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ABSTRACT

This paper aims to compare the performance of three different artificial neural network techniques for tourist demand forecasting: a multi-layer
perceptron, a radial basis function and an Elman network. We find that multi-layer perceptron and radial basis function models outperform Elman
networks. We repeated the experiment assuming different topologies regarding the number of lags used for concatenation so as to evaluate the
effect of the memory on the forecasting results. We find that for higher memories, the forecasting performance obtained for longer horizons
improves, suggesting the importance of increasing the dimensionality for long-term forecasting. Copyright © 2014 John Wiley & Sons, Ltd.
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INTRODUCTION

International tourism is one of the fastest growing industries
nowadays. As a result of this rise in the number of tourists
and the importance of the tourism sector, tourism demand
forecasting has become increasingly important. Some of the
reasons for this growing interest, apart from the constant
growth of world tourism, are related to the availability of
more advanced forecasting techniques and the requirement
for more accurate forecasts of tourism demand at the destina-
tion level. Balaguer and Cantavella-Jordá (2002) showed the
importance of tourism in the Spanish long-run economic
development. Catalonia is a region of Spain and one of the
world’s major tourist destinations. More than 15 million
foreign visitors came to Catalonia in 2012, a 3.7% rise with
respect to the previous year. Tourism accounts for 12% of
GDP and provides employment for 15% of the working
population in Catalonia. These figures show to what extent
accurate forecasts of tourism volume play a major role in
tourism planning as they enable destinations to predict
infrastructure development needs.

The last couple of decades have seenmany studies of interna-
tional tourism demand forecasting, but few studies have used
artificial neural networks (ANNs). ANNs have been applied in
the many fields but only recently to tourism demand forecasting
(Kon & Turner, 2005; Palmer et al., 2006; Cho, 2009; Chen,
2011; Teixeira & Fernandes, 2012). Despite that there is no
consensus on the most appropriate approach to forecast tourism
demand, it is generally believed that the non-linear methods
outperform the linear methods in modelling economic behav-
iour (Choudhary & Haider, 2012; Cang, 2013). These non-
linear models are still limited in that an explicit relationship
for the data series has to be hypothesized with little knowledge
of the underlying data-generating process (Zhang et al., 1998).

Since there are too many possible non-linear patterns, the for-
mulation of a non-linear model to a particular data set is a very
difficult task. In a recent meta-analysis of published tourism
forecasting studies, Kim and Schwartz (2013) find that forecast
accuracy is closely associated with data characteristics.

Artificial NNs are data-driven approaches and are capable of
performing non-linear modelling without a priori knowledge
about the relationships between input and output variables. As
opposed to traditional approaches to time-series prediction, the
specification of ANN models does not depend on a previous
set of assumptions. Thus, ANNs are a more general and flexible
modelling tool for forecasting. The suitability of artificial
intelligence techniques to handle non-linear behaviour explains
why ANNs have become an essential tool for economic
forecasting. The flexibility of the structure of ANNs allows
for the introduction of knowledge about the nature of the
analysis to be carried, tailoring the topology of the network
in order to make use of the specific properties of the problem
at hand. The fact that tourism data are characterized by
strong seasonal patterns and volatility makes it a particularly
interesting field in which to apply different types of NN
architectures (Chen & Wang, 2007; Medeiros et al., 2008;
Hadavandi et al., 2011; Hong et al., 2011; Shahrabi et al.,
2013; Pai et al., 2014). In spite of the increasing interest in
machine learning methods for time-series forecasting, very
few studies compare the accuracy of different NN architec-
tures for tourism demand forecasting.

The main objective of this study is to improve forecasts of
tourism demand and to compare the performance of three dif-
ferent ANN models: the multi-layer perceptron (MLP) net-
work, the radial basis function (RBF) network and the
Elman network. Each architecture represents a different
learning paradigm and therefore deals with data in a different
manner. With this aim, we undertake an out-of-sample fore-
casting competition to analyse the forecasting accuracy of each
ANN model to predict inbound international tourism demand
from all visitor markets to Catalonia. We compute several
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measures of forecast accuracy and the Diebold–Mariano test for
significant differences between each two competing series for
different forecast horizons (one, three and six months) in order
to assess the value of the different models. We also evaluate
the effect of the memory on the forecasting results by repeating
the experiment assuming different topologies regarding the
number of input neurons, which determines the number of prior
time points to be used in each forecast. To our knowledge, this is
the first study to compare the forecasting performance of MLP,
RBF and Elman ANNs and to analyse the effect of the memory
values on the forecasting accuracy.

