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Abstract 

Glibenclamide has beneficial effects in animal models of cerebral ischemia. The cellular 

targets of glibenclamide are proposed to be neurons, endothelial cells, oligodendrocytes and 

astrocytes. However, independent studies have shown that the SUR1-formed ATP-dependent 

potassium (KATP) channels are expressed by microglia, which reinforces the idea that 

glibenclamide may also target microglia and modulate their inflammatory phenotype. This 

comment to ‘Sulfonylurea receptor 1 in central nervous system injury: a focused review’ 

provides new insights on the putative role of the microglial KATP channel in mediating, at 

least in part, the neuroprotective and neurorestorative effects of glibenclamide after stroke. 
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The recent review article ‘Sulfonylurea receptor 1 in central nervous system injury: a focused 

review’1 is an extensive summary of the current knowledge of the role of the sulfonylurea 

receptor 1 (SUR1) and SUR1-regulated NCCa-ATP channels in acute brain injuries. The review 

also highlights the potential translational applicability of the use of glibenclamide in treating 

brain pathologies such as cerebral ischemia or traumatic brain injury. It is proposed that the 

cellular targets of glibenclamide are neurons, endothelial cells, oligodendrocytes and 

astrocytes, and that glibenclamide resolves the cytotoxic edema after cerebral ischemia by 

blockade of the astroglial NCCa-ATP channel. However, independent studies have shown that 

the SUR1-formed ATP-dependent potassium (KATP) channels are expressed by microglia,2-6 

which reinforces the idea that glibenclamide may also target microglia and modulate their 

inflammatory phenotype in brain pathologies. More important, we recently showed that 

microglia after cerebral ischemia increase the expression of Kir6.2 and SUR1 components of 

the KATP channel in the lesion core3 and also in the medial striatum of the ischemic 

hemisphere4 (Figure 1A).  

KATP channel’s subunits possess an endoplasmic reticulum (ER)-retention motif, which 

prevents trafficking of mismatched subunits to the membrane. Our studies in rat primary 

microglial cultures suggested that microglial activation involves translocation of SUR1 from 

its internal reservoir toward the cell surface (Figure 1B). Furthermore, in vitro studies using 

BV2 microglia cells and primary microglial cultures have demonstrated that reactive 

microglia are sensitive to different KATP channel drugs regulating the phagocytic activity and 

the release of cytokines and chemokines.2,3,5,6 Our findings of the glibenclamide-mediated 

enhancement of microglial in vitro phagocytosis was correlated with in vivo experiments, 

where increased clearance of cell debris and calcium was found in the infarcted hemisphere, 

and consequently provided an optimal neuroprotection in the surrounding tissue.3 Although 

glibenclamide also blocks other ion channels that some belong to the ATP-binding cassette 

proteins (e.g., the Cystic fibrosis transmembrane conductance regulator) expressed by 

microglial cells, it is unlikely that glibenclamide will bind to these channels because they 

present much lower affinity to the drug than the used in our studies. Thus, our findings shed a 

new light on the putative role of the microglial KATP channel in mediating at least in part, the 

neuroprotective and neurorestorative effects of glibenclamide after stroke.  

Simard and colleagues have described that the activation of NCCa-ATP channels in 

astrocytes causes cell blebbing characteristic of cytotoxic edema. The glibenclamide-induced 

beneficial effect in MCAO animals was only linked with the blockade of these channels, 

whereas the involvement of KATP channels in the process has been excluded.7,8 Interestingly, 



Simard et al7 only used inside-out patches of large neuron-like cells isolated from the core 2 h 

and 6 h after MCAO or isolated native reactive astrocytes type 1 (ref. 9). The KATP channel 

biophysical properties in other cell types isolated from the core or the peri-infarct area after 

brain ischemia, which could be also expressing SUR-1 regulated channels, were not assessed. 

Intriguingly, despite the massive neuronal loss observed, immunoblots revealed no 

concentration changes of Kir6.1 and Kir6.2 proteins in the ischemic core.7,10 Our findings are 

consistent with these results and argue for a contribution of the microglial KATP channels to 

the neurorestorative effects of glibenclamide by reducing the severity of lesion. We observed 

that reactive microglia enhances SUR1, Kir6.1 and Kir6.2 protein expression, and amoeboid 

microglia express KATP channels in the necrotic core of the lesion.3,4 Therefore this 

upregulation is certainly contributing to the enhancement of SUR1 found by Simard et al,7 

and helped to compensate for a putative decrease in Kir6.1 and Kir6.2 subunits due to the 

massive neuronal loss in the infarct zone.  

On the other hand, we also observed that glibenclamide increased the number of 

migrating neuroblasts toward the ischemic core 72 h after reperfusion, thereby indicating that 

glibenclamide modifies the cell lineage choice or enhances progenitor cell proliferation and 

migration.4 As adult neural precursor cells do not express the Kir6.1 neither the Kir6.2 

subunits, is unlikely that they will express functional KATP channels or present sensitivity to 

the glibenclamide treatment. However, microglia which are the primary immune effector 

cells in the brain and as a component of the neurogenic niche, participate in promoting the 

proliferation, migration and differentiation of neural precursors cells by the release of a wide 

panel of bioactive molecules, including neurotransmitters, purines, cytokines and growth 

factors. Interestingly, reactive microglia in the medial striatum expressed the KATP channel 

components SUR1 and Kir6.2 at 72 hours after ischemia (Figure 1A), suggesting 

participation over longer time intervals in post-ischemic regeneration and neurogenesis. 

Complementary in vitro studies showed that the specific blockade of the microglial KATP 

channel cause the release of soluble factors that enhance the activation of neural precursors 

cell from the subventricular zone (unpublished data). Therefore, ongoing studies will help us 

to elucidate the complex interplay of ischemic and inflammatory signals responsible for the 

role of the microglial KATP channel in endowing microglia to a new distinct phenotype 

promoting brain repair after injury. 

Taken together, the involvement of the KATP channel expressed by microglia can 

contribute to the beneficial effects of glibenclamide on stroke models. Our data on the 

glibenclamide-mediated control of the microglia activity through KATP channel blockade 



argues for a multifunctional neuroprotective effect of SUR targeting after brain injuries. This 

is consistent with the idea of cross-talk between multiple cell types and death mechanisms 

after cerebral ischemia. By briefly summarizing the current state of knowledge in this area, 

this commentary hopefully provides a new and complementary insight on the neuroprotective 

and neurorestorative effects of glibenclamide after stroke. 
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Figure 1- Reactive microglia express and translocate sulfonylurea receptor 1 (SUR1) to the 

cell surface. (A) Confocal photomicrographs of SUR1 and Kir6.2 (green) in reactive 

microglia (CD11b-positive; red) localized to the medial striatum in middle cerebral artery 

occlusion rats. Yellow in the merge image denotes colocalization, whereby reactive CD11b-

postive cells expressed SUR1 or Kir6.2 72 hours after ischemia. (B) Localization of 

glibenclamide (Gbc) (Gbc BODIPY FL; green fluorescence) in rat microglial primary 

culture. Non-activated or cultures activated with lipopolysaccharide (LPS)+interferon gamma 

(IFNγ) for 48 hours are shown in the upper row. Microglial cells were labeled with an anti-

CD11b (red) antibody and Hoechst (blue) to stain the nuclei. Lower row shows respective 

colocalization of the red and green channels, where the yellow denotes the presence of the 

Gbc binding in microglial cells. Arrowhead denotes perinuclear colocalization and arrows 

show surface labeling. The data shown are representative of four experiments each. Scale bar 

in (A) is 15 µm and in (B) is 20 µm. From Ortega et al.4 


