0, q ∈ Zd \ {0} , p ∈ Z. (2.14)
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Lemma 2.8 Let η : Td → R continuous and ω ergodic. If there exists a
continuous zero-average solution ξ : Td → R of

ξ(θ)− ξ(θ + ω) = η(θ)− 〈η〉, (2.15)

called tangent cohomological equation, where

〈η〉 =
∫
Td

η(θ) dθ

is the average of η, then it is unique.

In such a case, we will denote by Rωη the only zero-average solution ξ of the
equation (2.15).

Definition 2.9 We say that ω ∈ Rd satisfies the Diophantine condition of
type (γ, τ), denoted by ω ∈ D(γ, τ), if

|ω · q − p| ≥ γ|q|−τ1 , q ∈ Zd \ {0} , p ∈ Z, (2.16)

where |q|1 = |q1|+ · · ·+ |qd|.

The following lemma gives us sufficient conditions for the existence of the
solution of equation (2.15).

Lemma 2.10 (Russmann Estimates) Let ω be a Diophantine number of
type (γ, τ), γ > 0, τ ≥ d. Then, there exists a constant cR > 0, such that for
any η ∈ Aρ, there exists an unique zero-average solution ξ of the equation

ξ(θ)− ξ(θ + ω) = η(θ)− 〈η〉,

such that, for any 0 < δ < ρ, ξ ∈ Aρ−δ and satisfies

||ξ||ρ−δ ≤
cR
γδτ

||η||ρ. (2.17)

The following definitions and results deals with the hyperbolicity properties.

Let H : T̄d
ρ → Cn×n be a matrix valued map whose components are in Aρ.

Let ω ∈ Rd be a rotation vector, and denote by Rω : T̄d
ρ → T̄d

ρ the map

Rω(θ) = θ + ω.

Let (H,Rω) : C
n × T̄d

ρ → Cn × T̄d
ρ be the corresponding cocycle defined by

(H,ω)(v, θ) = (H(θ)v, θ + ω).
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The cocycle (H,Rω) induces a transfer operator H acting on sections of the
(trivial) bundle Cn × T̄d

ρ, which are identified with functions ξ : T̄d
ρ → Cn,

defined by the formula

Hξ(θ) = H(θ − ω)ξ(θ − ω).

We can consider H defined on spaces of functions with different regularities.
In particular, we will consider the spaces

(Bρ)
n = {ξ : T̄d

ρ → Cn bounded },

(Aρ)
n = {ξ : T̄d

ρ → Cn continuous, holomorphic in Td
ρ},

endowed with the supremum norm. Notice that, (Aρ)
n ⊂ (Bρ)

n and the
inclusion is closed.

The arguments in [55] leads to the following results.

Lemma 2.11 Let (H,Rω) be a cocycle where H ∈ (Aρ)
n×n and ω ∈ Rd.

Assume that the transfer operator H is hyperbolic in the space of bounded
sections, (Bρ)

n. Then, there exists cH > 0 such that for any 0 < ρ′ ≤ ρ, for
any η ∈ (Aρ′)

n, there exists an unique solution ξ of the normal cohomological
equation

H(θ)ξ(θ)− ξ(θ + ω) = η(θ), (2.18)

such that ξ ∈ (Aρ′)
n and satisfies

||ξ||ρ′ ≤ cH ||η||ρ′ . (2.19)

We will denote by RHη the unique solution ξ of (2.18). Notice that

RHη(θ) = (H− Id)−1η(θ + ω).

The constant cH in the previous lemma is

cH = ||RH ||ρ = ||(H− Id)−1||ρ
where ||·||ρ is the operator norm in (Bρ)

n.

Bootstrap arguments, also lead to the following lemma.

Lemma 2.12 Let (H,Rω) be a cocycle, where H ∈ (Aρ)
n×n and ω ∈ Rd,

and H the corresponding transfer operator. Assume that H is hyperbolic in
(B0)

n. Then, for ρ small enough, H is hyperbolic in (Bρ)
n and hence H is

hyperbolic in (Aρ)
n.

Remark 2.13 We emphasize that in previous results of this section, the
hypothesis of quasi-periodic dynamics is essential for the proofs.
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2.3 Approximately invariant torus: a Newton step

In this section, we will give an iterative scheme to solve invariance equa-
tion (2.5) for (K, a), based on a Newton Method. We will describe an step
formally, without considering the estimates when solving the cohomological
equations. This will be the bulk of the difficulties when proving the conver-
gence of Theorem 2.21 in section 2.4.

Along this chapter, we will say that Fa is real analytic if

Fa(x, y)−
(
x
0

)

is real analytic. In the same way, we will say that K is real analytic if

K(θ)−
(
θ
0

)

is real analytic.

Consider we have an approximately Fa-invariant torus K parameterized by
K : Td → Td × Rn of frequency ω for a given parameter a and such that
〈Kx(θ)− θ〉 = 0. That is, we assume that the error

E(θ) = Fa(K(θ))−K(θ + ω), (2.20)

is small (in an appropriate norm).

Our interest is to improve this approximation. So, we will look for a new
approximation (K̄, ā) from (K, a) of the form

K̄(θ) = K(θ) + ΔK(θ),

ā = a+Δa,

where the corrections ΔK and Δa are the solutions of the linearized invari-
ance equation

DFa(K(θ))ΔK(θ)−ΔK(θ + ω) +
∂Fa

∂a
(K(θ))Δa = −E(θ). (2.21)

Rewriting the correction of the torus in terms of the adapted frame P and
ΔK(θ) = P (θ)ξ(θ), we obtain

DFa(K(θ))P (θ)ξ(θ)− P (θ + ω)ξ(θ + ω) +
∂Fa

∂a
(K(θ))Δa = −E(θ). (2.22)



2.3. Approximately invariant torus: a Newton step 41

Remark 2.14 Note that, from the error on the invariance equation of the
torus (2.20), we obtain the error on the invariance of the tangent bundle
directly from its derivative:

DFa(K(θ))DK(θ)−DK(θ + ω) = DE(θ). (2.23)

Then, using (2.9) and (2.23), the error of the linearized equation is, in fact,
the derivative of the error on the invariance equation:

Ered(θ) = DFa(K(θ))P (θ)− P (θ + ω)Λ(θ) = ( DE(θ) | 0 ). (2.24)

By multiplying equation (2.25) by P (θ + ω)−1, we get a block-triangular
system:

Λ(θ)ξ(θ)− ξ(θ + ω) + P (θ + ω)−1Ered(θ)ξ(θ)

+ P (θ + ω)−1
∂Fa

∂a
(K(θ))Δa = −P (θ + ω)−1E(θ),

(2.25)

which by neglecting quadratic order therms is simplified to:

Λ(θ)ξ(θ)− ξ(θ + ω) +B(θ)Δa = η(θ), (2.26)

where η(θ) = −P (θ + ω)−1E(θ) and B(θ) = P (θ + ω)−1 ∂Fa
∂a (K(θ)).

Our immediate goal is to solve equation (2.26). Note that if we obtain a
solution of (2.26), it is in fact an approximate solution of (2.25), which is
equivalent to (2.22). We can solve (2.26) by using the following Lemma 2.15.

Lemma 2.15 (Cohomological Equations) Consider a real analytic vec-

tor valued map η =

(
ηL

ηN

)
: Td → Rd+n, and real analytic matrix valued

maps B : Td → R(d+n)×d, H : Td → Rn×n, T : Td → Rd×n. Assume that:

H1) the cocycle (H,Rω) is hyperbolic,

H2) ω ∈ Rd is Diophantine of type (γ, τ),

H3) 〈BL(θ)− T (θ)RH(BN(θ))〉 is invertible.

Then, every solution of the system(
Id T (θ)
0 H(θ)

)(
ξL(θ)
ξN(θ)

)
−
(
ξL(θ + ω)
ξN(θ + ω)

)
+

(
BL(θ)
BN(θ)

)
Δa =

(
ηL(θ)
ηN(θ)

)
(2.27)
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is given by

Δa = 〈BL(θ)− T (θ)RHBN(θ)〉−1〈ηL(θ)− T (θ)RHηN(θ)〉(2.28a)
ξN(θ) = RHηN(θ)−RHBN(θ)Δa (2.28b)
ξL(θ) = ξ̄L(θ) + ξL

0 (2.28c)

where
ξL(θ) = Rω(η

L(θ)−BL(θ)Δa− T (θ)ξN(θ)),

and ξL
0 ∈ Rd.

Proof: Observe that (2.27) is a triangular system, so we start by solving

H(θ)ξN(θ)− ξN(θ + ω) = ηN(θ)−BN(θ)Δa, (2.29)

for any Δa ∈ Rd. From the hyperbolicity condition H1, the normal cohomo-
logical equation (2.29) has a solution

ξN(θ) = RHηN(θ)−RHBN(θ)Δa. (2.30)

Now, we have solve the tangent cohomological equation by substituting the
value of ξN on:

ξL(θ)− ξL(θ + ω) = ηL(θ)−BL(θ)Δa− T(θ)ξN(θ). (2.31)

We first fix the value of Δa in order to get the average of the right hand side
of equation (2.31) equal to zero:

〈ηL(θ)〉 − 〈BL(θ)〉Δa− 〈T(θ)RHηN(θ)〉 − 〈T(θ)BN(θ)〉Δa = 0.

So then,

Δa = 〈BL(θ)− T (θ)BN(θ)〉−1〈ηL(θ)− T (θ)RHηN(θ)〉,

where the invertibility of 〈BL(θ)−T (θ)BN(θ)〉 is in fact the non-degeneracy
condition of hypothesis H3. This choice of Δa fixes the value o ξN .

Thanks to hypothesis H2, we have an unique solution of (2.31) with zero
average given by

ξ̄L(θ) := Rω(η
L(θ)−BL(θ)Δa− T (θ)ξN(θ)). (2.32)

Then, the general solution of this tangent cohomological equation has the
form

ξL(θ) = ξ̄L(θ) + ξL
0 , (2.33)

with average 〈ξL〉 = ξL
0 . �
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We apply Lemma 2.15 to our case by using η(θ) = −P (θ+ω)−1E(θ) and we
fix value ξL

0 to ensure the condition 〈Kx(θ)− θ〉 = 0, the uniqueness of the
torus. Note that by assuming this condition, we need the same zero average
for the form of the correction of the torus,

〈Πx(K(θ) + P (θ)ξ(θ))− θ〉 = 〈Πx(P (θ)ξ(θ)〉 = 0.

Using the notation

ξ̄(θ) =

(
ξ̄L(θ)
ξN(θ)

)
,

where ξ̄L is given in equation(2.32), we find conditions for ξL
0 :

0 = 〈Πx(P (θ)(

(
ξL
0

0

)
+ ξ̄(θ))〉 = 〈DKx(θ)ξL

0 +Πx(P (θ)ξ̄(θ))〉

= ξL
0 〈DKx(θ)〉+ 〈Πx(P (θ)ξ̄(θ))〉

Recall thatK is homotopic to the zero section of Td×Rn andKp is 1-periodic
in θ, so that 〈DKx〉 = 〈Id+DKx

p 〉 = Id+ 〈DKx
p 〉 = Id, and value ξL

0 will be
given by

ξL
0 = −〈Πx(P (θ)ξ̄(θ))〉 = −〈Πx(DK(θ)ξ̄L(θ)) + Πx(N

0(θ)ξN(θ))〉
= −〈DKx(θ)ξ̄L(θ) +N0,x(θ)ξN(θ)〉.

(2.34)

The following lemma summarizes the main results of this section and it is
an immediate consequence of Lemma 2.15.

Lemma 2.16 Let F : A×U → Td ×Rn be a smooth family of real analytic
homotopic to the identity maps and N0 : Td → R(d+n)×n real analytic. Let
K : Td → Td×Rn be a real analytic homotopic to the zero section parameter-
ization and a ∈ Rd. Define E : Td → Rd+n by E(θ) = Fa(K(θ))−K(θ+ω).
Let e : Td → Rd+n real analytic. Let H : Td → Rn×n and T : Td → Rd×n,
given by equation (2.10), where we assume that P : Td → R(d+n)×(d+n),
given by (2.7), is invertible for any θ ∈ Td in order to construct the adapted
frame. Assume that H1), H2), H3) of Lemma 2.15 are satisfied with

B(θ) = P (θ + ω)−1
∂Fa

∂a
(K(θ)).

Then, the only solution of

DFa(K(θ))ΔK(θ)−ΔK(θ + ω) +
∂Fa

∂a
(K(θ))Δa+ e(θ) = DE(θ)ξL(θ),

〈ΔKx(θ)〉 = 0,

(2.35)
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is given by (ΔK(θ) = P (θ)ξ(θ),Δa) where we get ξ and Δa as the solutions
given by Lemma 2.15 for this particular case, which corresponds to

Δa = 〈BL(θ)− T (θ)RHBN(θ)〉−1〈ηL(θ)− T (θ)RHηN(θ)〉(2.36a)
ξN(θ) = RHηN(θ)−RHBN(θ)Δa (2.36b)
ξL(θ) = ξ̄L(θ) + ξL

0 (2.36c)

with
ξ̄L(θ) = Rω(η

L(θ)−BL(θ)Δa− T (θ)ξN(θ)),

ξL
0 = −〈DKx(θ)ξ̄L(θ) +N0,x(θ)ξN(θ)〉

and
η(θ) = −P (θ + ω)−1e(θ).

Proof: We write the corrections in terms of P (θ), and then the proof is
immediate:

DFa(K(θ))P (θ)ξ(θ)− P (θ + ω)ξ(θ + ω) + e(θ) +
∂Fa

∂a
(K(θ))Δa

=(Ered(θ) + P (θ + ω)Λ(θ))ξ(θ)− P (θ + ω)ξ(θ + ω)

− P (θ + ω)η(θ) + P (θ + ω)B(θ)

=Ered(θ)ξ(θ)

=DE(θ)ξL(θ).

�

Remark 2.17 In the Newton step, e(θ) = E(θ) is assumed to be small, and
then the error in the solution of the linearized equation (2.21) is quadratically
small.

Then, after one Newton step, we have a new error associated to the new
solution, which is quadratically small from the previous error, given by the
following lemma.

Lemma 2.18 Let K̄(θ) = K(θ) +ΔK(θ) and ā = a+Δa the new approxi-
mate solution. Then, the new error of the invariance equation associated to
this new solution is of the form

Ē(θ) = DE(θ)ξL(θ)+

∫ 1

0
(1−t)D2F (K(θ)+tΔK(θ), a+tΔa)(ΔK(θ),Δa)⊗2dt

(2.37)
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Proof: By using the definition of the new solutions and first order Taylor
expansions with the integral error formula, the new error is defined as

Ē(θ) = Fā(K̄(θ))− K̄(θ + ω)

= Fa+Δa(K(θ) + ΔK(θ))−K(θ + ω)−ΔK(θ + ω)

= E(θ) +DFa(K(θ))ΔK(θ) +
∂Fa

∂a
(K(θ))Δa−ΔK(θ + ω)

+

∫ 1

0
(1− t)D2F (K(θ) + tΔK(θ), a+ tΔa)(ΔK(θ),Δa)⊗2dt,

and by using Lemma 2.16, it reads as equation (2.37), where D2F is the
second derivative with respect all the variables. �

Summarizing, we can construct an iterative process to compute these invari-
ant tori by using the corrections obtained in previous lemmas.

Algorithm 2.19 (Iterative Scheme) Let F : A × U → Td × Rn, N0 :
Td → R(d+n)×n and ω ∈ Rd given. Given K0 : Td → A and a0 ∈ Rd, then
the iterative scheme has the following form, for i ≥ 0:

1) Ei(θ) = Fa(Ki(θ))−Ki(θ + ω),

2) Define the frame Pi(θ) = (DKi(θ) N
0(θ)) and compute

ηi(θ) = −P (θ + ω)−1Ei(θ), Bi(θ) = P (θ + ω)−1
∂Fa

∂a
(Ki(θ))

and (
Ti(θ)
Hi(θ)

)
= Pi(θ + ω)−1DFai(Ki(θ))N

0(θ).

3) Construct the correction of the torus ξi and the adjustment of the pa-
rameter Δai as in equations (2.36) given in Lemma 2.16, with e(θ) =
Ei(θ):

· Δai = 〈BL
i (θ)− Ti(θ)RHiB

N
i (θ)〉−1〈ηL

i (θ)− Ti(θ)RHiη
N
i (θ)〉,

· ξN
i (θ) = RHiη

N
i (θ)−RHiB

N
i (θ)Δai,

· ξL
i (θ) = ξ̄L

i (θ)+ξL
0 , with ξ̄L

i (θ) = Rω(η
L
i (θ)−BL

i (θ)Δai−Ti(θ)ξ
N
i (θ))

and ξL
0 = −〈DKx

i (θ)ξ̄
L
i (θ) +N0,x(θ)ξN

i (θ)〉.

4) Correct the torus and adjust the parameter

· Ki+1 = Ki +ΔKi,
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· ai+1 = ai +Δai.

Remark 2.20 The procedure leads to efficient algorithms for computing in-
variant tori. Chapter 3 describes several variants of the algorithm and details
of several numerical implementations.

2.4 The KAM theorem

With these lemmas, we can now introduce our KAM theorem. The conver-
gence of the iterative scheme 2.19 is stated in our KAM-like theorem.

Theorem 2.21 (KAM theorem for NHIT) Let B ⊂ Td
C×Cn be a com-

plex strip of the annulus A and Td
ρ a complex strip of the torus Td. Let

F : B × U → Td
C × Cn be a C2-family of homotopic to the identity holomor-

phic maps such that F (A× U) ⊂ Td × Rn, with Fa(z) = F (a, z).

Let N0 : T̄d
ρ → C(d+n)×n be a matrix valued map such that N0(Td) ⊂

R(d+n)×n and N0 ∈ (Aρ)
(d+n)×n.

Let K : T̄d
ρ → B ⊂ Td

C × Cn be an homotopic to the zero section embedding
such that K(Td) ⊂ A ⊂ Td × Rn and that

Kp(θ) = K(θ)−
(
θ
0

)
∈ (A1

ρ)
d+n

and assume that 〈Kx(θ)− θ〉 = 0. Notice that dist(K(T̄d
ρ), ∂B) > 0. Let

a ∈ U ⊂ Rd be a parameter value. Obviously, dist(a, ∂U) > 0.

Let ω ∈ Rd be a fixed frequency vector.

Assume that there exists constants:

H1) cF,1,z, cF,1,a, cF,2, cN such that

||DzF ||B×U < cF,1,z, ||DaF ||B×U < cF,1,a, ||D2F ||B×U < cF,2,

and
||N0||ρ < cN ;

H2) σL such that ||DK||ρ < σL;

H3) (Transversality condition) σP such that P = (DK | N0) is invertible
with ||P−1||ρ < σP ;
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H4) (Hyperbolicity condition) σH such that the cocycle (H,ω) is hyperbolic
with ||RH ||ρ < σH , where H is given by (2.10);

H5) (Non-degeneracy condition) σD such that the matrix 〈BL − TRHBN〉
is invertible with

|〈BL − TRHBN〉−1| < σD,

where T is given by (2.10) and B(θ) = P (θ + ω)−1 ∂Fa
∂a (K(θ));

H6) (Diophantine condition) γ, τ such that |ω ·q−p| ≥ γ|q|−τ1 , q ∈ Zd \{0}
and p ∈ Z.

Define E(θ) = Fa(K(θ))−K(θ + ω).

Then, for any 0 < δ < ρ
2 and 0 < ρ∞ < ρ − 2δ, there exists constants Ĉ∗,

Ĉ∗∗ and Ĉ∗∗∗ (depending explicitly on initial data, δ and ρ∞) such that:

T1) Existence: If the following condition holds

Ĉ∗||E||ρ
γ2ρ2τ

< 1, (2.38)

then, there exists a couple (K∞, a∞), with K∞ : T̄d
ρ∞ → B ⊂ Td

C × Cn

such that

K∞(θ)−
(
θ
0

)
∈ (A1

ρ∞)n,

and a∞ ∈ U , such that

Fa∞(K∞(θ)) = K∞(θ + ω),

〈Kx
∞(θ)− θ〉 = 0.

That is, K∞ = K∞(Td) is a QP-NHIT for Fa∞ with frequency ω.
Moreover, K∞ satisfies hypothesis H2-H5.

T2) Closeness: The torus K∞ is close to the original approximation, in the
sense that

||(K∞ −K, a∞ − a)||ρ∞ ≤
Ĉ∗∗
γρτ

||E||ρ. (2.39)

T3) Local Uniqueness: If the following condition holds

Ĉ∗∗∗
γ2ρτ∞ρτ

||E||ρ < 1, (2.40)
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then, if (K ′∞, a′∞) satisfies

Fa′∞(K ′
∞(θ)) = K ′

∞(θ + ω),

〈K ′x
∞(θ)− θ〉 = 0.

and

||(K ′
∞ −K, a′∞ − a)||ρ∞ < Ĉ∗∗

(
γρτ∞
Ĉ∗∗∗

− 1

γρτ
||E||ρ

)
, (2.41)

then, (K ′∞, a′∞) = (K∞, a∞).

The proof consist in proving that the iterative scheme of Algorithm 2.19 con-
verges to a solution of the invariance equation. Notice that at each iterative
step, we have to be careful with the analicity properties of new objects in
order to well construct the new approximately invariant torus and parame-
ter. In particular, at each Newton step i, it is reduced the analicity strip of
the objects. It is proved in the following Lemma.

Remark 2.22 The constants Ĉ∗, Ĉ∗∗ and Ĉ∗∗∗ depend explicitly on the ini-
tial data. Concretely, they depend polynomially on cF,1,z, cF,1,a, cF,2, cN and
on (σL − ||DK||ρ)−1, (σP − ||P−1||ρ)−1, (σD − |〈BL − TRH(BN)〉−1|)−1,
(σH − ||RH ||ρ′)−1, dist(K(Td

ρ), ∂B)−1 and dist(a, ∂U)−1. They also depend
polynomially on the estimates given by the definition of the objects, σL, σP ,
σH and σD. If we fix the constant cR in Lemma 2.10 (that depends on τ in a
non-polynomial way) then Ĉ∗, Ĉ∗∗ and Ĉ∗∗∗ depend also polynomially on the
dimension d, cR, γ and on powers of the initial bite of the width of analycity
δ.

Lemma 2.23 (Iterative Lemma) Under the same hypothesis H1-H6 of
Theorem 2.21, for any 0 < δ < ρ

2 , there exists constants Ĉ1, Ĉ2, Ĉ3, Ĉ4, Ĉ5,
Ĉ6, Ĉ7, depending explicitly on constants defined in the hypothesis and on δ,
such that if

Ĉ1

γδτ+1
||E||ρ < 1, (2.42)

then there exists an approximately invariant torus K̄ = K+ΔK of frequency
ω for some ā = a+Δa, in the sense that the new error Ē(θ) = Fā(K̄(θ))−
K̄(θ + ω) will satisfy

||Ē||ρ−δ <
Ĉ7

γ2δ2τ
||E||2ρ. (2.43)
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In particular, this new torus will define new objects P̄ , T̄ , H̄ such that sat-
isfies the conditions of Theorem 2.21

||DK̄||ρ−2δ < σL, ||P̄−1||ρ−2δ < σP , (2.44)

||RH̄ ||ρ < σH , |〈B̄L − T̄RH̄B̄N〉−1| < σD, (2.45)

dist(K̄(Td
ρ−δ), ∂B) > 0, dist(ā, ∂U) > 0, (2.46)

and

||K̄ −K||ρ−δ <
Ĉ2

γδτ
||E||ρ, |ā− a| < Ĉ3||E||ρ, (2.47)

||P̄−1 − P−1||ρ−2δ <
Ĉ4

γδτ+1
||E||ρ, (2.48)

||RH̄ −RH ||ρ′ <
Ĉ5

γδτ+1
||E||ρ, for all ρ′ ≤ ρ− 2δ, (2.49)

|〈B̄L − T̄RH̄B̄N〉−1 − 〈BL − TRHBN〉−1| < Ĉ6

γδτ+1
||E||ρ. (2.50)

Remark 2.24 The explicit form of the constants, discussed on remark 2.22,
will appear during the proof of the Theorem. These are useful for implemen-
tation on computer assisted proofs.

The scheme of the proofs of this section follows the same KAM-like strategy
used in the proof of the Theorem 4.22 of Chapter 4 of [53] and it is intended
to lead to computer assisted proofs.

Proof: From the definition of the reducibility error ||Ered|| in (2.24) and
from Cauchy estimates (2.12), we obtain directly

||Ered||ρ−δ = ||DE||ρ−δ ≤
d

δ
||E||ρ (2.51)

Now, we can proceed to bound the corrections we get during a Newton step,
given by equations (2.28c) and (2.28b) of Lemma 2.15.

Let us start with the normal cohomological equation, which has solution
(2.28b). Observe that by (2.19) for η(θ) = −P (θ + ω)−1E(θ), we control
operator RH by

||RH(ηN(θ))||ρ < σHσP ||E||ρ
||RH(BN(θ))||ρ < σHσP cF,1,a
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and the correction of the parameter a by

|Δa| < σD(|〈ηL(θ)〉|+ |〈T (θ)RH(ηN(θ))〉|)
< σD(σP ||E||ρ + σPσF,1,zcNσHσP ||E||ρ) < σDσPC1||E||ρ,

(2.52)

where
C1 := 1 + σHσP cNcF,1,z.

Then, we get an estimate for the normal correction of the torus by

||ξN ||ρ < ||RH(ηN(θ))||ρ + ||RH(BN(θ))|||Δa| < σHσPC2||E||ρ, (2.53)

where
C2 := 1 + σPσDcF,1,aC1.

On the other side, the tangent component has solution (2.28b), and by Russ-
mann estimates (2.17) applied to v(θ) = ηL(θ) − BL(θ)Δa − T (θ)ξN(θ), we
obtain the inequality

||ξ̄L||ρ−δ ≤
cR
γδτ

||v||ρ <
cR
γδτ

(σP ||E||ρ + σP cF,1,a|Δa|+ σP cNcF,1,z||ξN ||ρ)

<
cR
γδτ

σPC1C2||E||ρ.

We consider the term ξL
0 defined in equation (2.34), and we rewrite last

inequality as

||ξL||ρ−δ ≤ |ξL
0 |+ ||ξ̄L||ρ−δ ≤ σL||ξ̄L||ρ−δ + cN ||ξN ||ρ−δ + ||ξ̄L||ρ−δ

<
1

γδτ
((σL + 1)cRσPC1C2 + cNσHσPC2γδ

τ︸ ︷︷ ︸
C3

)||E||ρ. (2.54)

As has been said, the correction of the torus is of the form ΔK(θ) =
P (θ)ξ(θ). Then, the first estimate of (2.47) follows directly from (2.53)
and (2.54) in the following way

||K̄ −K||ρ−δ = ||ΔK||ρ−δ = ||DK(θ)ξL(θ) +N(θ)ξN(θ)||ρ−δ

<

(
σL

C3

γδτ
+ CNσHσPC2

)
||E||ρ :=

Ĉ2

γδτ
||E||ρ.

(2.55)

Using expression (2.55) and Cauchy estimates (2.12) , we obtain the first
estimate on (2.44):

||DK̄||ρ−2δ ≤ ||DK̄||ρ + ||DΔK||ρ−2δ < ||DK̄||ρ +
d

δ

Ĉ2

γδτ
||E||ρ < σL, (2.56)
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where last inequality is imposed in order to satisfy inequality (2.42) of the
hypothesis, so then

dĈ2

σL − ||DK||ρ
1

γδτ+1
||E||ρ < 1, (2.57)

which is included in the definition of Ĉ1.

Note that the second estimate of (2.47) has been already computed in equa-
tion (2.52), since

|ā− a| = |Δa| < Ĉ3||E||ρ, (2.58)

with
Ĉ3 := σDσPC1.

In particular, we will define Ĉ2,3 as

Ĉ2,3 := max(Ĉ2, Ĉ3γδ
τ ).

Observe that, to get conditions (2.46) of the hypothesis of the lemma satis-
fied, we need

dist(K̄(T̄d
ρ−δ), ∂B) ≥ dist(K(T̄d

ρ), ∂B)− ||ΔK||ρ−δ

≥ dist(K(T̄d
ρ), ∂B)−

Ĉ2

γδτ
||E||ρ > 0,

and

dist(ā, ∂U) ≥ dist(a, ∂U)− |Δa| ≥ dist(a, ∂U)− Ĉ3||E||ρ > 0,

so that K̄(T̄d
ρ−δ) ⊂ ∂B and ā ∈ U . Notice that these inequalities are satisfied

if
Ĉ2

γδτ dist(K(Td
ρ), ∂B)

||E||ρ < 1 (2.59)

and
Ĉ3

dist(a, ∂U) ||E||ρ < 1. (2.60)

These two last conditions (2.59) and (2.60) are included in the definition of
Ĉ1.

To control the computations that involves inverses, such as ||P̄−1 − P−1||,
||RH̄ −RH || and |〈B̄L − T̄RH̄B̄N〉−1 − 〈BL − TRHBN〉−1|, we use the fol-
lowing statement: for any pair of matrices X and Y , with X invertible, we
can express the inverse of Y , provided that Y is close enough to X, by

Y −1 = (I +X−1(Y −X))−1X−1.
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Then, using Neumann series, we can use the following inequality

||Y −1 −X−1|| ≤ ||X−1||2||Y −X||
1− ||X−1||||Y −X|| . (2.61)

First, we use expression (2.61) for X = P and Y = P̄ satisfying

||P̄−1 − P−1||ρ−2δ ≤
||P−1||2ρ−2δ||P̄ − P ||ρ−2δ

1− ||P−1||ρ−2δ||P̄ − P ||ρ−2δ

<
σ2
P ||P̄ − P ||ρ−2δ

1− σP ||P̄ − P ||ρ−2δ
,

(2.62)

where it is assumed that σP ||P̄ − P ||ρ−2δ < 1.

Recall that the normal bundle is fixed during the Newton iteration. Then,
using computations in (2.56) we obtain

||P̄ − P ||ρ−2δ = ||(DK̄ | N0)− (DK | N0)||ρ−2δ = ||(DK̄ −DK | 0)||ρ−2δ

= ||DΔK||ρ−2δ <
dĈ2

γδτ+1
||E||ρ.

(2.63)

To satisfy σP ||P̄ − P ||ρ−2δ < 1, we in fact impose

σP ||P̄ − P ||ρ−2δ < σP
dĈ2

γδτ+1
||E||ρ <

1

2
. (2.64)

Using (2.63) and (2.64) in (2.62), we obtain estimate (2.48)

||P̄−1 − P−1||ρ−2δ <
2σ2

PdĈ2

γδτ+1
||E||ρ :=

Ĉ4

γδτ+1
||E||ρ, (2.65)

and writing P̄−1 as P̄−1 = P−1+(P̄−1−P−1) we obtain the second estimate
on (2.44)

||P̄−1||ρ−2δ < ||P−1||ρ−2δ +
Ĉ4

γδτ+1
||E||ρ < σP (2.66)

where last inequality is obtained by imposing

Ĉ4

σP − ||P−1||ρ
1

γδτ+1
||E||ρ < 1, (2.67)
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that has to be included in the computation of Ĉ1. Notice that (2.67) implies
(2.64).

To obtain the inequality (2.49), we will use again Neumann series, using now
that RH = (H− Id)−1

||RH̄ −RH ||ρ′ = ||(H̄ − Id)−1 − (H− Id)−1||ρ′

≤
||(H− Id)−1||2ρ′ ||H −H||2ρ′

1− ||(H− Id)−1||ρ′ ||H −H||ρ′
, (2.68)

where

||H̄ − H||ρ′ = ||H̄ −H||ρ′ ≤ ||H̄ −H||ρ−2δ,

for any ρ′ ≤ ρ− 2δ.