The rest of the paper is organized as follows. First, we
review the literature related to tourism demand forecasting
with ANNs. In the next section, a brief description of each
type of NN used in the analysis is made. Then, an analysis
of the data set is provided. In the subsequent section, results
of the out-of-sample forecasting competition are presented
and discussed. The final section concludes.

LITERATURE REVIEW

Originally, ANNs were developed to mimic basic biological
neural systems. ANNs are composed of a number of
interconnected processing nodes called neurons. Through
an activation transfer function, each node processes the input
signal received from other nodes and produces a transformed
output signal to other nodes. Some of the characteristics that
make ANNs more advantageous over other methods in terms
of robustness and tolerance to error are their ability of parallel
processing, distributed memory and adaptability (Palmer et al.,
2006). The introduction of the backpropagation algorithm by
Rumelhart et al. (1986) fostered the development in the use
of ANNs for forecasting. The literature comparing the
forecasting performance of ANNs to traditional statistical
methods such as regression-based and autoregressive inte-
grated moving average (ARIMA) models is vast and growing.
In recent works, Lin et al. (2011) and Claveria and Torra
(2014) find that ARIMA models outperform ANN models;
nevertheless, most studies provide empirical evidence in fa-
vour of ANNs (Tang et al., 1991; Weigend & Gershenfeld,
1993; Zhang et al., 1998; Marcellino, 2005). Teräsvirta et al.
(2005) obtain more accurate forecasts with ANN models at
long forecast horizons.

Many different ANN models have been developed
since the 1980s. NNs can be classified into two major
types of architectures depending on the connecting pat-
terns of the different layers: feed-forward networks, where
the information runs only in one direction, and recurrent
networks, in which there are feedback connections from
outer layers of neurons to lower layers of neurons, which
takes into account the temporal structure of the data.
Feed-forward NNs were the first ANN devised. The most
widely used feed-forward topology in time-series forecast-
ing is the MLP network. MLP networks have been widely
used for tourism demand forecasting (Pattie & Snyder,
1996; Law, 1998, 2000, 2001; Law & Au, 1999; Uysal
& El Roubi, 1999, Burger et al., 2001; Tsaur et al.,
2002). These studies provide empirical results indicating

that NNs outperform regression models and time-series
models in terms of forecasting accuracy, especially for
series without obvious patterns.

A special class of multi-layer feed-forward architecture
with two layers of processing is the RBF network
(Broomhead and Lowe, 1988). The fact that RBF networks
have the advantage of not suffering from local minima in
the same way as MLP networks explains their increasing
use in tourism demand forecasting. Chen (2011) used combi-
nations of backpropagation and support vector regression
(SVR) networks to forecast Taiwanese outbound tourism de-
mand, obtaining the best performance with the SVR combi-
nation models. Cang (2013) combined different time-series
linear models as inputs to MLP, RBF and SVR networks
to forecast inbound tourist arrivals to the UK, finding evi-
dence in favour of all non-linear combinations of models
with respect of the usual linear combination models that
currently dominate in the tourism forecasting literature.

Contrary to feed-forward networks, recurrent NNs are
models with bidirectional data flow. While a feed-forward
network propagates data linearly from input to output, recur-
rent networks also propagate a temporal feedback from the
outer layers to the lower layers. There are many recurrent
architectures: fully recurrent, simple recurrent, bidirectional
recurrent, etc. A special case of recurrent networks are the
Elman networks. While MLP NNs are increasingly used with
forecasting purposes, other more computationally expensive
architectures such as the Elman NN have been scarcely used
in tourism demand forecasting. Cho (2003) used the Elman
architecture to predict the number of arrivals from different
countries to Hong Kong. He found that Elman NNs provided
better forecasts than exponential smoothing and ARIMA
models. Teixeira and Fernandes (2012) compared the
forecasting performance of feed-forward, cascade-forward
and recurrent networks but did not find significant differ-
ences between the different architectures.

Regarding their learning strategy, ANNs can also be clas-
sified into two major types of architectures: supervised and
unsupervised learning networks. In supervised learning
networks, weights are adjusted to approximate the output to
a target value for each pattern of entry. Support vector
machines (SVMs) and MLP networks are examples of
supervised learning models. In non-supervised learning
networks, the subjacent structure of data patterns is explored
so as to organize such patterns according to their correla-
tions. Kohonen self-organizing maps are the most used
non-supervised models. Some NNs combine both learning
methods, so part of the weights are determined by a
supervised process while the rest are determined by unsuper-
vised learning. This is known as hybrid learning. An example
of a hybrid model is the RBF network. Therefore, each
network is suited to a combination of a learning paradigm
(supervised and non-supervised learning), a learning rule
related to the gradient cost function and a learning algorithm
(forwardpropagation, backpropagation, etc.). The different
learning paradigms represent alternative approaches to the
treatment of information.

