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Abstract

We show that the use of generalized least squares (GLS) detrending procedures leads

to important empirical power gains compared to ordinary least squares (OLS) detrend-

ing method when testing the null hypothesis of unit root for bounded processes. The

non-centrality parameter that is used in the GLS-detrending depends on the bounds,

so that improvements on the statistical inference are to be expected if a case-speci�c

parameter is used. This initial hypothesis is supported by the simulation experiment

that has been conducted.

Keywords: Unit root, bounded process, quasi GLS-detrending
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1 Introduction

There are some cases where standard unit root tests applied to bounded variables would not

lead to good inference results. Cavaliere (2005) and Cavaliere and Xu (2012) address this

issue adapting di¤erent unit root tests that consider the bounded nature that exhibits some

time series. These authors show that the narrower the bounds, the higher the bias towards

rejecting the null hypothesis of unit root when unit root tests that do not account for the

bounds are used. To overcome this issue, Cavaliere and Xu (2012) propose the application of
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modi�ed unit root tests à la Ng and Perron (2001) when analyzing the stochastic properties of

bounded time series. Their proposal bases on the use of OLS-detrending procedure, although

they also mention that GLS-detrending could also be used.

In this note we provide the elements that are needed to implement the GLS-detrending

when testing the unit root hypothesis on bounded time series. We show that the non-

centrality parameter that GLS-detrending requires depends on the values of the bounds that

a¤ect the time series, being smaller the narrower the range de�ned by the bounds. A small

Monte Carlo simulation experiment is conducted to evaluate the performance of the OLS

and GLS-detrending procedures and the potential improvement that should be expected if

a bounds-speci�c non-centrality parameter is used instead of applying the non-centrality

parameter that ignores the bounded nature of the stochastic process in Elliott et al. (1996).

2 The model

Let xt be a stochastic process with data generating process (DGP) given by:

xt = �+ yt (1)

yt = �yt�1 + ut; (2)

t = 1; : : : ; T , where xt 2
�
b; b
�
almost surely for all t and y0 = Op (1). The presence of

bounds requires that �xt lies within the interval
�
b� xt�1; b� xt�1

�
, where

�
b; b
�
denote the

boundaries that a¤ect the time series. The disturbance term ut is assumed to decompose as:

ut = "t + �t � �t; (3)

with "t = C (L) �t, where C (L) =
P1

i=0 ciL
i with

P1
i=0 i jcij < 1, and �t is a martingale

di¤erence sequence adapted to the �ltration Ft = � � field f�t�i; i � 0g. The long-run
variance (LRV) of "t is given by �2 = limT!1E[T

�1(
PT

t=1 "t)
2]. The variables �t and �t

are non-negative processes (regulators) such that �t > 0 if and only if yt�1 + "t < b � �
and �t > 0 if and only if yt�1 + "t > b � �. The stochastic processes involved in (3)

satisfy the Assumptions A and B in Cavaliere and Xu (2012), so that (b� �) = c�T 1=2

and
�
b� �

�
= c�T 1=2, with c � 0 � c, c 6= c. This representation can be particularized

to the cases of stochastic processes that are only limited below �i.e., xt 2 [b;1] �or only
limited above �i.e., xt 2

�
�1; b

�
�but also covers the case of unbounded processes �i.e.,

xt 2 [�1;1].
The GLS-detrended unit root test statistics that we analyze in this paper are based on
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the use of the quasi-di¤erenced variables x��t and z
��
t , de�ned as x

��
1 = x1 and z

��
1 = z1, and

x��t = (1� ��L)xt and z��t = (1� ��L) zt;

for t = 2; : : : ; T , with zt the vector collecting the deterministic regressors �zt = 1 in our

case. The autoregressive parameter that is used in the GLS-detrending is written in a local-

to-unity representation:

�� = 1 +
�� (c; c)

T
; (4)

with the non-centrality parameter �� (c; c) to be de�ned below. We can estimate � in (1)

minimizing the following objective function:

S� (�; ��) =
TX
t=1

(x��t � �z��t )
2
; (5)

where the minimum of this objective function is denoted as S (��).

