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1 Introduction

We study markets with several buyers and only one seller. The seller owns many indi-
visible and potentially different objects on sale. Being heterogeneous, the objects are of
the same type: for instance different houses or different tasks. On the other side of the
market, each buyer has a nonnegative valuation for each object and a desire to acquire
a certain number of objects. This number is known as the capacity of the buyer. We
assume buyers value packages of objects additively. Utility is identified with money and
side-payments are allowed.

This market is a particular case of the one considered in Jaume et al. (2012), where
there are several sellers, each with a set of heterogeneous objects on sale. It is also a
particular case of the package auction of Ausubel and Milgrom (2002), where there is
also only one seller, but buyers may not value packages additively. A related situation,
also with only one seller owning many objects on sale but buyers with unitary demands,
was analyzed in Camiña (2006).

Two-sided markets with transferable utility are first considered from the viewpoint
of coalitional games in the assignment game (Shapley and Shubik, 1972). In this model,
there are two disjoint finite sets of agents: a set of sellers, each supplying one unit of an
indivisible good, and a set of buyers, each of them demanding one unit of the good. Each
buyer may valuate differently the object of each seller and, from these valuations, we
summarize in the valuation matrix the potential worth of each buyer-seller partnership.
The worth of an arbitrary coalition of buyers and sellers is the maximum profit that can
be achieved by optimally matching buyers and sellers inside the coalition.

In the assignment game, the core is non-empty and coincides with the set of solutions
of the linear program dual to the optimal assignment problem. As a consequence, the
core coincides with those efficient payoff vectors that satisfy pairwise-stability, that is
to say, no pair of a buyer and a seller would be better off by breaking their optimal
partnership in any optimal matching and being matched together (Shapley and Shubik,
1972). Moreover, the set of competitive equilibria payoff vectors are in one-to-one corre-
spondence with the set of solutions of the dual linear assignment problem (Gale, 1960).
Hence, this is another characterization of the core of the assignment game in terms of
the competitive prices. Even more, the core of the assignment game is a complete lattice
with two particular core elements, one of them optimal for all buyers and the other one
optimal for all sellers.

When the assumptions of the classical assignment model are relaxed, the coincidence
between the core, the set of pairwise-stable outcomes, the set of competitive equilibria
payoff vectors and the set of solutions of the dual optimal assignment problem does not
hold in general. The same happens with the lattice structure of some of these sets.

The first generalization of the classical assignment game considers that each seller
owns several units of different goods and can be matched to as many buyers as allowed
by the seller’s capacity. On the other hand, buyers’ demand is still unitary (Kaneko,
1976). In this many-to-one assignment model (many agents on the buyers’ side can be
matched to a same agent on the sellers’ side), the set of payoff vectors associated to the
competitive equilibria is included in the core, which guarantees the non-emptiness of
the core. Nevertheless, this inclusion may be strict.

Other generalizations of the assignment game are known as many-to-many markets
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since both buyers and sellers may have capacities greater than one: the capacity of
a buyer is the number of objects he desires to buy and the capacity of a seller is the
number of identical objects she offers on sale (Thompson, 1980). A matching describes a
set of partnerships between buyers and sellers within their quotes, and allows for multi-
unit trade within a same buyer-seller pair. This two-sided market can be considered to
represent a job market between heterogeneous firms and workers, when the objects on
sale are units of labour as in Sotomayor (2002). Optimal matchings for the many-to-
many assignment market are obtained by solving a linear transportation problem. The
core of this game is always non-empty but it remains an open problem whether in this
setting an optimal core element for each side of the market does exist, although it is
known that a worst core element for each side of the market needs not exist.

A more encompassing many-to-many assignment model is the one with heterogeneous
goods and multi-unit demands of Jaume et al. (2012), where several sellers own several
units of potentially different objects. In these markets, as in the many-to-one markets
of Kaneko (1976), the set of solutions of the dual transportation problem coincides with
the set of competitive equilibrium payoff vectors and it is strictly included in the core.
However, let us point out that the definition of competitive equilibrium in Jaume et
al. (2012) assumes that buyers demand as many copies of their preferred object as
their capacities allow, being the prices given. Compared to that, in a many-to-many
assignment game in which the goods owned by a seller are homogeneous, Sotomayor
(2013) defines competitive equilibria by means of a demand in which buyers maximize
the utility of the packages they can buy given prices and their capacities.1

In the present paper, where we have only one seller with heterogeneous goods and
several buyers with multi-unit demands, we first prove that the corresponding coalitional
function is buyer-submodular. Then, as a consequence of Ausubel and Milgrom (2002),
we deduce: a) an easy description of the core as the non-empty set of efficient payoff
vectors where each buyer gets a non-negative payoff bounded by his marginal contribu-
tion to the whole market; b) the core is endowed with a lattice structure by the partial
order defined from the point of view of buyers, and c) the existence of a core element
that is optimal for each side of the market. Moreover, as in the assignment game, in the
buyers-optimal core allocation each buyer is paid his marginal contribution, the Vickrey
payoff (Vickrey, 1961).

The set of (discriminatory) competitive equilibria of the one-seller assignment game
does not in general coincide neither with the core nor with the set of solutions of the
dual transportation problem.We first prove that the set of payoff vectors associated to
the pairwise-stable outcomes coincides with the set of those associated to the competi-
tive equilibria. Secondly, we give conditions so that the buyers-optimal core allocation
or the seller-optimal core allocation are payoff vectors associated to some competitive
equilibrium. Moreover, we provide conditions on the valuation matrix under which the
set of competitive equilibria payoff vectors coincide with the core.

1Sotomayor (2013) differentiates between the two definitions of competitive equilibrium. In the one
in Jaume et al. (2012) demands are non-discriminatory, since each buyer gets the same utility from all
objects in his demanded sets. The demand in Sotomayor (2013) is discriminatory since in a demanded
package the buyer may obtain different utilities from the different objects that form the package.
Recently, Arribillaga et al. (2013) consider a discriminatory competitive equilibrium in assignment
markets where sellers own heterogeneous objects.
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In the literature of assignment markets, it is usual to implement some outstanding
core outcomes by means of the Nash equilibrium of some convenient game in strategic
form. Demange et al. (1986) reach the buyers-optimal core allocation of the one-to-one
assignment game by means of a multi-item auction in which buyers compete for the
objects under certain rules. Likewise, under the assumption of complete information,
Pérez-Castrillo and Sotomayor (2002) implement the sellers-optimal core allocation of
the assignment game by means of a mechanism in which both buyers and sellers play a
strategic role.

For the one-seller assignment market with multi-unit demands, and also under the
assumption of complete information, we propose a mechanism to implement, as the
unique subgame perfect Nash equilibrium outcome, the buyers-optimal core allocation.
This mechanism works as follows. Simultaneously, each buyer declares to the seller a
maximal subset of pairs formed by a package and its price, being each buyer indifferent
among all the pairs in his declaration. In a second step, the seller selects a matching of
buyers to packages of objects that is compatible with the requirements declared by the
buyers. A buyer that gets a package pays the price he announced.

The paper is organized as follows. In the next section, preliminaries are addressed. In
Section 3, we prove the buyers-submodularity property of the coalitional function, and
also characterize convexity. In Section 4, we consider the set of competitive equilibria
and pairwise-stable outcomes, and their relationship with the core. Section 5 is devoted
to the mechanism that implements, as the unique subgame perfect Nash equilibrium
outcome, the buyers-optimal core allocation of one-seller assignment markets. Section
6 concludes.

2 The model and some preliminaries

The one-seller assignment market with multi-unit demands consists of (M, {0}, Q,A, r).
The finite set of buyers is M = {1, ...,m} and the unique seller is denoted by 0. The
seller owns a finite set Q of objects. These objects are indivisible and heterogeneous,
but of a similar type, let us say different houses or different part-time jobs.

Each buyer-object pair (i, j) ∈ M × Q has a potential gain aij ∈ R+, interpreted
as the valuation of object j by buyer i. The valuation matrix, denoted by A =
(aij)(i,j)∈M×Q, captures each potential gain among all buyer-object pairs.

Each buyer i ∈ M can acquire ri ∈ N objects. We say that buyer i has a unitary
demand if ri = 1 and a multi-unit demand if ri > 1. The vector r = (ri)i∈M ∈ NM
indicates buyers’ capacities. We assume that the seller owns some copies of a dummy
object, as many as the sum of all buyers’ capacities,

∑
i∈M ri. With some abuse of

notation, each copy of this dummy object is denoted by j0 and each buyer values it at
zero. We denote by 2Qri = {R ⊆ Q; |R| = ri} the set of allowable packages of objects
for a buyer i ∈ M where |R| denotes the cardinality of the set R. We denote by A|S×Q
the valuation matrix restricted to S × Q, where S ⊆ M . Besides, let r|S be the vector
of capacities restricted to S ⊆M .

A feasible matching µ for a market (S, {0}, Q,A|S×Q, r|S), between S ⊆ M and Q,
is a subset of S × Q such that each j ∈ Q belongs to at most one pair and each i ∈ S
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belongs to exactly ri pairs. Notice that it is possible to match any buyer with dummy
objects to complete his capacity. We denote by M(S,Q) the set of feasible matchings
between S ⊆ M and Q, and µ(S) is the set of objects matched by µ to all buyers in
S, and when S = {i} we simply write µ(i). Moreover, we denote by µ−1(j) the buyer
matched to object j ∈ Q by matching µ.

We assume buyers valuate packages of objects additively. That is, if buyer i is
assigned a package µ(i) ⊆ Q by some µ ∈M(M,Q), then his valuation of this package
is
∑

j∈µ(i) aij.

A feasible matching µ is optimal for a market (S, {0}, Q,A|S×Q, r|S) if∑
(i,j)∈µ

aij ≥
∑

(i,j)∈µ′
aij for all µ′ ∈M(S,Q). (1)

We denote by MA(S,Q) the set of optimal matchings for this market.

Let us introduce a coalitional game with transferable utility (a game)2. Consider a
one-seller assignment market with multi-unit demands (M, {0}, Q,A, r). The one-seller
assignment game related to (M, {0}, Q,A, r) is denoted by (M ∪{0}, vA). The worth of
each coalition T ⊆M ∪ {0} is given by

vA(T ) =

{
max

µ∈M(T\{0},Q)

{∑
(i,j)∈µ aij

}
0

if {0}  T,
if T ∩ {0} = ∅ or T = {0}.

Now, we define competitive equilibrium for one-seller assignment markets with multi-
unit demands. First, let us introduce some notions. A feasible price vector p = (pj)j∈Q ∈
RQ+ for (M, {0}, Q,A, r) consists of one price for each object, with a price of zero for

each dummy object. For each p ∈ RQ+, we denote by Di(p) ⊆ 2Qri the demand set of
buyer i at level prices p, that is

Di(p) =

{
R ∈ 2Qri

∣∣∣∣∣∑
j∈R

(aij − pj) ≥
∑
j∈R′

(aij − pj) for all R′ ∈ 2Qri

}
.

Thus, when a package belongs to the demand set of a buyer at prices p, he weakly
prefers to buy this set than every other package at p. The demand set of any buyer is
never empty, since even at sufficiently high prices, the demand set can be formed by as
many dummy objects as needed.