In this study, we focus on three NN architectures (MLP,
RBF and Elman) that represent three learning paradigms:
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supervised, hybrid and recurrent. Therefore, each ANN
model deals with data in a different manner. In spite of
the recent advances in SVM-based models (Pai & Hong,
2005; Chen & Wang, 2007), in this study, we have not
used the SVM network as a benchmark because we aim to
compare techniques that are mathematically similar. While
the general operation performed by MLP, RBF and Elman
networks is to transform the input to an internal representa-
tion and then into the desired output, the SVM technique is
based on finding a set of inputs that are representative of
the desired regression.

METHODOLOGY

Neural networks are flexible structures capable of learning
sequentially from observed data. This feature makes ANNs
specially suitable for time-series forecasting. Obtaining a
reliable neural model involves selecting a large number of
parameters experimentally: determining the number of input
nodes, hidden layers, hidden nodes and output nodes, the
activation function, the training algorithm, the training and
the test samples, as well as the performance measures for
cross validation (Zhang et al., 1998). This range of different
choices allows choosing the optimal topology of the ANN,
while the weights of the model are estimated by gradient
search. A complete summary on ANN modelling issues can
be found in Bishop (1995) and Haykin (1999).

Multi-layer perceptron neural network
Multi-layer perceptron networks consist of multiple layers of
computational units interconnected in a feed-forward way.
MLP networks are supervised NNs that use as a building
block a simple perceptron model. The topology consists of
layers of parallel perceptrons, with connections between
layers that include optimal connections. The number of
neurons in the hidden layer determines the MLP network’s
capacity to approximate a given function. In order to solve
the problem of overfitting, the number of neurons was
estimated by cross validation. In this work, we used the
MLP specification suggested by Bishop (1995) with a single
hidden layer and an optimum number of neurons derived
from a range between 5 and 25:

yt ¼ β0 þ Σ
q

j¼1
βjg

Xp
i¼1

φijxt�i þ φ0j

 !

xt�i ¼ 1; xt�1; ; xt�2;⋯; ; xt�p

� �′
; i ¼ 1;…; p

n o
φij; i ¼ 1;…; p; j ¼ 1;⋯; q
n o
βj; j ¼ 1;…; q
n o

(1)

where yt is the output vector of the MLP at time t, g is the
non-linear function of the neurons in the hidden layer, xt� i

is the input value at time t� i where i stands for the memory
(the number of lags that are used to introduce the context of
the actual observation.), q is the number of neurons in the
hidden layer, φij are the weights of neuron j connecting the

input with the hidden layer, and βj are the weights connecting
the output of the neuron j at the hidden layer with the output
neuron. Note that the output yt in our study is the estimate of
the value of the time series at time t+ 1, while the input
vector to the NN will have a dimensionality of p + 1.

We considered an MLP (p; q) architecture that represented
the possible non-linear relationship between the input vector
xt� i and the output vector yt. The parameters of the network
(φij and βj) were estimated by means of the Levenberg–
Marquardt algorithm, which is a quasi-Newton algorithm.
The training was performed by iteratively estimating the
value of the parameters by local improvements of the cost
function. To avoid the possibility that the search for the opti-
mum value of the parameters finishes in a local minimum, we
used a multi-starting technique that initializes the NN several
times for different initial random values returning the best
result.

Radial basis function neural network
Radial basis function networks consist of a linear combina-
tion of RBFs such as kernels centred at a set of centroids with
a given spread that controls the volume of the input space
represented by a neuron (Bishop, 1995). RBF networks typ-
ically include three layers: an input layer, a hidden layer and
an output layer. The hidden layer consists of a set of neurons,
each of them computing a symmetric radial function. The
output layer also consists of a set of neurons, one for each
given output, linearly combining the outputs of the hidden
layer. The output of the network is a scalar function of the
output vector of the hidden layer. The equations that describe
the input/output relationship of the RBF are

yt ¼ β0 þ Σ
q

j¼1
βjgj xt�ið Þ

gj xt�ið Þ ¼ exp �

Xp
j¼1

xt�i � μj

� �2
2σ2

j

0
BBBB@

1
CCCCA

xt�i ¼ 1; xt�1; ; xt�2;…; ; xt�p

� �′
; i ¼ 1;…; p

n o
βj; j ¼ 1;…; q
n o

(2)