Observe that,

||DzF (K̄(θ),ā)−DzF (K(θ), a)||ρ−δ =

=||
∫ 1

0

d
dt

(DzF (K(θ) + tΔK(θ), a+ tΔa)) dt||ρ−δ

=||
∫ 1

0
(DzzF (K(θ) + tΔK(θ), a+ tΔa)ΔK(θ)

+ DzaF (K(θ) + tΔK(θ), a+ tΔa)Δa) dt||ρ−δ
≤||D2F ||ρ−δ||(ΔK,Δa)||ρ−δ.

(2.69)

Note that to control ||H̄ −H||ρ−2δ, we have to control the matrix map

∥∥∥∥
(
T̄
H̄

)
−
(
T
H

)∥∥∥∥
ρ−2δ

which comes directly from the definition (2.10) and from estimates (2.65),
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(2.55) and (2.69). Then, it reads as

∣∣∣∣
∣∣∣∣
(
T̄
H̄

)
−
(
T
H

) ∣∣∣∣
∣∣∣∣
ρ−2δ

≤||P̄ (θ + ω)−1DFā(K̄(θ))− P (θ + ω)−1DFa(K(θ))||ρ−2δ||N0(θ)||ρ−2δ
< cN

(
||P̄ (θ + ω)−1||ρ−2δ||DFā(K̄(θ))−DFa(K(θ))||ρ−2δ

+||P̄ (θ + ω)−1 − P (θ + ω)−1||ρ−2δ||DF (K(θ))||ρ−2δ
)

< cN

(
σP ||D2F ||B×U ||(ΔK,Δa)||ρ−2δ + ||P̄−1 − P−1||ρ−2δ||DFa||B×U

)
< cN

(
σP cF,2Ĉ2,3δ + cF,1,zĈ4

)
︸ ︷︷ ︸

C4

||E||ρ
γδτ+1

.

(2.70)

So, if we assume

σH ||H̄ −H||ρ−2δ < σHC4

||E||ρ
γδτ+1

<
1

2
(2.71)

then, inequality (2.68) becomes

||RH̄ −RH ||ρ′ <
2σ2

HC4

γδτ+1
||E||ρ := Ĉ5

||E||ρ
γδτ+1

(2.72)

and using RH̄ = RH + (RH̄ −RH) we obtain the first estimate on (2.45)

||RH̄ ||ρ′ < ||RH ||ρ′ +
Ĉ5

γδτ+1
||E||ρ < σH (2.73)

by imposing last inequality, for all ρ′ ≤ ρ− 2δ. Then

Ĉ5

σH − ||RH ||ρ′
1

γδτ+1
||E||ρ < 1, (2.74)

which as before, we have to introduce in the definition of Ĉ1.

From the definition of B and estimates (2.55), (2.58), (2.65) and (2.69) , we
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obtain

||B̄(θ)−B(θ)||ρ−2δ

=||P̄ (θ + ω)−1
∂Fā

∂a
(K̄(θ))− P (θ + ω)−1

∂Fa

∂a
(K(θ))||

ρ−2δ

≤||(P̄ (θ + ω)−1 − P (θ + ω)−1)
∂Fā

∂a
(K̄(θ))||

ρ−2δ

+ ||P (θ + ω)−1
(
∂Fā

∂a
(K̄(θ))− ∂Fa

∂a
(K(θ))

)
||
ρ−2δ

≤ Ĉ4

γδτ+1
||E||ρcF,1,a + σP cF,2||(ΔK,Δa)||ρ−2δ||E||ρ

≤
(
Ĉ4cF,1,a + σP cF,2Ĉ2,3δ

) 1

γδτ+1
||E||ρ

:=
C5

γδτ+1
||E||ρ.

(2.75)

Otherwise, from the definition of B, T and RH and inequalities (2.75), (2.70)
and (2.72) we obtain

|〈B̄L − T̄RH̄(B̄N)〉 − 〈BL − TRH(BN)〉|
≤|〈B̄L −BL〉|+ |〈(T − T̄ )RH̄(B̄N)〉|+ |〈TRH(B̄N −BN)〉|
+ |〈T (RH −RH̄)(B̄N)〉|

≤ C5

γδτ+1
||E||ρ +

C4

γδτ+1
||E||ρσHσP cF,1,a + σP cF,1,zcNσH

C5

γδτ+1
||E||ρ

+ σP cF,1,zcN
Ĉ5

γδτ+1
||E||ρσP cF,1,a :=

C6

γδτ+1
||E||ρ.

(2.76)

To find the inequality (2.50) we use again Neumann series as follows

|〈B̄L − T̄RH̄(B̄N)〉−1 − 〈BL − TRH(BN)〉−1|

≤ |〈BL − TRH(BN)〉−1|2|〈B̄L − T̄RH̄(B̄N)〉 − 〈BL − TRH(BN)〉|
1− |〈BL − TRH(BN)〉−1||〈B̄L − T̄RH̄(B̄N)〉 − 〈BL − TRH(BN)〉|

(2.77)

If we assume

σD|〈B̄L − T̄RH̄(B̄N)〉 − 〈BL − TRH(BN)〉| < C6

γδτ+1
||E||ρ <

1

2
(2.78)
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then, inequality (2.77) becomes

|〈B̄L − T̄RH̄(B̄N)〉−1 − 〈BL − TRH(BN)〉−1|

< 2σ2
D

C6

γδτ+1
||E||ρ :=

Ĉ6

γδτ+1
||E||ρ (2.79)

and we obtain second estimate on (2.45)

|〈B̄L − T̄RH̄(B̄N)〉−1|
≤ |〈BL − TRH(BN)〉−1|+ |〈B̄L − T̄RH̄(B̄N)〉−1 − 〈BL − TRH(BN)〉−1|

< |〈BL − TRH(BN)〉−1|+ Ĉ6

γδτ+1
||E||ρ < σD,

(2.80)

by imposing the last inequality, and then we get

Ĉ6

σD − |〈BL − TRH(BN)〉−1|
1

γδτ+1
||E||ρ < 1, (2.81)

which will be included in the definition of Ĉ1.

Finally, we need to proof that the new error Ē is quadratically small in E.
Observe first, that, by Lemma 2.18, the error Ē can be expressed as:

Ē(θ) = DE(θ)ξL(θ)+

∫ 1

0
(1−t)D2F (K(θ)+tΔK(θ), a+tΔa)(ΔK(θ),Δa)⊗2dt.

Then, using (2.54), (2.55), (2.58) and Cauchy estimates (2.12) we get

||Ē||ρ−δ ≤
d

δ
||E||ρ

cRC3

γδτ
||E||ρ +

1

2
cF,2||(ΔK,Δa)||2ρ−δ

≤
(
dcRC3

γδτ+1
+

1

2

cF,2Ĉ
2
2,3

γ2δ2τ

)
||E||2ρ

:=
Ĉ7

γ2δ2τ
||E||2ρ,

(2.82)

which proves the lemma.

But even more, we can obtain explicitly the value Ĉ1 of the hypothesis,
assuming that it has to satisfy all conditions (2.57), (2.67), (2.74), (2.81),
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(2.59) and (2.60) we have imposed during the proof of the lemma. So, we can
define Ĉ1 as the maximum of all these constants of all previous inequalities:

Ĉ1 :=max

{
dĈ2

σL − ||DK||ρ
,

Ĉ4

σP − ||P−1||ρ
,

Ĉ5

σH − ||RH ||ρ′
,

Ĉ6

σD − |〈BL − TRH(BN)〉−1|
,

Ĉ2δ

dist(K(Td
ρ), ∂B)

,
Ĉ3δ

τ+1γ

dist(a, ∂U)

} (2.83)

�

This previous iterative lemma has covered all the analycity aspects on one
Newton step. We can prove Theorem 2.21, in which we will prove the con-
vergence (so the existence) using the results of previous Lemma 2.23 and the
local uniqueness.

Proof: [Proof of T1) in Theorem 2.21: Existence]
LetK0 = K and a0 = a, an approximate solution with error E0 = Fa0(K0(θ))−
K0(θ+ ω), for an adapted frame P0 = (DK0 | N0), with N0 fixed along the
iterative process.

By the Iterative Lemma 2.23, we know that at each Newton step the domain
of analycity of the objects is reduced. Given 0 < δ0 < ρ

2 and 0 < ρ∞ <
ρ− 2δ0, we define a3 =

ρ0
δ0

> 2, a2 = ρ0
ρ∞ > 1 and

a1 =
ρ0 − ρ∞

ρ0 − 2δ0 − ρ∞
> 1.

Constants a1, a2 and a3 satisfy

a3 = 2
a1

a1 − 1

a2
a2 − 1

> 2.

Then, the sequence of widths
ρ0 = ρ,

ρs = ρs−1 − 2δs−1,

where δs =
δ0
as1
, converges to the final width of the analycity strip

ρ0 − 2δ0

∞∑
s=0

1

as1
= ρ∞.

Remark 2.25 This generality is suitable for finding “applicable” values of
a1, a2 and a3, or equivalently δ0, ρ0 and ρ∞, for computer assisted proofs,
in the spirit of Chapter 3 of [53].
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Denote by Ks, as, Es, Ts, Hs, Bs the objects at the s-step. Notice that, at
each Newton step, the condition (2.42) is required to be satisfied, but in this
case, the construction is performed in such a way that we have to control
objects, at each step, with respect to ρs. In particular, the constants Ĉi,
i = 1, . . . , 7, that appear in the Iterative Lemma 2.23 can be taken to be the
same for all steps by considering the worst value of δs, that is, δ0.

Now, we proceed by induction. We suppose that we have applied s times the
Iterative Lemma 2.23, so we have to verify that it can be applied again. We
first need to compute the error Es in terms of E0. Observe that Es reads in
terms of Es−1 in the following way

||Es||ρs <
Ĉ7

γ2δ2τs−1
||Es−1||2ρs−1

=
Ĉ7

γ2δ2τ0
a
2τ(s−1)
1 ||Es−1||2ρs−1

,

so then, by iterating the process until E0 and using that 1+2+ · · ·+2s−1 =
2s − 1 and 1(s− 1) + 2(s− 2) + · · ·+ 2s−21 = 2s − s− 1, we obtain

||Es||ρs <
(

Ĉ7

γ2δ2τ0
a2τ1 ||E0||ρ0

)2s−1
a−2τs1 ||E0||ρ0 , (2.84)

Notice that, to obtain a decreasing sequence of the error, it suffices to assume
that

Ĉ7

γ2δ2τ0
a2τ1 ||E0||ρ0 < 1, (2.85)

and then we get
||Es||ρs < a−2τs1 ||E0||ρ0 . (2.86)

This condition (2.85) has to be imposed in the definition of Ĉ∗ in (2.38).

Now, we have to verify all conditions included on (2.42). For instance, equa-
tion (2.42)

||DKs||ρs +
dĈ2

γδτ+1
s

||Es||ρs < ||DK0||ρ0 +
s∑

j=0

dĈ2

γδτ+1
j

||Ej ||ρj

< ||DK0||ρ0 +
dĈ2

γδτ+1
0

||E0||ρ0
∞∑
j=0

a
(1−τ)j
1

= ||DK0||ρ0 +
dĈ2

γδτ+1
0

1

1− a1−τ1

||E0||ρ0 < σL,

(2.87)
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where last inequality is included in (2.38). In the same way, we obtain the
following inequalities to guarantee all conditions involved on (2.42), which
reads as follows:

dist(Ks(T
d
ρs), ∂B)−

Ĉ2

γδτs
||Es||ρs

> dist(K0(T
d
ρ0), ∂B)−

Ĉ2

γδτ0

1

1− a−τ1

||E0||ρ0 > 0,

(2.88)

dist(as, ∂U)− Ĉ3||Es||ρs > dist(a0, ∂U)− Ĉ3
1

1− a−2τ1

||E0||ρ0 > 0, (2.89)

||P−1s ||ρs +
Ĉ4

γδτ+1
s

||Es||ρs < ||P
−1
0 ||ρ0 +

Ĉ4

γδτ+1
0

1

1− a1−τ1

||E0||ρ0 < σP , (2.90)

||RHs ||ρs+
Ĉ5

γδτ+1
s

||Es||ρs < ||RH0 ||ρ0+
Ĉ5

γδτ+1
0

1

1− a1−τ1

||E0||ρ0 < σH , (2.91)

|〈BL
s − TsRHs(B

N
s )〉−1|+

Ĉ6

γδτ+1
s

||Es||ρs

< |〈BL
s − TsRHs(B

N
s )〉−1|+

Ĉ6

γδτ+1
0

1

1− a1−τ1

||E0||ρ0 < σD,

(2.92)

where constants Ĉ2, . . . , Ĉ6 are evaluated at δ0.

Then, we obtain that the condition that we have to ask to E0 is

Ĉ8

γδτ+1
0

||E0||ρ0 < 1, (2.93)

where

Ĉ8 := max

{
dĈ2

σL − ||DK0||ρ0
1

1− a1−τ1

,
Ĉ4

σP − ||P−10 ||ρ0
1

1− a1−τ1

,

Ĉ5

σH − ||RH0 ||ρ0
1

1− a1−τ1

,

Ĉ6

σD − |〈BL
0 − T0RH0(B

N
0 )〉−1|

1

1− a1−τ1

,

Ĉ2δ0
dist(K0(Td

ρ0), ∂B)
1

1− a−τ1

,
Ĉ3δ

τ+1
0 γ

dist(a0, ∂U)
1

1− a−2τ1

}
(2.94)
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Notice that condition (2.93) implies the hypothesis of the Iterative Lemma in
equation (2.42), so we can apply, again, the Iterative Lemma. Note also that
the sequence ||Es||ρs → 0 when s→∞, such that it satisfies equation (2.84)
with (2.85). Then, the iterative scheme converges to a true quasi-periodic
Fa∞-invariant torus K∞, defined in Td

ρ∞ for a certain aa∞ .

In particular, the conditions required in this proof, (2.85) and (2.93), can be
expressed in terms of ρ0, a1, a3 as

Ĉ7(a1a3)
2τ
||E0||ρ0
γ2ρ2τ0

< 1,

Ĉ8a
τ+1
3 γρτ−10

||E0||ρ0
γ2ρ2τ0

< 1,

where Ĉ7 is given in (2.82) and Ĉ8 in (2.94). So then, previous conditions
correspond to the hypothesis T1 of Theorem 2.21 with

C∗ := max
{
Ĉ7(a1a3)

2τ , Ĉ8a
τ+1
3 γρτ−10

}
. (2.95)

�

Remark 2.26 A possible choice is selecting a1 so that, for a fixed a2 > 1,

a1a3 = 2
a21

a1 − 1

a2
a2 − 1

,

attains its minimum value. This is for a1 = 2, so that a3 = 4 a2
a2−1 .

Proof: [Proof of T2) in Theorem 2.21: Closeness]
We need to prove now that the final torus (K∞, a∞) is close to the initial
approximation (K, a). In equation (2.55) appears how close is one torus from
the other in one Newton step. By iteration, we get how close is the final torus
(K∞, a∞) to the initial one (K, a). Computing separately estimates for K
and a we get estimates

||K∞ −K||ρ∞ <

∞∑
j=0

Ĉ2

γδτj
||Ej ||ρj

<
Ĉ2

γδτ0

∞∑
j=0

a−τj1 ||E0||ρ0 =
Ĉ2

γδτ0

1

1− a−τ1

||E0||ρ0 ,

|a∞ − a| <
∞∑
j=0

Ĉ3||Ej ||ρj < Ĉ3

∞∑
j=0

a−2τj1 ||E0||ρ0 =
Ĉ3

1− a−2τ1

||E0||ρ0
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Finally, using that δ0 = ρ0
a3
, we obtain thesis T2 of the theorem, i.e. inequality

(2.39):

||(K∞ −K, a∞ − a)||ρ∞ ≤ max

{
Ĉ2a

τ
3

1− a−τ1

,
Ĉ3γρ

τ
0

1− a−2τ1

}
||E0||ρ0
γρτ0

≤ aτ3
1− a−τ1

Ĉ2,3

γρτ0
||E0||ρ0

:=
Ĉ∗∗
γρτ0

||E0||ρ0 .

�

Proof: [Proof of T3) in Theorem 2.21: Local uniqueness.]
Let us assume that there are two quasi-periodic invariant tori (K1, a1) and
(K2, a2) in Td

ρ̄0 , for some ρ̄0, which satisfy 〈Kx
i (θ)− θ〉 = 0. Then, we will

see that they are the same as long as the are close enough, say ρ̄0 small.

Consider (K1, a1) a solution of the system (2.5) and (K2, a2) another solu-
tion. We can write Fa2(K2(θ)) in terms of (K1(θ), a1) using Taylor expan-
sions up to first order term, which reads as

Fa2(K2(θ)) =Fa1(K1(θ)) +DFa1(K1(θ))ΔK(θ) +
∂Fa1

∂a
(K1(θ))Δa

+

∫ 1

0
(1− t)D2F (K1(θ) + tΔK(θ), a1 + tΔa)(ΔK(θ),Δa)⊗2dt,

(2.96)

where ΔK(θ) = K2(θ)−K1(θ) and Δa = a2− a1. As (K1, a1) is solution of
the invariance equation (2.3), then DE(θ) = 0. If we take

e(θ) =

∫ 1

0
(1− t)D2F (K1(θ) + tΔK(θ), a1 + tΔa)(ΔK(θ),Δa)⊗2dt,

it is controlled by

||e||ρ̄0 ≤
1

2
cF,2||ΔK,Δa||2ρ̄0 .

Using that both (K1, a1) and (K2, a2) are solutions of (2.5), so in particular
of (2.3), previous equation (2.96) reads as

DFa1(K1(θ))ΔK(θ)−ΔK(θ + ω) +
∂Fa1

∂a
(K1(θ))Δa− e(θ) = 0,

〈ΔKx〉 = 0.
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Lemma 2.16 gives explicit formulas for (ΔK,Δa), from where we get an esti-
mate for ||(ΔK,Δa)||ρ̄0−δ̄0 given by expressions (2.36a), (2.36b) and (2.36c).
So then, for any δ̄0 < ρ̄0, the norm ||(ΔK,Δa)||ρ̄0−δ̄0 is controlled by

||ΔK(θ)||ρ̄0−δ̄0 <
Ĉ2

γδ̄τ0
||e||ρ̄0 <

Ĉ2

γδτ0

1

2
cF,2||ΔK,Δa||2ρ̄0

and

|Δa| < Ĉ3||e||ρ̄0 < Ĉ3
1

2
cF,2||ΔK,Δa||2ρ̄0 ,

so collecting both estimates we get

||(ΔK,Δa)||ρ̄0−δ̄0 <Ĉ2,3
1

2

cF,2

γδ̄τ0
||(ΔK,Δa)||2ρ̄0

:=
C̃

γδ̄τ0
||(ΔK,Δa)||2ρ̄0 ,

(2.97)

where Ĉ2,3 depends now on δ̄0.

Consider now 0 < ρ̄∞ < ρ̄0. We define ā2 =
ρ̄0
ρ̄∞ . For any ā1 > 1 we define

ā3 =
ā1

ā1 − 1

ā2
ā2 − 1

so that the sequence of widths

ρ̄0 = ρ̄0,

ρ̄s = ρ̄s−1 − δ̄s−1,

where δ̄s = δ̄0
ās1

and δ0 = ρ̄0
ā3
, converges to the final width of the analycity

strip

ρ̄∞ = ρ̄0 − δ̄0
1

1− 1
ā1

=
ρ̄0
ā2

.

Now, we proceed by induction. We suppose that we have applied s times
estimate (2.97), so we have estimates for ||(ΔK,Δa)||ρs , which reads in terms
of ||(ΔK,Δa)||ρs−1

in the following way

||(ΔK,Δa)||ρs ≤
C̃

γδτs−1
||(ΔK,Δa)||2ρs−1

=
C̃

γδ̄τ0
ā
τ(s−1)
1 ||(ΔK,Δa)||2ρs−1

,
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so then, by iterating the process until ||(ΔK,Δa)||ρ̄0 and using that 1+ 2+

· · · + 2s−1 = 2s − 1 and 1(s − 1) + 2(s − 2) + · · · + 2s−21 = 2s − s − 1, we
obtain

||(ΔK,Δa)||ρs <
(

C̃

γδτ0
āτ1 ||(ΔK,Δa)||ρ̄0

)2s−1
ā−τs1 ||(ΔK,Δa)||ρ̄0 . (2.98)

Notice that, in order to obtain a decreasing sequence of the norms of the
increments, it suffices to assume that

C̃

γδ̄τ0
āτ1 ||(ΔK,Δa)||ρ̄0 < 1,

which in terms of δ̄0 = ρ̄0
ā3

reads as

C̃

γρ̄τ0
(ā1ā3)

τ ||(ΔK,Δa)||ρ̄0 < 1. (2.99)

An optimal choice is, for a fixed ā2, choose an ā1 in such a way that the
product ā1ā3 attains its minimum value. This is for ā1 = 2, so that

ā3 = lim
ā2→∞

ā1
ā1 − 1

ā2
ā2 − 1

= 2,

and ā1ā3 = 4. Then, equation (2.99) reads as

C̃

γρ̄τ0
4τ ||(ΔK,Δa)||ρ̄0 < 1. (2.100)

Moreover, for any ā2 � 1, so 0 < ρ̄∞ � ρ̄0, condition (2.100) also holds for
ā3 = 2 ā2

ā2−1 , and we get

lim
s→∞ ||(ΔK,Δa)||ρ̄s = 0,

so then (K1, a1) = (K2, a2) in Td
ρ̄∞ . Moreover, by the Identity Theorem of

Holomorphic functions in several complex variables, (K1, a1) = (K2, a2) in
Td
ρ̄0 .

Assume now we start in an analycity strip of width ρ̄0 = ρ∞, where ρ∞ comes
from the existence-closeness part of the proof, and (K1, a1) = (K∞, a∞).
Our goal is to see that, if (K2, a2) is another solution of (2.5) in Td

ρ∞ , and
it is close to (K, a), then it is, in fact, the same as (K1, a1). Assuming then
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that (K1, a1) = (K∞, a∞) (satisfying condition (2.39) of T2) and (K2, a2) is
another solution of (2.5) in Td

ρ∞ , we can write the following inequality

4τ C̃

γρτ∞
||(K2 −K1, a2 − a1)||ρ∞

≤ 4τ C̃

γρτ∞

(
||(K2 −K, a2 − a)||ρ∞ + ||(K −K∞, a− a∞)||ρ∞

)

≤ 4τ C̃

γρτ∞

(
||(K2 −K, a2 − a)||ρ∞ +

Ĉ∗∗
γρτ0

||E0||ρ0

)
< 1,

where we impose last inequality in order to get (2.100) for ρ∞ = ρ̄0, ΔK =
K2 − K1 and Δa = a2 − a1. This assumption on the last inequality also
reads as

||(K2 −K, a2 − a)||ρ∞ <
γρτ∞
4τ C̃

− Ĉ∗∗
γρτ0

||E0||ρ0

and we obtain the condition in (K2, a2) in which there is uniqueness of the
solution by requiring the right hand side to be positive

Ĉ∗∗
γρτ0

||E0||ρ0 <
γρτ∞
4τ C̃

.

In other words, we need get satisfied the inequality

Ĉ∗∗∗
γ2ρτ0ρ

τ∞
||E0||ρ0 < 1,

for
Ĉ∗∗∗ := 4τ C̃Ĉ∗∗.

So then,

||(K2 −K, a2 − a)||ρ∞ < Ĉ∗∗
(
γρτ∞
Ĉ∗∗∗

− 1

γρτ
||E||ρ

)
,

is the required condition for the uniqueness. �



Chapter 3

Newton-like methods for
computing Quasi-Periodic

Normally Hyperbolic
Invariant Tori

In this chapter, we consider the problem of numerically computing quasi-
periodic normally hyperbolic invariant tori (NHIT) with fixed frequency as
well as their invariant bundles. The algorithms are based on a KAM scheme
(see Chapter 2) to find the parameterization of a torus with fixed Diophantine
frequency (by adjusting parameters of the model) and the stable and unstable
bundles.

We start by considering a general algorithm for quasi-periodic normally hy-
perbolic invariant tori. Furthermore, several algorithms for computing re-
ducible quasi-periodic tori, i.e., tori for which the linearized dynamics can
be reduced to constant coefficients, are already treated. These are the cases
in which linearized dynamics is more understandable.

We implement these methods to continue curves of quasi-periodic NHIT of
a perturbed dynamical system. Our interest here, is to explore the different
mechanism of breakdown of these invariant tori. Several observables, such
as Cr and Sobolev norms, Lyapunov multipliers and the distance between
bundles, are computed in order to justify the breakdown tori and to predict
the critical parameter value of torus breakdown.
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3.1 The setting

Consider the ambient manifold Td × Rn = {(x, y) | x ∈ Td, y ∈ Rn}. Let
Fa : Td × Rn → Td × Rn be a family of diffeomorphisms parameterized by
a ∈ Rd. For each parameter a ∈ Rd, we assume that Fa is homotopic to the
identity:

Fa

(
x
y

)
=

(
x
0

)
+ Fa,p

(
x
y

)
,

where Fa,p is 1-periodic in x.

Given ω ∈ Rd, let K = K(Td) be a d-dimensional Fa-invariant torus with a
quasi-periodic motion of frequency ω, parameterized by K : Td → Td × Rn.
Then, see Definition 2.1, it satisfies equation

Fa ◦K(θ) = K(θ + ω). (3.1)

Note that (3.1) is an equation for K and a given the family Fa.

It is clear that the homotopy classes of F and K has to match. This means
that in particular, we look for invariant tori K parameterized by K that are
homotopic to the zero-section of Td × Rn, Td × {0}, that is

K(θ) =

(
θ
0

)
+Kp(θ),

where Kp : T
d → Rd × Rn is 1-periodic in the θ-variables.

As it has been seen in some previous works, see e.g. [57], we find very useful
to compute the torus and the bundles at the same time by using a Newton
method.

The tangent bundle TK of the parameterized torus K is trivial. In particular,
for each θ ∈ Td, the d column vectors of the (d+n)×dmatrix DK(θ) provides
a basis of the fiber TK(θ)K of the tangent bundle. Hence, the matrix-valued
map L : Td → R(d+n)×d defined as L(θ) = DK(θ), provides a global frame
for the tangent bundle. Moreover, the normal bundle NK is defined by
a matrix-valued map N : Td → R(d+n)×n generated by n vectors linearly
independents to L(θ) for each θ ∈ Td, so that the column vectors of L(θ)
joined with the column vectors of N(θ) form a basis of TK(θ)T

d×Rn  Rd+n.
In other words, the matrix valued map P : Td → R(d+n)×(d+n), obtained by
juxtaposing L and N so that P (θ) =

(
L(θ) N(θ)

)
, provides an adapted

frame around the torus. It is said that K is a framed manifold.
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Assume now that K, parameterized by K, is Fa-invariant with a fixed fre-
quency ω. From the definition of the invariance equation, by differentiating
(3.1), we get the invariance equation of the linearization L(θ) = DK(θ),

DFa(K(θ))L(θ)− L(θ + ω) = 0, (3.2)

which means the invariance of the tangent bundle TK.
Notice that the linearized dynamics DF around K in the adapted frame P
is given by a block triangular matrix valued map, Λ : Td → R(d+n)×(d+n),
defined as

Λ(θ) = P (θ + ω)−1DFa(K(θ))P (θ). (3.3)

so it is of the form

Λ(θ) =

(
Id T (θ)
O ΛN(θ)

)
, (3.4)

where ΛN : Td → Rn×n is the dynamics on the normal bundles and T : Td →
Rd×n is the torsion of the system. It is also desirable to work with a normal
bundle NK which is also invariant. Using global frames, this reads as

DFa(K(θ))N(θ)−N(θ + ω)ΛN(θ) = 0. (3.5)

Notice that this invariance condition on the normal bundle is equivalent to
say T (θ) = 0. In such a case, the adapted frame P introduced above reduces
the linearized dynamics to a block diagonal matrix Λ,

Λ(θ) = blockdiag(Id,ΛN(θ)).

From now on, we assume the normal bundle invariant. Moreover, under
normal hyperbolicity properties, the invariant normal bundle decomposes
into stable and unstable subbundles, that we will also assume to be trivial.
So, the normal bundle has the form

N(θ) =
(
NS(θ) NU(θ)

)
(3.6)

where NS : Td → R(d+n)×ns and NU : Td → R(d+n)×nu , with ns + nu = n,
provides a global frame for the stable and unstable bundles, respectively.
Then, the linearized normal dynamics is given by

ΛN(θ) = blockdiag(ΛS(θ),ΛU(θ)),

with ΛS contracting and ΛU expanding, that is: ||ΛS|| < 1 and ||(ΛU)
−1|| < 1

(for adapted Finsler norms).
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Remark 3.1 The property of triviality of stable and unstable bundles is an
extra hypothesis in our setting. There are cases in which non-trivial (non-
orientable) bundles are easily trivialized by using a double covering trick.
That is, we can consider the frame P defined from T̃d = (R/2Z)d instead of
Td by using a double covering trick, see e.g. [59]. There are also cases in
higher dimensional bundles in which there are other topological obstructions
(characteristic classes).

3.2 Specification of three Newton-like methods

Given a family Fa : Td × Rn → Td × Rn and ω ∈ Rd Diophantine, our goal
is to compute a parameterization K of a quasi-periodic normally hyperbolic
invariant torus and its adjusting parameter, as well as their invariant normal
bundles. In the following, we explain how to perform one step of a Newton-
like method to solve invariance equations (3.1) and (3.5) above, in different
contexts. Starting with an approximate parameterization of a quasi-periodic
NHIT, K, and a parameter, a, an approximate invariant normal bundle,
N , and its linearized dynamics, ΛN , the aim of one step of Newton method
is to compute their corresponding corrections ΔK,Δa,ΔN,ΔΛN in such a
way that the error estimates of the new approximations K̄ = K +ΔK, ā =
a+Δa, N̄ = N +ΔN, Λ̄N = ΛN +ΔΛN , are quadratically small with respect
to the starting error estimates. To do so, the parameter a is adjusted in order
to keep fixed the frequency ω. The procedure is repeated until we achieve
the desired error-tolerance.

Remark 3.2 The framework of this algorithm is based on KAM techniques,
detailed in Chapter 2. Remarkably, the method for proving the theorem is
similar to the algorithms presented here.

Remark 3.3 Notice that, the fact of impose an invariant normal bundle, so
using T (θ) = 0, is not a compulsory condition if we do not require reducibility
on the torus. We can use a fix normal bundle, as we have done in Chapter
2, and proceed to compute a new torus and its adjusting parameter.

Since we are dealing with periodic functions to represent the torus K and
the adapted frame P and the internal dynamics is a rotation Rω, it is natural
to represent them in Fourier series. For a periodic function f , we denote by

f(θ) =
∑
k∈Zd

fke
2πikθ (3.7)
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its Fourier series. The average of f is defined as

〈f〉 = f0 =

∫
Td

f(θ) dθ.

3.2.1 A general algorithm

This algorithm is an adaptation of the method of proof of our KAM-like
theorem (Theorem 2.21) in Chapter 2.

Substep 1: Correction of the torus K and parameter a

Let E : Td → Rd+n be the error in the invariance equation of the torus,

E(θ) = Fa(K(θ))−K(θ + ω), (3.8)

which is “small”.

Recall that the adapted frame P , defined by juxtaposing L = DK and N
is approximately invariant. Indeed, the error of reducibility, Ered : Td →
R(d+n)×(d+n), is of the form

Ered(θ) = P (θ + ω)−1DFa(K(θ))P (θ)− Λ(θ), (3.9)

and it satisfies Ered(θ) =
(
P (θ + ω)−1DE(θ) EN

red(θ)
)
, where

EN
red(θ) = P (θ + ω)−1DFa(K(θ))N(θ)−

(
0

ΛN(θ)

)
, (3.10)

so Ered is assumed to be “small”.