2A coalitional game with transferable utility is a pair (N, v) where N is a finite set of players and
v is the coalitional function defined on the set 2N formed by all coalitions of N . Thereby, to each
S ⊆ N , function v assigns a real value v(S), which is interpreted as the worth generated by the
players in S on their own; furthermore, v(∅) = 0. A payoff vector is x ∈ RN . For every S ⊆ N
we write x(S) =

∑
i∈S xi to express the payoff to coalition S, where x(∅) = 0. A payoff vector x

satisfies efficiency if x(N) = v(N) and x satisfies individual rationality if xi ≥ v({i}) for all i ∈ N . A
payoff vector x belongs to the imputation set I(v), if it satisfies individual rationality and efficiency.
The core of a game is defined by C(v) = {x ∈ RN |x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N}.
Finally, a game (N, v) is monotonic if v(S) ≥ v(T ) for all T ⊆ S ⊆ N . A game (N, v) is convex if
v(T ∪ {i}) + v(T ) ≤ v(S ∪ {i}) + v(S) for all T ⊆ S ⊆ N \ {i} and all i ∈ N .
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Definition 2.1. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. A pair formed by a feasible price vector p ∈ RQ+ and a feasible matching
µ ∈ M(M,Q), denoted by (p, µ), is a competitive equilibrium if the following two
conditions hold:

C.1 For all i ∈M , µ(i) ∈ Di(p),

C.2 For all j ∈ Q \ µ(M), pj = 0.

If a pair (p, µ) is a competitive equilibrium, we say that p is a competitive equilibrium
price vector. In a competitive equilibrium, every buyer maximizes his utility given the
prices for the objects. This notion of competitive equilibrium for buyers with capacities
is considered in Sotomayor (2013) and Arribillaga et al. (2013).

Definition 2.2. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. Given a feasible price vector p ∈ RQ+ and a feasible matching µ ∈ M(M,Q),
the payoff vector associated to (p, µ) is (U(p, µ), V (p, µ)) ∈ RM × R defined as follows:

Ui(p, µ) =
∑
j∈µ(i)

(aij − pj) for each i ∈M, and

V (p, µ) =
∑
j∈Q

pj for the seller.

The following consequences regarding the set of competitive equilibria follow easily
for one-seller assignment markets with multi-unit demands. We omit the proof since it
can also be derived from results on a more general market in Arribillaga et al. (2013).

R1. The set of competitive equilibria is the cartesian product of the set of competitive
equilibria price vectors and the set of optimal matchings.

R2. The payoff vector (U(p, µ), V (p, µ)) associated to any competitive equilibrium
(p, µ) belongs to the core of the associated game.

R3. The set of competitive equilibria of the market is non-empty.

Notice that the seller plays no role in the definition of the competitive equilibrium.
That is, (p, µ) is a competitive equilibrium for the one-seller assignment market with
multi-unit demands (M, {0}, Q,A, r) if and only if it is a competitive equilibrium for
the market where each object in Q is identified with a different seller. Then, as a con-
sequence of Sotomayor (2007), the set of competitive equilibrium prices is a complete
lattice with the usual order: p ≥ p′ if pj ≥ p′j for all j ∈ Q. This means that if

p, p′ ∈ RQ+ are competitive prices then p∨p′ and p∧p′ are also competitive prices, where
(p ∨ p′)j = max{pj, p′j} and (p ∧ p′)j = min{pj, p′j} for all j ∈ Q.

To finish this section, let us introduce the buyers-submodular condition as in Ausubel
and Milgrom (2002). This condition means that the marginal contribution of a buyer
to a coalition containing the seller decreases as the coalition grows larger. A game
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(M ∪ {0}, v) is buyers-submodular if any of the three following equivalent conditions
holds:

(i) v((T ∪ {0}) ∪ {i})− v(T ∪ {0}) ≥ v((S ∪ {0}) ∪ {i})− v(S ∪ {0}) (2)

for all T ⊆ S ⊆M \ {i} and all i ∈M.

(ii) v(S ∪ {0})− v(T ∪ {0}) ≥
∑
i∈S\T

(
v(S ∪ {0})− v((S \ {i}) ∪ {0})

)
(3)

for all T ⊆ S ⊆M.

(iii) v(S1 ∪ {0}) + v(S2 ∪ {0}) ≥ v((S1 ∪ S2) ∪ {0}) + v((S1 ∩ S2) ∪ {0}) (4)

for all S1, S2 ⊆M.

In Ausubel and Milgrom (2002), it is proved that if a game (M ∪{0}, v) satisfies the
buyers-submodular condition, the core is easily determined by

C(v) =

{
(U, V ) ∈ RM × R

∣∣∣∣∣∑
i∈M

Ui + V = v(M ∪ {0}), 0 ≤ Ui ≤M v
i for all i ∈M

}
,

(5)
where M v

i = v(M ∪{0})−v((M ∪{0})\{i}) denotes the marginal contribution of buyer
i ∈M to the grand coalition.

3 One-seller assignment game: the core

In order to describe the core of the one-seller assignment game with multi-unit demands,
we first show that it satisfies the buyers-submodularity condition.

Theorem 3.1. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands and (M∪{0}, vA) be its related one-seller assignment game. Then (M∪{0}, vA)
is buyers-submodular.

Proof. First, consider the unitary-demands case (ri = 1 for all i ∈M). Let (M∪{0}, vA)
be the one-seller assignment game with unitary demands.

We deduce from Theorem 1 in Shapley (1962), that for all i, i′ ∈ M and all S ⊆
M \ {i, i′}

vA((S ∪ {0}) ∪ {i})− vA(S ∪ {0}) ≥ vA((S ∪ {0}) ∪ {i, i′})− vA((S ∪ {0}) ∪ {i′}),

and by repeatedly applying this, we obtain that (M ∪ {0}, vA) satisfies condition (i).
Now, consider a one-seller assignment market with multi-unit demands. We prove

that (M ∪ {0}, vA) is buyers-submodular, that is

vA((T ∪ {0}) ∪ {i})− vA(T ∪ {0}) ≥ vA((S ∪ {0}) ∪ {i})− vA(S ∪ {0}), (6)

for all T ⊆ S ⊆ M \ {i} and all i ∈ M . Define a related market in which each buyer
i ∈ M is replicated ri times. Denote by i(s) the s-th copy of i (each copy has capacity

one) and by M̃ the new set of buyers formed by replicating all buyers in M . Define the
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valuation matrix Ã = (ai(s)j)(i(s),j)∈M̃×Q by ai(s)j = aij for all (i, j) ∈ M × Q and all

s ∈ {1, ..., ri}. In this way, we obtain (M̃, {0}, Q, Ã, r̃), a one-seller assignment market

with unitary demands. Notice that (M ∪ {0}, vA) and (M̃ ∪ {0}, vÃ) are related:

vA(S ∪ {0}) = vÃ(S̃ ∪ {0}) for all S ⊆M, (7)

where S̃ is formed by replicating all buyers in S. Then, inequality (6) is equivalent to

vÃ((T̃ ∪ {0}) ∪ {i(1), ..., i(ri)})− vÃ(T̃ ∪ {0})
≥ vÃ((S̃ ∪ {0}) ∪ {i(1), ..., i(ri)})− vÃ(S̃ ∪ {0}), (8)

where T̃ , S̃ and i(1), ..., i(ri) are obtained by replicating all buyers in T , S and {i},
respectively. Define S1 = T̃ ∪ {i(1), ..., i(ri)}, S2 = S̃ and notice that S1 ∪ S2 = S̃ ∪
{i(1), ..., i(ri)} and S1 ∩ S2 = T̃ . Since when demands are unitary the game is buyers-

submodular, (M̃ ∪ {0}, vÃ) satisfies (2), which is equivalent to (4). Then

vÃ(S1 ∪ {0}) + vÃ(S2 ∪ {0}) ≥ vÃ((S1 ∪ S2) ∪ {0}) + vÃ((S1 ∩ S2) ∪ {0}),

and by reordering terms we obtain (8). Therefore (6) holds. Hence (M ∪ {0}, vA) is
buyers-submodular.

From Theorem 3.1, the one-seller assignment game is buyers-submodular, and by
Ausubel and Milgrom (2002), its core is non-empty and can be described as in (5).
That is: the set of nonnegative efficient payoff vectors where each buyer gets a payoff
not exceeding his marginal contribution. Furthermore, the core is a lattice with respect
to the usual order defined on buyers’ payoffs. As a consequence, we can guarantee the
existence of one optimal core allocation for each side of the market. In the buyers-
optimal core allocation (U, V ) ∈ RM × R, each buyer gets his marginal contribution,
that is, U i = M vA

i for all i ∈ M and V = vA(M ∪ {0}) −
∑

i∈M M vA
i . On the other

hand, in the seller-optimal core allocation (U, V ) ∈ RM × R, each buyer i ∈ M gets
U i = 0 and V = vA(M ∪ {0}). Thus, the core of the one-seller assignment game has an
optimal core allocation for each market sector as it happens in the classical assignment
game. This is not known to be true for other many-to-many assignment models (see
e.g. Sotomayor, 2002).

Now, we turn to study what happens if there is a special optimal matching in which
each buyer i ∈M is matched to his most valued ri objects. In this case, we obtain that
the one-seller assignment game is convex. Equivalently, under the convexity assumption,
the worth of each coalition formed by a group of buyers and the seller, is obtained by
adding what the seller can generate with each of these buyers.

Proposition 3.2. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands and (M ∪ {0}, vA) be its related one-seller assignment game. Then the
following statements are equivalent:

1. (M ∪ {0}, vA) is a convex game,
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2. vA(S ∪ {0}) =
∑

i∈S vA({i, 0}) for all S ⊆M .

Proof. First, we prove 1⇒2. Assume (M ∪ {0}, vA) is a convex game, and let S =
{i1, ..., is} ⊆M . Notice that

vA(S ∪ {0})− vA({0}) =
s∑
l=2

(
vA({i1, ..., il, 0})− vA({i1, ..., il−1, 0})

)
+ vA({i1, 0})− vA({0}). (9)

By the convexity of (M ∪ {0}, vA), we obtain

vA(S ∪ {0})− vA({0}) ≥
∑
i∈S

(
vA({i, 0})− vA({0})

)
. (10)

By the buyers-submodularity of (M ∪ {0}, vA) applied to (9), we obtain

vA(S ∪ {0})− vA({0}) ≤
∑
i∈S

(
vA({i, 0})− vA({0})

)
. (11)

Since vA({0}) = 0, by (10) and (11), we obtain statement 2.
Now, 2⇒1. We prove that for all i′ ∈M ∪ {0} and all T ⊆ S ⊆ (M ∪ {0}) \ {i′}

vA((T ∪ {i′}))− vA(T ) ≤ vA(S ∪ {i′})− vA(S). (12)

We consider several cases. If 0 /∈ S and i′ ∈ M , condition (12) is trivially satisfied.
If 0 /∈ S and i′ = 0, condition (12) is reduced to monotonicity and it is satisfied. If
0 ∈ S \ T and i′ ∈ M , condition (12) is also satisfied. Finally, we consider 0 ∈ T and
i′ ∈M . Take any T ⊆ S ⊆M \ {i′}, then

vA(T ∪ {i′})− vA(T ) =
∑

i∈(T∩M)∪{i′}

vA({i, 0})−
∑

i∈T∩M

vA({i, 0})

=
∑

i∈(S∩M)∪{i′}

vA({i, 0})−
∑

i∈S∩M

vA({i, 0})

= vA(S ∪ {i′})− vA(S),

where first and third equalities come from our assumption. This completes the proof.