Let us specify the null hypothesis of bounded I(1) process (BI(1)) and the alternative

hypothesis of bounded I(0) process (BI(0)) as:(
H0 : � = 1 � xt � BI(1)
H1 : � = �� < 1 � xt � BI(0)

;

and, following Elliott et al. (1996), de�ne the following feasible point optimal statistic to

test the null hypothesis against the alternative hypothesis:

PT = [S (��)� ��S (1)] =s2; (6)

where s2 denotes a consistent (parametric or non-parametric) estimate of �2 to be de�ned

below. Note that the null hypothesis of BI(1) is obtained when � (c; c) = 0 and the alternative

hypothesis of BI(0) with � (c; c) < 0. As stated in Remarks 3.4 and 3.5 in Cavaliere and

Xu (2012), the computation of the modi�ed unit root tests for bounded processes that they

propose can be based on GLS-detrending, although in this case the non-centrality parameter

� (c; c) will depend on the bounds. In order to obtain the non-centrality parameter we need

to derive the limiting distribution of the PT test statistic.

Theorem 1 Let fxtgTt=1 be the stochastic process with DGP given in (1) and (2) with � =
1 + � (c; c) =T and s2 be a consistent estimate of �2. Then, as T !1

PT ) �� (c; c)2
Z 1

0

W 2
�(c;c) (r) dr � �� (c; c)W 2

�(c;c) (1) ;
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where ) denotes weak convergence in distribution and W�(c;c) (r) is a regulated Ornstein-

Uhlenbeck process.

The limiting distribution in Theorem 1 allows us to obtain the power envelope of the PT
test statistic. The power function helps to de�ne the �optimal� non-centrality parameter

� (c; c) that Elliott et al. (1996) recommended choosing as the value that yields a PT test

statistic with a 50% asymptotic power.

The value of � (c; c) for each case needs to be approximated by means of numerical sim-

ulation following the procedure described in Elliott et al. (1996). To be speci�c, the DGP

that is de�ned to generate the bounded processes is given by (1) and (2) with � = 0, y0 = 0,

"t � iid N (0; 1) using 1,000 steps to approximate the limiting distribution of the PT test sta-
tistic in Theorem 1. In the generation of the bounded processes we have implemented the al-

gorithm detailed in Cavaliere (2005) with the pairs of bounds (c; c) that can be obtained using

all possible combinations of values of �c and c in the set C = f0:1; 0:15; 0:20; 0:25; 0:3; 0:35;
0:40; 0:45; 0:5; 0:55; 0:60; 0:65; 0:7; 0:75; 0:8; 0:85; 0:9; 0:95; 1; 1:05g satisfying c � 0 � c, c 6= c.
Note that we cover both the symmetric and asymmetric bounds cases. For each pair of

values, the power envelope for the PT test statistic is obtained using 10,000 replications.

Finally, the �� (c; c) parameter is chosen so that the PT test statistic has a 50% asymptotic

power as mentioned above.

Figure 1 illustrates the dependence of �� (c; c) on the bounds for the symmetric case where

c = �c. As can be seen, there is a range of values of the (symmetric) bound parameter for
which the non-centrality parameter is far away from the value that is used for the unbounded

stochastic processes � i.e., the �� (�1;1) = �7 computed in Elliott et al. (1996), which
is represented with the horizontal line in Figure 1. Therefore, we can conclude that the

narrower the band de�ned by the bounds, the farthest is �� (c; c) from -7.

3 The modi�ed unit root test statistics

The analysis that has been conducted evidences that some potential gains in terms of perfor-

mance of the modi�ed unit root tests �henceforth, M-type test statistics �are to be expected

if they are computed using GLS-detrending methods with a bounds-speci�c non-centrality

parameter, especially in those cases where the bounds de�ne a narrow band of values for xt.