where yt is the output vector of the RBF at time t, βj are the
weights connecting the output of the neuron j at the hidden
layer with the output neuron, q is the number of neurons in
the hidden layer, gj is the activation function, which usually
has a Gaussian shape, xt� i is the input value at time t� i
where i stands for the memory (the number of lags that are
used to introduce the context of the actual observation),
ϖμj is the centroid vector for neuron j, and the spread σj is
a scalar that measures the width over the input space of the
Gaussian function, and it can be defined as the area of
influence of neuron j in the space of the inputs. Note that
the output yt in our study is the estimate of the value of the
time series at time t+ 1, while the input vector to the NN will
have a dimensionality of p + 1.
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In order to assure a correct performance, before the
training phase, the number of centroids and the spread of
each centroids have to be selected. The spread σj is a
hyperparameter selected before determining the topology of
the network, and it was determined by cross validation on
the training database. The training was performed by adding
the centroids iteratively with the spread fixed. Then, a
regularized linear regression was estimated to compute the
connections between the hidden and the output layer. Finally,
the performance of the network was computed on the valida-
tion data set. This process was repeated until the performance
on the validation database ceased to decrease.

Elman neural network
An Elman network is a special architecture of the class of re-
current NNs, and it was first proposed by Elman (1990). The
architecture is also based on a three-layer network but with
the addition of a set of context units that allow feedback on
the internal activation of the network. There are connections
from the hidden layer to these context units fixed with a weight
of one. At each time step, the input is propagated in a standard
feed-forward fashion, and then, a backpropagation type of
learning rule is applied. The output of the network is a scalar
function of the output vector of the hidden layer:

yt ¼ β0 þ Σ
q

j¼1
βjzj;t

zj;t ¼ g
Xp
i¼1

φijxt�i þ φ0j þ δijzj;t�1

 !
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� �
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(3)

where yt is the output vector of the Elman network at time t, zj,t
is the output of the hidden layer neuron j at the moment t, g is
the non-linear function of the neurons in the hidden layer, xt� i

is the input value at time t� i where i stands for the memory

(the number of lags that are used to introduce the context of
the actual observation), ϕij are the weights of neuron j
connecting the input with the hidden layer, q is the number
of neurons in the hidden layer, βj are the weights of neuron j
that link the hidden layer with the output, and δij are the
weights that correspond to the output layer and connect the
activation at moment t. Note that the output yt in our study is
the estimate of the value of the time series at time t+1, while
the input vector to the NN will have a dimensionality of p+1.

The training of the network was performed by
backpropagation through time, which is a generalization of
backpropagation for feed-forward networks. The parameters
of the Elman NN were estimated by minimizing an error cost
function, which takes into account the whole time series. In
order to minimize total error, gradient descent was used to
change each weight in proportion to its derivative with
respect to the error, provided that the non-linear activation
functions are differentiable. A major problem with gradient
descent for standard recurrent architectures is that error
gradients vanish exponentially quickly with the size of the
time lag. Recurrent NNs cannot be easily trained for large
numbers of neuron units or input units and may behave
chaotically and present scaling issues.

DATA

Monthly data of tourist arrivals over the time period January
2001 to July 2012 were provided by the Direcció General de
Turisme de Catalunya and the Statistical Institute of
Catalonia (Institut d’Estadística de Catalunya). Following
Narayan (2003), we have computed some of the most
commonly used methods to test the unit root hypothesis: the
augmented Dickey–Fuller (ADF) test and the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS) test. While the ADF tests the
null hypothesis of a unit root in xt, the KPSS statistic tests the
null hypothesis of stationarity.

As it can be seen in Table 1, in most countries, we cannot
reject the null hypothesis of a unit root at the 5% level.
Similar results are obtained for the KPSS test, where the null
hypothesis of stationarity is rejected in most cases. When the
tests were applied to the first difference of individual time

Table 1. Unit root tests on the seasonally adjusted series of tourist arrivals

Country

Test for I(0) Test for I(1) Test for I(2)

ADF KPSS ADF KPSS ADF KPSS

France �2.39 0.60 �3.19 0.64 �5.11 0.12
UK �1.63 0.38 �2.98 0.51 �18.92 0.12
Belgium and the Netherlands (NL) �3.56 0.24 �2.49 0.21 �8.43 0.02
Germany �1.93 0.50 �3.54 0.33 �8.76 0.15
Italy �1.58 0.71 �3.55 0.52 �5.47 0.26
USA and Japan 2.08 1.19 �4.77 0.39 �6.92 0.02
Northern countries �1.14 1.24 �3.88 0.06 �11.41 0.03
Switzerland �3.26 0.38 �6.14 0.07 �6.20 0.16
Russia 1.80 1.06 �3.62 0.65 �8.37 0.04
Other countries �1.33 1.30 �4.53 0.07 �9.88 0.02
Total �1.98 0.87 �2.97 0.29 �12.51 0.06