Notice that the above characterization of convexity for one-seller assignment games
can be expressed by means of the valuation matrix. Indeed, such a game (M ∪ {0}, vA)
is convex if for any optimal matching µ ∈MA(M,Q) and for all i ∈M∑

j∈µ(i)

aij ≥
∑
j∈R

aij for all R ∈ 2Qri .
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4 Competitive equilibria, pairwise-stability and the

core

Shapley and Shubik (1972) shows that the set of competitive outcomes coincides with
the core in the classical assignment game. For several generalizations of the classical
assignment game, those outcomes coming from a competitive equilibrium are core ele-
ments (Kaneko 1976; Camiña, 2006 and Sotomayor, 2013). However, the coincidence of
the set of competitive equilibria payoff vectors with the core is not preserved in general.

The aim of this section is to analyze under which conditions the core of one-seller
assignment game coincides with the set of competitive equilibria payoff vectors. To this
end, we introduce the notion of pairwise-stability which has been widely studied in other
many-to-many assignment markets (Sotomayor, 1992, 2002, 2007). It also appears in
Sotomayor (2013) with the name of strong stability. This notion of pairwise-stability
focuses on each trade and the profit arising from each individual purchase. Then, market
stability by means of competitive equilibrium and pairwise-stability is analyzed.

Let us first define feasible configuration of profits and feasible outcomes.

Definition 4.1. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. Given a feasible matching µ ∈ M(M,Q), a feasible configuration of profits
compatible with µ is ((uij)(i,j)∈µ, (vj)j∈Q) = (u, v) ∈ Rb × RQ, where b =

∑
i∈M ri, such

that:

1. uij + vj = aij, uij ≥ 0, vj ≥ 0 for all (i, j) ∈ µ,

2. vj = 0 if j ∈ Q \ µ(M).

We can interpret uij as the profit of buyer i acquiring object j. Similarly, vj is the
profit for the seller related to object j. If an object is not sold, then the seller receives
a profit of zero from this object. Notice that uij is not defined for (i, j) ∈M ×Q \ µ.

Definition 4.2. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. A feasible outcome for (M, {0}, Q,A, r), denoted by (u, v;µ), is formed by a
feasible matching µ ∈ M(M,Q) and a feasible configuration of profits (u, v) compatible
with µ.

In the following, we define the pairwise-stable outcomes.

Definition 4.3. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. A feasible outcome (u, v;µ) for (M, {0}, Q,A, r), is a pairwise-stable outcome
if for all i ∈M , uij + vk ≥ aik for all j ∈ µ(i) and all k ∈ Q \ µ(i).

A feasible outcome is pairwise-stable if there is no pair formed by a buyer i ∈ M
and an object k ∈ Q that are not matched together by µ but, if they were (maybe
after breaking a previous partnership), then the buyer would be better off and the
seller would receive a higher profit from this object k. Notice that when a feasible
outcome satisfies Definition 4.3, it is stable in strong sense since the agents do not
regret any single partnership. Moreover, if we assume for a moment that each object
were owned by a different seller, Definition 4.3 means that the feasible outcome is not
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blocked by any buyer-seller pair. Our next proposition asserts that, as it happens
in the classical assignment market, each pairwise-stable outcome is associated with a
competitive equilibrium and vice versa.

Proposition 4.4. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands. The feasible outcome (u, v;µ) is a pairwise-stable outcome if and only if
(v, µ) is a competitive equilibrium.

Proof. We first prove the “if” part. Let (v, µ) be a competitive equilibrium. Define
u ∈ Rb by uij = aij − vj if j ∈ µ(i) for all i ∈ M . We see that (u, v;µ) is a pairwise-
stable outcome. Assume on the contrary that (u, v;µ) is not pairwise-stable, then there
is some j′ ∈ µ(i) such that, aij′ − vj′ < aik − vk for some k ∈ Q \ µ(i). Define
T = (µ(i) \ {j′}) ∪ {k} ⊆ Q. Then∑

j∈µ(i)

(aij − vj) <
∑
j∈T

(aij − vj),

which implies µ(i) /∈ Di(v) and contradicts the fact that (v, µ) is a competitive equilib-
rium. Hence (u, v;µ) is a pairwise-stable outcome.

Now, we prove the “only if” part. Given a pairwise-stable outcome (u, v;µ) let us
see that (v, µ) is a competitive equilibrium. Stability implies uij = aij − vj ≥ aik − vk
for all j ∈ µ(i) and all k ∈ Q \ µ(i). We have that for any T ∈ 2Qri ,

∑
j∈µ(i)(aij − vj) ≥∑

j∈T (aij − vj) and then µ(i) ∈ Di(v) for each i ∈M . Besides, by feasibility of (u, v;µ),
vj = 0 if j ∈ Q \ µ(M). Hence (v, µ) is a competitive equilibrium.

As a consequence of the coincidence stated in Proposition 4.4, we can easily describe
the set of competitive equilibria outcomes by means of a set of finite linear equalities
and inequalities, as shown in Example 4.5.

In the definition of competitive equilibrium, the seller plays no role and buyers
maximize their utility, given the fixed prices for the objects. This is the reason why
this coincidence between competitive equilibrium and pairwise-stability also holds for
many-to-one assignment markets with several sellers where buyers may have different
capacities and each seller only one object on sale. Nevertheless, this coincidence does
not generally hold for many-to-many markets (see, e.g. Sotomayor, 2007).

However, as it is also the case for more general markets, the set of competitive
equilibria payoff vectors of the one-seller assignment game may not coincide with the
core. This is shown in the next example.

Example 4.5. Consider a market with only one seller and two buyers. The seller owns
two objects on sale. Each buyer can acquire one object. For the purposes of this example,
we show no dummy objects. That is, the market (M, {0}, Q,A, r) is given by M = {1, 2},
Q = {1′, 2′} and r = (1, 1). The valuation matrix A is the following

( 1′ 2′

1 5 4
2 4 2

)
,
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where the unique optimal matching is circled. Consider the one-seller assignment game
(M ∪ {0}, vA). The core is described by:

C(vA) =

 (U, V ) ∈ R2 × R

∣∣∣∣∣∣
U1 + U2 + V = 8,
0 ≤ U1 ≤ 4,
0 ≤ U2 ≤ 3.

 .

Now, we consider the set of competitive equilibria payoff vectors. Take the unique
optimal matching µ, where µ(1) = {2′} and µ(2) = {1′}. By Proposition 4.4, we know
that any competitive equilibrium (v, µ), and its related stable outcome (u, v;µ), satisfy
non-negativeness, the following equalities (by feasibility)

[1] u12 + v2 = 4 [2] u21 + v1 = 4,

and (by pairwise-stability) inequalities

[3] u12 + v1 ≥ 5 [4] u21 + v2 ≥ 2,

(0, 0; 8)

(8, 0; 0) (0, 8; 0)

U1 ≤ 4

U2 ≤ 3

(4, 3; 1)

C
E

=
P
S

C(vA)

Figure 1: C(vA) ! CE(A) = PS(A)

Making use of [3] and [2], we get u12 − u21 ≥ 1. Moreover, from [4] and [1], we get
u21 − u12 ≥ −2. Then, U1 − U2 ≥ 1 and U2 − U1 ≥ −2, where the payoff for buyer 1 is
U1 = u12 because of his unitary capacity, and similarly for buyer 2.

If CE(A) denotes the set of competitive equilibria payoff vectors and PS(A) denotes
the set of payoff vectors associated to the pairwise-stable outcomes, then we get C(vA) !
CE(A) = PS(A). In Figure 1, we depict them as a subset of the core of the game.

Notice that in this case, the buyers-optimal core allocation (4, 3; 1) does come from a
competitive equilibrium while the seller optimal does not. It is easy to find instances, in
which the buyers-optimal core allocation does not come from a competitive equilibrium.

Example 4.6. Consider a market with only one seller and two buyers. The seller owns
three objects and each buyer can acquire two objects. For the purposes of this example,
we show only one dummy object. Therefore, this market (M, {0}, Q,A, r) is given by
M = {1, 2}, Q = {1′, 2′, 3′, j0} and r = (2, 2). The valuation matrix A is the following
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( 1′ 2′ 3′ j0
1 8 3 6 0
2 10 1 2 0

)
,

where the unique optimal matching is circled. Consider the related one-seller assignment
game (M ∪ {0}, vA). The buyers-optimal core allocation is (7, 5; 7). Assume that (p, µ)
is a competitive equilibrium such that (U(p, µ);V (p, µ)) = (7, 5; 7). Notice that there
is a unique optimal matching µ ∈ MA(M,Q). Therefore, we have that U1(p, µ) =∑

j∈µ(1)(a1j−pj) = 7, and then p2 +p3 = 2. Notice that a22 +a23−p2−p3 = 1 and since

2 ≥ pj ≥ 0 for j ∈ {2′, 3′}, then a2j − pj > 0 for some j ∈ {2′, 3′}. This contradicts that
(p, µ) is a competitive equilibrium because j0 ∈ µ(2) and a20 − p0 = 0.

Since the set of competitive equilibria payoff vectors may be strictly included in
the core, we want to analyze when these two sets coincide. As a first step to study
under which conditions all core allocations are competitive, we characterize the fact
that the seller-optimal core allocation is a payoff vector associated to some competitive
equilibrium. To this end, let us first define the set of desirable objects, Q∗A. We say that
an object is desirable if at least one buyer valuates it positively

Q∗A = {j ∈ Q| aij > 0 for some i ∈M}.

The conditions for the one-seller optimal core allocation to be a competitive equilibrium
payoff vector require that each object sold is acquired by the buyer who valuates it the
most and that all desirable objects are sold.

Lemma 4.7. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. The seller-optimal core allocation is a competitive equilibrium payoff vector if
and only if there is an optimal matching µ ∈MA(M,Q) and the following two conditions
are satisfied:

(a) For all j ∈ µ(M) and all i ∈M \ {µ−1(j)}, aij ≤ aµ−1(j)j,
(b) Q∗A ⊆ µ(M).

Proof. We first prove the ‘if’ part. Assume that µ ∈MA(M,Q) satisfies conditions (a)
and (b). Define pj = aµ−1(j)j for all j ∈ µ(M) and pj = 0 for all j ∈ Q \µ(M). We show
that µ(i) ∈ Di(p) for all i ∈ M . Take any i ∈ M and consider any R ∈ 2Qri . Since µ
satisfies (a) and (b), and by definition of p,∑

j∈R

(aij − pj) =
∑

j∈R∩µ(M)

(aij − aµ−1(j)j) +
∑

j∈R\µ(M)

(aij − 0) ≤ 0 =
∑
j∈µ(i)

(aij − pj),

and thus µ(i) ∈ Di(p) for all i ∈ M . Besides, by definition of p, we get pj = 0 for each
j ∈ Q \ µ(M). Notice that (U(p, µ), V (p, µ)) is the seller-optimal core allocation.

Now, we prove the ‘only if’ part. Assume that (p, µ) is a competitive equilibrium
and (U(p, µ), V (p, µ)) is the seller-optimal core allocation. By R1 in page 7, we have
that µ ∈ MA(M,Q). Moreover, in the seller-optimal core allocation the seller’s payoff
is equal to vA(M ∪ {0}).