We consider the correction of the torus of the form ΔK(θ) = P (θ)ξ(θ), being
ξ : Td → Rd+n a periodic function. Note that the correction preserve the
homotopy class of the torus. The adjustment of a is given by Δa, ā = a+Δa.
Then, by substituting new approximations K̄ = K + Pξ and ā = a+Δa in
(3.1) and using first order Taylor expansion, we obtain

0 = Fa(K(θ) + P (θ)ξ(θ))−K(θ + ω)− P (θ + ω)ξ(θ + ω)

= Fa(K(θ)) +DFa(K(θ))P (θ)ξ(θ) +
∂Fa

∂a
(K(θ))Δa

−K(θ + ω)− P (θ + ω)ξ(θ + ω) +O2

= E(θ) +
∂Fa

∂a
(K(θ))Δa+ P (θ + ω)Λ(θ)ξ(θ)− P (θ + ω)ξ(θ + ω) +O2,

(3.11)
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where we apply definitions (3.9) and (3.10) above, andO2 collect the quadrat-
ically small terms. Multiplying (3.11) by P (θ+ω)−1 and neglecting quadrat-
ically small terms, we obtain the cohomological equation

η(θ) = Λ(θ)ξ(θ)− ξ(θ + ω) +B(θ)Δa, (3.12)

where
η(θ) = −P (θ + ω)−1E(θ) (3.13)

is the error of the approximate solution in the adapted frame and B(θ) =
P (θ + ω)−1 ∂Fa

∂a (K(θ)). Finally, splitting (3.12) into tangent and normal
components, we realize that a Newton step reduces our equation to the block
diagonal system

ηL(θ) = ξL(θ)− ξL(θ + ω) +BL(θ)Δa, (3.14)
ηN(θ) = ΛN(θ)ξ

N(θ)− ξN(θ + ω) +BN(θ)Δa. (3.15)

which can be solved separately.

Tangent component. We have to solve the cohomological equation (3.14):

ξL(θ)− ξL(θ + ω) = ηL(θ)−BL(θ)Δa.

To be able to solve this cohomological equation, we need the right hand side
to be zero averaged. Then, to ensure ηL(θ)−BL(θ)Δa has zero average, we
have to choose the correction Δa as

Δa = − < BL >−1< ηL > . (3.16)

From this condition, we obtain a non-degeneracy condition over the sys-
tem: it is needed that < BL(θ) > be invertible. Notice that this condition
corresponds to the hypothesis H5), the non-degeneracy condition. Since ω
satisfies Diophantine conditions and 〈ηL(θ) − BL(θ)Δa〉 = 0, we can solve
(3.14). Notice that, equation (3.14) splits into d equations corresponding to
its d tangent directions:

ξi(θ)− ξi(θ + ω) = ηi(θ)−Bi(θ)Δa, (3.17)

for i = 1, . . . , d.

The solution is obtained by solving (3.17) order by order in terms of Fourier
modes:

ξik =
ηik −Bi

kΔa

1− e2πikω
, k �= 0, (3.18)

for each i = 1, . . . , d, which corresponds to each tangent direction. Notice
that ξi0 is free. In particular, we choose ξi0 = 0, for all i.
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Remark 3.4 As ω is Diophantine, we do not have resonances in (3.18).

Normal component. From normal hyperbolicity, and matrix ΛN being
block diagonal, equation (3.15) splits into stable and unstable components:

ηS(θ)−BS(θ)Δa = ΛS(θ)ξ
S(θ)− ξS(θ + ω), (3.19)

ηU(θ)−BU(θ)Δa = ΛU(θ)ξ
U(θ)− ξU(θ + ω), (3.20)

where the left hand side is already known, since we first solved the tangent
component, and so that Δa. Hence, we can solve both equations by simple
iteration using the contracting principle, which will converge to the solutions
ξS and ξU we wanted. In particular, ξS and ξU solve the fixed point equations

ξS(θ) = ΛS(θ − ω)ξS(θ − ω)− ηS(θ − ω) +BS(θ − ω)Δa,

ξU(θ) = (ΛU(θ))
−1 (ξU(θ + ω) + ηU(θ)−BU(θ)Δa) ,

respectively, that can be solved by iteration.

At this step, we have gained new approximations K̄ and ā for which the new
error Ē(θ) = Fā(K̄(θ)) − K̄(θ + ω) is quadratically small with respect to
E(θ). Additionally, we obtain a new approximation for the tangent bundle
L̄ = DK̄.

Substep 2: Correction of the normal bundles

We redefine the error in the invariance equation of the adapted frame for the
new K̄ (so that for P̄ = (DK̄ N) ) and ā as

Ēred(θ) = P̄ (θ + ω)−1DFā(K̄(θ))P̄ (θ)− Λ(θ)

which is close to the previous Ered(θ). For the sake of concreteness, we
redefine K = K̄, P = P̄ , a = ā and Ered = Ēred.

We consider the corrections of the normal bundle, N̄ = N + ΔN , and its
linearized dynamics, Λ̄N = ΛN +ΔΛN of the form:

ΔN(θ) = P (θ)QN(θ),

ΔΛN(θ) = blockdiag(ΔΛS(θ),ΔΛU(θ)),
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where QN : Td → R(d+n)×n is a periodic matrix map. Then, we obtain

0 = DF (K(θ))N̄(θ)− N̄(θ + ω)Λ̄N(θ)

= DF (K(θ)) (N(θ) + P (θ)QN(θ))−
− (N(θ + ω) + P (θ + ω)QN(θ + ω)) (ΛN(θ) + ΔN(θ))

= P (θ + ω)EN
red(θ) + (P (θ + ω)Λ(θ) + P (θ + ω)Ered(θ))Q

N(θ)−
− P (θ + ω)QN(θ + ω)ΛN(θ)−N(θ + ω)ΔN(θ)

− P (θ + ω)QN(f(θ))ΔN(θ).

Hence, by multiplying both sides of the equation by P (θ + ω)−1 and by
neglecting quadratically small terms, in the same way we proceed with the
tangent component, we obtain the following cohomological equation:

−EN
red(θ) = Λ(θ)QN(θ)−QN(θ + ω)ΛN(θ)−

(
O

ΔN(θ)

)
. (3.21)

The corrections of the (approximate) stable and unstable bundles are per-
formed in the complementary directions. That is, the correction matrix QN

is chosen of the form

QN(θ) =

⎛
⎝ QLS(θ) QLU(θ)

O QSU(θ)
QUS(θ) O

⎞
⎠ , (3.22)

so that the “missing” blocks QSS and QUU are taken to be zero. Hence,
Equation (3.21) corresponds to the following block equations, where we use
super-indices to indicate the blocks, just as in (3.22):

−ELS
red(θ) = QLS(θ)−QLS(θ + ω)ΛS(θ), (3.23a)

−ELU
red(θ) = QLU(θ)−QLU(θ + ω)ΛU(θ), (3.23b)

−EUS
red(θ) = ΛU(θ)Q

US(θ)−QUS(θ + ω)ΛS(θ), (3.23c)
−ESU

red(θ) = ΛS(θ)Q
SU(θ)−QSU(θ + ω)ΛU(θ), (3.23d)

−ESS
red(θ) = −ΔΛS(θ), (3.23e)

−EUU
red(θ) = −ΔΛU(θ). (3.23f)

We obtain directly the correction of the linearized normal dynamics from
equations (3.23e) and (3.23f). The other 4 equations give us the components
of the correction of the normal bundle, QN in (3.22), and can be solved by
the contraction mapping, as all of them are contractions or expansions by
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NHIM hypothesis (ΛS contractive and ΛU expansive). The corresponding
fixed point equations are

QLS(θ)=QLS(θ + ω)ΛS(θ)− ELS
red(θ), (3.24a)

QLU(θ)=(QLU(θ − ω) + ELU
red(θ − ω)) (ΛU(θ − ω))−1, (3.24b)

QUS(θ)=(ΛU(θ))
−1 (QUS(θ + ω)ΛS(θ)− EUS

red(θ)) , (3.24c)
QSU(θ)=(ΛS(θ − ω)QSU(θ − ω) + ESU

red(θ − ω)) (ΛU(θ − ω))−1, (3.24d)

that can be solved by iteration.

Summarizing, we obtain the following new approximations of the invariant
normal bundle, N̄ ,

N̄S(θ) = NS(θ) + L(θ)QLS(θ) +NU(θ)QUS(θ),

N̄U(θ) = NU(θ) + L(θ)QLU(θ) +NS(θ)QSU(θ),

and of the corresponding linearized dynamics Λ̄N = diag(Λ̄S, Λ̄U),

Λ̄S(θ) = ΛS(θ) + ESS
red(θ),

Λ̄U(θ) = ΛU(θ) + EUU
red(θ).

That is, we obtain a new adapted frame P̄ (θ) =
(
L̄(θ) N̄(θ)

)
, and a new

linearized dynamics Λ̄(θ) = diag(Id, Λ̄N(θ)), that improves the error Ered(θ).
We have to repeat substeps 1 and 2 until we reach the desired error tolerance.

Remark 3.5 Fast iterative methods for solving cohomology equations (3.19),
(3.20),(3.24a), (3.24b), (3.24c) and (3.24d) have been designed in [66, 67],
reducing n iterations of simple iteration method to log2 n. These methods
have been adapted to work with cohomological equations over general dynam-
ics instead of rotations for the computations of normally hyperbolic invariant
manifolds performed in Chapter 4.

3.2.2 An algorithm based on reducibility

Sometimes, it is possible to choose a frame in such a way that the lineariza-
tion becomes a constant matrix. When this happens, we say that our system
is reducible. When it is possible, the Newton step is extremely fast and ac-
curate when using Fourier series, since we have the equations completely
uncoupled. Moreover, reducibility is a geometrically important property,
since it gives full information about the linearization, see [42, 70, 71]. Unfor-
tunately, the property of reducibility is not always satisfied, as we will detect
in many examples of this chapter.
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Definition 3.6 We say that the invariant torus is reducible if and only
if there exists P : T̃d = (R/2Z)d → R(d+n)×(d+n) and Λ ∈ R(d+n)×(d+n)

constant such that:

P−1(θ + ω)DFa(K(θ))P (θ)− Λ = 0. (3.25)

Notice that the Floquet transformation is assumed to be 2-periodic, instead
of being 1- periodic, in order to include non-orientable bundles in the defi-
nition.

We will consider here the reducible case. We will redefine in this subsection
the Newton step for the reducible case.

Substep 1: Correction of the torus K and parameter a

We proceed in the same way as we did in the general algorithm, but taking
into account that now the error of reducibility, Ered : Td → R(d+n)×(d+n), is
of the form

Ered(θ) = P (θ + ω)−1DFa(K(θ))P (θ)− Λ, (3.26)

with Λ constant, so that

EN
red(θ) = P (θ + ω)−1DFa(K(θ))N(θ)−

(
0
ΛN

)
. (3.27)

Consider the errors E and Ered, defined by (3.8) and (3.26) respectively,
“small”. Consider, again, the correction of the torus K̄ = K + ΔK of the
form ΔK(θ) = P (θ)ξ(θ), being ξ : Td → Rd+n a periodic function, and
the adjustment of a given by Δa, ā = a + Δa. Then, by substituting new
approximations K̄ = K + Pξ and ā = a+Δa in (3.1) and using first order
Taylor expansion, we obtain

−E(θ) =
∂Fa

∂a
(K(θ))Δa+P (θ+ ω)Λξ(θ)−P (θ+ ω)ξ(θ+ ω) +O2, (3.28)

where we apply definitions (3.26) and (3.27) above, and O2 collect the
quadratically small terms. Multiplying last equation (3.28) by P (θ + ω)−1

and neglecting quadratically small terms, we obtain the cohomological equa-
tion

η(θ) = Λξ(θ)− ξ(θ + ω) +B(θ)Δa, (3.29)

where
η(θ) = −P (θ + ω)−1E(θ) (3.30)
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is the error of the approximate solution in the adapted frame and B(θ) =
P (θ + ω)−1 ∂Fa

∂a (K(θ)). Finally, splitting (3.29) into tangent and normal
components, we realize that a Newton step reduces our equation to the block
diagonal system

ηL(θ) = ξL(θ)− ξL(θ + ω) +BL(θ)Δa, (3.31)
ηN(θ) = ΛNξ

N(θ)− ξN(θ + ω) +BN(θ)Δa. (3.32)

which can be solved separately.

Tangent component. Observe that equation (3.31) is exactly the same as
in the non-reducible case, (3.14), so that the solution is the same as well.
Then, the correction over the tangent component of the torus is given by
(3.18) as:

ξik =
ηik −Bi

kΔa

1− e2πikω
, k �= 0,

for each i = 1, . . . , d, with ξi0 free (in particular we take ξi0 = 0, for all i),
and the adjustment of the parameter a is of the form (3.16)

Δa = − < BL >−1< ηL > .

Normal component. At this point, Δa is a known value, so then we can
redefine

η̃N(θ) = ηN(θ)−BN(θ)Δa. (3.33)

With this new notation, we write equation (3.32) in terms of Fourier

η̃N
k = ΛNξ

N
k − ξN

k e
2πikω. (3.34)

Notice that by normal hyperbolicity, the term (ΛNξ
N
k −e2πikωId) is invertible

for all k. Then, we get immediately the solution of (3.34) by isolating the
term ξN

k , and the solution is of the form

ξN
k = (ΛN − e2πikωId)−1η̃N

k , (3.35)

for all k.

At this step, we have gained new approximations K̄ and ā for which the
new error Ē(θ) = Fā(K̄(θ)) − K̄(θ + ω) is, hopefully, quadratically small
with respect to E(θ). Additionally, we obtain a new approximation for the
tangent bundle L̄ = DK̄.

Remark 3.7 Notice that, compared with the general algorithm, instead of
solving (3.32) by using by using iteration, we solve it term by term in Fourier
modes. This update leads to a faster algorithm, as long as the torus is re-
ducible. Analogous improvements will be detailed in other substeps of the
algorithm.
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Substep 2: Correction of the Floquet transformations

We redefine the error in the invariance equation of the adapted frame for the
new K̄ (so that for P̄ = (DK̄ N) ) and ā as

Ēred(θ) = P̄ (θ + ω)−1DFā(K̄(θ))P̄ (θ)− Λ (3.36)

which is close to the previous Ered(θ). For the sake of concreteness, we
redefine K = K̄, a = ā and P = P̄ .

We consider the corrections of the normal bundle, N̄ = N +ΔN , and its lin-
earized dynamics, Λ̄N = ΛN +ΔΛN , where QN : Td → R(d+n)×n is a periodic
matrix map and ΛN a constant n×n matrix, so that Λ = blockdiag(Id,ΛN).
Doing similar computations on equation

DF (K(θ))N̄(θ)− N̄(θ + ω)Λ̄N = 0 (3.37)

as in the substep 2 of the general algorithm, we obtain the cohomological
equation:

−EN
red(θ) = ΛQN(θ)−QN(θ + ω)ΛN −

(
O

ΔΛN

)
. (3.38)

As Λ is blockdiagonal, we can split equation (3.38) in two different equations

−ELN
red(θ) = QLN(θ)−QLN(θ + ω)ΛN , (3.39)

−ENN
red (θ) = ΛNQ

NN(θ)−QNN(θ + ω)ΛN +ΔΛN , (3.40)

and solve them separately.

Note that equation (3.39) is similar to (3.32). In that case, if the matrix
(Id − e2πikωΛN) is invertible then we can solve equation (3.39), again in
terms of Fourier, by isolating QLN

k . Then, the solution is

QLN
k = −ELN

redk(Id− e2πikωΛN)
−1, (3.41)

for all k. The condition for the matrix (Id− e2πikωΛN) to be invertible, that
is

1− e2πikωλ �= 0, (3.42)

where λ ∈ Spec(ΛN), is a first Melnikov condition. See Remark 3.10 in the
following subsection.

The second equation (3.40) is not immediate, since ΛN is a complete matrix
n× n. Notice that, in terms of Fourier it reads as

−ENN
red 0 = ΛNQ

NN
0 −QNN

0 ΛN −ΔΛN , k = 0, (3.43)
−ENN

red k = ΛNQ
NN
k −QNN

k e2πikωΛN , k �= 0. (3.44)
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By choosing QNN
0 = 0 in the first equation, which corresponds to the con-

stant Fourier term, we obtain directly the correction of the dynamics on the
bundles, which is of the form

ΔΛN = ENN
red 0. (3.45)

To obtain the other k �= 0 Fourier terms of QNN , we just have to solve
equation (3.44) as an n2-dimensional linear system by using some numer-
ical method. The hypothesis for solvability of these equations is a second
Melnikov condition

λi − e2πikωλj �= 0, (3.46)

where λi, λj ∈ Spec(ΛN). In particular, the Floquet multipliers are the
eigenvalues of the matrix, and both real and complex Floquet multipliers
can appear in this reducible case.

Summarizing, we have obtained new better approximations K̄ = K + Pξ,
ā = a +Δa and N̄ = N + PQN and Λ̄N = ΛN +ΔΛN , such that improves
the errors E and Ered. We have to repeat substeps 1 and 2 until we reach
the desired error tolerance.

3.2.3 An algorithm based on complete reducibility

Furthermore, sometimes it is possible to chose a frame in such a way that
the linearization becomes a constant, and also diagonal, matrix.

Definition 3.8 We say that the invariant torus is completely reducible
if and only if there exists P : T̃d = (R/2Z)d → R(d+n)×(d+n) and Λ ∈
R(d+n)×(d+n) constant such that:

P−1(θ + ω)DFa(K(θ))P (θ)− Λ = 0, (3.47)

where Λ is a diagonal matrix.

This is the case, for instance, if we are under Diophantine conditions on ω and
the invariant normal bundle decomposes into n one dimensional subbundles.
In such a case, the normal dynamics is reduced to a diagonal constant matrix

ΛN = diag(λd+1, . . . , λd+n),

with real entries |λj | �= 1, which we will denote as the eigenvalues of the
torus. Notice that in that case, the correction of the dynamics of the bundles
ΛN is also a diagonal matrix

ΔΛN = diag(δd+1, . . . , δd+n),
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which in fact its components are the Floquet multipliers. When it is possi-
ble to completely reduce the system, each step in the Newton-like method
becomes very fast, see e.g. [59].

The essential idea of the completely reducible method is that we can con-
sider both the invariance equation (3.1) and the reducibility equation for the
normal bundle (3.49), in such a way that at each step of the Newton method,
the linear equation to be solved is, in some sense, diagonalized. Lets see now
the reformulation of the Newton step for the completely reducible case.

Substep 1: Correction of the torus K and parameter a

We proceed in the same way as we done in the non-reducible case, but taking
into account that now the error of reducibility, Ered : Td → R(d+n)×(d+n), is
of the form

Ered(θ) = P (θ + ω)−1DFa(K(θ))P (θ)− Λ, (3.48)

with Λ diagonal and constant, so that

EN
red(θ) = P (θ + ω)−1DFa(K(θ))N(θ)−

(
0
ΛN

)
. (3.49)

Consider the errors E and Ered, defined by (3.8) and (3.48) respectively,
“small”, so that we have an approximate invariant torus K for some param-
eter a with his normal invariant bundle N , which has a reduced constant
diagonal dynamics ΛN . In order to improve the approximation K, N and
ΛN , we consider the correction of the torus of the form ΔK(θ) = P (θ)ξ(θ),
being ξ : Td → Rd+n a periodic function, and the adjustment of a given by
Δa, so that we have new better approximations given by K̄ = K +ΔK and
ā = a + Δa. Then, by substituting new approximations K̄ = K + Pξ and
ā = a+Δa in (3.1) and using first order Taylor expansion, we obtain

−E(θ) =
∂Fa

∂a
(K(θ))δ + P (θ + ω)Λξ(θ)− P (θ + ω)ξ(θ + ω) +O2, (3.50)

where we apply definitions (3.48) and (3.49) above, and O2 collect the
quadratically small terms. Multiplying (3.50) by P (θ+ ω)−1 and neglecting
quadratically small terms, we obtain the cohomological equation

η(θ) = Λξ(θ)− ξ(θ + ω) +B(θ)Δa, (3.51)

where
η(θ) = −P (θ + ω)−1E(θ) (3.52)
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is the error of the approximate solution in the adapted frame and B(θ) =
P (θ + ω)−1 ∂Fa

∂a (K(θ)). Finally, splitting (3.51) into tangent and normal
components, we realize that a Newton step reduces our equation to the block
diagonal system

ηL(θ) = ξL(θ)− ξL(θ + ω) +BL(θ)Δa, (3.53)
ηN(θ) = ΛNξ

N(θ)− ξN(θ + ω) +BN(θ)Δa. (3.54)

which can be solved separately.

Tangent component. Observe that equation (3.53) is exactly the same as
in the non-reducible case, (3.14), so that the solution is the same as well.
Then, the correction over the tangent component of the torus is given by
(3.18) as:

ξik =
ηik −Bi

kΔa

1− e2πikω
, k �= 0,

for each i = 1, . . . , d, with ξi0 free (in particular ξi0 = 0, for all i), and the
adjustment of the parameter a is of the form (3.16)

Δa = − < BL >−1< ηL > .

Normal component. As ΛN is now diagonal, in this case equation (3.54)
splits into n equations, corresponding to their n normal components.

ηi(θ)−Bi(θ)Δa = λiξ
i(θ)− ξi(θ + ω) (3.55)

for i = d + 1, . . . , d + n. Notice that now, these equations are diagonal in
Fourier space, so that the solution is obtained by solving (3.55) term by term
in Fourier modes:

ξik =
ηik −Bi

kΔa

λi − e2πikω
, (3.56)

for all k. In particular, in this case we could have small divisors if the
denominator becomes zero, that is

λi − e2πikω = 0.

Since, by assumption, we are computing normally hyperbolic tori, this means
|λi| �= 1 for all i, there are no resonances in (3.56).

Remark 3.9 The absence of resonances in (3.56) is known as first Melnikov
condition. This is also important for dealing with complex eigenvalues of
modulus 1, i.e. elliptic eigenvalues.
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At this step, we have gained new approximations K̄ and ā for which the
new error Ē(θ) = Fā(K̄(θ)) − K̄(θ + ω) is, hopefully, quadratically small
with respect to E(θ). Additionally, we obtain a new approximation for the
tangent bundle L̄ = DK̄.

Substep 2: Correction of the Floquet transformations

We redefine the error in the invariance equation of the adapted frame for the
new K̄ (so that for P̄ = (DK̄ N) ) and ā as

Ēred(θ) = P̄ (θ + ω)−1DFā(K̄(θ))P̄ (θ)− Λ (3.57)

which is close to the previous Ered(θ). For the sake of concreteness, we
redefine K = K̄, a = ā and P = P̄ .

We consider the corrections of the normal bundle, N̄ = N + ΔN , and its
linearized dynamics, Λ̄N = ΛN +ΔΛN , of the form:

ΔN(θ) = P (θ)QN(θ),

ΔN = diag(δd+1, . . . , δd+n),

where QN : Td → R(d+n)×n is a periodic matrix map. Doing similar compu-
tations on equation

DF (K(θ))N̄(θ)− N̄(θ + ω)Λ̄N = 0 (3.58)

as in the substep 1, we obtain the cohomological equation:

−EN
red(θ) = ΛQN(θ)−QN(θ + ω)ΛN −

(
O
ΔN

)
. (3.59)

Notice that now, this cohomological equation is diagonal in Fourier space.
Then, using the matrix notation

QN(θ) = (Qi,j(θ)),

for i = 1, . . . , n+d, j = d+1, . . . , d+n, equation (3.59) splits into (d+n)×n
equations, which can be classified in three different equation types:

i ≤ d, i �= j : −Ei,j
red(θ) = Qi,j(θ)−Qi,j(θ + ω)λj , (3.60a)

i > d, i �= j : −Ei,j
red(θ) = λiQ

i,j(θ)−Qi,j(θ + ω)λj , (3.60b)

i > d, i = j : −Ei,i
red(θ) = λiQ

i,i(θ)−Qi,i(θ + ω)λi − δi, (3.60c)
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for j = d+ 1, . . . , d+ n. We solve each of these three equations in terms of
Fourier modes, in the same way we have done in the previous cases, and we
obtain the following solutions

i ≤ d, i �= j : Qi,j
k =

(Ei,j
red)k

λje2πikω − 1
, ∀k. (3.61a)

i > d, i �= j : Qi,j
k =

(Ei,j
red)k

λje2πikω − λi
, ∀k. (3.61b)

i > d, i = j :
Qi,i

k =

⎧⎨
⎩

(Ei,i
red)k

λi(e2πikω−1) , k �= 0,

0 , k = 0,

δi = (Ei,i
red)0.

(3.61c)

Note that, there are no resonances in any of these equations, provided that we
are considering |λi| �= |λj | �= 1. More concretely, we can have resonances in
(3.61a) if |λj | = 1 and we can have resonances in (3.61b) if |λj | = |λi|. Notice
that the absence of resonances in (3.61c) is granted by the Diophantine
condition.

Remark 3.10 The absence of resonances in (3.61a) is known as the First
Melnikov condition and the absence of resonances in (3.61b) is known as the
Second Melnikov condition. Notice that the absence of resonances in (3.61a)
correspond to the condition (3.42) and the absence of resonances in (3.61b)
correspond to the condition (3.46), for the (non-diagonal) reducible case.

Summarizing, we have obtained new better approximations K̄ = K + Pξ,
ā = a +Δa and N̄ = N + PQN and Λ̄N = ΛN +ΔΛN , such that improves
the errors E and Ered. We have to repeat substeps 1 and 2 until we reach
the desired error tolerance.

Remark 3.11 In order to prove the convergence of algorithms based on re-
ducibility (both diagonal and non-diagonal), Melnikov conditions have to be
strengthened in appropriate Diophantine conditions, such as

|λje
2πikω − λi| ≥

γ

|k|τ ,

for k �= 0.

3.3 Some guidelines for the implementation

In this section, we are going to implement the algorithms explained in this
chapter, and how we can mix them in order to get more efficiency on the
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computations.

Even that the main objective of this chapter is how to compute quasi-periodic
normally hyperbolic invariant tori, our general interest is to study dynamical
systems and determine, as well as possible, their global behavior. Indeed, due
to the important role of invariant manifolds and how they organize the phase
space of a dynamical system, we are very interested on their continuation
along with the different mechanisms of breakdown it appears.

Recall from Section 1.3, that the definition of normally hyperbolic invariant
manifold, see Definition 1.2 in which ρL,± = 1 for the quasi-periodic case,
gives us two measures for the quality of the normal hyperbolicity property:
one measures the asymptotic rate of growth (given by ρS and ρU in (1.4))
and the other measures how long you take to observe this asymptotic rate of
growth, given by C in Definition 1.2. In the literature, several different kind
of breakdowns for quasi-periodic normally hyperbolic invariant tori has been
seen. One of the most frequent scenarios is the loss of the hyperbolicity due
to the degeneracy of the rates of growth, in which either ρS or ρU goes to 1(=
ρL,±), which concerns the known quasi-periodic bifurcation theory, see e.g.
[10, 25, 26]. Besides of that, the loss of hyperbolicity due to the incapacity
to bound the factor C of Definition 1.2 is also possible, which is related
to the collision of the invariant bundles of the torus, in which we cannot
have the splitting into tangent, stable and unstable directions of equation
(1.3), independently of the rates of growth, which can be different from 1
or not. This kind of behaviour has been profusely studied in [44, 57, 59].
In particular, in [57, 59] the authors describe two different bundle merging
scenarios on skew-products over rotations. In the first scenario there appears
a collision between stable and unstable bundles, which leads to an immediate
breakdown of the torus, although their corresponding Lyapunov multipliers
remain different and far from 1. In the second one, there appears a collision
between stable bundles (slow and fast) leading to the loss of the reducibility
of the torus but not to its immediate breakdown (the breakdown becomes
later). More recently, a different bundle merging scenario has been observed
for a quasi-periodic attractor torus in the dissipative standard map, in which
the breakdown is due to the collision of the tangent and the stable bundle, see
[18]. Notice that the above mentioned families of dynamical systems have
some extra geometrical structure. In particular, [57, 59] deal with skew-
products over rotations (for which the normal bundle is invariant) and [18]
deals with conformally symplectic maps. In this chapter, we will observe
similar scenarios in the more general families we consider.
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3.3.1 Fourier series

It is well known that Fourier series are very specialized for rotational and
periodic dynamics, so that for our particular case of this chapter. Notice that
our method manipulates periodic objects g(θ) of the same dimension as the
torus, so that θ ∈ Td and g defined by g : Td → Rd+n. Since the examples
we will consider are defined modulus 2π, for the numerical implementation
we use real (truncated) Fourier series, of the form

g(θ) = c0 +

NF∑
k=1

ck cos(kθ) + sk sin(kθ),

where sk, ck are the real Fourier modes, and NF is the needed number of
Fourier modes for a good representation of the function. In fact, during the
computations we will store these sk and ck coefficients.

The norm we have used in these implementation is defined as

||g|| = |a0|+
NF∑
k=1

√
s2k + c2k ≥ ||g||∞,

where the numbers
√
s2k + c2k are called the amplitudes of the Fourier modes.

In particular, for periodic matrix M(θ) = (Mi,j(θ)) or periodic vectors
V (θ) = (Vi(θ)), we denote theirs norms by

||M || = max
ij
||Mi,j ||

and
||V || = max

i
||Vi||,

respectively. Notice that the objects we compute are smooth, or even ana-
lytic, so the last terms of the expansions decrease faster than powers. We
consider that we have a good representation of a periodic function g if the
norm of the tail of the Fourier expansion (meaning, for instance, of the last
10 Fourier modes) is smaller than a desired tolerance. For that reason, in or-
der to compute an invariant torus, we should take care not only on the error
estimates of the invariance equations, E and Ered, but also on the accuracy
of the approximations, that is of the tail of the Fourier series.

Recall that the parameterization method to compute quasi-periodic invariant
tori consists in a Newton method to solve the invariance equation (3.1),
and then to use there a Fourier discretization to solve their corresponding



84 Chapter 3. Newton method for computing QP-NHIT

NF Completely Red. Red. Non-Red.
64 2.12500e-01 2.15000e-01 4.10000e-01
128 9.00000e-02 8.60000e-02 1.70000e-01
256 2.25000e-01 2.25000e-01 4.47500e-01
512 2.95000e-01 3.13333e-01 5.44000e-01
1024 6.77500e-01 7.15000e-01 1.27500e+00
2048 7.32500e-01 7.35000e-01 1.38750e+00
4096 1.33750e+00 1.37000e+00 2.55250e+00
8192 1.93500e+00 2.04000e+00 3.81250e+00
16384 5.27500e+00 5.96250e+00 1.02050e+01
32768 1.16475e+01 1.19700e+01 2.44850e+01
65536 2.10425e+01 2.10575e+01 4.39350e+01
131072 5.13425e+01 5.07920e+01 1.04690e+02
262144 7.92025e+01 7.57500e+01 1.51110e+02
524288 1.40776e+02 1.70220e+02 2.74075e+02
1048576 3.46405e+02 4.06400e+02 6.64240e+02

Table 3.1: Computation time of one Newton step for the different algorithms of this chapter
by using an usual laptop.

linear invariance equation. In reducible cases, the algorithm reduces to steps
that are diagonal in the Fourier space, so then becoming really faster. In
particular, we need O(2NF+1) storage space and O((2NF+1) log(2NF+1))
operations in order to perform a Newton step combined with FFT routines.
See Table 3.1 for the computation time (in seconds) of a Newton step for all
three methods explained in this chapter.

3.3.2 Observables

In order to monitor and measure the quality of the normal hyperbolicity
property, we analyze the following observables:

• Lyapunov multipliers,

• Minimum angle between invariant bundles.