Note: estimation period January 2001–July 2012.
Tests for unit roots. ADF, augmented Dickey and Fuller (1979) test, the 5% critical value is �2.88; KPSS, Kwiatkowski, Phillips, Schmidt and Shin (1992) test,
the 5% critical value is 0.46.
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series, the null of non-stationarity is strongly rejected in most
cases. In the case of the KPSS test, we cannot reject the null
hypothesis of stationarity at the 5% level in any country.
These results imply that differencing is required in most cases
and prove the importance of deseasonalizing and detrending
tourism demand data before modelling and forecasting.

We use the year-on-year rates of the trend-cycle compo-
nent of the series to eliminate both linear trends as well as
seasonality. The seasonally adjusted series are obtained using
a Census X13 filter. Table 2 shows a descriptive analysis of
year-on-year rates of the trend-cycle series between January
2002 and July 2012. During this period, Russia and the
Northern countries experienced the highest growth in tourist
arrivals. Russia is also the country that presents the highest
dispersion in growth rates, while France shows the highest
levels of skewness and kurtosis.

RESULTS

In this section, we compare the forecasting performance of
three different ANN architectures (MLP, RBF and Elman
NNs) to predict arrivals to Catalonia from the different visitor
countries. Following Bishop (1995), we divide the collected
data into three sets: training, validation and test sets. This
division is performed in order to assess the performance of
the network on unseen data. The partition of the original
database in three sets is performed to better control the
prediction error in the estimation process of the parameters.
We use the percentages that are often used in the literature
(Ripley, 1996). Based on these considerations, the first 60
monthly observations from January 2002 to December
2006 (50%) are selected as the initial training set, the next
36 from January 2007 to December 2009 (30%) as the
validation set and the last 20% as the test set.

Due to the large number of possible networks’ configura-
tions, the validation set is used for determining the following
aspects of the NNs:

(1) The topology of the networks.
(2) The number of epocs for the training of the MLP NNs.

The iterations in the gradient search are stopped when
the error on the validation set increases.

(3) The number of neurons in the hidden layer for the RBF. The
sequential increase in the number of neurons at the hidden
layer is stopped when the error on the validation increases.

(4) The value of the spread σj in the RBF NN. As the value
of the spread increases, a much higher number of
centroids are needed.

To make the system robust to local minima, we apply the
multi-starting technique, which consists on repeating each
training phase several times. We repeat the training three
times so as to obtain a low value of the performance error.
The selection criterion for the topology and the parameters
is the performance on the validation set. The results that are
presented correspond to the selection of the best topology,
the best spread in the case of the RBF NNs and the best
training strategy in the case of the Elman NNs. Forecasts
for one, three and six months ahead are computed in a
recursive way, which implies that models are reestimated in
each period and for each forecasting horizon. All NNs are
implemented using Matlab™ and its NN toolbox.

In order to summarize this information, we use the two
most commonly used measures of forecasting accuracy: the
root-mean-squared error (RMSE) and the mean absolute
percentage error (MAPE). The results of our forecasting
competition are shown in Tables 3 and 4. We also used the
Diebold–Mariano test (Table 5) for significant differences
between each two competing series for each forecast horizon
in order to assess the value of the different models. We repeat
the experiment assuming different topologies regarding the
memory values. These values represent the number of lags
introduced when running the models, ranging from one to
three months for all the architectures. Therefore, when the
memory is zero, the forecast is performed using only the
current value of the time series, without any additional
temporal context.

When analysing the forecast accuracy for tourist arrivals,
MLP and RBF networks show lower RMSE and MAPE
values than Elman networks, especially for shorter horizons.
RBF networks display the lowest RMSE and MAPE values in
most countries when the memory is zero. When the forecasts
are obtained incorporating additional lags of the time series,
the forecasting performance of MLP networks improves.
The lowest RMSE and MAPE value are obtained with the
MLP network for France (for one month ahead) when using
a memory of three lags.

When testing for significant differences between each
two competing series (Table 5), we find that MLP and
RBF networks significantly outperform Elman networks in
all countries and for all forecasting horizons. A possible
explanation for this result is the length of the time series
used in the analysis. The fact that the number of training
epocs had to be low in order to maintain the stability of
the network suggests that this network architecture requires
longer time series. For long training phases, the gradient
sometimes diverged. The worse forecasting performance
of the Elman NNs compared with that of MLP and RBF
architectures for topologies with no memory indicates that
the feedback topology of the Elman network could not
capture the specificity of the time series. These results are

Table 2. Descriptive analysis of the year-on-year rates of the
seasonally adjusted series

Country

Tourist arrivals

Mean SD Skew. Kurt.