We claim that
pj = aµ−1(j)j for all j ∈ µ(M). (13)
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If pj > aµ−1(j)j for some j ∈ µ(M), then for all R ∈ Dµ−1(j)(p) we have j /∈ R, and as a
consequence (p, µ) is not a competitive equilibrium. On the other hand, if pj < aµ−1(j)j

for some j ∈ µ(M) then
∑

j∈Q pj < vA(M ∪{0}) and the seller-optimal core allocation is
not the payoff vector of (p, µ). Taking (13) into account, we shall prove that µ satisfies
(a). Assume on the contrary that there is some i ∈ M such that aij > aµ−1(j)j for
some j ∈ Q with i ∈ M \ {µ−1(j)}. Let R ∈ 2Qri be the package formed by object j

and copies of the dummy object, i.e., R = {j, j10 , j20 , ..., j
ri−1
0 }. Since

∑
j∈R(aij − pj) >

0 =
∑

j∈µ(i)(aij − pj), we obtain that µ(i) /∈ Di(p) in contradiction with (p, µ) being

a competitive equilibrium. Then µ satisfies (a). In order to show (b), assume on the
contrary that, there is some j ∈ Q∗A \ µ(M). By definition of competitive equilibrium,
the price of this object is pj = 0. Since j ∈ Q∗A, there is some i ∈ M such that
aij > 0. This implies that µ(i) /∈ Di(p) because

∑
j∈R(aij − pj) >

∑
j∈µ(i)(aij − pj)

where R = {j, j10 , j20 , ..., j
ri−1
0 } and R ∈ 2Qri . This contradicts (p, µ) being a competitive

equilibrium. Hence, µ satisfies (b).

Notice that Condition (a) on Lemma 4.7 is not satisfied in Example 4.5, while in
Example 4.6 is satisfied.

The following theorem is the main result of this section. We characterize the co-
incidence between the set of competitive equilibria payoff vectors and the core of the
one-seller assignment game.

Theorem 4.8. Let (M, {0}, Q,A, r) be the one-seller assignment market with multi-unit
demands and (M ∪{0}, vA) be its associated one-seller assignment game. Then the core
of (M ∪ {0}, vA) coincides with the set of competitive equilibria payoff vectors if and
only if there is an optimal matching µ ∈ MA(M,Q) which satisfies the following three
conditions:

(a) For all j ∈ µ(M) and all i ∈M \ {µ−1(j)}, aij ≤ aµ−1(j)j,
(b) Q∗A ⊆ µ(M),

(c) M vA
i ≤

∑
j∈µ(i)

(
aij − max

t∈M\{i}
{atj}

)
for all i ∈M .

Proof. We first prove the ‘if’ part. Assume that some µ ∈ MA(M,Q) satisfies (a),
(b) and (c). We show that any (U, V ) ∈ C(vA) is the payoff vector of some competitive
equilibrium. By conditions (a) and (c), for each i ∈M , we can find some (αij)j∈µ(i) ∈ Rri
such that aij ≥ αij ≥ maxt∈M\{i}{atj} for all j ∈ µ(i) and M vA

i =
∑

j∈µ(i)(aij − αij).
Take any (U, V ) ∈ C(vA) and define bi = M vA

i − Ui for all i ∈ M . Since for all i ∈ M
we have M vA

i ≥ Ui ≥ 0 then M vA
i ≥ bi ≥ 0.

Let us define p ∈ RQ by

pj =


αµ−1(j)j +

aµ−1(j)j − αµ−1(j)j

Mµ−1(j)

bµ−1(j)

aµ−1(j)j

0

for all j ∈ µ(M) and M vA
µ−1(j) > 0,

for all j ∈ µ(M) and M vA
µ−1(j) = 0,

for all j ∈ Q \ µ(M).
(14)

Notice that p is a feasible price vector. Therefore, we show that µ(i) ∈ Di(p) for all
i ∈M . It is sufficient to see that aij − pj ≥ aik − pk for all j ∈ µ(i) and all k ∈ Q \µ(i).
To this end, let us see that for all i ∈ M and all j ∈ µ(i) it holds aij − pj ≥ 0 while
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aik − pk ≤ 0 for all k ∈ Q \ µ(i). On one hand, take i ∈ M such that M vA
i > 0. Then

aij − pj = aij − αij − aij−αij
M
vA
i

bi = (aij − αij)(1 − bi
M
vA
i

) ≥ 0 for all j ∈ µ(i). Now, take

i ∈ M such that M vA
i = 0. Then aij − pj = aij − aij = 0 for all j ∈ µ(i). On the other

hand, take k ∈ µ(M) such that M vA
µ−1(k)k > 0. Then for any i ∈ M \ {µ−1(k)}, we have

aik − pk = aik − αµ−1(k)k −
aµ−1(k)k−αµ−1(k)k

M
vA
µ−1(k)

bµ−1(k) ≤ 0 because aµ−1(k)k ≥ αµ−1(k)k ≥ aik.

Now, take k ∈ µ(M) such that M vA
µ−1(k)k = 0. Then for any i ∈ M \ {µ−1(k)}, we have

aik− pk = aik− aµ−1(k)k ≤ 0 because of assumption (a). Finally, consider k ∈ Q \µ(M).
Then for any i ∈ M , aik − pk = 0 because of (b). Thus µ(i) ∈ Di(p) for all i ∈ M .
Moreover, by definition of p, pj = 0 for all j ∈ Q \ µ(M). Hence, (p, µ) is a competitive
equilibrium. Then, the payoffs are

Ui(p, µ) =
∑
j∈µ(i)

(aij − pj) =
∑
j∈µ(i)

(
aij − αij −

aij − αij
M vA

i

bi

)

=
∑
j∈µ(i)

(aij − αij)
(

1− bi
M vA

i

)
= M vA

i − bi = Ui,

for all i ∈M such that M vA
i > 0, where the last equality comes from

∑
j∈µ(i)(aij−αij) =

M vA
i . Take now any i ∈ M such that M vA

i = 0. From the definition of pj in (14), we
have

Ui(p, µ) =
∑
j∈µ(i)

(aij − pj) =
∑
j∈µ(i)

(aij − aij) = 0 = Ui,

since (U(p, µ), V (p, µ)) ∈ C(vA) for any competitive equilibrium (p, µ), by efficiency the
seller’s payoff is V (p, µ) = vA(M ∪{0})−

∑
i∈M Ui(p, µ) = vA(M ∪{0})−

∑
i∈M Ui = V .

This completes the proof of the “if” part.
Now, we prove the ‘only if’ part. Assume that the core and the set of payoff vectors

associated to the competitive equilibria coincide. By Lemma 4.7, conditions (a) and
(b) hold for some optimal matching. Then, we only have to prove (c). Assume on
the contrary that for each µ ∈ MA(M,Q), there is some buyer i′ ∈ M such that
M vA

i′ >
∑

j∈µ(i′)(ai′j − maxt∈M\{i′}{atj}). Recall the description of the core in (5) and

consider (U, V ) ∈ C(vA) with Ui′ = M vA
i′ for the buyer i′ and Ui = 0 for all i ∈

M \ {i′}. By assumption, there is a competitive equilibrium (p, µ) such that (U, V ) is
its payoff vector. Take this competitive equilibrium price vector p and the matching
µ ∈ MA(M,Q) such that M vA

i′ >
∑

j∈µ(i′)(ai′j − maxt∈M\{i′}{atj}). Then (p, µ) is

a competitive equilibrium (recall R1 in page 7). Therefore pj = aµ−1(j)j for all j ∈
µ(M \ {i′}) and

∑
j∈µ(i′) pj =

∑
j∈µ(i′) ai′j −M

vA
i′ . We obtain

∑
j∈µ(i′) ai′j −

∑
j∈µ(i′) pj =

M vA
i′ >

∑
j∈µ(i′)(ai′j −maxi∈M\{i′}{aij}). As a consequence,

∑
j∈µ(i′) maxi∈M\{i′}{aij} >∑

j∈µ(i′) pj which implies that there is some i ∈ M \ {i′} such that aij > pj for some

j ∈ µ(i′). We have that µ(i) /∈ Di(p) because aik− pk = 0 < aij − pj for all k ∈ µ(i) and
j /∈ µ(i). This contradicts that (p, µ) is a competitive equilibrium. Hence condition (c)
holds.

Notice that as a consequence of the proof of Theorem 4.8, if an assignment market
satisfies (a), (b) and (c) for some µ ∈MA(M,Q), it also does for any µ′ ∈MA(M,Q).
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Our next example shows that when a core element is a competitive equilibrium payoff
vector, then the associated equilibrium prices may be not unique.

Example 4.9. Consider a market with only one seller and two buyers. The seller
owns four objects on sale. Each buyer can acquire two objects. For the purposes of this
example, we do not show dummy objects. That is, the market (M, {0}, Q,A, r) is given
by M = {1, 2}, Q = {1′, 2′, 3′, 4′} and r = (2, 2). The valuation matrix A is the following

( 1′ 2′ 3′ 4′

1 2 2 0 0
2 0 0 3 3

)
,

where the unique optimal matching is circled. Consider the game (M ∪ {0}, vA) and
notice that M vA

1 = 4 and M vA
2 = 6. Take (U, V ) = (3, 4; 3) ∈ C(vA). Since conditions

(a), (b) and (c) of Theorem 4.8 are satisfied, we can define a competitive equilibrium
(p, µ) associated to (U, V ) following the proof of the theorem. Since M vA

i =
∑

j∈µ(i) aij
for all i ∈ M , b1 = M vA

1 − U1 = 1 and b2 = M vA
2 − U2 = 2, let pj =

a1j∑
j∈µ(1) a1j

· 1 = 0.5

for j = 1′, 2′ and pj =
a2j∑

j∈µ(2) a2j
· 2 = 1 for j = 3′, 4′. Therefore with p = (0.5, 0.5, 1, 1)

the pair (p, µ) is a competitive equilibrium and its associated payoff vector is (U, V ).
Take now p′ = (1, 0, 1.5, 0.5) and notice that (p′, µ) is also a competitive equilibrium and
(U(p′, µ), V (p′, µ)) = (3, 4; 3). Besides, take p′′ = (0, 1, 0.5, 1.5) and (p′′, µ) is also a
competitive equilibrium with (U(p′′, µ), V (p′, µ)) = (3, 4; 3).

Notwithstanding, if the buyers-optimal core allocation comes from a competitive
equilibrium then the prices are uniquely determined. Assume on the contrary that there
exist two competitive equilibrium prices p and p′ (p 6= p′) such that their associated pay-
off vector is the buyers-optimal core allocation. Since p 6= p′, let us assume w.l.o.g. that
there is some j ∈ Q such that pj > p′j. This implies that, for any µ ∈ MA(M,Q),
object j ∈ µ(i′) for some i′ ∈ M , because pj > p′j ≥ 0. Since the set of competitive
equilibrium prices has the structure of a complete lattice, then p′′ = p∧ p′ is also a com-
petitive equilibrium price. Notice that M vA

i′ =
∑

j∈µ(i′)(ai′j − pj) <
∑

j∈µ(i′)(ai′j − p′′j )
which contradicts that p′′ is a competitive equilibrium price because the payoff vector
associated to (p′′, µ) does not belong to the core.