Otherwise, in order to measure the quality of the regularity of the torus, and
so a better understanding of its breakdown, we analyze:

• the blow up of the Sobolev norms,

• the blow up of the Cr-norms.
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Dynamical Observables

First natural observables to compute are the Lyapunov multipliers, which
give us information about the linearized dynamics. Notice that, in the re-
ducible case they correspond to the absolute values of the eigenvalues of the
reduced matrix Λ, in which we have d multipliers equal to 1, corresponding
to the tangent dynamics, and n hyperbolic eigenvalues corresponding to the
normal dynamics. Otherwise, when we are not dealing with a completely
reducible torus, we can compute them from the hyperbolic cocycle (ΛN , ω),
given by

v̄ = ΛN(θ)v

θ̄ = θ + ω

by using usual methods to compute Lyapunov multipliers over cocycles.
But even more, using our methods, during the continuations quasi-periodic
tori we obtain the concrete parameters (a, ε) for which the diffeomorphism
Fa,ε has a quasi-periodic invariant torus, so then we can compute the Lya-
punov multipliers, direct from the diffeomorphism Fa,ε, by using an usual
QR-method to compute Lyapunov multipliers. Notice that, in the non-
completely reducible case (and also for the non-reducible), the Lyapunov
multipliers could have the same value, that is, the invariant torus is of a
focus type. In particular, as long as the Lyapunov multipliers are far from
1, the non-completely reducible and the non-reducible methods will work.

Hence, following [56, 59], we consider as another suitable observable the min-
imum angle between bundles. Using this observable, we are able to detect
the mechanism of the “bundle merging scenario”, in which the Lyapunov
multipliers of the cocycle of the torus remain different but the bundles corre-
sponding to them approach each other, in a non-smooth way, leading to the
destruction of the torus. We will denote by α the minimum angle between
two sections v1, v2 : T1 → Rn+d,

α(v1, v2) = min
θ∈T

α(v1(θ), v2(θ)).

Certainly, these values α are related to the value C on Definition 1.2, and
the breakdown in the bundle merging scenario is due to the impossibility of
the splitting into tangent, stable and unstable directions around the torus,
so that we lose the reducibility of the torus. Moreover, we can approach the
critical ε value for the breakdown by extrapolating this minimum angle. As
it has been seen in [18, 56, 59], for skew products and symplectic maps, the
minimum angle between bundles in this scenario has a lineal decay close to
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the breakdown. Then, we formulate the following conjecture, to be verified
in our more general class of problems.

Conjecture 3.12 Let Fa,ε be a family of real analytic functions, where ε
represents the continuation parameter. Let (Kε, aε) be the family of quasi-
periodic normally hyperbolic invariant tori and their adjusting parameters for
this family Fa,ε. In a bundle merging scenario, the minimum angle between
bundles satisfies a linear decay close to the breakdown of the torus, given by

α(ε) ∼ A(εc − ε),

when ε→ εc.

Remark 3.13 In the bundle merging scenario, the bundles involved have
different Lyapunov multipliers.

Otherwise, we can also use this observable on other scenarios with a smooth
collision between bundles, which do not lead to the breakdown of the torus.
For instance, we can observe a smooth collision of the bundles, where the
minimum angle between bundles goes to zero, uniformly, in a square root
way

α(ε) ∼ A(εc − ε)
1
2 ,

but moreover the Lyapunov multipliers collide. In this scenario, there is a
transition from a node torus to a focus torus. In that moment, the torus
loses the complete reducibility property, but not the non-completely one, so
that the torus persists as a focus invariant torus with complex eigenvalues.
This has been seen in many works of bifurcation theory, see e.g.[10, 25, 26].

Summarizing, the torus loses the complete reducibility property at the time
of a bundle collision, due to the loss of the splitting into tangent, stable and
unstable directions, but depending on how smooth this collision is, the torus
will be destroyed or not.

Functional Observables

Following [17, 31] we consider the Sobolev norms of the torus in order to
measure the quality of the regularity of the parameterization. We add to
the game the computation of the Cr-norms. We are also interested in the
regularity of the torus at the breakdown.

We focus here with univariate functions. For a real-analytic periodic function
f : Td → C, we can define a fractional derivative f (r) : T→ C, for any r ≥ 0,



3.3. Some guidelines for the implementation 87

through the Fourier expansions. Hence, if the Fourier expansion is expressed
in the complex way by

f(θ) =
∑
k∈Z

f̂ke
ikθ,

we define its derivative by

f (r)(θ) =
∑
k∈Z

|k|reπ
2
rsg(k)if̂ke

ikθ.

Hence, we can define a Cr semi-norm

||f ||Cr = ||f (r)||∞ = max
θ∈T

|f (r)(θ)| (3.62)

and W s,p semi-norms defined by

||f ||pW s,p =
∑
k∈Z

|k|sp|fk|p, (3.63)

but we will mainly consider the Hs = W s,2 semi-norm, the Sobolev semi
norm. Notice that, from Holder inequality, with 1

q +
1
p = 1,

||f ||Cr ≤ ||f ||W r,1 ≤
(∑

k∈Z
|k|(r−s)q

) 1
q

||f ||W s,p ,

as long as r < s − 1
q . Then, there is the inclusion W s,p ⊂ W r,1, which is

closed with the “norm” (∑
k∈Z

|k|(r−s)q
) 1

q

.

In the study of PDE’s, this type of results are used to prove the existence of
weak solutions (in Sobolev sense), and bootstrap their Cr regularity. Here
we use this type of results in the opposite way: if the Cr semi-norm of a
parameterization explodes, then the Hs semi-norm, with s > 1

2 +r explodes.

In our applications,we will consider the blow up of the Cr and Hr semi-
norms in order to detect and to study the destruction of invariant torus (in
connection with renormalization group theory).

Conjecture 3.14 Let Kp,ε : T→ Rd+n be the periodic part of

Kε(θ) =

(
θ
0

)
+Kp,ε(θ),
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where K is Faε-invariant, for a fixed ε value of the continuation process and
aε its adjusting parameter. In particular, we will consider norms defined as

||Kp,ε||∗ := max
i=1,...,d+n

||Ki
p,ε||∗,

where ∗ = Hr, Cr.

Then, in a bundle merging scenario at a critical value εc, the Sobolev and
Cr regularities of the torus are rc and r̂c, respectively. Moreover, near the
breakdown, for ε < εc:

• For r > rc the Hr semi-norm blows up as

||Kp,ε −Kp,εc ||Hr ∼
Ar

(εc − ε)Br
, (3.64)

when ε→ εc, with a critical exponent Br = a+ br, in such a way that
the critical Sobolev regularity is given by

rc = −
a

b
.

• For r > r̂c the Cr semi-norm blows up as

||Kp,ε −Kp,εc ||Cr ∼
Âr

(εc − ε)B̂r
, (3.65)

when ε→ εc, with a critical exponent B̂r = â+ b̂r, in such a way that
the critical regularity is given by

r̂c = −
â

b̂
.

Remark 3.15 These constants a, b, â, b̂ of the critical exponents Br and
B̂r are, possibly, universal for every “class of breakdown”.

Remark 3.16 From Sobolev inequalities, the critical regularities are related
by

r̂c ≥ rc −
1

2
.

In particular, in our implementations we will estimate the critical values εc
by extrapolating the semi-norms H2 and C1 and we will also reproduce fits
for the critical regularity in terms of the critical exponent Br and B̂r of
Hr and Cr, respectively. By using these observables in different examples,
we want to discover new classes of universality, that is different breakdown
types.
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3.3.3 Our particular examples

For the implementation of the algorithm, we restrict ourselves to the com-
putation of torus of dimension 1, which means that in fact, we are com-
puting normally hyperbolic invariant circles. We continue curves of NHIT
in parameter space (a, ε) with respect to ε with the same fixed frequency
ω = (

√
5−1)π, which corresponds to the Golden mean value, up to a critical

value. For each ε-value, we compute its normally hyperbolic invariant torus,
its adjusting parameter, its normal bundles and their dynamics (which in
the completely reducible case coincides with the absolute value of the Lya-
punov multipliers). Moreover, we also compute the observables discussed in
this section, that is Sobolev and Cr norms, angle between bundles and Lya-
punov multipliers. Also, in the non-reducible case, we compute the index of
the bundles, which gives us information about the orientability of the fibers
of the torus.

Our computations has been done by demanding an error tolerance ||E|| <
10−10. When we apply our Newton-like methods, if the Newton process do
not converge, we decrease the step size Δε by a factor of 1

2 with respect to
the previous parameter ε. Furthermore, we also require to the algorithm
to double the number of Fourier modes if the method does not converge for
three consecutive steps, as well as if the tail of our torus is greater than 10−10,
which means that our objects are not well approximated. In particular, our
algorithm is imposed to stop when the torus reaches 220 = 1048576 Fourier
nodes, which we consider that is large enough for a critical value, with a
continuation step size of the order Δε = 10−7. We should remark that we
can produce a continuation till breakdown because we use an efficient method
which allows us to do computations using a large number of Fourier modes.
The breakdown of the computation happens when the dynamical properties
of the torus deteriorate, which happens just before the breakdown of the
object is engendered.

In our first four examples, we consider as a toy example the 3D-Fattened
Arnold Family, also used in [11], given by Fa,ε : R/2πZ×R2 → R/2πZ×R2

defined as:

Fa,ε

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x+ a+ ε(sin(x) + y + z/2)

b(sin(x) + y)
c(sin(x) + y + z)

⎞
⎠ (3.66)

where b, c are fixed parameters, a ∈ R is the adjusting parameter and ε ∈ R

is the continuation parameter. This system has a constant determinant of
the Jacobian det(DFa,ε) = bc, so we can choose different parameters b and c
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Figure 3.1: Curves of quasi-periodic NHIT in the parameter plane (a, ε) for the Fattened
Arnold Family in Examples 1, 2, 3 and 4. In particular the red-orange curve represent the
parameters in the continuation of Example 4, where tori are either completely reducible (red) or
non-completely reducible (orange).

in order to explore different examples of normally hyperbolic invariant tori.
In particular, in Examples 1, 2, and 3 we compute quasi-periodic saddle tori,
for some fixed values b < 1 and c > 1, in which the first one is for a dissipative
map (bc < 1) and the other two are both for a conservative map (bc = 1), and
in Example 4 we compute attracting tori for some values b, c < 1. Figure 3.1
shows the continuation parameter plane (a, ε) for examples based on the
Fattened Arnold Family.

In Example 5, we consider as a toy example a 3D-Fattened Hénon Family,
given by Fa,ε : R/2πZ× R2 → R/2πZ× R2 defined as:

Fa,ε

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x+ a+ dε(cos(x) + z)

1 + z − by2 + ε cos(x)
cy

⎞
⎠ (3.67)

where b, c, d are fixed parameters, a ∈ R is the adjusting parameter and
ε ∈ R is the continuation parameter. This system has a determinant of the
Jacobian det(DFa,ε(x)) = −c(ε sin(x)(1 + ε) + 1). In particular, this family
is an extension of the rotating Hénon Family, studied in [59], for which they
have fixed d = 0. In this case, we use the same fixed parameters as in [59],
b = 0.68 and c = 0.1, in which a saddle torus bifurcates into an attracting
“node-torus”, either for the skew-product case, d = 0, and for the coupled
case, d = 1. In particular, for d = 0 we will reproduce the results in [59].
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Figure 3.2 shows the continuation on the parameter plane (a, ε) for examples
based on the Fattened Hénon Family.
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Figure 3.2: Curves of quasi-periodic NHIT in the parameter plane (a, ε) for the Fattened
Hénon Family of Example 5, for the skew-product case d = 0 (red-orange) and the coupled case
d = 1 (green-light green). We distinct in orange (and light green, respectively) the ε parameter
values in which we do not have reducibility on the torus.

All of these examples are continued till the torus breaks, using any of the
three methods explained in this chapter according the requirement of each
particular example. Since in Examples 1, 2 and 3 we continue saddle tori,
it is natural to use the completely reducible method. In these examples, the
breakdown of the torus is due to a bundle merging scenario (particularly,
between tangent and stable bundles in Examples 1 and 2, and with a triple
collision in Example 3). In Example 4, we continue an attracting torus,
which has a 2-dimensional stable bundle. In this example, we observe several
transitions from node to focus torus (also viceversa), in which the torus
loses the complete reducibility property at the concrete point in which the
Lyapunov multipliers collide and the slow and fast bundles also collide, but
in a smooth way. In that example, we have test all the three methods. The
torus finally breaks due to a bundle collision between the tangent and the
2-dimensional stable bundle, after all these node-focus transitions.

Finally, in Example 5 we observe similar transitions as in [56, 59], both for
the skew-product d = 0 and coupled case d = 1. We deal with a saddle torus,
for small values of ε, which is turned to an attracting-node type torus via
a period-halving bifurcation. The torus loses its reducibility due to a non-
smooth bundle collision of the slow and fast bundles, whereas its Lyapunov
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multipliers remains separated and remain far from 1, so the torus does not
break. For a large ε parameter, the method (which is, of course, necessary
to be the non-reducible method) stops due to a possible “fractalization” of
the torus. This mechanism deserves further study.

3.4 Example 1: Continuation of a saddle torus in a
dissipative system

This example deals with a continuation of a saddle torus for a dissipative
Fattened Arnold family with parameters 0 < b < 1, c > 1 and bc < 1. In the
first place, we consider the particular case b = 0.3 and c = 2.4 (bc = 0.72).

Look first what does happen for the unperturbed case ε = 0. In that case,
the system (3.66) is a skew product over a rotation θ+a, and in fact, we can
explicitly compute the invariant torus with rotation number a for ε = 0 (we
will take a = ω). In order to get an initial approximation of the torus, we
ask for a parameterization of it which has to meet the invariance equation
for ε = 0,

Fa,0(Ka,0(θ)) = Ka,0(θ + a).

From this equation, we get that Ka,0 has to be a graph of the form

Ka,0(θ) =

⎛
⎝ θ
ϕa(θ)
ψa(θ)

⎞
⎠ , (3.68)

where

ϕa(θ) =

∞∑
k=1

bk sin(θ − ka),

ψa(θ) = −
∞∑
k=0

c−k (sin(θ + ka) + ϕa(θ + ka)) .

(3.69)

By defining

C(a, b) =
1− b cos(a)

1− 2b cos(a) + b2
, S(a, b) =

b sin(a)

1− 2b cos(a) + b2
,

we can sum the series (3.69), and we get

ϕa(θ) = S(a, b) cos(θ) + (C(a, b)− 1) sin(θ),

ψa(θ) =
c

b

(
S(a, b)(C(−a, c−1)− 1) + (C(a, b)− 1)S(−a, c−1)

)
cos(θ)

− c

b

(
(C(a, b)− 1)(C(−a, c−1)− 1)− S(a, b)S(−a, c−1)

)
sin(θ).
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Remark 3.17 Notice that formulae above work for any b �= ±1, 0 and c �= 0.

Moreover, from the linearized equation

Pa,0(θ + a)−1DFa,0(Ka,0(θ))Pa,0(θ) = Λa,0(θ),

we get the values of the initial Pa,0 and Λa,0,

Pa,0(θ) =

⎛
⎝ 1 0 0
ϕ′a(θ) 1 0
ψ′a(θ)

c
b−c 1

⎞
⎠ (3.70)

and

Λa,0 =

⎛
⎝1 0 0
0 b 0
0 0 c

⎞
⎠ .

Remark 3.18 Notice that formulae above work for any b �= c.

In this example, from Pa,0(θ), we get the parameterization of stable and
unstable bundles,

NS
a,0(θ) =

⎛
⎝ 0

1
c

b−c

⎞
⎠ , NU

a,0(θ) =

⎛
⎝0
0
1

⎞
⎠ ,

respectively, which are its last two columns.

During the continuation of this torus with respect to ε, we observe how
the tangent and stable bundles approach each other till finally collide, see
Figure 3.3 (top-right). Notice that NU remains far from L and NS. Near
the breakdown, there is a linear decay to zero of the angle between tangent
and stable bundle, αL,S = α(L,NS), given by

αL,S(ε)  1.06010644− 0.53398534 ε.

See Figure 3.3 bottom-right to see this fit over the values of the continuation,
supporting Conjecture 3.12. With this fit, we can get a first approximation
of the critical value εc given by the intersection of αL,S(ε) with zero, so that

εcα  1.9852725710.

At this value, the torus is destroyed. Despite that, the Lyapunov multipliers
ΛL and ΛS are moving away from each other, see Table 3.3, when the torus
is destroyed. We are, in fact, in a bundle merging scenario which cause the
destruction of the torus.
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In order to get another indicator of the breakdown of the torus, we show the
blow up of the H2 and C1 semi-norms when we approach the critical value,
see Table 3.2 and Figure 3.4 (left). We can check in Figure 3.4 (left) how
expressions of Conjecture 3.14 given by equations (3.64) and (3.65) fit very
well the semi-norms of the parameterization of the invariant tori for the last
parameters ε of the continuation and how they grow up when ε approaches
the critical value (labeled with a blue vertical line). In particular, the H2

and C1 semi-norms of this example are given by expressions

H2(ε)  1.25256702

(1.98528019− ε)1.04030871
,

C1(ε)  2.35258564

(1.98528553− ε)0.46438943
.

Concretely, for theseH2 and C1 semi-norms we obtain the critical breakdown
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values

εcH2  1.9852801944,

εcC1  1.9852855326,

which coincides up to five significant digits with εcα . Another indicator of
how close to the breakdown we are, is the necessity to increase a lot the
number of the Fourier modes, NF, in order to approximate the torus, see
Table 3.2.
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We also compute the blow up for different Sobolev and Cr norms, obtaining
the corresponding estimates of the critical parameter of breakdown. See
Table 3.4. Concretely, the critical exponents Br and B̂r satisfy the linear
expressions

Br  −0.86694475 + 0.95349421 r,

B̂r  −0.49407515 + 0.95017818 r,
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supporting Conjecture 3.14. From this expressions, we get the critical reg-
ularities of the torus in the breakdown, which are r  0.9092291712 and
r̂  0.5199815828, respectively. We obtain these values by fitting expressions
(3.64) and (3.65) using the last 10 well equispaced ε values. See Figure 3.4
(left).

In order to test the universality of this mechanism of breakdown, we have
done the continuation for another saddle torus in a dissipative system. In
this new case, we choose b = 0.4 and c = 2.8. We observe again a breakdown
due to the bundle collision of tangent and stable bundle, with a separately
Lyapunov multipliers. The linear fit of the decay of the minimum angle,
given by

αL,S(ε)  1.03781398− 0.52392610 ε,

gives us a critical breakdown value

εcα  1.9808403980.

In that case, the H2 and C2 semi-norms are given, respectively by

H2(ε)  0.63574332

(1.98084535− ε)1.03892062
,

C1(ε)  1.68323296

(1.98085685− ε)0.47005532
,

so the critical breakdown values are

εcH2  1.9808453525,

εcC1  1.9808568502,

respectively. In particular, the general asymptotic expression of the critical
exponents are given by

Br  −0.86314089 + 0.95072600 r,

B̂r  −0.47728414 + 0.93883642 r,

supporting Conjecture 3.14 if r is greater than rc  0.9078755460 and r̂c 
0.5083783845, respectively.
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r εc Br ε̂c B̂r

0.0 2.7351644781 0.5557053222 2.0017499720 0.0241935458
0.1 2.2160544464 0.1922165988 1.9898692389 0.0149793181
0.2 2.0690625518 0.0827874948 1.9868589494 0.0192726838
0.3 2.0175747948 0.0414438527 1.9861072368 0.0405516415
0.4 1.9981289589 0.0248344053 1.9854562792 0.0767804115
0.5 1.9904984586 0.0189164398 1.9853986327 0.1229470550
0.6 1.9874202840 0.0191054657 1.9853517737 0.1743283284
0.7 1.9861571663 0.0252293694 1.9853214691 0.2343932678
0.8 1.9856313576 0.0403266642 1.9853029582 0.3035830172
0.9 1.9854123369 0.0701950851 1.9852918597 0.3807860724
1.0 1.9853239921 0.1205182897 1.9852855326 0.4643894253
1.1 1.9852913912 0.1915994375 1.9852821932 0.5527102202
1.2 1.9852814663 0.2774334407 1.9852804001 0.6441227418
1.3 1.9852795191 0.3706492223 1.9852796237 0.7375487784
1.4 1.9852796841 0.4664087573 1.9852794190 0.8322080595
1.5 1.9852800847 0.5625857314 1.9852795670 0.9276129567
1.6 1.9852803160 0.6585461139 1.9852799543 1.0234622568
1.7 1.9852803825 0.7542219041 1.9852804524 1.1195843668
1.8 1.9852803532 0.8496899819 1.9852813241 1.2161857832
1.9 1.9852802807 0.9450328975 1.9852825160 1.3132099003
2.0 1.9852801944 1.0403087109 1.9852816452 1.4120787752
2.1 1.9852801088 1.1355527234 1.9852753716 1.4941488433
2.2 1.9852800300 1.2307848258 1.9852761548 1.5896859826
2.3 1.9852799598 1.3260156103 1.9852770710 1.6862852051
2.4 1.9852798983 1.4212503656 1.9852778142 1.7829287246
2.5 1.9852798447 1.5164914574 1.9852783954 1.8794563743
2.6 1.9852797981 1.6117396876 1.9852789059 1.9759019724
2.7 1.9852797574 1.7069950523 1.9852790220 2.0716943118
2.8 1.9852797218 1.8022571599 1.9852793339 2.1678654394
2.9 1.9852796905 1.8975254593 1.9852794649 2.2636718215
3.0 1.9852796629 1.9927993637 1.9852794737 2.3592553545
3.1 1.9852796384 2.0880783156 1.9852795145 2.4548775650
3.2 1.9852796165 2.1833618214 1.9852795520 2.5505958893
3.3 1.9852795970 2.2786494658 1.9852795165 2.6460705877
3.4 1.9852795795 2.3739409157 1.9852794167 2.7413815939
3.5 1.9852795638 2.4692359158 1.9852792168 2.8363521216
3.6 1.9852795498 2.5645342775 1.9852789211 2.9309874593
3.7 1.9852795371 2.6598358630 1.9852784977 3.0250691994
3.8 1.9852795258 2.7551405641 1.9852779411 3.1185425157
3.9 1.9852795157 2.8504482783 1.9852772375 3.2113037823
4.0 1.9852795066 2.9457588819 1.9852802966 3.3196381528

Table 3.4: Estimates of the critical values εc and ε̂c of the breakdown of the invariant torus
in Example 1 and their corresponding critical exponent, for the Sobolev and Cr semi-norms
respectively.
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3.5 Example 2: Continuation of a saddle torus in a
conservative system

In this example, we consider the case b = 0.25 and c = 4, in which the system
is conservative (bc = 1). We can start the continuation by using the same
initial approximation expression (3.68) given in the previous section.

Now, we continue a saddle invariant torus with respect to ε. Again, as in
Example 1, the breakdown of the torus is due to a bundle collision between
the tangent and stable subbundles. We can observe in Figure 3.5 (top-right)
how the angle between tangent and stable bundle approaches zero as the
parameter continuation ε increases. Near the breakdown, we observe again
a linear decay to zero of the value αL,S, given in this case by expression

αL,S(ε)  0.95101870− 0.47951222 ε,

and showed in Figure 3.5 (bottom-right) with the last values of the contin-
uation. Then, a first approximation of the critical value εc is given by the
intersection between αL,S(ε) and the horizontal axis, so that

εcα  1.9833043862.

At this moment, the torus is destroyed. Despite that, the Lyapunov mul-
tipliers ΛL and ΛS are moving away from each other, see Table 3.6, even
though their product value is constant to 1, det(DFa,ε) = 1 = ΛLΛSΛU . We
are, again, in a bundle merging scenario which cause the destruction of the
torus.

As in last example, we take information about the breakdown from the semi-
norms H2 and C1. In this case, the fits of the semi-norms H2 and C1 near
the critical values are given by

H2(ε)  0.52106152

(1.98331250− ε)1.03657369
,

C1(ε)  1.36754056

(1.98333604− ε)0.47751520
,

and represented in Figure 3.6 (left), where the respectively critical values are

εcH2  1.9833125000,

εcC1  1.9833360406,
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Figure 3.5: Results for all ε values of the continuation process for Example 2. Left: First (red)
and last (blue) tori we compute (top) and minimum angles between bundles for the last torus we
compute (bottom). Right: Minimum angles between bundles for all ε values (top) and linear fit
of the angle α(L,NS) close to the breakdown (bottom).

are represented by a blue vertical line. We can observe the blow up of
these norms when ε approaches the critical value, supporting assertion on
Conjecture 3.14. Notice also that, the explosion of these two norms as the
ε value approaches the critical value, coincides with the increment of the
number of Fourier modes needed to approximate the torus, see Table 3.5.

In the same way, we compute for a range of r ∈ [0, 4] the critical breakdown
values, εc and ε̂c, and their corresponding critical exponents, Br and B̂r, see
Table 3.7, which satisfy the linear expressions of Conjecture 3.14, given in
this case by

Br  −0.86158681 + 0.94921635 r,

B̂r  −0.46503572 + 0.93164713 r,

which are well defined if r is greater than rc  0.9076822517 and r̂c 
0.49915435, respectively. Notice that these approximations of the critical
exponents fits better, in a range r ∈ [1.5, 2.5] for Sobolev norms and in
r ∈ [1, 2] for Cr norms, see Figure 3.6.
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r εc Br ε̂c B̂r

0.0 2.3659464613 0.2923785848 1.9990850327 0.0297868131
0.1 2.1470888074 0.1441053933 1.9942725833 0.0449380274
0.2 2.0586744062 0.0813569806 1.9861547446 0.0307922402
0.3 2.0190008373 0.0519823211 1.9846007465 0.0531485814
0.4 2.0004005665 0.0384265744 1.9837333445 0.0993803809
0.5 1.9914714224 0.0337309143 1.9835940891 0.1482622013
0.6 1.9871411293 0.0355595795 1.9834952022 0.2004862355
0.7 1.9850647712 0.0444374737 1.9834269153 0.2589178359
0.8 1.9840987055 0.0631748194 1.9833823470 0.3248803775
0.9 1.9836593710 0.0958261725 1.9833538126 0.3980653612
1.0 1.9834618324 0.1454271549 1.9833360406 0.4775151988
1.1 1.9833750554 0.2116620562 1.9833253051 0.5619829735
1.2 1.9833384372 0.2908069846 1.9833190481 0.6502075333
1.3 1.9833235897 0.3780306111 1.9833155914 0.7410890006
1.4 1.9833176436 0.4695009290 1.9833138158 0.8337511825
1.5 1.9833151573 0.5629406029 1.9833131068 0.9275761885
1.6 1.9833139955 0.6572301080 1.9833131090 1.0221473834
1.7 1.9833133634 0.7518832385 1.9833136041 1.1171863901
1.8 1.9833129682 0.8467031525 1.9833145987 1.2125264852
1.9 1.9833126969 0.9416111360 1.9833160167 1.3079337731
2.0 1.9833125000 1.0365736863 1.9833139383 1.4048686885
2.1 1.9833123524 1.1315743685 1.9833051417 1.4922947800
2.2 1.9833122392 1.2266035739 1.9833066911 1.5878751888
2.3 1.9833121510 1.3216548487 1.9833082179 1.6839561633
2.4 1.9833120811 1.4167235069 1.9833093694 1.7800335253
2.5 1.9833120249 1.5118060206 1.9833101943 1.8759803248
2.6 1.9833119793 1.6068996870 1.9833107898 1.9717868183
2.7 1.9833119416 1.7020024110 1.9833111998 2.0674691575
2.8 1.9833119103 1.7971125472 1.9833114583 2.1630388912
2.9 1.9833118839 1.8922287831 1.9833116899 2.2585826656
3.0 1.9833118614 1.9873500514 1.9833118090 2.3540487329
3.1 1.9833118421 2.0824754657 1.9833118889 2.4494840059
3.2 1.9833118254 2.1776042766 1.9833119188 2.5448764649
3.3 1.9833118107 2.2727358426 1.9833118536 2.6401706338
3.4 1.9833117977 2.3678696152 1.9833116434 2.7352870374
3.5 1.9833117862 2.4630051345 1.9833113639 2.8302412587
3.6 1.9833117758 2.5581420338 1.9833107989 2.9247764069
3.7 1.9833117665 2.6532800486 1.9833100521 3.0188834398
3.8 1.9833117582 2.7484190289 1.9833090236 3.1123520542
3.9 1.9833117507 2.8435589503 1.9833075621 3.2048662855
4.0 1.9833117441 2.9386999211 1.9833137278 3.3135418818

Table 3.7: Estimates of the critical value εc and ε̂c of the breakdown of the invariant torus in
Example 2 and their corresponding exponent, for the Sobolev and Cr semi-norms respectively.
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Figure 3.6: Blow up at the critical value of the H2 (top-right) and C1 (bottom-right) semi-
norms, where the critical value is drawn with a blue vertical line. In the left, it appears the
fit for the affine expression of the critical exponent given by expressions (3.65) and (3.64) of
Conjecture 3.14, that is Br and B̂r (B′r in this picture), respectively.

Otherwise, we also consider the continuation of another saddle torus in a
conservative system, so as to prove the generality of the method. In this
case, we use parameters b = 0.2 and c = 5.0, and we observe a breakdown
due to the collision of the tangent and stable bundle, which has a linear
decay near the breakdown given by

αLS(ε) = 0.92759921− 0.46742319 ε,

which gets us a critical value

εcα = 1.98449548.

Even that this angle goes to zero, the Lyapunov multipliers are moving away
from each other. Also, we compute its H2 and C1 semi-norms, which has
expressions

C1(ε)  1.34506486

(1.98451614− ε)0.47157364

and
H2(ε)  0.70167623

(1.98449697− ε)1.03381575
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respectively, so they give us critical values

εcH2 = 1.98449697

and
εcC1 = 1.98451614.

In that case, we fit the corresponding critical exponents by the following
linear expressions

Br  −0.81288669 + 0.92039181 r

and
B̂r  −0.55598388 + 1.00593990 r.

3.6 Example 3: Continuation of a saddle torus in a
conservative and reversible system

In previous examples, we have seen the same mechanism of breakdown, in
a bundle merging scenario, by the collision of the tangent and stable bun-
dles, whereas the Lyapunov multipliers are moving away. In the following
example, we introduce some symmetries in the system by choosing parame-
ters in which the system is not only conservative, but reversible. Then, we
choose parameters b = 0.5 and c = 2 in order to deal with a conservative,
det(DFa,ε) = bc = 1, and reversible system.
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Figure 3.7: Symmetries on the torus for the conservative and reversible example.

The property of reversibility means that we can express our map Fa,ε as a
composition of two involutions

Fa,ε = I1I0.
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In our particular case, the involutions I0 and I1 are given by

I0

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ −x + 2π
sin(x) + y + 3

4z
− z

⎞
⎠

and

I1

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝−x + εy + ε

4z + a+ 2π
y
2 + 3

8z
2y − z

2

⎞
⎠ .

Due to the reversibility property, along the continuation with respect to ε
the torus possesses two symmetries. The 0th-symmetry is given by

Γ0 =
{
(x, y, z) ∈ R3 | (π, y, 0)

}
,

and the 1st-symmetry is given by

Γ1 =

{
(x, y, z) ∈ R3 |

(
a

2
+ π + εz,

3

4
z, z

)}
.

These symmetries are showed in Figure 3.7 for a particular torus of the
continuation process.