4



The M-type test statistics are de�ned as:

MZGLS� =
T�1ŷ2T � T�1ŷ20 � s2

2T�2
PT

t=1 ŷ
2
t�1

(7)

MSBGLS =

 
T�2

TX
t=1

ŷ2t�1=s
2

!1=2
(8)

MZGLSt = MZGLS� �MSBGLS; (9)

where ŷt = xt � �̂GLSzt with �̂GLS the parameter that minimizes the objective function (5).
As for the estimation of s2, two di¤erent approaches are available in the literature. First, s2

can be estimated using the non-parametric estimator (s2NP ) given by:

s2NP = T
�1

TX
t=1

û2t + 2T
�1

lX
j=1

w (j; l)
TX

t=j+1

ûtût�j;

where ût denotes the OLS residuals from regressing ŷt against ŷt�1, and w (j; l) indicates the

spectral window �i.e., the Bartlett or quadratic spectral windows are popular choices. The

second approach estimates �2 in a parametric way and bases on the OLS estimation of the

following augmented Dickey-Fuller (ADF) regression equation:

�ŷt = �0ŷt�1 +
kX
j=1

�j�ŷt�j + et; (10)

from which the parametric estimation of �2 is obtained:

s2AR =
�̂2e�

1� �̂ (1)
�2 ;

with �̂2e = (T � k)
PT

t=k+1 ê
2
t and �̂ (1) =

Pk
j=1 �̂j.

The limiting distribution of the M-type test statistics in (7)-(9) can be found in Cavaliere

and Xu (2012), from which it can be seen that they depend on the bounds and the non-

centrality parameter that is used in the GLS-detrending. It should be noticed that the

computation of the M-type test statistics can also be done using OLS-detrending if we de�ne

ŷt = xt � �x. In this case, the test statistics computed as in (7)-(9) but using the OLS

detrended time series are denoted by MZOLS� , MSBOLS and MZOLSt , and their limiting

distribution is derived in Cavaliere and Xu (2012). In all these cases, the statistical inference

is performed on the left tail of the distribution and the asymptotic critical values for these
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test statistics can be obtained by means of Monte Carlo simulation using the procedure

described above for the PT test statistic.

The empirical implementation of these statistics based on the GLS-detrending that

relies on a bound-speci�c non-centrality parameter requires following an iterative estima-

tion procedure. Following Cavaliere and Xu (2012), the estimation of (c; c) is achieved bybc = s�1T�1=2 (b� ŷ1) and bc = s�1T�1=2 �b� ŷ1�, which requires an estimation of �2 that, in
turn, is based on the detrended variable.1 Consequently, to perform the GLS-detrending we

need to estimate �� (c; c), which requires (bc;bc). To obtain (bc;bc) we need the GLS detrended
variable, which requires �� (c; c). This estimation problem is solved in an iterative fashion.

First, we obtain an initial consistent estimation of �2 using the OLS-detrending procedure.

Second, using this educated estimation of �2, we compute (bc;bc)1 and obtain ��(bc;bc)1, where
the superscript indicates that it is the initial estimation. Third, we proceed to perform the

GLS-detrending using ��(bc;bc)1, then re-estimate �2 based on the GLS detrended data and
obtain the �nal estimation of (c; c) and �� (c; c). These updated estimates are used to obtain

the �nal GLS detrended data that is used to compute the unit root test statistics.

Finally, it is worth mentioning that a Matlab code that allows to implement the modi�ed

unit root test statistics with OLS and GLS-detrending and approximate the critical values

is available upon request.

4 Monte Carlo simulations

We investigate the performance of the M-type test statistics using the DGP given by (1)

and (2) with � = 0, y0 = 0, "t � iid N (0; 1) and � de�ned as a local-to-unit parameter

by (4). The generation of bounded processes bases on the algorithm described in Cavaliere

(2005) with symmetric bounds given by f�c; cg 2 C, with C de�ned above. Under the

null hypothesis of BI(1) � (c; c) = 0, whereas the alternative hypothesis of BI(0) is de�ned

using the � (c; c) values computed in the previous section:2 (i) OLS-detrending as suggested

in Cavaliere and Xu (2012), (ii) GLS-detrending proposed in Elliott et al. (1996) with