Nevertheless, convexity is a sufficient condition for the buyers-optimal core allocation
to come from a competitive equilibrium. To see that, take a one-seller assignment market
with multi-unit demands (M, {0}, Q,A, r), such that the related one-seller assignment
game (M ∪ {0}, vA) is convex. By Proposition 3.2, for any µ ∈MA(M,Q) we have∑

j∈µ(i)

aij ≥
∑
j∈R

aij,

for all R ∈ 2Qri and all i ∈ M . It is straightforward to see that (p, µ) is a competitive

equilibrium, where p = (0, ..., 0) ∈ RQ+. Indeed, the payoff vector associated to (p, µ) is
the buyers-optimal core allocation.
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5 A buying and selling procedure for the buyers-

optimal core allocation

When agents in one-seller assignment markets behave strategically, we analyze a proce-
dure that attains the best core payoff for all buyers. Under the assumption of complete
information, we give the following two-phase procedure Γ. In the first phase, all buyers
play. Each buyer announces a tentative package of objects that he would accept to buy
at some price. All these requests are simultaneous. In the second phase, the seller, after
observing all these requests, chooses a set of buyers and allocates to each of them a
package at a price that makes the buyer indifferent with his initial request.

In more detail, the two phases of the procedure Γ are:

1. Buyers choose strategies simultaneously. A pure strategy for a buyer i ∈ M ,
denoted by si, consists of a pair formed by a package and its price, (R(i), PR(i)) ∈
2Qri × R+. Denote by s = (s1, ..., sm) a buyers’ strategy profile.

2. Given a buyers’ strategy profile s and making use of the complete information
assumption, the seller chooses: a) a coalition of buyers S∗ ⊆ M ; b) a matching
µ ∈M(S∗, Q); and c) a price P ∗µ(i) ∈ R+ for each i ∈ S∗ such that∑

j∈µ(i)

aij − P ∗µ(i) ≥
∑
j∈R(i)

aij − PR(i), (15)

where (R(i), PR(i)) = si. We denote by O(s) the seller’s strategy.

If a buyer i ∈ S∗ is matched by the selected matching µ ∈ M(S∗, Q), he receives
the package µ(i) and pays the price P ∗µ(i). If a buyer does not receive a package, he pays

nothing. Therefore the final outcome is Γ(s,O(s)) = (µ, P ∗) where µ ∈ M(S∗, Q) and
P ∗ = (P ∗µ(i))i∈S∗ . The payoffs are given by

Ui(µ, P
∗) =

{ ∑
j∈µ(i) aij − P ∗µ(i),

0

if i ∈ S∗,
if i ∈M \ S∗,

V (µ, P ∗) =
∑

i∈S∗ P
∗
µ(i) for the seller.

Now, we introduce some notation. Given a buyers’ strategy profile s and T ⊆ S, we
say that a matching µ ∈M(S,Q) is a matching compatible with s−(S\T ) if

∑
j∈µ(i) aij ≥∑

j∈R(i) aij −PR(i) for each i ∈ T where (R(i), PR(i)) = si. We write µ ∈Ms−(S\T )(S,Q).

When S \ T = {i}, we simply write Ms−i(S,Q). Moreover, we define the set P(µ, T )
of all price vectors P ∈ RT+ for packages assigned to agents in T , that satisfies (15) for
each i ∈ T . Notice that if a matching µ ∈ M(S,Q) is compatible with s−(S\T ), this

is equivalent to saying that P(µ, T ) 6= ∅. We identify with Ms−(S\T )

A (S,Q) the set of
optimal matchings for (S, {0}, Q,A|S×Q, r|S) compatible with s−(S\T ). Therefore, notice
that the seller chooses only matchings that are compatible with the buyers’ requests.

Our next proposition characterizes the Subgame Perfect Equilibrium (SPE) of the
procedure Γ by means of three conditions.
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Proposition 5.1. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands and (s,O(s)) be a strategy profile for Γ. Then (s,O(s)) is a SPE of Γ if
and only if the following conditions hold:

(a) The seller chooses S∗ ⊆ M , µ ∈ Ms(S∗, Q) and P ∗ ∈ P(µ, S∗) such that for all
S ⊆M , µ′ ∈Ms(S,Q) and P ∈ P(µ′, S), it holds∑

i∈S∗
P ∗µ(i) ≥

∑
i∈S

Pµ′(i) (16)

(b) For all i′ ∈ S∗, there exist S ⊆M \ {i′}, µ′ ∈Ms(S,Q) and P ∈ P(µ′, S) such that∑
i∈S∗

P ∗µ(i) =
∑
i∈S

Pµ′(i), (17)

(c) For all t ∈M \ S∗, all S ⊆M \ {t}, all µ′ ∈Ms−t(S ∪ {t}, Q) and all P ∈ P(µ′, S)∑
i∈S∗

P ∗µ(i) ≥
∑
i∈S

Pµ′(i) +
∑
j∈µ′(t)

atj.

Proof. We prove the “if” part. We see that under conditions (a), (b) and (c), (s,O(s))
is a SPE.

Condition (a) guarantees that the seller is playing a best response to the buyers’
strategy profile, since the selected matching and the price vector maximize the seller’s
payoff. Notice that condition (a) implies that the seller chooses µ ∈ Ms(S∗, Q) and
P ∗ ∈ P(µ, S∗) such that P ∗µ(i) satisfies (15) as an equality for each i ∈ S∗.

Condition (b) guarantees that buyer i′ ∈ S∗ is playing a best response to the other
agents’ strategy profile. On one hand, assume that buyer i′ ∈ S∗ unilaterally modifies
his request to (R′(i′), P ′R′(i′)) such that

∑
j∈R′(i′) ai′j−P ′R′(i′) >

∑
j∈R(i′) ai′j−PR(i′). This

means that all his current acceptable packages require a lower price. Because of (b), the
seller will maximize her payoff at the matching µ′ leaving him unassigned. Therefore
buyer i′ will not be better off. On the other hand, if buyer i′ ∈ S∗ requests (R′(i′), P ′R′(i′))

such that
∑

j∈R′(i′) ai′j−P ′R′(i′) <
∑

j∈R(i′) ai′j−PR(i′), then he will acquire some package
but at a price that makes him worse off.

Condition (c) guarantees that each buyer t ∈M \S∗ is also playing a best response.
Indeed, this condition ensures that buyer t ∈ M \ S∗ has no chance to unilaterally
changing his request (R′(t), P ′R′(t)) and being matched by the seller. This is because if

his request satisfies
∑

j∈R′(t) atj − P ′R′(t) = 0, because of (c), the seller will choose the
same matching, and buyer t will remain unassigned. On the other hand, it is obvious
that if buyer t requests (R′(t), P ′R′(t)) such that

∑
j∈R′(t) atj−P ′R′(t) >

∑
j∈R(t) atj−PR(t),

he will also remain unassigned. Then (s,O(s)) is a SPE.
Let us prove the “only if” part. Condition (a) is satisfied in any SPE since it states

that, given any buyers’ strategy profile s, the seller maximizes her payoff.
To prove (b), assume on the contrary that (s,O(s)) is a SPE and there exists i′ ∈ S∗,

for all S ⊆M \ {i′}, all µ′ ∈Ms(S,Q) and all P ′ ∈ P(µ′, S)∑
i∈S∗

P ∗µ(i) >
∑
i∈S

P ′µ′(i). (18)
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Notice that P ∗µ(i′) > 0, since otherwise S∗ \ {i′} would satisfy condition (b) in contra-
diction with our assumption. Therefore, buyer i′ has incentives to deviate by slightly
decreasing the price of his request in such a way that inequality (18) is still maintained.
This contradicts that (s,O(s)) is a SPE. Hence condition (b) must hold.

In order to prove (c), assume on the contrary that for some t ∈M \ S∗, there exists
S ⊆M \ {t}, some µ′ ∈Ms−t(S ∪ {t}, Q) and P ′ ∈ P(µ′, S) such that∑

i∈S∗
P ∗µ(i) <

∑
i∈S

P ′µ′(i) +
∑
j∈µ′(t)

atj.

Notice that
∑

j∈µ′(t) atj > 0, since otherwise matching µ′′ = {(i, j) ∈ µ′|i ∈ S}
satisfies µ′′ ∈Ms(S,Q) and ∑

i∈S∗
P ∗µ(i) <

∑
i∈S

P ′µ′′(i),

which contradicts (16) and the fact that (s,O(s)) is a SPE. Since
∑

j∈µ′(t) atj > 0, buyer

t has incentives to deviate setting (µ′(t), Pµ′(t)) such that
∑

j∈µ′(t) atj − Pµ′(t) > 0 and∑
i∈S

P ′µ′(i) + Pµ′(t) >
∑
i∈S∗

P ∗µ(i),

in order to receive µ′(t) with a positive payoff. This contradicts that (s,O(s)) is a SPE.
Hence condition (c) of Proposition 5.1 must hold and this concludes the proof.

Now, let us introduce the following notation. Given a buyers’ strategy profile s, a
matching µ ∈ M(S,Q) and T ⊆ S, we denote by P ∈ P(µ, T ) the price vector such
that ∑

j∈µ(i)

aij − P µ(i) =
∑
j∈R(i)

aij − PR(i) for all i ∈ T (19)

where (R(i), PR(i)) = si.
Our following result describes a SPE of Γ in which the payoff vector is the buyers-

optimal core allocation of the one-seller assignment game.

Theorem 5.2. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands and (M ∪{0}, vA) be its one-seller assignment game. Then the buyers-optimal
core allocation of (M ∪ {0}, vA) is attained in a SPE of Γ.

Proof. Let s be the following buyers’ strategy profile: each buyer i ∈ M announces
(R(i), PR(i)) such that

∑
j∈R(i) aij − PR(i) = M vA

i . The seller chooses S∗ = M , any

µ ∈ MA(M,Q) and P ∗ = P ∈ P(µ,M) where P ∈ P(µ,M) is as in (19). We prove,
by means of Proposition 5.1, that these strategies are a SPE. That proved, it is obvious
that the payoff vector will be the buyers-optimal core allocation. First, we show that
any µ ∈ MA(M,Q) is compatible with s. For any i′ ∈ M , let µ′ ∈ MA(M \ {i′}, Q),
then

M vA
i′ = vA(M ∪ {0})− vA((M \ {i′}) ∪ {0}) =

∑
(i,j)∈µ

aij −
∑

(i,j)∈µ′
aij

≤
∑

(i,j)∈µ

aij −
∑

i∈M\{i′}

∑
j∈µ(i)

aij =
∑
j∈µ(i′)

ai′j.
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This guarantees that, given s, the set of prices P(µ,M) 6= ∅ and then µ ∈Ms
A(M,Q).

Now, we prove that the seller maximizes her payoff under µ ∈ Ms
A(M,Q) and the

aforementioned P ∗ ∈ P(µ,M). For any S ⊆ M , consider any µ′ ∈ Ms(S,Q) and any
P ∈ P(µ′, S). Recall that (M ∪ {0}, vA) satisfies buyers-submodular condition (3) and
since S∗ = M , we have∑

i∈M

P ∗µ(i) = vA(M ∪ {0})−
∑
i∈M

M vA
i ≥ vA(S ∪ {0})−

∑
i∈S

M vA
i

≥
∑

(i,j)∈µ′
aij −

∑
i∈S

M vA
i ≥

∑
i∈S

Pµ′(i),

where the last inequality is due to P ∈ P(µ′, S). Hence, condition (a) of Proposition
5.1 holds.