France 5.06 13.69 2.13 8.93
UK 1.94 15.00 0.70 3.51
Belgium and NL 1.85 8.50 0.76 3.13
Germany 0.45 7.85 0.14 3.13
Italy 5.48 14.58 0.88 3.39
USA and Japan 4.77 11.14 �0.08 2.64
Northern countries 8.24 16.97 0.25 2.70
Switzerland �0.21 9.86 0.28 4.93
Russia 16.06 32.12 �0.35 2.69
Other countries 6.90 10.02 �0.15 2.48
Total 3.75 7.04 �0.75 3.04

Note: SD, standard deviation; Skew., skewness; Kurt., kurtosis.
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in contrast to those obtained by Teixeira and Fernandes
(2012) and Cho (2003), who obtained a good forecasting
performance with Elman networks.

When comparing the forecasting performance between
MLP and RBF networks, we find that the RBF architecture
produces the best forecasts when the memory of the network
is set to zero, while the MLP architecture improves its
forecasting performance when a larger number of lags are
incorporated in the networks. This result can be explained
because in this case, the RBF operates as a look-up table,

while the MLP tries to find a functional relationship lacking
a context that might give a hint of the slope of the time series.
As the number of lags increases, MLP networks obtain
significantly better forecasts for some countries (France,
Italy, Northern countries and the USA and Japan). This result
can be explained by the fact that as the hidden neurons
linearly combine the input before applying the non-linearity,
additional lags can be used in a better way to estimate the
different slopes and the future evolution of the series. This
evidence indicates that the number of previous months used
for concatenation conditions the forecasting performance of
the different networks.

Table 4. RMSE (2010:04–2012:02)

Memory (0) – no
additional lags

Memory (3) – three
additional lags

ANN models ANN models

France MLP RBF Elman MLP RBF Elman

One month 0.49 0.48 24.38 0.12* 0.31 18.71
Three months 6.93 1.85 20.33 2.15 1.71 18.51
Six months 10.28 3.71 17.14 6.63 5.48 13.41
UK
One month 3.35 7.81 20.53 5.02 6.10 13.08
Three months 15.27 8.85 21.03 8.11 9.54 12.07
Six months 23.84 9.58 17.45 12.25 14.17 19.60
Belgium and the NL
One month 9.63 6.35 19.58 8.73 8.50 17.25
Three months 7.31 3.90 19.69 7.38 8.33 14.04
Six months 15.30 5.07 15.87 20.06 5.46 12.67
Germany
One month 9.04 8.52 18.33 10.47 9.50 17.99
Three months 6.81 5.13 22.39 8.82 8.70 13.65
Six months 11.00 4.78 11.56 10.02 8.05 17.74
Italy
One month 1.85 1.93 12.37 1.20 1.93 14.14
Three months 4.78 5.29 16.79 7.08 4.56 15.64
Six months 10.82 10.47 16.43 14.18 10.74 14.90
USA and Japan
One month 6.00 4.96 15.26 5.94 5.84 18.87
Three months 11.15 9.88 24.53 8.86 11.13 20.51
Six months 12.73 15.08 20.31 11.28 10.95 13.28
Northern countries
One month 5.34 5.27 22.77 3.56 3.80 20.48
Three months 11.71 11.25 20.04 5.15 7.65 16.87
Six months 16.19 15.10 26.69 15.19 12.09 28.67
Switzerland
One month 12.13 10.86 26.52 14.63 12.03 12.26
Three months 7.90 5.92 16.65 15.71 11.26 19.08
Six months 11.14 5.95 26.31 11.84 7.37 15.29
Russia
One month 33.38 28.64 38.66 25.91 28.46 36.93
Three months 39.13 32.53 35.19 25.99 28.93 34.12
Six months 39.64 37.38 56.48 37.11 41.42 59.06
Other countries
One month 3.22 2.90 13.70 2.94 3.06 14.45
Three months 7.61 6.38 15.79 3.54 2.89 16.89
Six months 9.48 8.87 15.88 7.11 6.52 20.22
Total
One month 3.94 3.90 17.25 4.14 4.23 15.75
Three months 11.40 4.83 17.72 7.28 5.28 15.32
Six months 21.84 4.27 13.86 14.05 13.28 12.89

Note: The entries in italics are the best model for each country.
*Best model.