In this example, by the symmetries of the system, the breakdown of the
torus is due to a triple bundle collision: all bundles collide together, values
αL,S = α(L,NS), αL,U = α(L,NU) and αS,U = α(NS, NU) tend to zero at
the same time, see Figure 3.8 (top-right). In particular, Figure 3.8 (bottom-
left) shows the minimum angle between bundles for the last computed torus.
We observe also that, all of these angles goes to zero in a linear way when
ε approaches the critical value, see Figure 3.8 (bottom-right). This decay to
zero is approximated by the linear expressions

αL,S  1.27075384− 0.64180240 ε,

αL,U  0.96088637− 0.48530176 ε,

αS,U  0.60684869− 0.30649291 ε,

from which, by the intersection of them with the horizontal axis, we get the
three critical values

εcLS  1.9799767600,

εcLU  1.9799771064,

εcSU  1.9799762457,
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Figure 3.8: Results for all ε values of the continuation process in Example 3. Left: First (red)
and last (blue) tori we compute (top) and minimum angles between bundles for the last torus we
compute (bottom). Right: Minimum angles between bundles for all ε values (top) and linear fit
of α(L,NS), α(L,NU ) and α(NS , NU ) (bottom).

which meet up to 6 significant digits. These fits support Conjecture 3.12.

In this example, we also observe the fact that even that the torus is destroyed,
in particular by a triple bundle collision, the Lyapunov multipliers remains
far from collide each other, see Table 3.9. Notice also that, in this case, the
adjusting parameter is fixed to a = ω along the continuation, see Figure 3.1.
This is due to the symmetries of the system.

In this example, in the asymptotic behavior of the semi-norms H2 and C1

close to the breakdown is

H2(ε)  0.21964940

(1.97998184− ε)1.74772558
,

C1(ε)  0.47057452

(1.97998827− ε)1.00213916
,

when ε→ εc, and we can extrapolate the critical values by

εcH2  1.9799818419,

εcC1  1.9799882669,
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Figure 3.9: Blow up at the critical value of the H2 (top-right) and C1 (bottom-right) semi-
norms for Example 3, where the critical value is drawn with an straight blue line. In the left, it
appears the fits for the affine expression of the exponent of expressions (3.64) and (3.65), that is
Br and B̂r (B′r in this picture) respectively.

which meet up to 6 significant digits. The blow up of these norms appears
in Figure 3.9 and Table 3.8, where we can also see how the Fourier nodes
increase as we approach the critical value. We also compute the critical
exponents, Br and B̂r and their critical breakdown values, εc and ε̂c, for
different values r in the range [0, 4], see Table 3.10, which satisfy the linear
expressions of Conjecture 3.14, in particular given by

Br  −1.25200123 + 1.49986455r,

B̂r  −0.50312626 + 1.50219068r.

In this case, we get that the critical regularities of the torus in the breakdown
are rc  0.8347428722 and r̂c  0.3349283585. Notice that, these regularity
values are significantly smaller than in previous examples, supporting the
fact that this breakdown mechanism belongs to another universality class.
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r εc Br ε̂c B̂r

0.0 2.2746097498 0.2230123126 1.9946715877 0.0222630169
0.1 2.0978743955 0.1013872229 1.9973908734 0.0529054549
0.2 2.0328090976 0.0542050832 1.9870877972 0.0351918802
0.3 2.0058895374 0.0338958164 1.9834719159 0.0305304741
0.4 1.9941311280 0.0256519663 1.9856031683 0.1638095484
0.5 1.9887533368 0.0241564311 1.9834656155 0.1329003011
0.6 1.9861560175 0.0281080458 1.9835403200 0.1969570307
0.7 1.9848234244 0.0386228049 1.9834682198 0.2564168846
0.8 1.9841045276 0.0586856332 1.9834091603 0.3223085065
0.9 1.9837096812 0.0923148617 1.9833698435 0.3955225954
1.0 1.9834990330 0.1425960919 1.9833442815 0.4749745682
1.1 1.9833945290 0.2093861217 1.9833271099 0.5590621590
1.2 1.9833473258 0.2890537434 1.9833140597 0.6459853941
1.3 1.9833276932 0.3767096171 1.9833017046 0.7338801609
1.4 1.9833198291 0.4684576737 1.9832865567 0.8205728104
1.5 1.9833165612 0.5620315136 1.9832658052 0.9037831508
1.6 1.9833150321 0.6563623341 1.9832356959 0.9804050604
1.7 1.9833141927 0.7510097345 1.9831914298 1.0461132929
1.8 1.9833136649 0.8458039669 1.9831304107 1.0968641655
1.9 1.9833133028 0.9406785495 1.9830507121 1.1283505993
2.0 1.9833130411 1.0356039919 1.9832028014 1.3231479897
2.1 1.9833128433 1.1305637549 1.9835177519 1.6425512250
2.2 1.9833126838 1.2255449095 1.9833576783 1.6173673871
2.3 1.9833125361 1.3205317409 1.9832995592 1.6661849900
2.4 1.9833123587 1.4154951674 1.9832753666 1.7409067352
2.5 1.9833120654 1.5103677504 1.9832642206 1.8258024179
2.6 1.9833114559 1.6049811947 1.9832562845 1.9131081928
2.7 1.9833100528 1.6989103374 1.9832473455 1.9986006529
2.8 1.9833067220 1.7910898013 1.9832270602 2.0716838163
2.9 1.9832988104 1.8788985442 1.9831982202 2.1340356521
3.0 1.9832803157 1.9560950063 1.9831583460 2.1809972406
3.1 1.9832385743 2.0087418698 1.9830978882 2.2006949828
3.2 1.9831508114 2.0097695803 1.9830065117 2.1763286943
3.3 1.9829897956 1.9212149341 1.9828810580 2.0961244145
3.4 1.9827551044 1.7247591196 1.9827360284 1.9717358196
3.5 1.9825051024 1.4644095586 1.9825941548 1.8299192615
3.6 1.9823173931 1.2250532053 1.9824423457 1.6396607448
3.7 1.9822203600 1.0744997423 1.9823090751 1.4328188925
3.8 1.9821812096 1.0122913824 1.9822323624 1.2936428257
3.9 1.9821645493 0.9964339087 1.9821948306 1.2260948718
4.0 1.9821563610 1.0016733695 1.9821737256 1.1994162056

Table 3.10: Estimates of the critical value εc and ε̂c of the breakdown of the invariant torus
in Example 3 and their corresponding exponent, for the Sobolev and Cr semi-norms respectively.
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3.7 Example 4: Node-Focus transitions in continu-
ation of an attracting torus

In this example, we choose parameters b = 0.5 and c = 0.4, so for ε = 0 we
start the continuation with an attracting invariant torus with a 2-dimensional
stable bundle. Moreover, for ε = 0 we can use the same expression given
by (3.68) and (3.70) to produce an initial approximation of the torus and
its invariant bundles. In particular, the eigenvalues of ΛN are λn1 = 0.5 and
λn2 = 0.4, corresponding to the dynamics of the slow and fast stable direc-
tions, denoted by NS and NSS respectively. In the same way, we will denote
by ΛS = |λn1 | and ΛSS = |λn2 | the corresponding Lyapunov multipliers. In
that case, our invariant torus is completely reducible for the unperturbed
case, so it is natural to start the continuation using the completely reducible
method. When the torus is completely reducible, it is referred to as node
torus.
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Figure 3.10: Continuation results for Example 4 using the completely reducible algorithm. It
is shown the angle between slow and fast bundle (blue), and also the angle between the tangent
and stable bundle (green), which is in fact two dimensional. Also, the Lyapunov multipliers are
shown (orange and red).

During this continuation, the method stops because of a node-focus bifur-
cation on the torus. That is, the complete reducibility property is lost, and
both real eigenvalues collide and become complex eigenvalues, so we can-
not diagonalize the cocycle ΛN to a real matrix. The completely reducible



3.7. Node-focus transitions 111

ε a ΛL ΛS ΛSS α(NS , NSS)
0.0000000000 3.8832220775 1.00 0.5000000000 0.4000000000 2.44979e-01
0.1000000000 3.8830439063 1.00 0.4993691197 0.4005053418 2.31035e-01
0.2000000000 3.8825174896 1.00 0.4974087583 0.4020837925 2.31429e-01
0.3000000000 3.8816642539 1.00 0.4938786213 0.4049578001 2.32581e-01
0.4000000000 3.8805105878 1.00 0.4882077414 0.4096616727 2.15809e-01
0.5000000000 3.8790753867 1.00 0.4788999938 0.4176237264 1.73476e-01
0.6000000000 3.8773582471 1.00 0.4578897228 0.4367863921 5.83418e-02
0.6100000000 3.8771703292 1.00 0.4508313858 0.4436248363 1.98262e-02
0.6110000000 3.8771513697 1.00 0.4489395858 0.4454942403 9.47391e-03
0.6112500000 3.8771466250 1.00 0.4478913207 0.4465368947 3.72443e-03
0.6112812500 3.8771460318 1.00 0.4475940968 0.4468334169 2.09229e-03
0.6112929688 3.8771458094 1.00 0.4473786202 0.4470486303 9.10835e-04
0.6112951660 3.8771457676 1.00 0.4472821838 0.4471450174 3.79164e-04
0.6112955780 3.8771457598 1.00 0.4472355773 0.4471916146 1.23348e-04
0.6112956166 3.8771457591 1.00 0.4472200814 0.4472071096 3.67750e-05

Table 3.11: Continuation with respect to ε of the invariant attracting curve for the Fattened
Arnold Family for b = 0.5 and c = 0.4 by using the completely reducible method. The first
and second columns corresponds to the continuation and adjusting parameters, respectively. The
following three columns show the Lyapunov multipliers of the torus, which corresponds with the
elements of Λ. In the last column there appears the minimum angle between the slow and fast
subbundles. We do not write here the minim angle between the tangent and the two dimensional
stable bundle, since they remain separately during the continuation.

method detects when the torus stops being node type at

εA  0.6112956166.

The collision of the eigenvalues coincides with the smooth collision between
the slow and fast subbundles. Table 3.11 shows the values of the Lyapunov
multipliers, which go to collision, and the minimum angle between the slow
and fast subbundles, which tends to zero in a square root way. See also
Figure 3.10 for the continuation curves of ΛS, ΛSS and of the angle between
bundles, αS,SS and αL,S.

Notice that after the collision, the torus is still reducible (but not completely
reducible): it has only lost the “real” reducibility and persists as a reducible
torus with complex eigenvalues. This type of torus will be referred to as
focus torus. At that point, we can use the reducible method of Section 3.2.2
to follow with the continuation of that torus. In our computations using this
second method, we have seen that, depending on the continuation step-size,
this method continues till further or not. For instance, using a larger step size
as Δε = 10−1, we continue the torus until εD  0.8835419732, whereas using
a small step size Δε = 10−3, our computations stops in εB  0.7766015964.
In fact, these two values correspond to parameter values in which the torus
is again completely reducible inside a small interval of ε, see Figures 3.11 and
3.13. This means that the algorithm for the non-completely reducible case
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is very sensitive to the changes in the dynamics of the system, and that even
that the system continues being reducible, the method notices the change
on the reducibility type. Otherwise, by using a big step size, we can “jump”
over these disabilities without the necessity to stop in them. The dynamical
explanation of this behavior is that the torus is node-type in an open set
of parameters, while the torus is focus-type in a Cantor set of parameters
strictly contained in the complementary. See e.g. [70, 71]. Moreover, in
the regions corresponding to node tori the invariant bundles could be non-
orientable. Hence, we could use a double covering trick to consider these
cases and avoid stopping the method, see [59].

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0  0.2  0.4  0.6  0.8  1

ε

Λs
Λss

Figure 3.11: Lyapunov multipliers for the continuation of Example 4 by the method of non-
reducible quasi-periodic tori. During the continuation several transitions from node-torus to
focus-torus (with complex eigenvalues) can be seen with the Lyapunov multipliers collided.

We will use here the general method to go through the changes of the dy-
namical properties which produces the eventualities mentioned above. The
drawback is that dynamical information as Lyapunov multipliers has to be
computed apart. First notable observation we take from this example is
the several transitions from node to focus tori, in which we observe how
the eigenvalues collide (they become complex) and separate again, see Fig-
ure 3.11. Notice that during these node-focus transitions, the the slow and
fast subbundles suffer smooth collisions, and the minimum angle between
between them behaves as square root functions.
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Figure 3.12: Continuation results for the minimum angle between bundles of Example 4
by using the non-reducible algorithm. It is shown the minimum angle between slow and fast
subbundles (in blue) and minimum angle between tangent and the two dimensional stable bundle
(in green).

The first value εA, corresponds to the parameter in which the first con-
tinuation, using the completely reducible method, stops. Values εB and
εD corresponds to the parameters near which the non-completely reducible
method stops. Another transition in εF  0.9663195313, producing an small
gap of ε values in which the torus is node type, has also been detected. See
magnifications of these transitions in Figure 3.13 and see Figure 3.12 for the
minimum angles between bundles along all the continuation values.

When the torus is completely reducible, we assign a sign to the Lyapunov
multipliers in order to obtain the eigenvalues of the torus. To do so, we
consider that the invariant subbundle inside the invariant normal bundle is,
in fact, a subbundle of T×R2 and then can be represented as two couple of
curves in T×1. Then, if one of this curves is fixed under iteration of DFa,ε, we
assign a positive sign to the eigenvalue. Otherwise, if the copy is 2-periodic
by DFa,ε, that is it is shipped to the other copy, we consider a negative
sign. Notice that in this example, see Table 3.12, the sign of the eigenvalues
change from one gap to the other. We assign ± to the Lyapunov multipliers
in which the method is not capable to find the sign, which is a numerical
evidence of the non-complete reducibility on the torus. This change of sign
is in some sense natural in this case, because in these node-focus transitions
the eigenvalues collide. We will observe in the next Example 5, that this has
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Figure 3.13: Magnifications of Lyapunov multipliers and minimum angle between bundles
near transitions from node-torus to focus-torus in Example 4.

not always the same “natural” explanation.

Due to the possibility of a changing topology of the bundles, we find very
useful to compute their indices that are the number of turns they do when
θ goes from 0 to 2π. To do so, each bundle is computed by (backward and
forward) iteration of the cocycle ΛN over a grid in the interval [0, 2π]. Then,
we add the angles between consecutive fibers to obtain the total angle of
revolution of the bundle, β. The index is then

m

2
=

β

2π
.

In the numerical computations, we take m as the nearest integer to β
π . In

particular, if the value m is even means that the bundle is orientable. Oth-
erwise, m is odd and it means that the bundle is non-orientable. The sign of
m means in which direction the fiber rotates: from left to right (+) or from
right to left (−).
We have detailed this information of the index in Table 3.12, where we illus-
trate the behavior of the bundles inside the different node-gaps mentioned
above (in gray). Inside these gaps we observe evidence of orientable and
non-orientable bundles. Some of these tori with their respectively bundles
are shown in Figures 3.14 and 3.15.

Remark 3.19 We should emphasize that when we have reducibility along
all the continuation process, even completely or not, we can use the reducible
method instead of the general one. But in this case, we should take care about
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ε a ΛL λn1 λn2 index×2
0.0000000000 3.8832220775 1.00 0.5000000000 0.4000000000 0
0.6000000000 3.8773582471 1.00 0.4579030644 0.4367722458 0
0.6112956166 3.8771457591 1.00 0.4472200814 0.4472071096 0
0.6500000000 3.8763877719 1.00 ±0.4472137319 ±0.4472134526 -
0.7000000000 3.8753378014 1.00 ±0.4472137102 ±0.4472134760 -
0.7780000000 3.8735326319 1.00 0.4476774260 0.4467502443 13
0.7790000000 3.8735081165 1.00 0.4477345633 0.4466932326 13
0.7800000000 3.8734835655 1.00 0.4477095796 0.4467181597 13
0.7810000000 3.8734589788 1.00 0.4475859170 0.4468415827 13
0.8000000000 3.8729849911 1.00 ±0.4472137084 ±0.4472134827 -

0.8700000000 3.8711212578 1.00 ±0.4472137080 ±0.4472134930 -
0.9000000000 3.8702618736 1.00 -0.4554795000 -0.4390977148 -8
0.9200000000 3.8696673033 1.00 -0.4579718128 -0.4367081149 -8

0.9400000000 3.8690546139 1.00 -0.4577666206 -0.4369038657 -8
0.9600000000 3.8684230069 1.00 -0.4528731098 -0.4416248197 -8
0.9650000000 3.8682620624 1.00 ±0.4472138320 ±0.4472133709 -
0.9660000000 3.8682297243 1.00 ±0.4472137740 ±0.4472134288 -
0.9664195313 3.8682161425 1.00 0.4472442872 0.4471829177 -152
0.9665195313 3.8682129039 1.00 0.4473017886 0.4471254316 -152
0.9670000000 3.8681973361 1.00 ±0.4472137871 ±0.4472134157 -
0.9680000000 3.8681648979 1.00 ±0.4472137160 ±0.4472134867 -
0.9690000000 3.8681324095 1.00 0.4473631379 0.4470641148 81
0.9696000000 3.8681128924 1.00 0.4476850163 0.4467426827 81

0.9698878174 3.8681035237 1.00 0.4476003264 0.4468272104 81
0.9700597656 3.8680979246 1.00 0.4474490260 0.4469783005 81
0.9702000000 3.8680933571 1.00 ±0.4472138298 ±0.4472133728 -
0.9725000000 3.8680183043 1.00 ±0.4472138034 ±0.4472133990 -
0.9738288651 3.8679748195 1.00 -0.4473179175 -0.4471093093 -63

0.9748679777 3.8679407539 1.00 -0.4486032989 -0.4458282085 -63
0.9758575973 3.8679082596 1.00 -0.4488862184 -0.4455472163 -63
0.9761123718 3.8678998859 1.00 -0.4489059727 -0.4455276098 -63

Table 3.12: Continuation results for the general algorithm. The first two columns show the
continuation and adjusting parameters, respectively. The next three columns show the Lyapunov
multipliers of the cocycle Λ and their corresponding sign. Notice that when the torus is not a
node torus (in white), this sign is not defined (in present example, this corresponds to a focus
torus). In the last column it appears the index of the bundles. In bold it appears the parameter
values for which we show the corresponding tori and angles of the bundles in Figures 3.14 and
Figure 3.15.
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Figure 3.14: Tori (left) and angles of slow and fast bundles with respect to the horizontal axis
(right) for parameter values ε = 0.0, 0.6 and 0.87, respectively. Notice that the first two rows
correspond to node tori with orientable bundles of index 0, whereas the last one corresponds to a
focus torus.
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the changes in the topology, in the meaning of orientabilily of bundles, and
use the “double covering trick” to pass through these changes of the topology.
This has been used in [59].
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Figure 3.16: Extrapolations of the critical value for the continuation of Example 4, by using
the H2 semi-norm and the minimum angle between the tangent and the two dimensional stable
bundles. In particular, the top-left figure show the lineal fit for the critical exponent of the Sobolev
norm with respect to r.

At the end of the continuation process, we observe that the angle between
the tangent and the two dimensional stable bundle tends to zero. In fact,
there is a linear decay to zero given by the expression

αLS(ε)  0.51143611− 0.52143653 ε,

supporting Conjecture 3.12. This behavior indicates us that there is a col-
lision between the tangent and the two dimensional stable bundles which
destroys the invariant torus of this example, at the critical breakdown pa-
rameter

εcα  0.98082139.

Furthermore, we also compute their H2 Sobolev norms to have a better
understanding of the breakdown, which near the critical value blows up as

H2(ε)  0.09301440

(0.98086341− ε)1.01005287
.
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Notice that, even that we are not very close to the breakdown, the extrapo-
lation of the H2 Sobolev norm gives us a critical value

εcH2 = 0.98086341

which fits very well with the one obtained before.

Remark 3.20 This example exposes that the reducible method is very sensi-
tive to the topology and dynamics of the system, whereas the general method
offers us the possibility to explore the regions in which reducible methods has
troubles or suffers changes. The situation can be more dramatic if reducibility
property is lost, see next Example 5.

Summarizing, in this example we have observed several bifurcations pro-
duced by transitions between node to focus tori, and finally there is a col-
lision between the tangent and the two dimensional stable bundles which
leads to the torus breakdown (also observed by the blow up of the Sobolev
norms). This mechanism of breakdown is again in a bundle merging scenario
as in previous examples, with the Lyapunov multipliers being separate, but
in this case the stable bundle is two dimensional.

3.8 Example 5: Transitions to non-reducibility in
continuation of an attracting torus

There is another mechanism in which an attracting node torus ceases to
be completely reducible, to be non-reducible. In this case, the slow and
fast bundles collide non-smoothly. In order to illustrate this scenario, we
will continue quasi-periodic normally attracting invariant tori for a Fattened
Hénon Family, defined by (3.67).

Look first what does happen for the unperturbed case ε = 0. In that case,
the system (3.67) is simply a direct product of a rotation by angle a and the
classical Hénon map:

Fa,0

⎛
⎝x
y
z

⎞
⎠ =

⎛
⎝ x+ a
1 + z − by2

cy

⎞
⎠ .

If we are looking for a parameterization of a torus with quasi-periodic fixed
frequency ω, for ε = 0, Ka,0 has to satisfy the invariance equation,

Fa,ε(Ka,0(θ)) = Ka,0(θ + ω),
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and so we have to adjust parameter a = ω, and

Ka,0(θ) =

⎛
⎝θ
0
0

⎞
⎠+Kp,a,0(θ) =

⎛
⎝θ
0
0

⎞
⎠+

⎛
⎝ 0
y0
z0

⎞
⎠ ,

with

y0 =
−1 + c±

√
(1− c)2 + 4b

2b
,

z0 = cy0,

so that the periodic part of the initial parameterization is constant and given
by one of the fixed points of the Hénon map. Moreover, the invariant bundles
are parameterized by the eigenvectors of these fixed points, and the initial
values of ΛN by the eigenvalues of these fixed points, respectively.
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Figure 3.17: Continuation results with respect to ε for the minimum angle between bundles
(α) and Lyapunov multipliers (Λ) in Example 5. Notice that from ε = 0 to εA � 0.26, the
blue line represents the angle between stable and unstable bundles, since the torus is of a saddle
type, and the green line represents the angle between the tangent and the total two dimensional
normal bundles. On the other hand, from εA � 0.26 till the end of the continuation, the blue line
represents the minimum angle between slow and fast subbundles and the green line represent the
minimum angle between tangent and the stable two dimensional bundle, since in this region tori
are of attracting type.

We will consider the same parameter values as in the work [59], b = 0.68
and c = 0.1, and y0 with + sign, so that the initial unperturbed torus is of
a saddle type. In particular, if we also choose the parameter d = 0, we are
doing the computations for exactly the same problem as in [59], which is in
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ε a λL λn1 λn2 ||Tail|| NF

0.0000000000 3.8832220775 1.00 -1.0721039594 0.0932745366 3.2e-18 64
0.0500000000 3.8793832851 1.00 -1.0698001982 0.0934778087 2.4e-17 64
0.1000000000 3.8750776341 1.00 -1.0627289651 0.0941158257 2.7e-17 64
0.1500000000 3.8703299648 1.00 -1.0503995297 0.0952617221 4.0e-17 64
0.2000000000 3.8651713720 1.00 -1.0318728888 0.0970480228 1.8e-17 64
0.2500000000 3.8596395550 1.00 -1.0054568522 0.0997164626 5.4e-17 64
0.2600000000 3.8584922585 1.00 -0.9989884645 0.1003912484 5.7e-17 64
0.3000000000 3.8537802950 1.00 -0.9679969682 0.1037438592 3.2e-17 64
0.3500000000 3.8476507902 1.00 -0.9133271092 0.1101794739 4.6e-17 64
0.4000000000 3.8413214332 1.00 -0.8282686012 0.1217897138 1.5e-14 64
0.4400000000 3.8361693482 1.00 -0.7099672326 0.1423907847 3.9e-11 64
0.4500000000 3.8348757982 1.00 -0.6598206531 0.1532988873 1.8e-11 64
0.4512695313 3.8347115462 1.00 -0.6517231472 0.1552147792 2.6e-11 64
0.4561361791 3.8340819306 1.00 -0.6104235380 0.1657621720 1.6e-17 512
0.4575522341 3.8338987545 1.00 -0.5847050004 0.1730673263 5.4e-16 8192
0.4576004767 3.8338925143 1.00 -0.5825237581 0.1737158508 7.8e-13 131072
0.4576027468 3.8338922206 1.00 -0.5824044644 0.1737514561 9.3e-13 1048576

Table 3.13: Continuation results with respect to ε for the reducible algorithm (both reducible
algorithms match in this region) in Example 5. The first two columns show the continuation and
adjusting parameters, respectively. The next three columns show the eigenvalues of the cocycle
Λ, so of ΛL and ΛN , and their corresponding signs. The following curve shows the tail of the last
10 Fourier modes of the torus, whereas in the last column it appears the number of Fourier modes
we need to use. Notice that between ε � 0.25 and ε � 0.26 there is a period-halving bifurcation.

a skew-product form. Our results match in this test example. From now
on, we will consider the coupled case, with d = 1. See Figure 3.2 to see the
curves of the continuation of both cases.

During the continuation with respect to ε of this example, we observe several
bifurcations, such as a period-halving bifurcation and some transitions from
a reducible torus to a non-reducible one.

In a leading continuation, we use both reducible algorithms to continue the
torus with respect to ε. We observe the transition from a saddle torus to
an attracting node one. Looking the Lyapunov multipliers, we see that
between parameters ε  0.25 and ε  0.26, the eigenvalue corresponding
to maximal Lyapunov multiplier crosses −1, so there is a period-halving
bifurcation and the torus changes from an unstable (saddle) torus to an
stable (attracting) torus. This bifurcation can be explained with tools of
quasi-periodic bifurcation theory. Notice that, the method does not suffer
any trouble and we can cross the bifurcation and continue the continuation
in a normal way. See Table 3.13.

This continuation with both reducible algorithms stops at

εB  0.4576027468,
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where there is a global bifurcation in which we loss the reducibility prop-
erty. At this point, we cannot reduce to constant the cocycle ΛN and both
reducible algorithms, the completely and the non-completely one, stop as we
approach the critical value εB of the transition. The slow and fast subbun-
dles approach each other as we increase parameter ε, and for this parameter
value εB there is a non-smooth (non-uniform) collision between them. We
also fit the values of this minimum angle, and we obtain an expression as in
Conjecture 3.12, see Figure 3.18, from which we get a critical value

εα  0.4576780589.

In this case, the collision of the bundles only leads to a loss of the reducibil-
ity, but not to the destruction of the torus. Numerically, we detect this
collision with a minimum angle of the order α(NS, NSS)  2.51665 × 10−4.
In this transition, there is again a bundle merging scenario, but in this ex-
ample it does not lead to the breakdown of the torus, only to the lost of the
reducibility.
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Figure 3.18: Fit of the minimum angle between slow and fast invariant subbundles near the
transition in εB. This fits has expression α(NS , NSS)(ε) � 1.78786134− 3.90637328 ε, and so we
can extrapolate its critical value as εα � 0.4576780589.

Despite that, we can use the general method to perform the continuation
from the point in which we do not have reducibility. Through this second
continuation, we observe small gaps in which the merged subbundles become
separated again, the big one from εC to εD can be easily seen in Figure 3.17.
Inside these gaps, the reducibility of the torus has been recovered, and co-
cycle ΛN can be diagonalized again. Notice that in these small gaps, the
sign of the eigenvalues of the cocycle, which in modulus are the Lyapunov
multipliers, have changed from the previous gap, see Table 3.14, even that
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ε a λL λn1 λn2 ||TAIL|| NF

0.4000000000 3.8413214332 1.00 -0.8282669115 0.1217898279 1.5e-14 64
0.4500000000 3.8348757982 1.00 -0.6598113298 0.1533012145 7.6e-13 64
0.4600000000 3.8335821637 1.00 ±0.5728158729 ±0.1766959169 1.3e-12 64
0.4850000000 3.8303568912 1.00 ±0.4768072652 ±0.2125670876 8.3e-12 64
0.4860000000 3.8302283997 1.00 0.4846543199 -0.2091365623 9.8e-12 64

0.4870000000 3.8300999652 1.00 0.4880126564 -0.2077106060 1.1e-11 64
0.4880000000 3.8299715897 1.00 0.4881328051 -0.2076679808 1.3e-11 64
0.4890000000 3.8298432754 1.00 ±0.4881850451 ±0.2076542462 1.6e-11 64
0.4900000000 3.8297150245 1.00 ±0.4890045397 ±0.2073141954 1.8e-11 64

0.5000000000 3.8284365048 1.00 ±0.5283807452 ±0.1919893945 7.9e-11 64
0.5130000000 3.8267882941 1.00 ±0.6088512685 ±0.1667504564 1.2e-17 128
0.5140000000 3.8266623137 1.00 ±0.6135186826 ±0.1654852677 1.9e-17 128
0.5150000000 3.8265364635 1.00 0.6199920977 -0.1637538925 1.8e-17 128
0.5200000000 3.8259092807 1.00 0.6580093691 -0.1543513137 2.0e-17 128

0.5250000000 3.8252858540 1.00 0.6819510891 -0.1489775089 3.3e-17 128
0.5300000000 3.8246666229 1.00 0.7001836965 -0.1451419905 6.2e-17 128
0.5350000000 3.8240520408 1.00 0.7119176806 -0.1427927736 1.6e-16 128
0.5370000000 3.8238076120 1.00 0.7107233508 -0.1430500564 2.5e-16 128
0.5380000000 3.8236857129 1.00 ±0.7105751874 ±0.1430877793 3.3e-16 128
0.5400000000 3.8234425628 1.00 ±0.7180360168 ±0.1416138372 5.1e-16 128

0.6000000000 3.8165452607 1.00 ±0.9020479186 ±0.1131508954 4.0e-13 256
0.6501400261 3.8108084316 1.00 ±0.9258623440 ±0.1105645259 1.8e-12 4096
0.6608539635 3.8095099697 1.00 ±0.9067759985 ± 0.1129483085 5.1e-15 8192
0.6708539635 3.8082600966 1.00 ±0.8590492022 ±0.1192847477 2.9e-12 8192
0.6808539635 3.8069695498 1.00 ±0.8666652404 ±0.1182825448 1.8e-12 8192
0.6903539635 3.8057042091 1.00 ±0.8893682730 ±0.1153096342 2.2e-12 8192

0.7001039635 3.8043653898 1.00 ±0.9074951874 ±0.1130418735 1.9e-12 8192
0.7071713019 3.8033706211 1.00 ±0.9210259697 ±0.1113994914 4.1e-13 1048576

Table 3.14: Continuation results with respect to ε for the non-reducible algorithm in Example
5. The first two columns show the continuation and adjusting parameters, respectively. The next
three columns show the eigenvalues of the cocycles ΛL and ΛN with their corresponding signs.
The following columns shows the tail of the last 10 Fourier modes of the torus, whereas in the
last column it appears the number of Fourier modes we need to use. Notice that there are some
changes of the sign of the eigenvalues, which corresponds to a different gaps in which we have the
invariant subbundles separated (see Figure 3.17 to see these separations).
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both Lyapunov multipliers do not collide. This is also an evidence of the
lack of reducibility between the gaps.

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.4855  0.486  0.4865  0.487  0.4875  0.488  0.4885  0.489

α
 

ε

B1 C1

Figure 3.19: Minimum angle between slow and fast invariant subbundles. This is a magnifi-
cation of a region between εB and εC, in which the bundles are separated again, and so the torus
is reducible again.

Inside these regions of non-reducibility, we can find a lot of small gaps in
which the torus is reducible again, as small as they can be. As an illustration,
we find an small gap inside [0.485, 0.489], see Figure 3.19. We can observe
again that inside this interval the sign of the eigenvalues of the cocycle has
also changed, see Table 3.14. Moreover, we can observe the angle between the
slow and fast subbundles for each coordinate θ of different tori in Figure 3.21.
Notice that when the torus is reducible (ε = 0.45, 0.478, 0.525) they do not
touch each other, but they have a wild behavior because they are near a
non-reducible zone.