In order to prove condition (b) of Proposition 5.1, take any i′ ∈M and consider any
µ′ ∈ MA(M \ {i′}, Q). We see that µ′ is compatible with s. For all i ∈ M \ {i′}, we
have

M vA
i ≤ vA((M \ {i′}) ∪ {0})− vA((M \ {i′, i}) ∪ {0}) ≤

∑
j∈µ′(i)

aij,

where the first inequality is due to the buyers-submodular condition (2) and the second
one because

∑
t∈M\{i,i′}

∑
j∈µ′(t) atj ≤ vA((M \{i, i′})∪{0}). Therefore, P(µ′,M \{i′}) 6=

∅ and µ′ ∈ Ms
A(M \ {i′}, Q). Now, take i′ ∈ M , µ′ ∈ Ms

A(M \ {i′}, Q) and let
P ∈ P(µ′,M \ {i′}) be as in (19). Then we have∑

i∈M\{i′}

P µ′(i) = vA((M \ {i′}) ∪ {0})−
∑

i∈M\{i′}

M vA
i

= vA(M ∪ {0})−
∑
i∈M

M vA
i =

∑
i∈M

P ∗µ(i).

Therefore, condition (b) of Proposition 5.1 holds.
Condition (c) of Proposition 5.1 is trivially satisfied because S∗ = M . Hence, the

described strategies are a SPE.

We have shown that when agents play particular strategies in a SPE of Γ, the payoff
vector is the buyers-optimal core allocation. Now, we prove that this is unique payoff
vector of all SPE. First, the next proposition proves that in any SPE of Γ, the seller
selects an optimal matching which gives the worth of the grand coalition.

Proposition 5.3. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands and (s,O(s)) a SPE of Γ, where O(s) is formed by the triple (S∗, µ, P ∗).
Then ∑

(i,j)∈µ

aij = vA(S∗ ∪ {0}) = vA(M ∪ {0}).

Proof. First, we prove
∑

(i,j)∈µ aij = vA(S∗∪{0}). Assume on the contrary that (s,O(s))

is a SPE and
∑

(i,j)∈µ aij < vA(S∗ ∪ {0}).
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Take any µ1 ∈ MA(S∗, Q). If µ1 ∈ Ms
A(S∗, Q), take P ∈ P(µ1, S

∗) as in expression
(19). Therefore, by condition (a) of Proposition 5.1, Ui(µ, P

∗) = Ui(µ1, P ) for all i ∈ S∗
and we have∑

i∈S∗
P µ1(i) =

∑
(i,j)∈µ1

aij −
∑
i∈S∗

Ui(µ1, P ) = vA(S∗ ∪ {0})−
∑
i∈S∗

Ui(µ1, P )

>
∑

(i,j)∈µ

aij −
∑
i∈S∗

Ui(µ, P
∗) =

∑
i∈S∗

P ∗µ(i).

This contradicts (16) and the fact that (s,O(s)) is a SPE. Therefore, µ1 /∈Ms
A(S∗, Q).

By applying Lemma A.1, see Appendix A, to S = T ′ = S∗, there exists ∅ 6= T  S∗

and µ′ ∈Ms
A(T,Q) such that

∑
i∈S∗\T

∑
j∈R(i)

aij − PR(i)

 > vA(S∗ ∪ {0})− vA(T ∪ {0}), (20)

where (R(i), PR(i)) = si for all i ∈ S∗ \ T .

Consider µ′ ∈ Ms
A(T,Q) and take P

′ ∈ P(µ′, T ) as in expression (19). Therefore,

Ui(µ
′, P

′
) = Ui(µ, P

∗) for all i ∈ T . By condition (a) of SPE in Proposition 5.1, we
obtain∑

(i,j)∈µ

aij −
∑
i∈S∗

Ui(µ, P
∗) =

∑
i∈S∗

P ∗µ(i) ≥
∑
i∈T

P
′
µ′(i) =

∑
(i,j)∈µ′

aij −
∑
i∈T

Ui(µ
′, P

′
)

= vA(T ∪ {0})−
∑
i∈T

Ui(µ
′, P

′
).

Since T ⊆ S∗, then

∑
(i,j)∈µ

aij − vA(T ∪ {0}) ≥
∑

i∈S∗\T

Ui(µ, P
∗) =

∑
i∈S∗\T

∑
j∈R(i)

aij − PR(i)

 ,

where (R(i), PR(i)) = si for all i ∈ S∗ \ T . This contradicts (20). Hence
∑

(i,j)∈µ aij =

vA(S∗ ∪ {0}).
Now, we prove vA(S∗ ∪ {0}) = vA(M ∪ {0}), assume on the contrary that (s,O(s))

is a SPE and vA(S∗ ∪ {0}) < vA(M ∪ {0}). Let ∅ 6= T ⊆M \ S∗ be a minimal coalition
(with respect to inclusion) in M \S∗ such that vA((S∗∪T )∪{0}) > vA(S∗∪{0}). Notice
that such coalition exists because of monotonicity of vA. This implies that there is some
t ∈ T such that vA((S∗ ∪ T )∪ {0}) > vA((S∗ ∪ (T \ {t}))∪ {0}). By buyers-submodular
condition (2), we have that for all S ⊆ S∗ ∪ T with t ∈ S,

vA(S ∪ {0})− vA((S \ {t}) ∪ {0})
≥ vA((S∗ ∪ T ) ∪ {0})− vA(((S∗ ∪ T ) \ {t}) ∪ {0}) > 0. (21)
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Take any µ1 ∈ MA(S∗ ∪ {t}, Q). If µ1 ∈ Ms−t
A (S∗ ∪ {t}, Q), take P ∈ P(µ1, S

∗) as
in expression (19). Therefore, Ui(µ1, P ) = Ui(µ, P

∗) for all i ∈ S∗ and we have∑
i∈S∗

P ∗µ(i) = vA(S∗ ∪ {0})−
∑
i∈S∗

Ui(µ, P
∗)

< vA((S∗ ∪ {t}) ∪ {0})−
∑
i∈S∗

Ui(µ1, P ) =
∑
i∈S∗

P µ1(i) +
∑

j∈µ1(t)

atj,

which contradicts condition (c) of Proposition 5.1 and the fact that (s,O(s)) is a SPE.
As a consequence µ1 /∈Ms−t

A (S∗ ∪ {t}, Q).
By applying Lemma A.1, see Appendix A, to S = S∗ and T ′ = S∗ ∪ {t}, there exist

∅ 6= T  T ′ with t ∈ T and µ′ ∈Ms−t
A (T,Q) such that

∑
i∈S∗\T

∑
j∈R(i)

aij − PR(i)

 > vA((S∗ ∪ {t}) ∪ {0})− vA(T ∪ {0})

> vA(S∗ ∪ {0})− vA(T ∪ {0}),

where (R(i), PR(i)) = si for all i ∈ S∗ \ T , the second inequality comes from (21) taking
S = S∗ ∪ {t}. Moreover, notice that

∑
i∈S∗\T

Ui(µ, P
∗) =

∑
i∈S∗\T

∑
j∈R(i)

aij − PR(i)

 > vA(S∗ ∪ {0})− vA(T ∪ {0}). (22)

Consider µ′ ∈Ms−t
A (T,Q) and take P

′ ∈ P(µ′, T \ {t}) as in expression (19). There-

fore, Ui(µ
′, P

′
) = Ui(µ, P

∗) for all i ∈ T ∩ S∗. Taking (22) into account, we get∑
i∈S∗

P ∗µ(i) = vA(S∗ ∪ {0})−
∑
i∈S∗

Ui(µ, P
∗)

< vA(T ∪ {0})−
∑

i∈T\{t}

Ui(µ
′, P

′
) =

∑
i∈T\{t}

P ′µ(i) +
∑
j∈µ(t)

atj,

which contradicts condition (c) of Proposition 5.1 (recall that t ∈ M \ S∗). Hence
vA(S∗ ∪ {0}) = vA(M ∪ {0}).

The following remark will be used later on. It shows that in a SPE, buyers not
selected by the seller get their marginal contributions.

Remark 5.4. Let (s,O(s)) be a SPE of Γ where O(s) is formed by the triple (S∗, µ, P ∗).
As a consequence of Proposition 5.3 and monotonicity of vA, M vA

i = 0 for each buyer
i ∈M \ S∗. Indeed, Ui(µ, P

∗) = 0 = M vA
i for all i ∈M \ S∗.

Now, let us introduce some notation.

Definition 5.5. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands and (s,O(s)) be a SPE of Γ where O(s) is formed by the triple (S∗, µ, P ∗).
For each i′ ∈ S∗, we denote by:

Si
′ ⊆M \ {i′}, µi′ ∈Ms(Si

′
, Q) and P i′ ∈ P(µi

′
, Si

′
)
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the coalition, the matching and the price vector that satisfy condition (b) of Proposition
5.1. That is ∑

i∈S∗
P ∗µ(i) =

∑
i∈Si′

P i′

µi′ (i)
.

Notice that, in the SPE (s,O(s)), if we take any i′ ∈ S∗, we know that Ui(µ, P
∗) = 0

for all i ∈ Si′ \ S∗. Now, we claim that∑
j∈R(i)

aij − PR(i) = Ui(µ
i′ , P i′) = 0 for all i ∈ Si′ \ S∗, (23)

where (R(i), PR(i)) = si. Otherwise, if for some i ∈ Si
′ \ S∗,

∑
j∈R(i) aij − PR(i) > 0,

this buyer would have incentives to increase a bit PR(i) to force the seller to choose µi
′

instead of µ in order to get a positive a positive payoff. Moreover, by condition (b) of
Proposition (5.1), we have ∑

i∈S∗
P ∗µ(i) =

∑
i∈Si′

P i′

µi′ (i)
. (24)

Therefore, we claim that P i′ ∈ P(µi
′
, Si

′
) satisfies∑

j∈µi′ (i)

aij − P i′

µi′ (i)
=
∑
j∈R(i)

aij − PR(i) for all i ∈ Si′ , (25)

where (R(i), PR(i)) = si. Otherwise, if for some i∗ ∈ Si′ , it holds that
∑

j∈µi′ (i∗) ai∗j −
P i′

µi
′
(i∗)

>
∑

j∈R(i∗) ai∗j − PR(i∗), take P
i′ ∈ P(µi

′
, Si

′
) as in expression (14). Notice that∑

i∈S∗
P ∗µ(i) =

∑
i∈Si′

P i′

µi
′ (i)

<
∑
i∈Si′

P
i′

µi
′
(i),

this contradicts condition (a) of Proposition (5.1).

Now, as the main result of this section, we prove that the unique payoff vector of all
SPE of Γ is the buyers-optimal core allocation.

Theorem 5.6. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-unit
demands. The outcome of any SPE of Γ is the buyers-optimal core allocation.

Proof. Take any SPE (s,O(s)), where O(s) is formed by the triple (S∗, µ, P ∗). We first
prove that for any i′ ∈ S∗, there is some µ ∈ Ms

A((S∗ ∪ Si′) \ {i′}, Q) where Si
′

is the
coalition introduced in Definition 5.5. To this end, assume on the contrary that (s,O(s))
is a SPE and for all µ ∈MA((S∗ ∪ Si′) \ {i′}, Q), we have µ /∈Ms

A((S∗ ∪ Si′) \ {i′}, Q).
This implies that there is some t ∈ (S∗ ∪ Si′) \ {i′} such that∑

j∈R(t)

atj − PR(t) >
∑
j∈µ(t)

atj

≥ vA(((S∗ ∪ Si′) \ {i′}) ∪ {0})− vA(((S∗ ∪ Si′) \ {t, i′}) ∪ {0})
≥ vA((S∗ ∪ Si′) ∪ {0})− vA(((S∗ ∪ Si′) \ {t}) ∪ {0}), (26)
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where (R(t), PR(t)) = st, the last inequality follows from buyers-submodular condition
(2). By expression (23), the above strict inequality implies that t ∈ S∗. Taking that into
account, we prove that if buyer t requests (R(t), PR(t)) such that

∑
j∈R(t) atj − PR(t) >∑

j∈µ(t) atj, we will reach a contradiction with buyer t belonging to S∗.