Table 3. MAPE (April 2010–February 2012)

Memory (0) – no
additional lags

Memory (3) – three
additional lags

ANN models ANN models

France MLP RBF Elman MLP RBF Elman

One month 0.33 0.34 9.02 0.06* 0.09 7.85
Three months 5.36 1.39 10.96 1.11 1.30 8.39
Six months 5.72 2.22 6.91 2.64 3.24 5.63

UK
One month 0.34 0.57 2.55 1.59 1.32 2.00
Three months 4.92 2.81 3.31 1.22 2.22 2.06
Six months 8.72 3.15 2.16 3.52 2.21 12.04

Belgium and the NL
One month 1.12 0.83 3.77 1.39 1.50 2.74
Three months 1.20 0.79 2.02 1.37 1.58 2.79
Six months 2.99 0.97 2.07 3.99 0.95 2.44

Germany
One month 5.57 4.95 12.47 6.43 6.37 16.42
Three months 2.01 1.83 5.92 5.72 6.66 13.76
Six months 2.14 3.30 4.74 7.66 8.34 16.04

Italy
One month 1.32 1.84 17.63 0.77 2.18 20.35
Three months 9.74 10.42 24.83 8.51 5.92 23.81
Six months 11.76 13.45 11.52 22.76 13.56 20.39

USA and Japan
One month 0.90 0.80 1.52 0.49 0.48 2.31
Three months 1.85 1.70 4.16 1.05 1.56 2.67
Six months 1.01 0.94 3.93 1.94 1.68 1.85

Northern countries
One month 0.42 0.41 2.82 0.38 0.28 1.59
Three months 1.49 1.13 2.19 0.52 1.11 2.05
Six months 1.39 1.17 3.52 0.92 1.02 2.83

Switzerland
One month 1.33 1.25 2.39 1.63 1.32 1.15
Three months 0.83 0.65 1.47 1.60 1.12 1.74
Six months 0.76 0.50 2.35 0.95 0.57 1.37

Russia
One month 0.57 0.53 0.74 0.49 0.52 0.69
Three months 0.62 0.54 0.72 0.42 0.46 0.62
Six months 0.65 0.66 0.88 0.61 0.76 1.01

Other countries
One month 0.41 0.35 1.30 0.54 0.60 1.78
Three months 0.92 0.64 1.91 0.50 0.51 1.81
Six months 1.01 0.68 1.96 0.67 0.61 3.05

Total
One month 0.64 0.65 3.55 0.60 0.57 2.64
Three months 2.02 0.73 3.14 1.29 0.85 2.85
Six months 3.25 0.77 2.75 1.70 2.20 2.64

Note: The entries in italics are the best model for each country.
*Best model.
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The differences between countries can be partly explained
by different patterns of consumer behaviour, but they are also
related to the variability due to the size of the sample, being
France as the most important visitor market. When compar-
ing the results for different prediction horizons, as it could
be expected, the forecasting performance improves for
shorter forecasting horizons. Nevertheless, we find that there
is an interaction between the memory and the forecasting
horizon. As it can be seen in Tables 3 and 4, as the number
of lags used in the networks increases, the forecasting
performance obtained for longer horizons (three and six
months) improves.

CONCLUSIONS

The increasing importance of the tourism sector worldwide has
led to a growing interest in new approaches to tourism demand
forecasting. New methods provide more accurate estimations
of anticipated tourist arrivals for effective policy planning.
Artificial intelligence techniques such as ANNs have attracted
increasing interest to refine the predictions of tourist arrivals at
the destination level. From the wide array of NN models, we
have focused on three different architectures that represent
three alternative ways of handling information: the MLP NN,
the RBF NN and the Elman recursive NN.

Table 5. Diebold–Mariano loss-differential test statistic for predictive accuracy (2.028 critical value)