Even that we observe several changes from reducible to non-reducible torus,
the bundles are always orientable with index 0 and Lyapunov multipliers
are different during the whole continuation, where the torus is analytic. In
particular, the last torus we can compute is not the last normally hyperbolic
invariant tori in the continuation. But as long as we increase the continua-
tion parameter, we can see how the torus start to wrinkle, see Figure 3.20.
This wildness on the slope of the torus makes harder the computations, and
the method stops. This can be seen as a fractalization mechanism leading to
the destruction of the torus, which has been observed for skew-products sys-
tems in [72, 73]. Numerical computations in [60] for a skew-product system
(case d = 0 here) suggest that the torus persists till the maximal Lyapunov
multiplier touches 1, even though the torus develops slopes of size 1030. This
phenomenon deserve further study.
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Figure 3.20: Quasi-periodic invariant attracting tori of Example 5 for the continuation pa-
rameter values ε = 0.0, 0.4, 0.45, 0.46, 0.5, 0.6, 0.7001039635 and 0.7071713019, respectively.
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Figure 3.21: Angles between slow and fast bundles with respect to the horizontal axis for
the continuation parameter values ε = 0.45, 0.46, 0.487, 0.5, 0.525, 0.6, 0.7001039635 and
0.7071713019, respectively. Notice that the ones corresponding to ε = 0.45, 0.487 and 0.525
has the slow and fast subbundles separated. These three parameters corresponds to regions in
which the torus is reducible, whereas the others ones corresponds to regions in which it is not
reducible.



Chapter 4

A Newton-like method for
computing Normally

Hyperbolic Invariant Tori

The aim of this chapter is to produce an algorithm to compute the param-
eterization of an invariant torus, the corresponding internal dynamics and
the parameterizations of the associated stable and unstable bundles. Hence,
we avoid the need for a separate algorithm to compute the invariant torus
as the intersection of its stable and unstable manifolds.

We illustrate the empiric application of this method in several examples,
starting with the computation of invariant curves in 2D and 3D “fattened”
extensions of the Arnold standard circle map [12, 11, 8]. We implement
the algorithm for the continuation of an invariant curve with respect to
parameters, regardless of its internal dynamics. Hence, the method is able
to cross resonances in the internal dynamics. Our interest is to explore
the behavior of the invariant curve and its mechanisms of breakdown. The
last example deal with the computation of a higher dimensional object: a
normally hyperbolic cylinder for a four dimensional symplectic map. This
type of object is important in recent studies of Arnold diffusion [32, 33].

4.1 The setting

We recover now the setting considered in this thesis, established in Sec-
tion 1.3 of Chapter 1, adapted to a normally hyperbolic general case. We
consider the ambient space an (n+d)-dimensional annulus A ⊂ Td×Rn and
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a discrete dynamical system generated by a diffeomorphism F : A → A of
the form

F

(
x
y

)
=

(
Ax
0

)
+ Fp

(
x
y

)
,

where A ∈ GLd(Z) and Fp : A → Rm is 1-periodic in x. Our interest is
finding an invariant rotational torus K, that is a d-dimensional manifold
modeled on the d-dimensional torus Θ = Td, and parameterized by an im-
mersion K : Td → A of the form

K(θ) =

(
θ
0

)
+Kp(θ),

where Kp : T
d → Rm is 1-periodic in θ. Notice that, if K satisfies

F◦K −K◦f = 0,

then f has to be of the form

f(θ) = Aθ + fp(θ),

where fp : Td → Rd is 1-periodic in θ. This is just a consequence of the
topological assumptions, chosen for the sake of concreteness. Recall that,
the point is that the homotopy classes of F , K and f have to match.

As in previous chapters, the columns of the matrix map P : Td → Rn×n,
obtained by juxtaposing the matrix valued maps L and N so that

P (θ) = (L(θ) N(θ)),

provide an adapted frame around K.
Assume now that K, parameterized by K, is F -invariant with internal dy-
namics f . By differentiating the invariance equation of the parameterization
K,

F (K(θ))− f(K(θ)) = 0, (4.1)

we obtain the invariance equation of the linearization L(θ) = DK(θ),

DF (K(θ))DK(θ)−DK(f(θ))Df(θ) = 0, (4.2)

where ΛL(θ) = Df(θ) is the internal dynamics on TK. Hence, the linearized
dynamics DF around K in the frame provided by P is given by a block
triangular linear skew-product (f,Λ) : Td×Rm → Td×Rm. Specifically, the
matrix valued map Λ : Td → Rm×m defined as

Λ(θ) = P (f(θ))−1DF (K(θ))P (θ) (4.3)
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is of the form

Λ(θ) =

(
ΛL(θ) T (θ)
O ΛN(θ)

)
, (4.4)

where (
T (θ)
ΛN(θ)

)
= P (f(θ))−1DF (K(θ))N(θ).

Therefore, the normal frame N(θ) is invariant if and only if T (θ) = 0. This
is equivalent to the invariance condition

DF (K(θ))N(θ)−N(f(θ))ΛN(θ) = 0. (4.5)

The normal hyperbolicity of the torus K is characterized by the hyperbolicity
of the cocycle (f,ΛN) : T

d×Rn → Td×Rn, and the fact that this hyperbol-
icity dominates the dynamics of the cocycle (f,ΛL) : T

d × Rd → Td × Rd.

From now on, we assume that the invariant normal bundle splits in trivial
stable and unstable bundles, in such a way that

N(θ) = (NS(θ) NU(θ)) (4.6)

where NS : Td → Rm×ns and NU : Td → Rm×nu provide global frames for
the stable and unstable bundles, respectively. This means that the ΛN(θ) is
block diagonal

ΛN(θ) =

(
ΛS(θ) O
O ΛU(θ)

)
(4.7)

where ΛS is “contracting” and ΛU is “expanding” ( ie: ‖ΛS‖ < 1, ‖(ΛU)
−1‖ <

1 for an appropriate adapted norm) and both ΛS and ΛU dominate the
tangent dynamics ΛL. As we will see, these conditions will become important
in the implementation of a Newton step. Of course, n = ns + nu, and either
ns or nu can be 0 (i.e., if ns = 0 then torus is repelling, and if nu = 0 the
torus is attracting).

Remark 4.1 We have not considered here the parameterizations of the sta-
ble and unstable manifolds (just of their linear approximations). For exam-
ple, the invariance equation for the stable bundle would be

F (W (θ, s)) = W (f(θ), Λ̂S(θ, s)).

This sort of parameterizations also provides parameterizations of the sta-
ble foliation. The leave of the stable foliation at a point K(θ) = W (θ, 0)
parameterized by θ is

WK(θ) = {W (θ, s) | s ∈ Rns}. (4.8)
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Notice that F (WK(θ)) =WF (K(θ)), i.e., the stable foliation is invariant. Idem
for the unstable foliation. Theoretical results and examples in a quasi-periodic
context on skew products can be found in papers [57, 58, 59].

Remark 4.2 While the topological assumptions on the ambient space and
the torus are justified by the tubular neighborhood theorem, and the existence
of global frames comes from the topological properties of embedded tori, the
assumption of triviality of the stable and unstable bundles is a severe one.
In the numerical examples considered in this chapter, the stable and unstable
bundles are trivial. There are also cases in which vector bundles are easily
trivializable by performing the double covering trick. We refer the reader
to [59] for examples of computations of invariant tori with quasi-periodic
dynamics, for which the stable an unstable bundles (and the corresponding
attached manifolds) are non-orientable.

4.2 Specification of one step of a Newton-like method

In the following, we consider the problem of computing a parameterization K
of a normally hyperbolic invariant torus and its internal dynamics f , solving
(4.1), as well as computing a global frame for the hyperbolic splitting of
the invariant normal bundle N = (NS NU), and the corresponding internal
dynamics Λ = diag(ΛS,ΛU), solving (4.5). In particular, we explain how to
perform one step of a Newton-like method to solve the invariance equations
(4.1) and (4.5).

Assume that we have an approximate parameterization of a normally hy-
perbolic invariant torus, K, an approximate expression of the internal dy-
namics, f , and an approximate invariant normal bundle N and its lin-
earized dynamics ΛN = diag(ΛS,ΛU), in block diagonal form. The aim
of one step of Newton method is computing the corresponding corrections
ΔK,Δf,ΔN,ΔΛN = diag(ΔΛS,ΔΛU) in such a way that the error estimates
of the new approximations K̄ = K +ΔK, f̄ = f +Δf, N̄ = N +ΔN, Λ̄N =
ΛN + ΔΛN , are quadratically small with respect to the starting error esti-
mates.

At each step of Newton method, we first deal with the invariance of the
torus, computing K̄ and f̄ , and then we deal with the invariance of the
normal bundle (and its stable and unstable subbundles), computing N̄ and
Λ̄N . In the next subsections, we will explain in detail this step.
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4.2.1 Substep 1: Correction of the approximate invariant
torus

Let E : Td → Rm be the error in the invariance equation of the torus, that
is

E(θ) = F (K(θ))−K(f(θ)), (4.9)

which is “small".

The adapted frame, P : Td → Rm×m, defined by juxtaposing L = DK and
N as

P (θ) =
(
L(θ) N(θ)

)
,

is approximately invariant. Indeed, the error of reducibility Ered : Td →
Rm×m defined by

Ered(θ) = P (f(θ))−1DF (K(θ))P (θ)− Λ(θ) (4.10)

satisfies Ered(θ) =
(
P (f(θ))−1DE(θ) EN

red(θ)
)
, where

EN
red(θ) = P (f(θ))−1DF (K(θ))N(θ)−

(
0

ΛN(θ)

)
, (4.11)

so it is also small.

We consider the correction of the torus of the form:

ΔK(θ) = P (θ)ξ(θ) (4.12)

where ξ : Td → Rm is a periodic function.

Remark 4.3 Notice that the correction terms of the torus and its internal
dynamics preserve the homotopy classes of both objects.

Then, by substituting the new approximations K̄ = K+Pξ and f̄ = f+Δf
in the invariance equation (4.1), and using first order Taylor expansion, we
obtain:

0 =F (K(θ) + P (θ)ξ(θ))−K(f(θ) + Δf(θ))− P (f(θ) + Δf(θ))ξ(f(θ) + Δf(θ))

=F (K(θ)) +DF (K(θ))P (θ)ξ(θ)

−K(f(θ))− L(f(θ))Δf(θ)− P (f(θ))ξ(f(θ)) +O2

=E(θ) + (P (f(θ))Λ(θ) + P (f(θ))Ered(θ))ξ(θ)

−DK(f(θ))Δf(θ)− P (f(θ))ξ(f(θ)) +O2,
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where we apply definitions (4.9) and (4.10) above, andO2 collect the quadrat-
ically small terms. By multiplying the last equation by (P (f(θ)))−1 and
neglecting quadratically small terms, we get the cohomology equation

η(θ) = Λ(θ)ξ(θ)− ξ(f(θ))−
(

Δf(θ)
0

)
, (4.13)

where
η(θ) = −(P (f(θ)))−1E(θ) (4.14)

is the error of the approximate solution in the adapted frame. Hence, by
splitting (4.13) in tangent and normal components we realize that Newton
step corresponds, up to quadratically small terms, to consider the block
diagonal system

ηL(θ) = ΛL(θ)ξ
L(θ)− ξL(f(θ))−Δf(θ), (4.15)

ηN(θ) = ΛN(θ)ξ
N(θ)− ξN(f(θ)), (4.16)

that we solve in two steps.

The normal cohomology equation

From the normal hyperbolicity property, in the setting of Section 1.3, matrix
ΛN = diag(ΛS,ΛU) is block diagonal, and equation (4.16) splits into stable
and unstable components:

ηS(θ) = ΛS(θ)ξ
S(θ)− ξS(f(θ)), (4.17)

ηU(θ) = ΛU(θ)ξ
U(θ)− ξU(f(θ)). (4.18)

Hence, we can solve both equations by simple iteration using the contracting
principle, which will converge to the solutions ξS and ξU we wanted. In
particular, ξS and ξU solve the fixed point equations

ξS(θ) = ΛS(f
−1(θ))ξS(f−1(θ))− ηS(f−1(θ)), (4.19)

ξU(θ) = (ΛU(θ))
−1 (ξU(f(θ)) + ηU(θ)) , (4.20)

respectively, that can be solved by iteration.

Remark 4.4 The normal hyperbolicity property implies that Equation (4.16)
has a unique solution. But we emphasize that what it is important is solving
Equation (4.16), not the specific method for solving it. As a case in point,
one can discretize Equation (4.16) into a large linear system, and solve it us-
ing linear algebra methods. The method we explain here avoids solving these
large linear systems, but slows down when normal hyperbolicity degenerates.
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The tangent cohomology equation

Now, we want to solve (4.15). Observe that in this case we have one equation
with two unknowns (ξL and Δf ), an underdetermined system. The simplest
choice is taking

ξL(θ) = 0, Δf(θ) = −ηL(θ). (4.21)

Geometrically, it means that we modify the torus in the normal directions,
and the correction of the dynamics is achieved as a byproduct. This is a
graph style of parameterization (in the adapted coordinates).

Remark 4.5 The choice of ξL, the correction of the torus in the tangent
directions, determines Δf , the correction of the internal dynamics on the
torus. By taking other ξL, we reparameterize the torus and the corresponding
internal dynamics.

Summarizing, we gain new approximations K̄ and f̄ , of the form

K̄(θ) = K(θ) +N(θ)ξN(θ), (4.22)
f̄(θ) = f(θ)− ηL(θ), (4.23)

for which the new error Ē(θ) = F (K̄(θ)) − K̄(f̄(θ)) is, hopefully, quadrati-
cally small with respect to E(θ). Additionally, we obtain new approximations
for the tangent bundle L̄ = DK̄ and its linearized dynamics Λ̄L = Df̄ .

4.2.2 Substep 2: Correction of the stable and unstable sub-
bundles

We start the correction of N and ΛN by redefining the error in the invariance
equation of the adapted frame P , since K, f , L and ΛL have been improved
to K̄, f̄ , L̄ and Λ̄L respectively.

We consider Ered defined with the new approaches K̄, f̄ , L̄ and Λ̄L. To
avoid stodgy notation, from now on we redefine K := K̄, f := f̄ , L := L̄
and ΛL := Λ̄L. (This is in fact what we do in implementing the algorithm).

We consider the corrections of the normal bundle, N , and its linearized
dynamics, ΛN = diag(ΛS,ΛU), of the form:

ΔN(θ) = P (θ)QN(θ), ΔΛN(θ) = ΔN(θ), (4.24)
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where QN : Td → Rm×n and ΔN = diag(ΔS,ΔU) : T
d → Rn×n are periodic

matrix-valued functions. Then, we obtain:

0 = DF (K(θ))N̄(θ)− N̄(f(θ))Λ̄N(θ)

= DF (K(θ)) (N(θ) + P (θ)QN(θ))

− (N(f(θ)) + P (f(θ))QN(f(θ))) (ΛN(θ) + ΔN(θ))

= P (f(θ))EN
red(θ) + (P (f(θ))Λ(θ) + P (f(θ))Ered(θ))Q

N(θ)−
− P (f(θ))QN(f(θ))ΛN(θ)−N(f(θ))ΔN(θ)− P (f(θ))QN(f(θ))ΔN(θ).

Hence, by multiplying both sides of the equation by P (f(θ))−1 and by ne-
glecting quadratically small terms we obtain the following cohomological
equation:

−EN
red(θ) = Λ(θ)QN(θ)−QN(f(θ))ΛN(θ)−

(
O

ΔN(θ)

)
. (4.25)

The corrections of the (approximate) stable and unstable bundles are per-
formed in the complementary directions. That is, the correction matrix QN

is chosen of the form

QN(θ) =

⎛
⎝ QLS(θ) QLU(θ)

O QSU(θ)
QUS(θ) O

⎞
⎠ , (4.26)

so that the “missing” blocks QSS and QUU are taken to be zero. Hence,
Equation (4.25) corresponds to the following block equations, where we use
super-indices to indicate the blocks, just as in (4.26):

−ELS
red(θ) = ΛL(θ)Q

LS(θ)−QLS(f(θ))ΛS(θ), (4.27a)
−ELU

red(θ) = ΛL(θ)Q
LU(θ)−QLU(f(θ))ΛU(θ), (4.27b)

−EUS
red(θ) = ΛU(θ)Q

US(θ)−QUS(f(θ))ΛS(θ), (4.27c)
−ESU

red(θ) = ΛS(θ)Q
SU(θ)−QSU(f(θ))ΛU(θ), (4.27d)

−ESS
red(θ) = −ΔS(θ), (4.27e)

−EUU
red(θ) = −ΔU(θ). (4.27f)

We obtain directly the correction of the linearized normal dynamics from
equations (4.27e) and (4.27f). The other 4 equations give us the components
of the correction of the normal bundle, QN in (4.26), and can be solved by
the contracting principle, as all of them are contractions or expansions by
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NHIM hypothesis (ΛS contractive and ΛU expansive, both dominating ΛL).
The corresponding fixed point equations are

QLS(θ)=(ΛL(θ))
−1 (QLS(f(θ))ΛS(θ)− ELS

red(θ)) , (4.28a)
QLU(θ)=

(
ΛL(f

−1(θ))QLU(f−1(θ)) + ELU
red(f

−1(θ))
)
(ΛU(f

−1(θ)))−1,(4.28b)
QUS(θ)=(ΛU(θ))

−1 (QUS(f(θ))ΛS(θ)− EUS
red(θ)) , (4.28c)

QSU(θ)=
(
ΛS(f

−1(θ))QSU(f−1(θ)) + ESU
red(f

−1(θ))
)
(ΛU(f

−1(θ)))−1,(4.28d)

that can be solved by iteration.

Remark 4.6 Fast iterative methods for solving cohomology equations sim-
ilar to (4.17), (4.18), (4.28a), (4.28b), (4.28c), and (4.28d) have been de-
scribed in [66, 67] in a KAM context (f being a rotation), reducing n iter-
ations of simple iteration method to log2 n. We have extended and imple-
mented them for a general f .

Summarizing, we obtain the following new approximations of the invariant
normal bundle, N̄ ,

N̄S(θ) = NS(θ) + L(θ)QLS(θ) +NU(θ)QUS(θ),

N̄U(θ) = NU(θ) + L(θ)QLU(θ) +NS(θ)QSU(θ),

and of the corresponding linearized dynamics Λ̄N = diag(Λ̄S, Λ̄U),

Λ̄S(θ) = ΛS(θ) + ESS
red(θ),

Λ̄U(θ) = ΛU(θ) + EUU
red(θ).

That is, we obtain a new adapted frame P̄ (θ) =
(
L̄(θ) N̄(θ)

)
, and a new

linearized dynamics Λ̄(θ) = diag(Λ̄L(θ), Λ̄N(θ)).

4.2.3 Substep 3: Computation of approximate inverses

The previous substeps involve the computation of inverses of matrix valued
maps such as P−1 in (4.14) and (4.11), Λ−1U in (4.20) and (4.28b), (4.28d),
Λ−1L in (4.28a), and the computation of the inverse of the torus diffeomor-
phisms f , f−1, see (4.19) and (4.28b), (4.28d). In computer implementations,
these inverses can be performed by using specialized routines to manipulate
discretized periodic functions, see Section 4.3. Here, we explain how to in-
clude additional equations for these objects, to be included in the Newton
step. Besides the unknowns K, f , N and ΛU , we consider the unknowns
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P−, Λ−U , Λ−L and f−, corresponding to P−1, Λ−1U , Λ−1L and f−1, respectively.
The equations for these new unknowns are

P−(θ)P (θ)− I = 0, Λ−U (θ)ΛU(θ)− I = 0, Λ−L (θ)ΛL(θ)− I = 0

and
f−◦f(θ)− θ = 0.

Therefore, starting the step of Newton method we have the approximations
K, f , N , ΛU and P−, Λ−U , Λ−L and f−. Hence, in the computations of substep
1, we have just to substitute the occurrences of P−1, Λ−1U and f−1 by P−,
Λ−U and f−, respectively.

After completing substep 1, we perform an improvement of f−, f̄−, since
this is going to be used in substep 2 in place of f̄−1. From the error estimate
e : Td → Rd, given by

e(θ) = f−(f̄(θ))− θ,

we accomplish that a correction term Δf : Td → Rd of f−, such that f̄− =
f−+ψ, should satisfy e(θ) +Δf(f̄(θ)) = 0, up to quadratically small terms
with respect to e(θ). The choice

Δf(θ) = −e(f−(θ))

makes the job, so that we compute

f̄−(θ) = f−(θ)− e(f−(θ)). (4.29)

Hence, in the formulae of substep 2, we have to substitute the occurrences
of P−1, Λ−1U and Λ−1L by P−, Λ−U and Λ−L , respectively, and the occurrences
of f̄−1 by f̄−.

After completing substep 2, it is the moment of recomputing P−, Λ−U and
Λ−L to produce P̄−, Λ̄−U and Λ̄−L . From the error estimate E : Td → Rm×m,
given by

Einv(θ) = P−(θ)P̄ (θ)− I,

we obtain
P̄−(θ) = P−(θ)− Einv(θ)P

−(θ). (4.30)

Analogous computation can be performed to obtain Λ̄−U and Λ̄−L .
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4.2.4 A continuation method

In parameter dependent problems, we use a continuation method (see e.g.
[99, 76]). In order to obtain accurate seeds as starting approximations in the
Newton method, one can use expansions of the solutions with respect to the
parameters. Here we use first order expansions.

Let Fε : T
d×Rn → Td×Rn a parameter family of diffeomorphisms, param-

eterized by the 1D parameter ε ∈ R. Then aim is solving the equations:

Fε(Kε(θ))−Kε(fε(θ)) = 0, (4.31)
DFε(Kε(θ))Nε(θ)−Nε(fε(θ))ΛNε(θ) = 0, (4.32)

for Kε, fε, Nε and ΛNε, with respect to ε, starting from the solutions for a
given parameter, say ε = 0.

Assume we have computed the solutions for a given ε, Kε, fε, Nε and ΛNε,
and we want to compute the corresponding solutions for ε+ h. We can take
as seeds of Newton method the first order approximations of Kε+h and fε+h.
That is

Kε+h(θ)  Kε(θ) +
∂Kε

∂ε
(θ) · h, fε+h(θ)  fε(θ) +

∂fε
∂ε

(θ) · h, (4.33)

where the variations ∂Kε
∂ε (θ) and ∂fε

∂ε (θ) are to be computed in the following
lines.

First, by deriving equation (4.31) with respect to parameter ε, we obtain

DFε(Kε(θ))
∂Kε

∂ε
(θ)−DKε(fε(θ))

∂fε
∂ε

(θ)− ∂Kε

∂ε
(fε(θ)) = −E(θ),

where
E(θ) =

∂Fε

∂ε
(Kε(θ)).

Then, by writing the variations of Kε and fε in the adapted frame Pε =(
DKε Nε

)
,

∂Kε

∂ε
(θ) = Pε(θ)ξ(θ),

∂fε
∂ε

(θ) = Δf(θ), (4.34)

we reach the cohomology equation

η(θ) = Λε(θ)ξ(θ)− ξ(fε(θ))−
(
Δf(θ)

0

)
,

where
η(θ) = −(Pε(fε(θ)))

−1E(θ). (4.35)
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As we learnt from Section 4.2.1, this cohomological equation have infinitely
many solutions, and the solution we choose is

Δf(θ) = −ηL(θ)

and

ξ(θ) =

(
0

ξN(θ)

)
where ξN is the solution of

ηN(θ) = ΛNε(θ)ξ
N(θ)− ξN(fε(θ)). (4.36)

This equation is solved by splitting into stable and unstable components,
and using the contracting mapping principle.

Summing-up, we take as seeds of the Newton method for parameter ε+ h

K0
ε+h(θ) = Kε(θ) +Nε(θ)ξ

N(θ) · h,
f0
ε+h(θ) = fε(θ)− ηL(θ) · h.

Remark 4.7 In principle, to improve the seeds for computing Nε+h and
ΛNε+h, we could do an analogous computation as in this section, but in any
case, we will follow the procedures as in substep 2 of the method. However,
our numerical experiments does not have shown special gain, especially where
the torus is about to break.

Remark 4.8 Smooth dependence on parameters has to do with (local) unique-
ness of the solutions. Notice that as long as Equation (4.31) has one solu-
tion, it has infinitely many solutions (by changing coordinates on the torus),
which represents the same object. Then, if there are not extra constrains,
one can abruptly tune the parameterizations to loose smoothness with respect
to ε. This is also reflected in the infinitely many degrees of freedom one has
to compute both the variations of Kε and fε. But particular solutions are
specified by the particular elections made in the steps of Newton method and
continuation algorithm.

4.3 Some guidelines for the implementations

In the following subsections we will present some examples of computations
of normally hyperbolic invariant one-dimensional tori. The first step in the
implementation of the parameterization method for the computation of in-
variant manifolds is choosing a method for numerically approximate them.
Here, we will discuss some general ideas.
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4.3.1 Modeling of tori

Developing methods and algorithms for the mathematical description of
shapes is the object of geometric modeling. This area is so wide and has
so many applications in science and engineering that we can only grasp here
the tip of the iceberg. We refer to the excellent survey [61] on higher dimen-
sional continuation methods, that includes a discussion on several methods
from computational geometry to represent manifolds as simplicial complexes.
Our purpose is much more modest. We consider here the computation of
invariant tori given by periodic functions, hence, we have to deal with nu-
merical approximations of periodic functions.

It is natural to discretize a model torus Θ = Td in a regular grid, of sizes
(N1, . . . , Nd), say a set of points

θ∗j := (θ∗j1 , . . . , θ
∗
jd
) =

(
j1
N1

, . . . ,
jd
Nd

)
(4.37)

where j = (j1, . . . , jd), with 0 ≤ jr < Nr and 1 ≤ r ≤ d. This defines a
d-dimensional array {ϕj} with ϕj = ϕ(θ∗j ), for some ϕ : Td → R.

The grid space (for periodic functions) is the set of all possible discretizations,
i.e. RN1 × · · · × RNd . In order to approximate the function ϕ from its grid
values ϕj , we can use interpolation. There are many interpolation meth-
ods available. In this chapter, we have considered piecewise Lagrange in-
terpolation and trigonometric interpolation (using Fast Fourier Transform),
but other methods such as spline polynomial interpolation can also be im-
plemented. In general, one produces a (linear) map from the grid space
RN1 × · · · × RNd to a coefficient space RN1+···+Nd of the same dimension,
producing coefficients ϕ̄j from grid values. Notice that, while piecewise La-
grange interpolation is a “local” method, since the value of ϕ at a point
θ ∈ Td is estimated from neighboring grid points, both trigonometric and
spline interpolation are “global” methods, since the corresponding interpo-
lating functions are computed from all the grid points.

Recall that, the d-dimensional tori K we consider in this chapter are im-
mersed in Td × Rn by means of parameterizations K : Td → Td × Rn of the
form

K(θ) =

(
θ
0

)
+Kp(θ),

where Kp : Td → Rd × Tn is 1-periodic in the θ-variable. See Section 1.3
for this setting. Hence, the d+ n components of Kp are periodic functions,
that can be discretized in regular grids or approximated by trigonometric
polynomials.
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Remark 4.9 Notice that a torus K immersed in Rm is parameterized by a
periodic map K : Td → Rm, and the formulation is slightly simpler.

Even though the grid points in the model torus Td are equidistributed, one
can adapt the grid values of the parameterization of the torus K = K(Td) to
its particular shape. This adaptiveness is a manifestation of the versatility
of the parameterization method, since one can choose representations of the
torus for which computations are more numerically stable. For example,
one can accumulate the grid values in the regions of larger curvature of the
torus. The choice in [84, 85] is using an arc-length parameterization in the
case of invariant curves and a conformal parameterization in the case of two
dimensional invariant tori.

Let us give some details of the implementation of the piecewise Lagrangian
interpolation method to approximate periodic functions. Fourier methods
are profusely considered in Chapter 3.

Piecewise Lagrangian interpolation Let us consider the discretization of a 1-
periodic function ϕ : Td → R at the regular grid of sizes N = (N1, . . . , Nd).
We denote ϕj = ϕ(θ∗j ) for j ∈ Zd, the value of ϕ at the grid point θ∗j =

j/N :=
(

j1
N1

, . . . , jd
Nd

)
(notice that ϕj+N = ϕj). Given � = (�1, . . . , �d), in

order to estimate ϕ(θ) for θ ∈ Td, we consider the neighboring points from
the grid given by the indices j ∈ [i−�, i+�+1] = {j = (j1, . . . , jd) | ir−�r ≤
jr ≤ ir+�r+1}, where i = [Nθ] = ([N1θ1], . . . , [Ndθd]), and use the Lagrange
interpolation formula

ϕ̃(θ) =
∑

j∈[i−,i++1]

ϕj Li,j(θ) =

i1+1+1∑
j1=i1−1

· · ·
id+d+1∑
jd=id−d

ϕj Li1,j1(θ1) . . . Lid,jd(θd)

(4.38)
where we define

Li,j(θ) = Li1,j1(θ1) . . . Lid,jd(θd)

with

Lir,jr(θ) =

ir+r+1∏
kr=ir−r,kr 	=jr

Nrθr − kr
jr − kr

. (4.39)

Notice that, since Li,j(θ) = L0,j−i(θ−θ∗i ), one could only store the coefficients
of the Lagrangian polynomials corresponding to i = 0.

A suitable norm to produce estimates is the sup-norm on the grid space:

‖ϕ̃‖L = max
i∈[0,N ]

|ϕi|.
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Information about the accuracy can be obtained by computing the sup-norm
on a finer grid (by using interpolation).

Derivatives at the grid points are estimated by using finite difference formu-
las, which are provided by differentiating interpolation polynomials.

4.3.2 Manipulation of functions

The purpose of the algorithm discussed in this chapter is to compute a
normally hyperbolic invariant torus, param3terized by K = (id, 0) + Kp :
Td → Td×Rn, given by a smooth map F = (A, 0)+Fp : T

d×Rn → Td×Rn,
and the corresponding internal dynamics, f = A + fp : Td → Td. Here, A
is a unimodular matrix. See Section 1.3 for this setting. An outgrowth of
the algorithm is the invariant normal bundle, described by a matrix valued
map N : Td → Rm×n, where m = n + d, for which the linearized dynamics
is conjugate to ΛN : Td → Rn×n. Hence, in the numerical implementations
of the algorithms one has to deal with the numerical approximations of the
components of Kp(θ), fp(θ), N(θ) and ΛN(θ), which are periodic functions.

There are several basic routines which we have to implement in the algo-
rithms explained along this chapter. Let us first consider the two terms of
the invariance equation F◦K = K◦f . Both compositions require very dif-
ferent computational tools, since in the left hand side F is given “explicitly"
(e.g. by an explicit formula, an algorithm, or as a result of an integration of
a vector field), and in the right hand side both K and f are modeled. Notice
that

F◦K(θ) =

(
Aθ
0

)
+

(
AKx

p (θ)

0

)
+ Fp

(
θ +Kx

p (θ)

Ky
p (θ)

)
︸ ︷︷ ︸

(F◦K)p(θ)

and

K◦f(θ) =
(
Aθ
0

)
+

(
fp(θ)
0

)
+Kp(Aθ + fp(θ))︸ ︷︷ ︸
(K◦f)p(θ)

.

From the computational point of view, we have to represent these periodic
components (F◦K)p and (K◦f)p. Notice that we store the grid values {Kp,j}
and {fj} of the periodic components Kp and fp, respectively, and that our
purpose is computing the grid values {(F ◦K)p,j} and {(K◦f)p,j} of (F◦K)p
and (K◦f)p, respectively. The grid values {(F ◦ K)p,j} are computed by
evaluating Fp using the grid values {Kp,j}, since F is given. The grid values
{(Kp ◦f)j} can be provided by piecewise interpolation, estimating Kp(f(θi))
by interpolating Kp at neighboring grid points of f(θi) = Aθi + fi.
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Manipulation of matrix valued maps, with entries given by periodic func-
tions, are also easily handled in grid space. The computation of the inverse
function of f , g = f−, is another of the basic routines we need for the imple-
mentation of the algorithm. We can compute the periodic part gp at the grid
points θi by solving equation f(A−1θi + gi) = θi, e.g. using Newton method
(in the examples of this chapter, for which d = 1, we use secant method).
See section 4.2.4 to recall how to use continuation to compute the inverse.