Take any µ1 ∈ MA((S∗ ∪ Si′) \ {t}, Q). If µ1 ∈ Ms
A((S∗ ∪ Si′) \ {t}, Q), take

P ∈ P(µ1, (S
∗ ∪ Si′) \ {t}) as in expression (19). Therefore, Ui(µ1, P ) = Ui(µ, P

∗) for
all i ∈ (S∗ ∪ Si′) \ {t} and we have∑

i∈S∗
P ∗µ(i) = vA(M ∪ {0})−

∑
i∈S∗

Ui(µ, P
∗) = vA(M ∪ {0})−

∑
i∈S∗∪Si′

Ui(µ, P
∗)

= vA((S∗ ∪ Si′) ∪ {0})−
∑

i∈S∗∪Si′
Ui(µ, P

∗)

< vA(((S∗ ∪ Si′) \ {t}) ∪ {0})−
∑

i∈(S∗∪Si′ )\{t}

Ui(µ1, P )

=
∑

i∈(S∗∪Si′ )\{t}

P µ1(i),

where the first inequality follows from Proposition 5.3, the second one from Ui(µ, P
∗) = 0

for all i ∈ Si′ \ S∗, the third one because of monotonicity of vA and the inequality from
(26). This contradicts (16) and the fact that (s,O(s)) is a SPE. As a consequence
µ1 /∈Ms

A(S∗ ∪ Si′) \ {t}, Q).
By applying Lemma A.1, see Appendix A, to S = T ′ = (S∗ ∪ Si′) \ {t}, there exists

∅ 6= T  T ′ and µ′ ∈Ms
A(T,Q), such that

∑
i∈((S∗∪Si′ )\{t})\T

∑
j∈R(i)

aij − PR(i)

 > vA(((S∗ ∪ Si′) \ {t}) ∪ {0})− vA(T ∪ {0}).

where (R(i), PR(i)) = si for all i ∈ ((S∗ ∪ Si′) \ {t}) \ T . Making use of (26) notice that,

∑
i∈(S∗∪Si′ )\T

∑
j∈R(i)

aij − PR(i)

 > vA(((S∗ ∪ Si′) \ {t}) ∪ {0})− vA(T ∪ {0})

+ vA((S∗ ∪ Si′) ∪ {0})− vA(((S∗ ∪ Si′) \ {t}) ∪ {0})
= vA((S∗ ∪ Si′) ∪ {0})− vA(T ∪ {0}), (27)

where (R(i), PR(i)) = si for all i ∈ (S∗ ∪ Si′) \ T .

Consider µ′ ∈ Ms
A(T,Q) and take P

′ ∈ P(µ′, T ) as in expression (19). Therefore,

Ui(µ
′, P

′
) = Ui(µ, P

∗) for all i ∈ T and we have

vA((S∗ ∪ Si′) ∪ {0})−
∑

i∈S∗∪Si′
Ui(µ, P

∗) = vA(M ∪ {0})−
∑

i∈S∗∪Si′
Ui(µ, P

∗)

= vA(M ∪ {0})−
∑
i∈S∗

Ui(µ, P
∗) =

∑
i∈S∗

P ∗µ(i)

≥
∑
i∈T

P
′
µ′(i) = vA(T ∪ {0})−

∑
i∈T

Ui(µ
′, P

′
),
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where the first equality comes from monotonicity of vA, the second one because of (5.5),
the third equality follow from Proposition 5.3 and the inequality from condition (a) of
SPE in Proposition 5.1. Then,

vA((S∗ ∪ Si′) ∪ {0})− vA(T ∪ {0}) ≥
∑

i∈S∗\T

Ui(µ, P
∗) =

∑
i∈(S∗∪Si′ )\T

∑
j∈R(i)

aij − PR(i)

 ,

where (R(i), PR(i)) = si for all i ∈ (S∗ ∪ Si′) \ T . This is a contradiction with (27) and
hence there is some matching µ ∈Ms

A((S∗ ∪ Si′) \ {i′}, Q) and the claim is proved.
Now, we prove that the outcome of (s,O(s)) is the buyers-optimal core allocation.

We have seen that for each i ∈ S∗ there exists µ ∈Ms
A((S∗∪Si)\{i}, Q). Take a buyer

i′ ∈ S∗. Consider µ′ ∈ Ms
A((S∗ ∪ Si′) \ {i′}, Q) and P

′ ∈ P(µ′, (S∗ ∪ Si′) \ {i′}) as in

expression (19). Therefore, Ui(µ
′, P

′
) = Ui(µ, P

∗) for all i ∈ (S∗∪Si′)\{i′} and we have

vA(M ∪ {0})−
∑
i∈S∗

Ui(µ, P
∗) =

∑
i∈S∗

P ∗µ(i)

≥
∑

i∈(S∗∪Si′ )\{i′}

P
′
µ′(i) = vA((M \ {i′}) ∪ {0})−

∑
i∈(S∗∪Si′ )\{i′}

Ui(µ
′, P

′
),

where the first equality follows from Proposition 5.3, the inequality from condition (a)
of Proposition 5.1, and the last equality from Proposition A.3 (in Appendix A). Then,

vA(M ∪ {0})− vA((M \ {i′}) ∪ {0}) ≥
∑
i∈S∗

Ui(µ, P
∗)−

∑
i∈(S∗∪Si′ )\{i′}

Ui(µ
′, P

′
).

Since Ui(µ, P
∗) = Ui(µ

′, P
′
) for all i ∈ S∗ ∩ Si′ and, by Remark 5.4, Ui(µ, P

∗) = 0 for
all i ∈ Si′ \ S∗, we get

vA(M ∪ {0})− vA((M \ {i′}) ∪ {0}) ≥ Ui′(µ, P
∗). (28)

By Proposition 5.3 and Remark 5.4, we know that in any SPE (s,O(s)),
∑

(i,j)∈µ aij =

vA(M ∪ {0}) and Ui(µ, P
∗) = M vA

i for all i ∈ M \ S∗. Moreover, by expression (28),
M vA

i ≥ Ui(µ, P
∗) for all i ∈ S∗. Hence, we must see that Ui(µ, P

∗) ≤M vA
i for all i ∈ S∗.

Take a buyer i′ ∈ S∗, let Si
′

and µi
′ ∈ Ms(Si

′
, Q) be as in Definition 5.5 and take

P i′ ∈ P(µi
′
, Si

′
), then

vA(S∗ ∪ {0})−
∑
i∈S∗

Ui(µ, P
∗) =

∑
i∈S∗

P ∗µ(i)

=
∑
i∈Si′

P i′

µi
′ (i)

= vA(Si
′ ∪ {0})−

∑
i∈Si′

Ui(µ
i′ , P i′),

where the last equality follows from Proposition A.2, see Appendix A. As a consequence,

vA(S∗ ∪ {0})− vA(Si
′ ∪ {0}) =

∑
i∈S∗\Si′

Ui(µ, P
∗)−

∑
i∈Si′\S∗

Ui(µ
i′ , P i′).
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By expression (23), we know that Ui(µ
i′ , P i′) = 0 for all i ∈ Si′ \ S∗. Therefore

vA(S∗ ∪ {0})− vA(Si
′ ∪ {0}) =

∑
i∈S∗\Si′

Ui(µ, P
∗). (29)

On the other hand, since vA(S∗ ∪ {0}) = vA(M ∪ {0}) and monotonicity of vA, we have
that vA((S∗ ∪ Si′)∪ {0}) = vA(S∗ ∪ {0}). Then, by buyers-submodularity (??) and (2),
we get

vA(S∗ ∪ {0})− vA(Si
′ ∪ {0}) = vA((S∗ ∪ Si′) ∪ {0})− vA(Si

′ ∪ {0})

≥
∑

i∈S∗\Si′

(
vA((S∗ ∪ Si′) ∪ {0})− vA(((S∗ ∪ Si′) \ {i}) ∪ {0})

)
≥

∑
i∈S∗\Si′

M vA
i .

Then, making use of (29) ∑
i∈S∗\Si′

Ui(µ, P
∗) ≥

∑
i∈S∗\Si′

M vA
i .

Since we have Ui(µ, P
∗) ≤M vA

i for all i ∈ S∗, we get M vA
i = Ui(µ, P

∗) for all i ∈ S∗\Si′ .
This completes the proof: in any SPE (s,O(s))., the payoff vector is Ui(µ, P

∗) = M vA
i

for each i ∈ M and V (µ, P ∗) = vA(M ∪ {0}) −
∑

i∈M M vA
i for the seller, which is the

buyers-optimal core allocation.

Therefore, we have proved that in every SPE, each buyer receives his maximum
core payoff, that is his marginal contribution, while the seller gets her minimum one,
vA(M ∪ {0})−

∑
i∈M M vA

i . Hence the buyers-optimal core allocation is the outcome of
every SPE of the mechanism Γ.

6 Concluding Remarks

In Tauman et al. (1997), it is considered a somehow related many-to-one model with
only one buyer with multi-unit demand but several sellers with unitary supply. The
valuation function of the buyer is not necessary linear and a strategic form game is
provided. This strategic game leads to the outcome where each seller gets her marginal
contribution by means of the subgame perfect Nash equilibrium. The authors mention
that an important and nontrivial extension of their model would be the case where
firms produce more than one product. To some extent, this is what our model provides,
although the sector with only one agent is now the one of the sellers to lie in the setting
of the Vickrey auction.

As a drawback, we remain in the case in which, buyers’ valuations of packages are
linear. We believe that this fact, which implies the buyers-subadditive property, is
crucial to obtain, differently from the aforementioned model, the buyers-optimal core
allocation as the unique subgame perfect Nash equilibrium outcome.
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A Appendix

Lemma A.1. Let s be a buyers’ strategy profile of procedure Γ and ∅ 6= S ⊆ M be a
coalition of buyers. For all T ′ ⊆ M such that S ∩ T ′ 6= ∅, there exists T ⊆ T ′ with
T ′ \ S ⊆ T and a matching µ ∈Ms−(T ′\S)

A (T,Q). If T 6= T ′, it holds that

∑
i∈(T ′∩S)\T

∑
j∈R(i)

aij − PR(i)

 > vA(T ′ ∪ {0})− vA(T ∪ {0}),

where (R(i), PR(i)) = si for each i ∈ (T ′ ∩ S) \ T .