� (�1;1) = �7, i.e., ignoring the bounded nature of the stochastic processes (GLS-ERS),
and (iii) GLS-detrending with the � (c; c) value obtained in this paper (GLS-BOUNDS). In

all cases we estimate �2 that is required to obtain the estimated bounds bc = s�1T�1=2 (b� ŷ1)
1It should be noticed that the constant is approximated by the initial condition, as suggested in Schmidt

and Phillips (1992).
2Note that in this case the value of the empirical power should be close to 50% for the M-type test

statistics that use � (c; c) when performing the GLS-detrending.
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and bc = s�1T�1=2 �b� ŷ1� using both s2NP and s2AR.3 The sample size is T = 500, the nominal
size is set at the 5% level of signi�cance and 10,000 replications are carried out using Matlab.

As for the critical values that are used in this section, we have simulated the empirical

distribution of the M-type test statistics under the null hypothesis of BI(1) for the three

detrending procedures �OLS, GLS-ERS and GLS-BOUNDS �using the DGP described

in the previous paragraph for all possible combinations of symmetric bounds f�c; cg 2 C
with T = 500 and 20,000 replications. From these empirical distributions we store the

critical values corresponding to the 5% level of signi�cance, which produces a look-up table

of critical values for each test statistic and detrending method. As a result, we have six look-

up tables of critical values for each test statistic, depending on the detrending procedure and

the LRV estimate that is used. Note that when these critical values are obtained, the only

set of parameters that is assumed to be known is (�c; c). When testing for the unit root
hypothesis below, these parameters will be also estimated, which implies that (bc;bc) hardly
ever will match one of the (�c; c) pairs that we have used to get the critical values. In order
to address this issue, we have approximated the critical values for (bc;bc) interpolating with
splines.4

Figure 2 presents the empirical size for the M-type test statistics. In general, we can

observe that, regardless of the detrending procedure and LRV estimate that is used, the test

statistics experience over-rejection problems for the smallest value of c, being more important

for the test statistics that use s2AR �provided that we are dealing with the symmetric bound

case, we refer just to the c parameter to simplify the exposition.

It is worth mentioning that the use of OLS-detrending leads to less size distortion prob-

lems compared to GLS-detrending for small values of c . However, mild size distortions persist

for the OLS-detrending when c 2 [0:5; 0:9] �for the statistics using s2AR �and c 2 [0:5; 0:65] �
for the statistics using s2NP �whereas the empirical size of the GLS-detrending test statistics

are close to the nominal one for c � 0:5 (using s2AR) and c � 0:3 (using s2NP ). Therefore and
except for c < 0:3, we can conclude that GLS-detrending outperforms OLS-detrending from

an empirical size point of view. Finally and looking at the GLS-based results, we can observe

that GLS-BOUNDS show less size distortions than GLS-ERS, although for large values of c

3Throughout this section, the estimation of the long-run variance bases on the use of the quadratic
spectral window, with the bandwidth l selected according to the proposal in Newey and West (1994) with
int
�
4(T=100)2=25

�
initial lags. As for the parametric estimation of the long-run variance, the number of lags

k is selected through the MAIC information criterion in Ng and Perron (2001) and Perron and Qu (2007)
with the maximum number of lags set at int

�
12(T=100)1=4

�
.

4It should be stressed that practitioners willing to apply the test statistics in this paper do not need to
carry out this interpolation, provided that the Matlab procedure that is available upon request computes
the critical values for the speci�c values of (bc;bc) that are estimated in a particular empirical application.
The interpolation issue is just a matter of the Monte Carlo simulations in this section and aims to speed up
the computation of the empirical size and power analyses.
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both procedures lead to the same results �this is to be expected provided that in the limit

� (c; c) tends to -7 and both approaches are then equivalent.

Figure 3 reports the empirical power. As can be seen, in all cases GLS-detrending out-

performs OLS-detrending regardless of the long-run variance estimation that is used. Conse-

quently, GLS-detrending is clearly superior to OLS-detrending in terms of empirical power.

This result, together with the conclusion of the empirical size analysis, leads us to suggest the

use of GLS-detrending when testing the null hypothesis of a unit root for bounded stochastic

processes.