Remark 4.10 It is sometimes useful to keep track of both grid and Fourier
representations, and then be able to choose the most efficient representation
for each computation. While operations and compositions with functions are
easily performed in grid space (with the aid of Lagrangian interpolation),
computations of derivatives and compositions with rotations are more effi-
cient in Fourier space.

4.3.3 Grid point methods versus spectral methods: a digres-
sion

In general, grid point methods describe functions and objects by using their
grid values (i.e., the values in a given grid). Then, we produce estimates of
the function at a given point by using interpolation with neighboring grid
points, where the accuracy of the computations depends on the diameter of
the grid. These methods are potentially useful to represent any manifold,
by using appropriate triangularizations and refinement algorithms. See e.g.
[61] for a survey of simplicial methods. Such refinements are satisfactory
to increase the resolution of the objects. Derivatives of functions can be
estimated by using finite-difference formulas and interpolation formulas. In
particular, these formulas are useful to compute tangent vectors to a pa-
rameterized manifold. Due to the local nature of grid point methods, they
seem to be suitable to handle non-trivial bundles. Notice that the regular
grid points is considered on the model manifolds, hence considering suitable
parameterizations producing regular grid points on the immersed manifolds
can result in numerical stability of the implementations.

On the other hand, spectral methods consist of describing functions as a
superposition of basis functions. The name comes from the fact that, for
a compact Riemannian manifold, we can construct an orthonormal basis
of eigenfunctions for the Laplace-Beltrami operator, and then decompose
the functions using this basis set producing series expansions. In numerical
applications, we truncate these series expansions. Of course, Fourier methods
correspond to the particular case of considering the (flat) torus. For example,
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spherical harmonics are the appropriate basis of functions for the sphere.
The accuracy of the computations has to do with the truncation order of
the series. Derivatives of functions can be estimated by differentiating the
corresponding series expansions. In particular, the tangent vectors to an
immersed manifold can be computed by differentiating the series expansions
of the corresponding parameterization. Spectral methods do not seem to be
appropriate for dealing with non-trivial bundles.

Remark 4.11 In general, transformations from grid space to spectral space
are computationally demanding. Finding Fast Transforms (forward and back-
wards) between grid space and spectral space is a subject of great importance
in applications. For periodic functions, these are the famous Fast Fourier
Transforms, that were already known by Gauss, and reinvented and popular-
ized by Cooley and Tukey in the sixties [28]. There is very efficient software
implementing FFT, in any dimension, such as the awarded FFTW [48]. For
the sphere, Fast Spherical Harmonics Transforms are very recent [81].

4.4 Example 6: Continuation of attracting tori in
a 2D-Fattened Arnold Family

In this section, we consider the so-called 2-dimensional Fattened Arnold
Family (2D-FAF) [12]. It is a family of dissipative maps Fa,ε : T1 × R →
T1 × R defined by:

Fa,ε

(
x
y

)
=

(
x+ a+ ε

2π (sin(2πx) + y)
b(sin(2πx) + y)

)
, (4.40)

where b ∈]0, 1[ is the Jacobian determinant of the family (which is fixed),
a ∈ T1 is the rotation parameter and ε ∈ R is the perturbation parameter.
A profuse study of the local and global bifurcations in this family is carried
out in [12].

The family (4.40) displays many of the behaviors of its ancestor, the Arnold
family of circle maps. In particular, there are regions in the parameter plane
(a, ε), known as Arnold tongues, Rp/q, defined as

(a, ε) ∈ Rp/q ⇔ ∃(x, y) ∈ R2 such that F p
a,ε(x, y) = (x+ q, y),

for which Fa,ε has periodic orbits. The boundaries of these Arnold tongues
correspond to saddle-node bifurcations of periodic orbits.
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Figure 4.1: Regions R0/1 and F0/1 for b = 0.3 in the 2D-FAF given in (4.40). We include, in
red, the continuation path for the example 10.

For example, the tongue

R0/1 = {(a, ε) | |2πa(1− b)| ≤ |ε|}

corresponds to the main resonance 0/1, which matches to the existence of a
couple of fixed points, one attracting and the other of saddle type. Inside
this tongue, either the attracting fixed point is a node or a focus. The second
case happens in the region

F0/1 = {(a, ε) ∈ R0/1 | (1−
√
b)4+(2πa(1−b))2 < ε2 < (1+

√
b)4+(2πa(1−b))2},

which is already inside R0/1.

In this section we are interested in the computation of normally hyperbolic
invariant tori. As we are dealing with a 2-dimensional dissipative system,
detFa,ε = b < 1, with d = 1, we are looking for invariant attracting circles
of (4.40). We will perform the computation of the parameterizations of the
invariant curves, Ka,ε, and their internal dynamics, fa,ε using the method
explained in section 4.2. The corresponding internal dynamics generates a
new family of circle maps. Hence, it is quite natural to expect that this family
exhibits the same features of the paradigmatic Arnold family of circle maps.
We emphasize that the normally hyperbolic (and attracting) invariant curve
can not exist, for example, inside the region F0/1 mentioned above. In fact,
one of the mechanisms of destruction of invariant curves is the transition
of attracting periodic points from node type to focus type, where the curve
survive only as a continuous curve, C0, with finite length. So, we can use
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the boundary of this region to get bounds of parameters for which tori are
destroyed.

In order to test the versatility of the algorithm, we will continue invariant
circles and their internal dynamics in the (a, ε)-parameter plane, crossing
resonances. Having the previous lines in mind, the continuation path in the
(a, ε)-parameter plane has to start away from the resonance zone R0/1.

The numerical experiment we propose in this section is done for the fixed
dissipative parameter b = 0.3. Figure 4.1 shows the boundaries of the regions
F0/1 and R0/1 for b = 0.3 together with the continuation line in red.

4.4.1 The unperturbed case

Look first what happens for the unperturbed case ε = 0. In that case, the
system (4.40) is simply a skew product over a rotation, fa,0(x) = x+a. This
skew product has an attracting invariant graph, given explicitly by

Ka,0(θ) =

(
θ

ϕa(θ)

)
, (4.41)

where

ϕa(θ) =

∞∑
k=1

bk sin(2π(θ− ka)) = −S(a, b) cos(2πθ)+ (C(a, b)− 1) sin(2πθ),

(4.42)
being

C(a, b) =
1− b cos(2πa)

1− 2b cos(2πa) + b2
, S(a, b) =

b sin(2πa)

1− 2b cos(2πa) + b2
. (4.43)

That is, Ka,0 and fa,0 meet the invariance equation

Fa,0◦Ka,0 = Ka,0◦fa,0,

and the unperturbed torus is analytic.

Then, the vertical bundle parameterized by N : T1 → R2×1 with

N(θ) =

(
0
1

)
,

is invariant under DFa,0. In particular, the linearized dynamics DFa,0 around
the invariant circle on the adapted frame Pa,0 will be

P−1a,0 (θ + a)DFa,0(Ka,0(θ))Pa,0(θ) = Λa,0(θ),
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with

Pa,0(θ) =

(
1 0

ϕ′a(θ) 1

)
and

Λa,0(θ) =

(
1 0
0 b

)
.

Since b ∈]0, 1[, the torus is normally hyperbolic, and attracting. By normal
hyperbolicity, this invariant attracting circle persists for small perturbation
of parameters a or ε.

Remark 4.12 The invariant torus has a very different dynamics depending
if the parameter a ∈ Q or a ∈ R/Q. In the first case all the orbits are
periodic, while in the second case all the orbits are dense. Notice, however,
that even though the torus persists for small values of ε, the internal dynamics
can be quite different.

Remark 4.13 When the internal dynamics is a fixed parameter ω which is
also Diophantine, we use a parameterization method that involves normal
hyperbolicity and a KAM scheme to continue with respect to ε a family of
invariant tori with fixed frequency ω by tuning parameter a = a(ε), with
a(0) = ω. See Chapters 2 and 3 and reference [19]. There is also a tai-
lored version for conformally symplectic systems (here, the determinant of
the differential is constant b), which also works to the limit b = 1 [16].

4.4.2 Computations far from the perturbative regime

In this example, we want to focus our attention on the resonance crossings
of the internal dynamics when continuing an attracting invariant curve with
respect to the parameters of the 2-dimensional Fattened Arnold map (4.40).
In the same way as in the Arnold map, the phenomenon of the resonances is
more apparent for big values of ε, i.e. far from the perturbative regime. In
this numerical example, we have taken ε = 0.5 to observe it. We perform a
continuation process with respect to parameter a starting at a = 0.5, which
is far away from the main resonance R0/1, by decreasing its value. We follow
two continuation paths (see Figure 4.1 in red):

(1) Continuation with respect to ε: a = 0.5 fixed, ε = 0.0 until 0.5, to fall
in a zone where the resonances are apparent enough. Recall that for
ε = 0 we have explicit formulae for Ka,0 and fa,0, (4.41).
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(2) Continuation with respect to a: ε = 0.5 fixed, a = 0.5 until 0.1184258179,
to observe the phenomenon of the resonances until the algorithm stops.

Our interest falls on the second continuation path, which is displayed in
Table 4.1.
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Figure 4.2: Rotation number for the internal dynamics of 2D-FAF, for b = 0.3 and ε = 0.5
fixed. Magnifications near the frequencies ρ(fa) =
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.

Since the algorithm computes the internal dynamics on the invariant curve,
so it is given by a circle map, we can compute its rotation number. To
compute the rotation number, we use the algorithm proposed in [96] to our
function of the internal dynamics of the torus obtained during our computa-
tions. Note that the rotation number is a continuous function with respect
to the parameters. Figure 4.2 shows the rotation number as a function of a,
exhibiting the familiar devil staircase. The multiple plateaus correspond to
the existence of periodic orbits on the invariant curve, for which the rotation
number is rational, and their boundaries correspond to saddle-node bifurca-
tions. In fact, we can see in Table 4.1 the corresponding rotation numbers
for the continuation parameter a, where we highlight some resonances.
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Using Fourier discretization
a ρ(fa) NF E EN

red Einv Tail
0.5000000000 1

2
256 2.1e-11 7.9e-11 5.7e-15 7.5e-14

0.4904000000 1
2

256 1.5e-11 9.1e-11 1.2e-14 1.9e-15
0.4500000000 0.44997815 256 8.9e-11 1.0e-10 2.4e-15 4.3e-15
0.4017000000 2

5
256 9.1e-11 5.8e-11 9.6e-15 6.9e-15

0.4000000000 0.39819393 256 9.1e-11 5.7e-11 3.1e-15 4.1e-15
0.3500000000 0.34631620 256 1.1e-11 9.3e-12 1.5e-14 4.7e-15
0.3377000000 1

3
256 1.4e-11 1.0e-11 8.1e-15 4.8e-15

0.3000000000 0.29428313 256 1.1e-11 1.0e-11 1.5e-14 1.1e-14
0.2590000000 1

4
256 2.6e-11 5.0e-12 7.1e-14 1.6e-14

0.2500000000 0.24047813 256 2.2e-11 5.6e-12 6.4e-15 1.4e-14
0.2142000000 1

5
256 3.7e-11 9.0e-12 2.4e-14 5.4e-14

0.2000000000 0.18322639 256 2.6e-11 1.2e-11 2.1e-13 2.9e-14
0.1866000000 1

6
256 4.5e-11 4.3e-11 3.1e-14 4.1e-14

0.1684000000 1
7

256 3.3e-11 3.6e-11 8.1e-13 5.9e-14
0.1560000000 1

8
256 6.0e-11 5.1e-11 2.3e-12 7.5e-14

0.1500000000 0.11576335 256 3.8e-11 2.1e-11 1.4e-12 7.5e-14
0.1471000000 1

9
256 5.1e-11 3.3e-11 8.9e-12 1.7e-13

0.1407000000 1
10

256 9.3e-11 9.8e-11 2.9e-11 3.7e-13
0.1359000000 1

11
256 9.4e-11 9.0e-11 1.9e-11 2.8e-13

0.1349937500 0.08907000 512 4.6e-11 6.8e-11 2.7e-12 8.1e-16
0.1294062500 1

13
512 9.8e-11 4.6e-10 4.4e-11 5.3e-14

0.1280000000 0.07350508 512 1.0e-12 1.4e-09 1.9e-09 1.4e-13
0.1271656250 1

14
512 8.6e-11 6.3e-10 1.3e-09 3.3e-13

0.1270000000 0.07098623 1024 1.4e-11 2.1e-10 6.3e-11 4.4e-14
0.1259825195 0.06831106 8192 6.3e-11 2.3e-10 7.0e-09 1.1e-13

Using Local Interpolation
a ρ(fa) N E EN

red − −
0.1259825195 0.06831106 16384 1.1e-11 1.3e-10 − −
0.1183555167 0.04242959 65536 3.2e-11 1.1e-09 − −
0.1162158902 0.03094355 524288 6.3e-11 8.8e-09 − −

Table 4.1: Continuation with respect to a for b = 0.3 and ε = 0.5 fixed in the 2D-FAF. For
each value a we show several quantities associated with it: the rotation number ρ(fa), the error in
the invariance equation E, the error in the normal component of the reducibility equation EN

red,
the error in the computation of the inverse of the adapted frame Einv and the maximum norm
of the last Fourier terms Tail. In gray it appears a values corresponding to rational frequencies,
while in dark gray the ones for which we show the plots in this example (Figures 4.3 and 4.4).

Notice that we are able to catch out different resonant regions by studying
the internal dynamics. In particular, Figure 4.3 shows invariant tori for val-
ues a = 0.4904, a = 0.3377 and a = 0.2142, for which the rotation number
are 1

2 ,
1
3 and 1

5 respectively. Their internal dynamics are displayed on the
right of the Figure 4.3, where it is seen as a graph of the circle map. Indeed,
there are couples of attracting-repelling 2, 3 and 5 periodic orbits inside the
curves, which are plotted over each corresponding torus. Note that inter-
nal attracting periodic orbits correspond to attracting periodic orbits of the
whole system, while internal repelling periodic orbits correspond to saddle
period orbits. We emphasize that at the resonances during the continuation
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process, the attracting periodic orbits are stable nodes.

Otherwise, in Figure 4.4, we can observe how varies the normal (stable)
bundle for the same a parameters corresponding to the previous rational
frequencies. In the right of this figure we see its corresponding dynamics
over the bundles (i.e. the ΛL,ΛS functions).
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Figure 4.3: Left: invariant attracting circles with their two internal attracting-repelling pe-
riodic orbits, represented by green dots and crosses respectively. Right: internal dynamics over
the torus, in blue, with the line of the fixed points in black. Figures for parameters a = 0.4904,
a = 0.3377 and a = 0.2142 respectively, for ε = 0.5 and b = 0.3 fixed.
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Figure 4.4: Left: invariant normal (stable) bundle of each circle. Right: linearized dynamics
over the bundles. Figures for parameters a = 0.4904, a = 0.3377 and a = 0.2142 respectively, for
ε = 0.5 and b = 0.3 fixed.

We can observe that during this crossing resonance path, we proceed with the
same error tolerance on the invariant equation, ||E|| < 10−10, and without
the necessity to increase the number of Fourier modes of the trigonometric
approximations of the objects for almost all a values. The computation run
into some troubles when crossing “big” resonances, that are overcome by
increasing the number of the Fourier modes. This is much more apparent
when we are close to the main resonance. As we explain in section 4.3.3,
the speed of the algorithm is dominated by the computation time of the



4.4. Continuation of attracting tori 151

composition of functions, which is a hard work in the Fourier space. So,
when we are dealing with a high number of Fourier modes, we turn the
periodic functions into functions discretized by local interpolation, and then
we follow the continuation process using this kind of discretization.

The continuation process stops when we reach the value

alast = 0.1162158902.

This is because the continuation step is very small, say smaller than 10−7,
since the Newton method does not converge. However, it is expected that
the curve persists, and that the internal dynamics exhibits a saddle-node
bifurcation of fixed points at

asn  0.1136821022.

Notice that this value corresponds to the boundary of the resonance region
R0/1. After the bifurcation, the circle has an attracting (node) and a saddle
fixed point, and the invariant curve is generated by the unstable manifold of
the saddle point. Moreover, there is a node-focus transition of the attracting
fixed point at

anf  0.1037332330,

when we touch the boundary of the region F0/1. As we know, inside this
region we cannot have a (smooth) normally hyperbolic invariant circle, so
anf is a lower bound for the existence of invariant attracting circles for the
parameters ε = 0.5 and b = 0.3.

When our method stops, we can observe that the minimum angle between
bundles decreases up to the value αlast =0.0129160145 (see Figure 4.5 top).
This behavior suggests that the breakdown of the torus is not due to a
node-focus transition nor to a bundle collision. In a node-focus transition,
the stable node turns to a focus. Hence, if the breakdown is due to this
transition, the angle between bundles at the fixed point has to be zero at
the moment of the collision of the two real eigenvalues. Other sophisticated
scenarios of bundle collision in the context of quasi-periodic invariant tori
can be seen in [19, 56, 59, 18].

However, it is already known that other possible scenarios of destruction
involving global phenomena related with homoclinic bifurcations can occur.
In fact, it could happen before the creation of a focus, as a cubic tangency
between invariant manifolds. In that case, the unstable manifold, WU , that
generates the invariant curve, has a cubic tangency with some leaves of the
stable foliation of the invariant curve. After these tangencies, the torus is
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Figure 4.5: Top: Minimum angle between tangent and stable bundle for each parameter a
during the continuation process, for ε = 0.5 and b = 0.3 fixed. Bottom: Minimum angle between
tangent and stable bundle for fixed parameters a = 0.4904, a = 0.3377 and a = 0.2142 respectively.

destroyed (in the sense of a normally hyperbolic invariant circle), and persists
only as a continuous curve. A sudden loss of regularity of the curve occurs,
from Cr to C0. See [1, 34, 12, 51] for more details.

We expect that is what occurs in our example. Using algorithms to compute
higher order invariant manifolds of fixed points, see e.g. [99, 53], we can
compute the invariant curve. We pick several a values after the saddle-
node creation but before the node-focus transition, and then we compute
the unstable manifold of the saddle, which meets to the invariant circle, and
the strong stable manifold of the node, WSS, which coincides with the leave
of the stable foliation in the node. We observe that for some parameters
there are transversal crossings between the unstable manifold of the saddle
and the strong stable manifold of the node. Indeed, before these crossings
there is a value aqt for which we have a quadratic tangency :

aqt ≈ 0.1130118205.

This transition is showed at bottom of Figure 4.6. It is known (see [12]) that
before a quadratic tangency there is a cubic tangency for a certain parameter
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Figure 4.6: Top: Quadratic tangency between a leave of the stable foliation of the strong-stable
manifold of the node, WSS , and the unstable manifold of the saddle WU (which corresponds to
the circle), for a = 0.71007421. Bottom: Transition through the quadratic tangency (from left to
right): before the tangency (a = 0.1131591645), at the quadratic tangency (aqt = 0.1130118205)
which is in fact a magnification near the attracting node of the figure of the top, and after the
tangency (a = 0.1130000096), when there is transversal crossing.

value act between the stable foliation and the invariant circle. Then, we can
upgrade the lower bound of the destruction of our torus to the value aqt, in
which we know that the torus is already broken.

In summary, we obtain a cascade of phenomena at parameters

anf  0.1037 < aqt  0.1130 < act ≤ asn  0.1137 < alast  0.1162,

that happens in a short range in parameter space a. Notice that the algo-
rithm breaks down at parameter alast relatively close to the torus breakdown
at the critical parameter act.
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Figure 4.7: Invariant circle and its stable bundle for the last parameter we can compute,
alast = 0.1162158902, for b = 0.3 and ε = 0.5 fixed. x-axis is moved +0.5.

4.5 Example 7: Continuation of saddle tori in a
3D-Fattened Arnold Family

In this section we consider a 3 dimensional Fattened Arnold Family (3D-
FAF), a family of maps Fa,ε : T

1 × R2 → T1 × R2 defined by :

Fa,ε

⎛
⎝ x

y
z

⎞
⎠ =

⎛
⎝ x+ a+ ε

2π (sin(2πx) + y + z/2)
b(sin(2πx) + y)

c(sin(2πx) + y + z)

⎞
⎠ (4.44)

where b, c ∈ R are fixed parameters, a ∈ T1 is the rotation parameter and
ε ∈ R is the perturbation parameter. The Jacobian determinant is constant
and equal to bc. We consider parameters 0 < b < 1 < c with bc < 1, hence
a dissipative case. The family (4.44) was introduced in [11, 8] as a perfect
ground to test algorithms of computation of normally hyperbolic invariant
curves of saddle type (in fact, (4.44) is a rescaled version). This is the
precisely the problem we consider in this section.

As the family (4.40) of the previous example, this new family (4.44) displays
many of the behavior of the Arnold family of circle maps. In this case, the
main resonance 0/1 is

R0/1 =

{
(a, ε) |

∣∣∣∣−2πa(1− b)(2− 2c)

2− c

∣∣∣∣ ≤ |ε|
}
,

which corresponds to the region where there exist a couple of fixed points
of saddle type with different stability indices: a saddle with stability index
2 (i.e., with a 2D stable manifold), which is either a saddle-node and a
saddle-focus (inside the region F0/1), and a saddle-node with stability index
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1 (i.e., with a 1D stable manifold). These saddles are born in a saddle-node
bifurcation for parameters in the boundary of R0/1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5

ε

a

R 0/1F 0/1

Figure 4.8: Curves R0/1 and F0/1 for b = 0.3 and c = 2.4 in the 3D-FAF given in (4.44). We
include the two continuation paths for the example 11.

In this example, we are again interested in the computation of normally hy-
perbolic invariant tori. Now, we are dealing with a 3-dimensional dissipative
system with d = 1, so then we are in fact looking for invariant circles of
saddle type of the family (4.44). Recall that the normally hyperbolic (sad-
dle) invariant curve, with such a saddle-focus on it, can not exist inside this
region F0/1. In fact, a mechanism of breakdown of the saddle invariant curve
corresponds to a node-focus transition. This is a transition on the saddle
type invariant curve from a saddle-node type periodic point to a saddle-focus
type periodic point (inside the invariant curve), where the torus losses of its
regularity from Cr to C0, and persists only as a continuous curve. We will
use the boundary values of F0/1 as an upper bound of the persistence of
the invariant saddle circle of (4.44). However, as we see in the previous
examples and in previous mentioned references, there could be other global
mechanisms of breakdown of the invariant torus. The phenomenon deserves
further study. To best of our knowledge, this is still not well-understood.

In this implementation we want to show the efficiency of the method ex-
plained in section 4.2 by computing not only parameterizations of attracting
invariant tori but of saddle type, Ka,ε and its internal dynamics fa,ε. Nu-
merical computations have been done for parameters b = 0.3 and c = 2.4
fixed, so that the constant Jacobian for this example is DFa,ε = 0.72 < 1.
We have performed two different continuations through the parameter space
(a, ε). In the first case, we do a continuation under the same point of view as
in example 10, and we start the continuation in the (a, ε)-parameter space
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far away from the resonance zone R0/1. So, by doing the continuation by
the ”rotation“ parameter a, we focus our attention in the crossing resonances
phenomena. In the other case, we start the continuation near the boundary
of the main resonance R0/1 and we carry out the continuation with respect
to the perturbation parameter ε, so proceeding near the main resonance and
entering in it. Figure 4.8 shows the boundaries of regions F0/1 and R0/1 for
the family (4.44), together with the two continuation paths of saddle NHIT
we have performed in this section (one in red and the other in purple).

4.5.1 The unperturbed case

The analysis of the unperturbed case is, again, straightforward, and we can
find explicit expressions for the parameterizations of the invariant curves and
their bundles. For ε = 0, for each a, (4.44) is an skew-product system with
a saddle invariant torus parameterized by

Ka,0(θ) =

⎛
⎝ θ
ϕa(θ)
ψa(θ)

⎞
⎠ ,

where ϕa is given by (4.42) and

ψa(θ) = −
∞∑
k=0

c−k (sin(2π(θ + ka)) + ϕa(θ + ka))

=
c

b

(
S(a, b)(C(−a, c−1)− 1) + (C(a, b)− 1)S(−a, c−1)

)
cos(2πθ)

− c

b

(
(C(a, b)− 1)(C(−a, c−1)− 1)− S(a, b)S(−a, c−1)

)
sin(2πθ),

(4.45)

see (4.43) for the definition of the coefficients C, S. The dynamics on the
torus is given by the rotation fa,0(θ) = θ + a. That is, Ka,0 and fa,0 meet
the invariance equation.

Fa,0◦Ka,0 = Ka,0◦fa,0.

Moreover,
P−1a,0 (θ + a)DFa,0(Ka,0(θ))Pa,0(θ) = Λa,0(θ),

with

Pa,0(θ) =

⎛
⎝ 1 0 0
ϕ′a(θ) 1 0
ψ′a(θ)

c
b−c 1

⎞
⎠
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and

Λa,0(θ) =

⎛
⎝1 0 0
0 b 0
0 0 c

⎞
⎠ .

Since 0 < b < 1 < c, the torus is normally hyperbolic and saddle-type. The
invariant stable and unstable bundles are parameterized by

NS
a,0(θ) =

⎛
⎝ 0

1
c

b−c

⎞
⎠ , NU

a,0(θ) =

⎛
⎝0
0
1

⎞
⎠ ,

respectively, the last two columns of Pa,0.

By normal hyperbolicity this invariant saddle circle persists for small per-
turbation of parameters a or ε.

4.5.2 Continuation far from the perturbative regime

In this first continuation, we want to focus on the resonance crossings of the
internal dynamics when continuing a saddle invariant curve with respect to
the parameters of the 3-dimensional Fattened Arnold map (4.44). Resonance
tongues are more viewable for big values of ε, so that we pick a big perturba-
tive parameter ε = 0.97. Then, we perform the continuation with respect to
parameter a, starting at a = 0.5, which is far enough to the main resonance,
and decreasing its value. The continuation path through the (a, ε)-parameter
space is split up into two subpaths (see Figure 4.8 in red):

(1) Continuation with respect to ε: a = 0.5 fixed, ε = 0.0 until 0.97. Recall
that for ε = 0 we have explicit formulae for Ka,0 and fa,0, (4.42) and
(4.45).

(2) Continuation with respect to a: ε = 0.97 fixed, a = 0.5 until 0.0293044529,
to observe the phenomenon of the resonances until the algorithm stops.

Indeed, our interest is only on the second subpath (horizontal red line in
Figure 4.8), which is displayed in Table 4.2. Figure 4.9 shows the rotation
number as a function of a, which is computed from the internal dynamics
fa,ε. The internal dynamics have exhibited multiple saddle-node bifurcations
of periodic orbits at different resonances, for which the rotation number is
rational, and it also has taken irrational rotation numbers. Even though
in a first look we only see the 1/2 resonance, doing magnifications on the
graph of the rotation number we can see many plateaus of the devil staircase,
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Figure 4.9: Rotation number for the internal dynamics of 3D-FAF, for b = 0.3, c = 2.4 and
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5
.

corresponding to regions with periodic orbits. In Table 4.2 we show several a
values with their corresponding rotation numbers, where we have highlighted
the corresponding to rational rotation number.

We have selected three different parameter values corresponding to different
rational rotation numbers and we study them. Figure 4.10 shows the saddle-
type invariant tori and their corresponding internal dynamics of (4.44) for
fixed values a = 0.4978, a = 0.3348 and a = 0.2017089258, for which the
rotation number is 1

2 ,
1
3 and 1

5 respectively. So that, there are couples of
attracting-repelling periodic orbits, of period 2, 3 and 5 respectively, inside
the curves, which are drawn with dots and crosses, respectively. Note that
these attracting and repelling internal periodic orbits are saddle periodic
orbits of index 2 and 1, respectively, for the whole system. Recall that
our algorithm computes also the invariant bundles and their corresponding
linearized dynamics. The stable and unstable bundles of these three tori
appear in Figure 4.11. We also display the dynamics over the invariant
bundles (i.e. the ΛL, ΛS, ΛU functions).
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Using Fourier discretization
a ρ(fa) NF E EN

red Einv Tail
0.5000000000 1

2
64 5.1e-11 1.6e-10 1.1e-13 1.9e-11

0.4978000000 1
2

64 4.8e-11 7.9e-11 3.7e-14 1.2e-11
0.4500000000 0.45000748 64 3.5e-11 2.3e-11 1.1e-14 5.5e-13
0.4002000000 2

5
64 2.3e-11 2.1e-11 6.1e-15 4.4e-13

0.4000000000 0.39979773 64 2.3e-11 2.2e-11 3.2e-15 4.3e-13
0.3500000000 0.34951896 64 2.9e-11 1.8e-11 2.3e-14 1.1e-12
0.3348000000 1

3
64 5.4e-11 5.0e-11 3.6e-14 2.8e-12

0.3000000000 0.29928372 64 6.9e-11 1.5e-10 2.5e-13 5.1e-12
0.2788000000 0.27792300 64 9.6e-11 1.3e-10 6.9e-13 5.8e-12
0.2787937500 0.27791670 128 3.8e-11 1.4e-10 1.3e-14 1.7e-15
0.2510989257 1

4
128 2.2e-11 1.2e-11 1.2e-14 4.6e-15

0.2500989258 0.24904881 128 2.3e-11 1.1e-11 1.3e-14 6.3e-15
0.2017089258 1

5
128 5.5e-11 1.7e-10 9.9e-15 1.7e-14

0.2000989258 0.19835414 128 2.1e-11 2.2e-11 1.7e-14 3.6e-15
0.1689989258 1

6
128 1.9e-11 3.0e-11 2.6e-14 1.1e-14

0.1500989258 0.14733728 128 2.1e-11 2.4e-11 1.9e-14 2.8e-14
0.1457989258 1

7
128 2.0e-11 2.4e-11 1.5e-14 8.7e-15

0.1300989257 0.12675684 128 2.3e-11 2.9e-11 4.1e-14 1.2e-14
0.1283989258 1

8
128 2.4e-11 3.2e-11 5.6e-14 1.6e-14

0.1200989258 0.11640626 128 2.9e-11 5.8e-11 6.5e-14 7.0e-15
0.1149989258 1

9
128 3.2e-11 5.8e-11 3.6e-14 2.3e-14

0.1000989258 0.09551729 128 5.6e-11 2.3e-10 3.6e-14 8.7e-15
0.0885989258 1

12
128 5.7e-11 4.6e-10 2.9e-14 7.2e-15

0.0800989258 0.07419206 128 5.5e-11 5.4e-10 3.4e-14 7.7e-15
0.0700989258 0.06321529 128 2.3e-11 8.9e-10 5.4e-14 2.8e-14
0.0600989258 0.05183550 128 4.8e-11 5.4e-10 1.0e-12 5.4e-13
0.0533715820 0.05183550 256 1.1e-11 5.4e-11 1.3e-13 3.9e-15
0.0531083084 13

300
256 5.7e-11 7.3e-10 1.8e-13 5.1e-15

0.0500083084 0.03955723 256 2.9e-11 4.8e-10 2.0e-13 4.1e-15
0.0406536209 0.02641140 512 2.2e-11 1.1e-10 3.8e-13 3.6e-15
0.0344499724 0.01441782 1024 2.4e-11 2.4e-10 2.2e-11 1.2e-14
0.0332879345 0.01110032 2048 1.5e-11 1.1e-10 1.2e-10 1.1e-14
0.0327502148 0.00921540 4096 2.3e-11 2.0e-10 2.1e-10 8.5e-15
0.0327211468 0.00910343 8192 7.9e-11 1.2e-09 9.6e-09 1.1e-13
0.0327205964 0.00910130 16384 8.9e-11 1.7e-09 5.9e-09 6.7e-14

Using Local Interpolation
a ρ(fa) N E EN

red Einv −
0.0327205964 0.00910130 32768 3.7e-11 1.2e-09 2.4e-07 −
0.0315061826 0.00000000 32768 5.5e-11 2.3e-10 1.1e-06 −
0.0300000000 0.00000000 32768 6.1e-11 1.6e-08 1.5e-06 −
0.0297750000 0.00000000 65536 1.4e-11 4.6e-10 1.3e-08 −
0.0296695313 0.00000000 131072 9.1e-12 4.7e-10 2.0e-08 −
0.0294519505 0.00000000 262144 1.4e-11 3.5e-10 8.4e-08 −
0.0293044529 0.00000000 524288 1.2e-11 0.1e-10 2.4e-06 −

Table 4.2: Continuation with respect to a for b = 0.3, c = 2.4 and ε = 0.97 fixed in the 3D-
FAF. For each value a we show several quantities associated with it: the rotation number ρ(fa),
the error in the invariance equation E, the error in the normal component of the reducibility
equation EN

red, the error in the computation of the inverse of the adapted frame Einv and the
maximum norm of the last Fourier terms Tail. In gray it appears a values corresponding to
rational frequencies, while in dark gray the ones for which we show the plots in this example.
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Figure 4.10: Left: Invariant saddle-type tori with their two internal attracting-repelling pe-
riodic orbits, represented by green dots and crosses respectively. Right: internal dynamics over
the torus, in blue, with the line of the fixed points in black. Figures for parameters a = 0.4978,
a = 0.3348 and a = 0.2017089258 respectively, for b = 0.3, c = 2.4 and ε = 0.97 fixed.
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Figure 4.11: Left: Invariant stable and unstable bundles of each curve. Right: linearized
dynamics over the bundles. Figures for parameters a = 0.4978, a = 0.3348 and a = 0.2017089258
respectively, for b = 0.3, c = 2.4 and ε = 0.97 fixed.