Memory (0) – no additional lags Memory (3) – three additional lags

MLP
versus RBF

MLP
versus Elman

RBF
versus Elman

MLP
versus RBF

MLP
versus Elman

RBF
versus Elman

France
One month 0.88 �6.12* �6.08* �2.23* �6.19* �6.14*
Three months 1.38 �4.37* �5.05* 0.33 �10.12* �12.05*
Six months 1.36 �1.95 �3.64* 0.33 �3.11* �3.92*
UK
One month �1.62 �7.10* �4.68* �1.13 �4.20* �3.17*
Three months 0.46 �1.65 �2.58* �1.42 �1.70 �1.11
Six months 2.01 0.65 �2.40* �1.24 �1.69 �0.88
Belgium and the NL
One month 2.50* �2.38* �3.26* 0.36 �3.19* �3.28*
Three months 2.27* �2.62* �3.59* �0.09 �2.91* �2.49*
Six months 2.19* �0.47 �2.91* 1.67 0.61 �2.54*
Germany
One month 2.58* �3.51* �3.85* 1.64 �1.99 �2.38*
Three months 1.86 �3.62* �3.92* �0.34 �1.79 �1.84
Six months 0.79 �1.72 �3.11* 0.82 �1.20 �1.75
Italy
One month �1.33 �5.83* �5.74* �2.89* �9.01* �8.81*
Three months �0.38 �5.10* �4.78* 1.57 �4.41* �6.29*
Six months �0.57 �2.53* �1.77 1.03 �0.25 �1.85
USA and Japan
One month 4.49* �4.98* �5.98* �0.62 �4.77* �4.90*
Three months 0.64 �4.63* �5.46* �2.73* �6.09* �3.56*
Six months 0.14 �0.94 �0.93 �0.54 �0.89 �0.07
Northern countries
One month 1.11 �5.55* �5.54* �0.12 �4.00* �3.83*
Three months 1.44 �2.90* �3.06* �3.32* �7.12* �4.68*
Six months 0.77 �2.65* �2.81* 0.62 �6.64* �5.81*
Switzerland
One month 1.52 �2.76* �3.02* 2.29* 2.68* 0.50
Three months 1.96 �1.61 �1.96 2.85* 0.01 �2.22*
Six months 1.33 �5.08* �8.10* 1.33 �1.50 �2.65*
Russia
One month 1.40 �1.97 �3.07* �2.01 �3.47* �2.69*
Three months 1.40 0.48 �1.33 �1.65 �1.74 �0.88
Six months 0.91 �3.18* �3.10* �1.62 �4.54* �2.99*
Other countries
One month 0.80 �5.48* �6.34* �0.25 �5.69* �5.64*
Three months 2.94* �3.07* �3.91* 0.72 �6.56* �7.17*
Six months 1.36 �2.01 �2.69* 0.03 �3.75* �4.69*
Total
One month �0.50 �6.55* �6.96* 0.45 �4.01* �4.00*
Three months 1.02 �2.92* �4.23* 0.38 �7.46* �5.79*
Six months 2.21* 0.91 �3.66* �0.45 �0.75 �0.55

Note: Diebold–Mariano test statistic with NW estimator. Null hypothesis: The difference between the two competing series is non-significant. A negative sign of
the statistic implies that the second model has bigger forecasting errors.
*Significant at the 5% level.
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The main objective of this study is to improve forecasts
of tourism demand by using different ANN models and to
compare the forecasting performance of the different
architectures. Each architecture represents a different learn-
ing paradigm and a different way of estimating the
parameters of the model. First, we predict inbound interna-
tional tourism demand from all visitor markets to Catalonia
and for different forecast horizons. We then test for
significant differences between each two competing series
in order to assess the value of the different models. Finally,
we evaluate the effect of the memory on the forecasting
results by repeating the experiment assuming different
topologies regarding the number of prior time points to be
used in each forecast.

When comparing the forecasting accuracy of the dif-
ferent techniques, we find that MLP and RBF NNs out-
perform Elman NNs. These results are in contrast with
the evidence found in previous studies and suggest that
issues related with the divergence of the Elman NN
may arise when using dynamic networks with forecasting
purposes. The comparison of the forecasting performance
between MLP and RBF NNs permits to conclude that
the RBF networks significantly outperform the MLP
networks when no additional lags are introduced in the
networks. On the contrary, when the input has a context
of the past, MLP networks show a better forecasting
performance.

We also find that as the amount of previous months
used for concatenation increases, the forecasts obtained
for longer horizons improve, suggesting the importance
of increasing the dimensionality of the input to networks
for long-term forecasting. An input that takes into account
a larger number of prior time points might capture not
only the trend of the current value but also possible
cycles that influence the forecast. These results show that
the number of lags introduced in the networks plays a
fundamental role on the forecasting performance of the
different architectures.

This study contributes to the literature and to the tourism
industry by highlighting the most suitable NNs and how to
implement them in order to improve the forecasting accuracy
of tourism demand. Nevertheless, this study is not without its
limitations. The overparametrization problem found with
Elman networks could be partially solved if longer time
series of tourist arrivals were available. A question to be
considered in further research is whether a combination of
forecasts from alternative topologies and different time
aggregations could improve the accuracy of tourism demand
forecasting. Finally, another question to be addressed in
further research is whether these results apply to different data
pre-processing methods.
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