Proof. Take any coalition of buyers ∅ 6= S ⊆ M and T ′ ⊆ M such that S ∩ T ′ 6= ∅.
First, consider T1 = T ′ and µ1 ∈MA(T ′, Q). If µ1 ∈M

s−(T ′\S)
A (T ′, Q), we are done just

taking T = T1 = T ′. Otherwise, if µ1 /∈ M
s−(T ′\S)
A (T ′, Q) there exists some i1 ∈ T1 ∩ S

such that ∑
j∈R(i1)

ai1j − PR(i1) >
∑

j∈µ1(i1)

ai1j,

where (R(i1), PR(i1)) = si1 . By the optimality of µ1, we have∑
j∈R(i1)

ai1j − PR(i1) >
∑

j∈µ1(i1)

ai1j ≥ vA(T ′ ∪ {0})− vA((T ′ \ {i1}) ∪ {0}). (30)

Take now any µ2 ∈ MA(T ′ \ {i1}, Q). If µ2 ∈ M
s−(T ′\S)
A (T ′ \ {i1}, Q), we are done

with T = T2 = T ′ \ {i1}. Otherwise, if µ2 /∈ M
s−(T ′\S)
A (T ′ \ {i1}, Q), then there exists

some buyer i2 ∈ T2 ∩ S such that∑
j∈R(i2)

ai2j − PR(i1) >
∑

j∈µ2(i2)

ai2j ≥ vA(T2 ∪ {0})− vA(T3 ∪ {0}), (31)

where (R(i2), PR(i2)) = si2 and T3 = T2 \ {i2}. By adding (30) and (31) we get

∑
i∈(T ′∩S)\T3

∑
j∈R(i)

aij − PR(i1)

 > vA(T ′ ∪ {0})− vA(T3 ∪ {0}),

where (R(i), PR(i)) = si for all i ∈ (T ′ ∩ S) \ T3.
By proceeding recursively, assume we have constructed a sequence {i1, ..., ik} ⊆ T ′∩S

such that for all l ∈ {1, ..., k} it holds Ms−(T ′\S)
A (T ′ \ {i1, ..., il}, Q) = ∅ and if we write

Tk+1 = T ′ \ {i1, ..., ik} it holds

∑
i∈(T ′∩S)\Tk+1

∑
j∈R(i)

aij − PR(i)

 > vA(T ′ ∪ {0})− vA(Tk+1 ∪ {0}), (32)
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where (Ri, PR(i)) = si for all i ∈ (T ′ ∩ S) \ Tk+1. So, either M
s∗−(T ′\S)
A (Tk+1, Q) 6= ∅ and

we are done with T = Tk+1 or take µk+1 ∈MA(Tk+1, Q). Then there exists some buyer
ik+1 ∈ Tk+1 ∩ S such that,∑
j∈R(ik+1)

aik+1j − PR(ik+1) >
∑

j∈µk+1(ik+1)

aik+1j ≥ vA(Tk+1 ∪ {0})− vA((Tk+1 \ {ik+1}) ∪ {0}),

(33)

where (R(ik+1), PR(ik+1)) = sik+1
. By combining (32) and (33), we define Tk+2 = Tk+1 \

{ik+1} and obtain

∑
i∈(T ′∩S)\Tk+2

(∑
j∈Ri

aij − P i(Ri)

)
> vA(T ′ ∪ {0})− vA(Tk+2 ∪ {0}),

where (Ri, PR(i)) = si for all i ∈ (T ′ ∩ S) \ Tk+2

Now either there exists µ ∈ Ms−(T ′\S)
A (Tk+2, Q) where Tk+2  Tk+1 and we are done

with T = Tk+2 or we continue the procedure one more step. Notice that, since T ′ ∩ S
is finite, if it does not stop before, the procedure will reach Tk with |Tk| = 1 for some
k ≥ 1. In that case, let us write Tk = {i}. If µk ∈MA(Tk, Q) then∑

j∈µk(i)

aij ≥
∑
j∈R(i)

aij − PR(i),

where (R(i), PR(i)) = si, which means there exists Pµk(i) ∈ R+ that satisfies (15), hence

µk ∈M
s−(T ′\S)
A (Tk, Q) and we are done with T = Tk.

Proposition A.2. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands and (s,O(s)) be a SPE of Γ, where O(s) is formed by the triple (S∗, µ, P ∗).
For any i′ ∈ S∗, let Si

′
be the coalition and µi

′ ∈ Ms(Si
′
, Q) be the matching as intro-

duced in Definition 5.5. Then ∑
(i,j)∈µi′

aij = vA(Si
′ ∪ {0}).

Proof. Assume on the contrary that (s,O(s)) is a SPE and
∑

(i,j)∈µi′ aij < vA(Si
′∪{0}).

Take any µ1 ∈ MA(Si
′
, Q). If µ1 ∈ Ms

A(Si
′
, Q), take P ∈ P(µ1, S

i′) as in expression
(19). Therefore, because of (25), Ui(µ1, P ) = Ui(µ

i′ , P i′) for all i ∈ Si′ and making use
of condition (b), we have∑

i∈S∗
P ∗µ(i) =

∑
i∈Si′

P i′

µi′ (i)
=

∑
(i,j)∈µi′

aij −
∑
i∈Si′

Ui(µ
i′ , P i′)

< vA(Si
′ ∪ {0})−

∑
i∈Si′

Ui(µ1, P ) =
∑
i∈Si′

P µ1(i),

which is a contradiction. Therefore µ1 /∈Ms
A(Si

′
, Q).

29



By applying Lemma A.1, in this Appendix, to S = T ′ = Si
′
, there exists ∅ 6= T  T ′

and µ′ ∈Ms
A(T,Q) such that

∑
i∈Si′\T

∑
j∈R(i)

aij − PR(i)

 > vA(Si
′ ∪ {0})− vA(T ∪ {0}), (34)

where (R(i), PR(i)) = si for all i ∈ Si′ \ T .

Consider µ′ ∈ Ms
A(T,Q) and take P

′ ∈ P(µ′, T ) as in expression (19). Therefore,

Ui(µ
i′ , P i′) = Ui(µ

′, P
′
) for all i ∈ T . By conditions (b) and (a) in Proposition 5.1, we

have ∑
i∈Si′

P i′

µi′ (i)
=
∑
i∈S∗

P ∗µ(i) ≥
∑
i∈T

P
′
µ′(i) = vA(T ∪ {0})−

∑
i∈T

Ui(µ
′, P

′
).

Hence ∑
(i,j)∈µi′

aij − vA(T ∪ {0}) ≥
∑
i∈Si′

Ui(µ
i′ , P i′)−

∑
i∈T

Ui(µ, P
′
)

=
∑

i∈Si′\T

Ui(µ
i′) =

∑
i∈Si′\T

(∑
j∈Ri

aij − P i′

R(i)

)
,

where (R(i), PR(i1)) = si for all i ∈ Si′ \ T . This contradicts (34), hence
∑

(i,j)∈µi′ aij =

vA(Si
′ ∪ {0}).

Proposition A.3. Let (M, {0}, Q,A, r) be a one-seller assignment market with multi-
unit demands and (s,O(s)) be a SPE of Γ, where O(s) is formed by the triple (S∗, µ, P ∗).
For any i′ ∈ S∗, let Si

′
be the coalition introduced in Definition 5.5. Then

vA(((S∗ ∪ Si′) \ {i′}) ∪ {0}) = vA((M \ {i′}) ∪ {0}).

Proof. First, we show that vA((Si
′∪{t})∪{0}) = vA(Si

′∪{0}) for any t ∈M \(S∗∪Si′).
Assume on the contrary that (s,O(s)) is a SPE and there is some t ∈ M \ (S∗ ∪ Si′)
such that vA((Si

′ ∪ {t}) ∪ {0}) > vA(Si
′ ∪ {0}).

Consider any µ1 ∈MA(Si
′ ∪{t}, Q). If µ1 ∈Ms−t

A (Si
′ ∪{t}, Q), take P ∈ P(µ1, S

i′)
as in expression (19). Therefore Ui(µ

i′ , P i′) = Ui(µ1, P ) for all i ∈ Si′ and we have∑
i∈S∗

P ∗µ(i) =
∑
i∈Si′

P i′

µi′ (i)
= vA(Si

′ ∪ {0})−
∑
i∈Si′

Ui(µ
i′ , P i′)

< vA((Si
′ ∪ {t}) ∪ {0})−

∑
i∈Si′

Ui(µ1, P ) =
∑
i∈Si′

P µ1(i) +
∑

j∈µ1(t)

atj,

where the first equality comes from condition (b) of Proposition 5.1, the second one
from Proposition A.2, in this Appendix, the strict inequality from the assumption and
Ui(µ1, P

1) = Ui(µ
i′ , P i′) for all i ∈ Si′ . This contradicts that (s,O(s)) is a SPE because

of condition (c) of Proposition 5.1. Therefore µ1 /∈Ms−t
A (Si

′ ∪ {t}, Q).
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By applying Lemma A.1, in this Appendix, to S = Si
′

and T ′ = Si
′ ∪ {t}, there

exists ∅ 6= T  T ′, with t ∈ T , and µ′ ∈Ms−t
A (T,Q) such that

∑
i∈Si′\T

∑
j∈R(i)

aij − PR(i)

 > vA(Si
′ ∪ {0})− vA(T ∪ {0}),

where (R(i), PR(i) = si for all i ∈ Si′ \ T . Notice that

∑
i∈Si′\T

Ui(µ
i′ , P i′) =

∑
i∈Si′\T

∑
j∈R(i)

aij − PR(i)

 > vA(Si
′ ∪ {0})− vA(T ∪ {0}). (35)

Take µ′ ∈Ms−t
A (T,Q) and P

′ ∈ P(µ′, T ) as in expression (19). Therefore Ui(µ
i′ , P i′) =

Ui(µ
′, P

′
) for each i ∈ T ∩ Si′ and we have∑
i∈S∗

P ∗µ(i) =
∑
i∈Si′

P i′

µi′ (i)
= vA(Si

′ ∪ {0})−
∑
i∈Si′

Ui(µ
i′ , P i′)

< vA(T ∪ {0})−
∑

i∈T\{t}

Ui(µ
′, P

′
) =

∑
i∈T\{t}

P
′
µ′(i) +

∑
j∈µ′(t)

atj,

where the first equality comes from condition (b) of Proposition 5.1, the second one

from Proposition A.2 in this Appendix, the strict inequality from (35) and Ui(µ
′, P

′
) =

Ui(µ
i′ , P i′) for all i ∈ T . This contradicts condition (c) of Proposition 5.1. Hence if

t ∈M \ (S∗ ∪ Si′), then vA(Si
′ ∪ {0}) = vA((Si

′ ∪ {t}) ∪ {0}).
Now, we prove vA(((S∗ ∪ Si′) \ {i′}) ∪ {0}) = vA((M \ {i′}) ∪ {0}). Assume on the

contrary that vA(((S∗ ∪ Si′) \ {i′}) ∪ {0}) < vA((M \ {i′}) ∪ {0}). By monotonicity of
vA, let ∅ 6= T ⊆ M \ (S∗ ∪ Si′) be a minimal coalition (with respect to inclusion) such
that

vA(((S∗ ∪ Si′ ∪ T ) \ {i′}) ∪ {0}) > vA(((S∗ ∪ Si′) \ {i′}) ∪ {0}).

Then, there is some t ∈ T such that,

vA(((S∗ ∪ Si′ ∪ T ) \ {i′}) ∪ {0}) > vA(((S∗ ∪ Si′ ∪ T ) \ {i′, t}) ∪ {0}). (36)

Notwithstanding, since vA((Si
′ ∪ {i}) ∪ {0}) = vA(Si

′ ∪ {0}) for all i ∈M \ (S∗ ∪ Si′)

0 = vA((Si
′ ∪ {t}) ∪ {0})− vA(Si

′ ∪ {0})
≥ vA(((S∗ ∪ Si′ ∪ T ) \ {i′}) ∪ {0})− vA(((S∗ ∪ Si′ ∪ T ) \ {i′, t}) ∪ {0}) > 0,

where the inequality comes from the buyers-submodular condition and the strict in-
equality from (36). This is a contradiction. Hence, vA(((S∗ ∪ Si′) \ {i′}) ∪ {0}) =
vA((M \ {i′}) ∪ {0}).
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