We observe that during the continuation process we cross many resonances
with error tolerance ||E|| < 10−10 and keeping a relatively small number
of Fourier modes in order to approximate the objects, using NF ≤ 256.
As in the previous example, the computation has some difficulties when we
approach the main resonanceR0/1. Then, it is needed to increase the number
of Fourier modes to well approximate our objects and to be able to continue
the computations.
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The internal dynamics exhibits a saddle-node bifurcation of fixed points at

asn = 0.0315061826,

when entering in the Arnold tongue R0/1. So that, in this example we can
observe the two saddle fixed points inside our invariant torus. The index 2
saddle fixed point corresponds to the attracting fixed point for the internal
dynamics, while the index 1 saddle fixed point corresponds to the repelling
fixed point for the internal dynamics. When we are close to the parameter
asn, the number of Fourier modes is too high to make the computations
fast enough. At that moment, we change the discretization type of our
objects from the Fourier approximation to a local piecewise interpolation
type. Then, we can proceed the continuation process in a faster way. See
Section 4.3.3 for the details between spectral and grid points approximations.
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Figure 4.12: Top: Minimum angle between all bundles for each parameter a during the
continuation process, for ε = 0.97, b = 0.3 and c = 2.4 fixed. Bottom: Minimum angle between
bundles for fixed parameters a = 0.4978, a = 0.3348 and a = 0.2017089258 respectively.

Our computation stops when we reach the parameter

alast = 0.0293044529,
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when the continuation step is smaller than 10−7 and we need too many
points in the mesh to represent the torus. However, our computation stops
before getting the parameter corresponding to the node-focus transition of
the index 2 saddle fixed point

anf  0.0247053794,

which corresponds to the boundary of F0/1 for our fixed parameters b = 0.3,
c = 2.4 and ε = 0.97. Recall that this value anf is a lower bound of the
critical value, ac, of the destruction of the curve.

In this example, when the method stops, the minimum angle between bun-
dles corresponds to the minimum angle between the tangent and the stable
bundles, which has a value αlast(L − NS) = 0.0044193874 (see Figure 4.12
top). We know that at the moment of the node-focus transition this angle
has to be exactly zero, because both stable eigenvalues of the saddle fixed
point of index 2 collide, and so the corresponding eigenspaces. Even that
this value αlast is relatively small, from the results and arguments we carried
out in example 10, it makes us suspect that the breakdown due to some
other global phenomena, such as tangencies between invariant manifolds or
foliations, which can occurs prior to the node-focus transitions. The study
of the breakdown of saddle-type invariant curve deserves further study. Note
that the transition to the breakdown of the torus occurs in a short range in
parameter space a, through a cascade of phenomena at parameters

anf  0.0247 ≤ ac < alast  0.0293 < asn  0.0315.

4.5.3 Continuation starting close to the main resonance R0/1

In this subsection, we select a low value of a, 2πa = 0.1, b = 0.3 and c = 2.4
fixed, and perform the continuation with respect to the perturbation param-
eter ε, starting from ε = 0. These are, in particular, the parameters used
in [11, 8], in which parameter a is rescaled modulus 2π. The continuation
path of the invariant saddle curve for these parameters appears in purple in
Figure 4.8. Notice that the continuation starts extremely close to the main
resonance R0/1 and crosses it at the parameter

εsn = 0.49,

when there is a saddle-node bifurcation. Inside the region R0/1, the saddle-
type curve has two saddle points with different stability indices until the



164 Chapter 4. A Newton-like method for computing NHIT

torus breaks down at some critical parameter εc. An upper bound of εc is
given by

εnf  0.7761816294,

for which there is a node-focus transition. This corresponds to the boundary
of F0/1 for the fixed parameters of this implementation.

Local Interpolation Fourier Expansions
ε N E EN

red NF E EN
red

0.0000000000 2048 4.8e-12 4.4e-16 64 1.5e-14 2.7e-14
0.2000000000 2048 8.1e-11 2.1e-10 64 3.0e-11 8.3e-11
0.4000000000 2048 2.5e-11 2.9e-10 64 4.8e-11 7.9e-11
0.4900000000 2048 6.7e-11 2.0e-09 64 7.1e-11 1.7e-10
0.6000000000 2048 7.6e-11 7.1e-08 256 2.2e-11 1.6e-11
0.7000000000 16384 2.6e-11 1.5e-10 8192 9.1e-11 1.3e-09
0.7181951181 65536 5.0e-11 1.9e-08 32768 8.5e-09 4.5e-08
0.7200000000 65536 4.9e-11 8.3e-09 − − −
0.7440768923 524288 9.9e-09 7.0e-08 − − −

Table 4.3: Continuation with respect to ε for a = 0.1/2π, b = 0.3 and c = 2.4 fixed in
the 3D-FAF. For each ε value we show: the error in the invariance equation, E, and the error
in the normal component of the reducibility equation, EN

red. We compare both errors using the
two different discretization types: by piecewise Lagrangian interpolation (with an N grid) and by
using Fourier expansions (with NF Fourier modes).

In this subsection, we use both discretization methods explained in Sec-
tion 4.3 to approximate the objects: a grid method based on a cubic lo-
cal interpolation and a Fourier method. The results are displayed in Ta-
ble 4.3. For the grid method, we start the continuation with an initial grid
of N = 28 = 256 nodes for the first approximation. We do the continuation
with respect to ε and each time that the program runs into troubles to well
approximate the objects, we increase the grid. We can do the computations
up to parameter εlast,G = 0.7440768923, for which we have needed a grid of
N = 219 = 524288 points. On the other hand, for the Fourier method, we
start with an initial approximation given by NF = 64 Fourier modes. We
do the continuation with respect to ε, and we stops the method when we
have had to add too many Fourier modes, for εlast,F = 0.7181951181 we have
needed NF = 32768). As mentioned in Section 4.3.3, Fourier method suffers
in computing composition K ◦ f , and such a number of modes NF is too
high to continue the computations in a reasonable time. In particular, until
we reach ε = 0.7, we proceed with an error tolerance ||E|| < 10−10. Up to
there, we only ask for an error tolerance ||E|| < 10−8, for both discretization
cases.
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Figure 4.13: Top: Variation of the invariant saddle torus, from ε = 0, in red, up to the last
NHIT we can compute, in blue. Bottom: The internal dynamics for the unperturbed case (left)
and the last computed saddle torus (right).

In Figure 4.13, we observe the invariant saddle type curve for εlast,G (in
blue), which is heavily deformed with respect to the unperturbed one (in
red). On the bottom of this Figure 4.13, we can see how the internal dy-
namics oscillates with respect the initial one. While for the unperturbed
case, the internal dynamics is a rigid rotation of angle a = 0.1/2π, for the
last computed torus the internal dynamics exhibits fixed attracting-repelling
fixed points.
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Figure 4.14: Right: Invariant bundles for the unperturbed torus. Left: Invariant bundles for
the last computed saddle torus.
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turbed case and for the last computed torus, respectively. In the perturbed case (right), the two
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The information about the bundles is showed in Figures 4.14 and 4.15. Figure
4.14 shows the invariant bundles for ε = 0 and εlast,G. Notice that while
tangent (in blue) and stable bundles (in green) seems to be approaching, the
unstable bundle (in orange) does not change so much. Otherwise, Figure
4.15 shows the dynamics over the bundles (i.e.: ΛL, ΛS, ΛU), which provide
us a quantitative measure of the quality of the hyperbolicity condition. We
observe that ΛS, the “stable dynamics”, is not always less than 1. In fact,
near the “dangerous” saddle point (printed in the left vertical line) the stable
dynamics has a large peak and it overpasses the tangent dynamics. However,
notice that the normal hyperbolicity conditions on ΛL, ΛS and ΛU have to
be satisfied in average.
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Figure 4.16: Top: Minimum angle between all bundles for each parameter ε during the con-
tinuation process, for a = 0.1/2π, b = 0.3, c = 2.4 fixed in the 3D-FAF. Bottom: Minimum angle
between bundles for the unperturbed saddle torus and the last computed torus, respectively.

Another measure of the quality of the normal hyperbolicity property is pro-
vided by the angles between the invariant bundles, see Figure 4.16. We
observe that the minimum angle between the tangent and stable bundles
decreases to αlast(L−NS) = 0.012666821 when we increment the parameter
ε up to the value εlast,G = 0.7440768923. As we explain at the beginning of
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this example, we have an upper bound of the critical parameter in which the
torus is broken, εnf  0.7761816294, and obviously our method do not exceed
this value. From our computations, we cannot claim that the breakdown is
produced at the node-focus transition. As we argue in previous examples,
there could be some global mechanisms of breakdown, such as tangencies
between invariant manifolds or foliations of the torus. With all this infor-
mation, we cannot conclude what is the mechanism of destruction of that
torus. We leave this study of saddle torus breakdown as an open problem in
which we will continue working.

4.6 Example 8: Computation of a normally hyper-
bolic invariant cylinder

In this section we illustrate the applicability of the Newton method described
in Section 4.2 to compute an invariant cylinder, in a higher dimensional
phase space. We consider the Froeschlé map (see [49]), which consists in
two coupled standard maps with fixed parameters κ1, κ2, and a coupling
parameter ε, in the following slightly different formulation:

Fε : T× R× R2 −→ T× R× R2⎛
⎜⎜⎝
x1
y1
x2
y2

⎞
⎟⎟⎠ −→

⎛
⎜⎜⎝
x1 + y1 − κ1

2π sin(2πx1)− ε
2π sin(2π(x1 + x2))

y1 − κ1
2π sin(2πx1)− ε

2π sin(2π(x1 + x2))
x2 + y2 − κ2

2π sin(2πx2)− ε
2π sin(2π(x1 + x2))

y2 − κ2
2π sin(2πx2)− ε

2π sin(2π(x1 + x2))

⎞
⎟⎟⎠ .

(4.46)
This is a family of 4 dimensional symplectic maps, F ∗εω = ω, with

ω = dy1 ∧ dx1 + dy2 ∧ dx2. (4.47)

This family has been extensively studied in the literature as a model to
understand instability channels [74, 78], which are very related with the
phenomenon of Arnold’s diffusion [3], namely the drift of the action variables,
for a priori unstable nearly integrable Hamiltonian systems [27]. Remarkably,
the relatively recent discovery in [32] (see also [33]) of the role of normally
hyperbolic invariant manifolds (in fact, cylinders) in some mechanisms that
lead to Arnold’s diffusion has revolutionized the area. Our goal is much more
modest, and we will illustrate some preliminary computations of a normally
hyperbolic cylinder, a first step to compute their invariant manifolds and
the internal invariant foliations (although we compute their linearizations),
their homoclinic intersections and the corresponding scattering map, that
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are important for describing a geometric mechanism of Arnold’s diffusion
[32].

In the present example notice that for ε = 0 the system is uncoupled. More-
over, the cylinder

C0 = {(x1, y1,
1

2
, 0) | (x1, y1) ∈ T× R}

is invariant, and the internal dynamics on C0 is a standard map with param-
eter κ1. Notice that the model manifold is T×R. If κ2 is large enough, the
hyperbolicity of the saddle fixed point (12 , 0) for the corresponding standard
map dominates the internal dynamics of C0, and the cylinder is a normally
hyperbolic invariant manifold. A particular case is κ1 = 0 and κ2 > 0, for
which the internal dynamics is integrable, and the system is said to be a
priori unstable. Even if there is available a theory of persistence of non-
compact normally hyperbolic manifolds [6, 41], we can apply the classical
theory [63, 43] to assert the persistence of C0 for small values of the coupling
parameter ε, that is the existence of a Fε-invariant cylinder Cε close to C0.
The trick for the argument (and for the numerical computation performed
in this section) is that we can think of Fε as defined in T× T× R2 and the
model manifold to be T2.

In a more functional parlance, by writing z1 = (x1, y1) and z2 = (x2, y2), the
Froeschlé map (4.46) is a map F : T× R× R2 → T× R× R2 of the form

F

(
z1
z2

)
=

(
Az1
0

)
+ Fp

(
z1
z2

)
,

where

A =

(
1 1
0 1

)
and Fp(z1, z2) is 1-periodic in z1. Our goal is finding a 2-dimensional F -
invariant cylinder C parameterized by C : T × R → T × R × R2, of the
form

C(θ) =

(
θ
0

)
+ Cp(θ),

where Cp(θ) is 1-periodic in θ = (θ1, θ2). The dynamics on the cylinder C,
parameterized by C, is then a map f : T× R→ T× R of the form

f(θ) = Aθ + fp(θ),

where fp is 1-periodic in θ. The fact that homotopy classes of F , C and f
has to match lead to an error function

E(θ) =

(
ACz1

p (θ)

0

)
+ Fp

(
θ + Cz1

p (θ)

Cz2
p (θ)

)
−
(
fp(θ)
0

)
−
(
Cz1
p (Aθ + fp(θ))

Cz2
p (Aθ + fp(θ))

)
,
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in which only appear 1-periodic functions. Therefore, we can directly apply
the methods described in this chapter.

Remark 4.14 In this example, the main assumption is the periodicity of
Fp with respect to x1 and y1 (and of Cp with respect to θ1 and θ2). In the
absence of the periodicity property of Fp with respect to y1 (and of Cp with
respect to θ2), the method described here can be easily implemented with a
few modifications to compute truncated invariant cylinders. In the present
example, dynamics helps and invariant rotational curves around a truncated
cylinder prevent the orbits to escape. In higher dimensional examples, (for
instance, a 4 dimensional cylinder for a 6 dimensional symplectic map), the
diffusion in the cylinder can be very small since there are many obstructions
that prevent orbits to escape in practical times.

Geometrical properties of the Fε-invariant cylinder Cε follow from the invari-
ance equation

Fε ◦ Cε = Cε ◦ fε. (4.48)

In particular, since
f∗ε (C

∗
εω) = C∗εω, (4.49)

the internal dynamics fε is symplectic with respect to the reduced symplec-
tic form. The fact that the reduced 2-form ωCε = C∗εω is non-degenerate
(and then it is symplectic) follows from the following perturbative argument:
since ωC0 = dθ2 ∧ dθ1 is non-degenerate, then ωCε is also non-degenerate
for ε small. This is in contrast with KAM tori, for which the restricted sym-
plectic form vanishes. For that reason, we observe, inside the cylinder, the
same structures that appear in area preserving maps, such as periodic orbits,
islands, rotational invariant curves or chaotic orbits close to separatrices (see
Figure 4.17).

For the numerical computation we present in this section, we have taken
κ1 = 0.1 and κ2 = 1.5. Notice that for ε = 0, we have an uncoupled
system, so that the invariant cylinder C0 has an internal dynamics given
by a standard map with parameter κ1 = 0.1. Particularly, this unper-
turbed cylinder C0 has two fixed points, P1 = (0, 0, 1/2, 0) = C0(0, 0) and
P2 = (1/2, 0, 1/2, 0) = C0(1/2, 0). The first one is elliptic on the mani-
fold (and elliptic-hyperbolic on the whole space, also called center×saddle
in the Hamiltonian context) whereas the second one is hyperbolic on the
manifold (and hyperbolic-hyperbolic on the whole phase space, also called
saddle×saddle in the Hamiltonian context).

By increasing parameter ε, we perturb this initial invariant cylinder, which,
by normally hyperbolic theory, will persists for small ε. In this example, we
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ε E Ered e

0.00 2.96e-17 6.07e-18 4.39e-18
0.05 4.63e-10 4.36e-07 4.59e-10
0.10 4.46e-10 9.96e-08 1.77e-10
0.15 5.47e-10 6.55e-07 3.28e-10
0.20 5.46e-10 9.93e-07 9.24e-10
0.25 5.60e-09 9.90e-06 4.20e-09
0.30 8.52e-09 1.55e-05 8.16e-08
0.35 6.40e-09 6.12e-05 3.24e-06

Table 4.4: Continuation with respect to ε for κ1 = 0.1, κ2 = 1.5 fixed in the Froeschlé map.
For each ε value we show: the error in the invariance equation, E, the error in the reducibility
equation, Ered, and the error in the invertibility equation, e.

have used a 2 dimensional grid with 512 × 512 points and have performed
interpolations with 8× 8 neighboring points. This is a good enough choice,
see errors in Table 4.4. Notice that the error on the invariance equation is
getting worst as we increase the ε value. When the numerical computation
does not pass our quality control, we stop the computations. In this example,
it happens when ε = 0.35. We can refine the computations by increasing
the grid points to 1024× 1024, or even finer, at the expense of much larger
computing times.
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As in previous examples, we compute the internal dynamics of the object,
which is now a 2 dimensional function. First interesting thing we can ob-
serve on the system is the presence of bifurcations inside the cylinder. By
inspecting the internal dynamics for different ε values, see Figure 4.17, we
can easily see how the role of the fixed points inside the cylinder changes as
we increase the ε value. In fact, for ε ≈ 0.0938, there is a bifurcation on
the tangent eigenvalues of the fixed point P2 = (1/2, 0, 1/2, 0) = Cε(1/2, 0)
where this hyperbolic fixed point turns into an elliptic one, so that we
have a NHIM with two elliptic fixed points inside it. After a while, near
ε ≈ 0.1071, there is another bifurcation in which the elliptic fixed point
P1 = (0, 0, 1/2, 0) = Cε(0, 0) turns into an hyperbolic one, so then the fixed
points of the cylinder has exchanged their character from the unperturbed
initial cylinder. This phenomenon is immediately observable by the behavior
of the orbits around these two fixed points. Figure 4.18 shows the bifurca-
tion diagram of the eigenvalues of fixed points P1 (in red) and P2 (in blue)
inside the cylinder, with a marked light green zone corresponding to the ε
values for this concrete example. Observe that we can continue this invariant
cylinder Cε through that bifurcations. This is because the tangent eigenval-
ues (inside the cylinder) are always dominated by the normal eigenvalues
(in the normal directions to the cylinder), so that the normal hyperbolicity
condition is always satisfied on the fixed point, where the behavior of the
internal dynamics is influential.
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Figure 4.18: Bifurcation diagram for ε of the eigenvalues of the fixed points P1 = (0, 0, 1/2, 0) =
Cε(0, 0) (in red) and P2 = (1/2, 0, 1/2, 0) = Cε(1/2, 0) (in blue) of the cylinder Cε.

In order to represent the invariant cylinder, a 2D object inside a 4D phase
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space, we consider the map R = (X,Y, Z) : T× R× R2 → R3:

X(x1, y1, x2, y2) =
√

x22 + y22 sin(2πx1),

Y (x1, y1, x2, y2) =
√

x22 + y22 cos(2πx1),

Z(x1, y1, x2, y2) = y1.

We use these coordinates to show the cylinder, parameterized by R ◦ C,
and the internal dynamics (see Figure 4.19 and Figure 4.21). Notice that
the cylinder is slightly deformed during the continuation with respect to
parameter ε.

Furthermore, from the internal dynamics we obtain more information of
the objects. We can compute the rotation number inside the manifold, so
that we can inspect the different dynamics on it. For example, Figure 4.20
shows the rotation number inside the cylinder Cε for ε = 0.35, for each θ2
value and fixed θ1 = 0.5, observing the familiar devil staircase. Moreover,
as we already know the rotation number for all orbits through (0.5, θ2), for
all θ2 ∈ T, we can elaborate the inverse process: select a desired rotation
number and then compute its corresponding orbit. For instance, we have
done it for the golden mean number, and we compute the golden invariant
curve inside all the invariant cylinders of our example, which is drawn in
dark yellow in Figures 4.17, 4.19 and 4.21.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

ρ
(f

,(
0.

5,
θ

2)
)

θ2

Figure 4.20: Rotation number of the internal dynamics for the cylinder Cε, ε = 0.35, for the
fixed coordinate θ1 = 0.5.

Once we have obtained a curve inside the cylinder (in our case the golden
curve), we could refine it by using the internal dynamics of the cylinder, by



174 Chapter 4. A Newton-like method for computing NHIT

using the methodology exposed in [30, 52], since it is a KAM torus for the
internal dynamics. We emphasize that, since the symplectic form on the
cylinder is not the standard one, the methodology in [30, 52] is very appro-
priate. In particular, the “global" dynamics is now the internal dynamics on
the cylinder f : T×R→ T×R, the invariant curve parameterized by a map
k : T → T × R is just the curve inside the invariant cylinder (in our case
the golden curve), and the internal dynamics on the curve is a quasi-periodic
motion given by the rotation number ω of that curve on the cylinder:

f(k(θ))− k(θ + ω) = 0. (4.50)

Moreover, invariant curves inside the cylinder are in fact one dimensional
partially hyperbolic invariant curves in the total 4 dimensional space, so the
methodology in [66, 67] could be also used. In that case, the invariant curve
with fixed frequency ω (e.g. the golden curve), K, is now considered as an
embedding on the total 4 dimensional space, K : T→ T×R×R2 and satisfies
the invariance equation

F (K(θ))−K(θ + ω) = 0, (4.51)

for the global 4 dimensional dynamics (4.46). Notice that, K = C ◦ k.
In addition, we could compute parameterizations W S,U

K : T×R→ T×R×R2,
of the stable and unstable invariant manifold of K, WS,U

K , the whiskers, that
satisfy an invariance equation of the form

F (W (θ, s))−W (θ + ω, λs) = 0, (4.52)

where θ ∈ T is the angle variable moved by a rigid rotation ω, and s ∈ R

is the normal variable moved in the direction along the stable (or unstable)
invariant bundle which contracts (or expands) in a factor λ. These manifolds
WS,U
K are, in fact, invariant submanifolds of the stable and unstable manifolds

of the whole cylinder C, WS,U
C , for which we have already computed their

linearizations, the invariant normal bundles N S,U .

The mechanisms of breakdown of this object are still unknown to us. This
is a challenging project since the heavy computations make very difficult the
continuation of the invariant cylinder up to larger values of the perturbation
parameter ε. The fact is that using 2 dimensional interpolation, we cannot
increment the mesh grid as much as we have done for 1 dimensional invariant
tori in previous examples, N = 524288. Notice that, now, it is converted
into a grid formed by N = 524288 × 524288 = 238 points, so that the
computations cannot be done with a common desktop computer, the machine
used for the computations in this section. At this point, parallelizing the grid
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routines and the use of adaptive grids seem to be a possibility to improve the
performance of the method. Further work on these techniques could be an
aid to improve the numerical computations and understand the destruction
of these normally hyperbolic invariant manifolds.
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Figure 4.17: Internal dynamics on the normally hyperbolic invariant cylinder, for κ1 = 0.1,
κ2 = 1.5, and (from top-left to bottom-right) ε = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35.

.
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Figure 4.19: Representation of the normally hyperbolic invariant cylinder, for κ1 = 0.1,
κ2 = 1.5, and (from top-left to bottom-right) ε = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35.
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Figure 4.21: Representation of the normally hyperbolic invariant cylinder, for κ1 = 0.1,
κ2 = 1.5 and ε = 0.35.



Chapter 5

Conclusions and future
work

The main goal of this thesis has been the development of the rigorous and
numerical techniques for the computation of normally hyperbolic invariant
tori and the study of a general dynamical system by using these tools. The
aim of the algorithms is to compute the parameterization of the invariant
torus, the corresponding internal dynamics (or the adjusting parameter in
the quasi-periodic case) and the parameterizations of the associated stable
and unstable bundles. Hence, we avoid the need for a separate algorithm
to compute the invariant torus as the intersection of its stable and unstable
manifolds, which is the main drawback of graph transform methods.

The methods explained on this thesis follows the idea of the parameterization
method to solve the invariance equation. The key point of this methodology
is the avoidance of large matrix methods and a better representation of the
invariance equations, leading to a lower level the discretization of them.
Concretely, we also did the computations of the method for NHIT with an
unknown dynamics by using a large system matrix method, and we observe
that they went wrong to compute the internal dynamics near the places in
which some obstructions happens to the torus. The inconclusion results has
not been included in this thesis.

We should emphasize that our continuation methods uses to stop before the
breakdown of the torus. This is due to the fact that the parameteriza-
tion method algorithms rely in dynamical properties of the torus and then
“feels” when these dynamical properties degenerate. In contrast, large ma-
trix method uses to stop after the breakdown of the torus. A paradigmatic
example is the approximation of invariant tori by periodic orbits, a standard
practice in KAM computations. The reason is that the algorithms solve
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Figure 5.1: Outline of the achievements of this thesis.

equations that are close to the initial ones. Moreover, by monitoring sev-
eral observables of dynamical and regularity properties we can detect how
hyperbolicity properties degenerate and extrapolate the parameter values in
which the torus is destroyed.

The theoretical results of this thesis give us rigorous results of the existence
of quasi-periodic tori. We should mention that, even that similar KAM-like
theorems in “a-posteriori” format have been stated in previous works, such
as [16, 30, 52, 53] our Theorem 2.21 is well-founded for a general case of
families of Diffeomorphisms and leads to efficient numerical algorithms and
(in the near future) to computer assisted proofs.

First of all we should comment the new results we obtain in the continua-
tion of quasi-periodic tori. The numerical algorithms are well settled in our
previous rigorous result. Our implementations, give us information about
different breakdown and bifurcation mechanisms in quasi-periodic tori. In
an scenario with a smooth bundle collision between the slow and fast sub-
bundles, in which also the Lyapunov multipliers collide, we have observed
how the torus is not destroyed nor losses the reducibility. This is an example
of transitions from node-torus to focus-torus, in which there is only the loss
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of the completely reducibility property. This phenomenon has been observed
in Example 4 of Chapter 3. Smooth collisions leading to period-halving bi-
furcations, in which the eigenvalues associated to the smooth bundles crosses
1 has also been observed, see Example 5 of Chapter 3. There are also sev-
eral mechanisms in which bundles collide non-smoothly, to which we referred
to as bundle merging scenarios, see [56, 59]. When the collision is between
bundles with different stability properties, such a collision produces the de-
struction of the torus. In the literature, destruction due to non-smooth
collision between tangent and stable bundles for attracting quasi-periodic
torus (1 dimensional torus in a 2 dimensional phase space) in conformally
symplectic maps, see [18], and between stable and unstable bundles for sad-
dle type tori in skew products, see [56, 59], has been seen. We observe the
same bundle merging scenario leading to destruction tori, with a bundle col-
lision while the Lyapunov multipliers are separate, for saddle-type tori in
a 3 dimensional family of diffeomorphisms in Examples 1, 2 and 3 and for
attracting torus in Example 4. Concretely, the collision observed in Example
3, a triple bundle collision where all bundles collide together, and the colli-
sion between the tangent and the two dimensional stable bundle in Example
4 are new phenomena observed on quasi-periodic tori. This phenomenon
of bundle merging can also do not destroy the torus. This case is showed
in Example 5, where the torus only losses the reducibility, without being
be destroyed, but is the prelude of the breakdown of the torus. We should
emphasize that this study of the different bundle merging scenarios, carried
out really close to breakdown of the torus, has only been possible due to
the efficient methods we perform. The careful numerical computations lead
to several conjectures, see Conjectures 3.12 and 3.14 in Chapter 3, on the
behavior of the observables, which give us information about the breakdown.
We hope that these conjectures stimulate future research.

The numerical results for the general case give us the internal dynamics of
the torus, which is the newness in the computation of normally hyperbolic
invariant tori. Then, using our algorithms we are able to cross resonances
and study the different dynamics that appears during the continuation of
an invariant tori. The computation of normally hyperbolic invariant curves
of attracting and saddle type has been already done in the literature, see
e.g. [8, 11, 38], but without the computation of the internal dynamics. Our
results, by computing also the internal dynamics of the torus, improve the
quality of their computations. However, the computation of a higher di-
mensional normally hyperbolic invariant cylinder is newest in this sense, see
Example 8 of Chapter 4. The main interest of this example is that inside the
cylinder, from which we know its internal dynamics, we can find KAM quasi-
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periodic curves as well as periodic orbits, and their expressions are given well
defined. Moreover, this example is closely related to Arnold diffusion, so fur-
ther work in this direction is one of our forthcoming targets. Additional work
on these techniques, such as the use of parallel computing and the implemen-
tation to other higher dimensional normally hyperbolic invariant manifolds,
could be an aid to improve the numerical computations and comprehend the
destruction of these bigger normally hyperbolic invariant manifolds.

a

ε

Figure 5.2: Pictorial representation of the different continuations of normally hyperbolic in-
variant tori, in the parameter space (a, ε), we have done on this thesis. Blue lines represent the
continuations of quasi-periodic tori, whereas orange lines represent the continuations of invariant
tori regardless its internal dynamics, so crossing resonances (represented in green). In purple it
appears the continuation by using a mixture of both algorithms.

We should remark that with our algorithms we obtain the bundles of the
torus, which are in fact the linear approximations of the stable an unstable
manifolds of it. But are even more, with the computation of the invariant
bundles we obtain the approximations of the corresponding foliation (up to
lineal order). Our closest interest is to globalize it to obtain the invariant
manifolds of the invariant torus. A (possible) step is first computing higher
order expansions of invariant manifolds. I have already developed several
numerical algorithms for computing higher order expansions of whiskers of
quasi-periodic tori in 4-dimensional symplectic maps, following [46, 67].

Another interesting point of our work is that we almost cover the whole
phase space of a map in which there are normally hyperbolic invariant tori.
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To get an idea look the Figure 5.2. With the algorithms for computing
quasi-periodic tori, we can continue any torus of a Diophantine frequency,
represented as blue lines. We emphasize that these quasi-periodic tori are
analytic. On the other hand, we can do continuations by fixing one of the
parameters, so crossing resonances in the vertical directions and in the hor-
izontal direction. In these resonances, tori are only finitely differentiable.
Then, by mixing both algorithms, when a torus with an unknown dynamics
is destroyed, or closely to be destroyed, we can fix parameters and use the
quasi-periodic method to continue it. At some desired point, e.g, desired
parameter, we can use again the algorithm for the unknown dynamics and
continue the continuation. Doing this mixture of both methods, we can use
the continuation path as highways to travel around the whole phase space.
In particular, the method for computing quasi-periodic tori also works em-
pirically for elliptic tori.

Other future work closely in our mind, is to adapt our general method for
other discretization methods, for instance splines or Chebyshev polynomi-
als. We emphasize that higher order level routines are independent on the
method.
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