If we focus on the GLS-detrending results, in general, GLS-ERS produces more powerful

test statistics than GLS-BOUNDS detrending method for c 2 [0:2; 0:4], although this is the
mere consequence of the size distortions pointed out above. This also explains the higher

power of the test statistics that use s2AR instead of s
2
NP . The GLS-BOUNDS based statistics

show an empirical power that is close to the asymptotic expected value of 50%. Only for the

cases where c < 0:4 the empirical power is below 50%, although the empirical power does

not go below 40%.

To sum up, the simulation experiment that we have conducted indicates that GLS-

detrending procedures render test statistics with better empirical size and power perfor-

mance. The use of a speci�c non-centrality parameter to carry out the GLS-detrending gives

test statistics with an empirical size close to the nominal size and with good power. Finally,

the GLS-BOUNDS test statistics based on the use of s2NP outperform the ones that build

upon s2AR.

5 Conclusions

We have shown that correctly sized and more powerful statistics to test the null hypothesis

of unit root for bounded time series can be obtained if GLS-detrending is used instead

of OLS-detrending. The paper stresses the idea that the non-centrality parameter in which

GLS-detrending builds upon depends on the bounds a¤ecting the time series. The simulation

experiment that has been conducted reveals that improvements on the statistical inference

are achieved if bounds-speci�c non-centrality parameters are used when carrying out the

GLS-detrending. Finally, the non-parametric long-run variance estimate based test statistics

are preferable to the parametric ones, so that this version of the test statistics should be

used in practice.
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A Appendix

Lemma 1 Let fytgTt=1 be the near-integrated process generated by (2). Then, we have

(a) T�1=2yt ) �W�(c;c) (r), (b) T�3=2
PT

t=1 yt ) �
R 1
0
W�(c;c) (r) dr, (c) T�2

PT
t=1 y

2
t )

�2
R 1
0
W 2
�(c;c) (r) dr, (d) T

�1PT
t=1 yt�1ut ) �2

hR 1
0
W�(c;c) (r) dW (r) + 


i
with 
 = (�2 � �2u) = (2�2)

and �2u = p limT
�1u0u, where W�(c;c) (r) denotes a regulated Ornstein-Uhlenbeck process.

Proof. See Perron and Rodríguez (2003) and Cavaliere and Xu (2012).

A.1 Proof of Theorem 1

Let us de�ne the quadratic form:

MT (� (c; c) ; �� (c; c)) = (y
�0z�) (z�0z�)

�1
(z�0y�) ;

so that we have S (��) = y��0y�� �MT (� (c; c) ; �� (c; c)) and S (1) = y10y1 �MT (� (c; c) ; 0).

Following Elliott et al. (1996) and Perron and Rodríguez (2003), we can express the PT test

statistic as:

s2PT = (S (��)� ��S (1))

= �� (c; c)T�2
TX
t=2

y2t�1 � �� (c; c)T�1y2T + �� (c; c)MT (� (c; c) ; 0)�MT (� (c; c) ; �� (c; c)) :

Note that z� = (1;�� (c; c) =T;�� (c; c) =T; : : : ;�� (c; c) =T )0 so that in the limit as T !1,
z�0z� ! 1. Further and as shown in Perron and Rodríguez (2003), we have for t = 2; : : : ; T

y��t = ut + T
�1 (� (c; c)� �� (c; c)) yt�1;

and y��t = u1, so that z
�0y� = u1 � � (c; c)T�1

PT
t=2 [ut + T

�1 (� (c; c)� �� (c; c)) yt�1] ) u1.

Consequently, MT (� (c; c) ; �� (c; c))) u1. Finally, s2 ! �2 as shown in Cavaliere (2005), for

the non-parametric estimate of the long-run variance (s2NP ), and in Cavaliere and Xu (2012),

for the parametric estimate of the long-run variance (s2AR). Using these elements, we can see

that the limiting distribution of the PT test statistic is given by:

PT ) �� (c; c)2
Z 1

0

W 2
�(c;c) (r) dr � �� (c; c)W 2

�(c;c) (1) :
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