
Institut de Recerca en Economia Aplicada Regional i Pública                                                    Document de Treball   2011/07   pàg.  1 
Research Institute of Applied Economics                                                                                    Working Paper 2011/07    pag .1 

1

Institut de Recerca en Economia Aplicada Regional i Pública                                                         Document de Treball   2013/11   43 pàg. 
Research Institute of Applied Economics                                                                                         Working Paper             2013/11    43 pag.

“Indicators for the characterization of discrete

Choquet integrals”

Jaume Belles-Sampera, Montserrat Guillén, José M. Merigó and Miguel Santolino 



Institut de Recerca en Economia Aplicada Regional i Pública                                                   Document de Treball   2013/11  pàg. 2 
Research Institute of Applied Economics                                                                                 Working Paper                2013/11 pag. 2 

2

WEBSITE: www.ub.edu/irea/ • CONTACT: irea@ub.edu

The Research Institute of Applied Economics (IREA) in Barcelona was founded in 2005, as a 
research institute in applied economics. Three consolidated research groups make up the 
institute: AQR, RISK and GiM, and a large number of members are involved in the Institute. IREA 
focuses on four priority lines of investigation: (i) the quantitative study of regional and urban 
economic activity and analysis of regional and local economic policies, (ii) study of public 
economic activity in markets, particularly in the fields of empirical evaluation of privatization, the 
regulation and competition in the markets of public services using state of industrial economy, (iii) 
risk analysis in finance and insurance, and (iv) the development of micro and macro econometrics 
applied for the analysis of economic activity, particularly for quantitative evaluation of public 
policies. 

IREA Working Papers often represent preliminary work and are circulated to encourage 
discussion. Citation of such a paper should account for its provisional character. For that reason, 
IREA Working Papers may not be reproduced or distributed without the written consent of the 
author. A revised version may be available directly from the author. 

Any opinions expressed here are those of the author(s) and not those of IREA. Research 
published in this series may include views on policy, but the institute itself takes no institutional 
policy positions.



Indicators for the characterization of discrete Choquet integrals

Jaume Belles-Samperaa, Montserrat Guilléna, José M. Merigóa,b, Miguel Santolinoa,∗
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Abstract

Ordered weighted averaging (OWA) operators and their extensions are powerful tools used

in numerous decision-making problems. This class of operator belongs to a more general

family of aggregation operators, understood as discrete Choquet integrals. Aggregation

operators are usually characterized by indicators. In this article four indicators usually

associated with the OWA operator are extended to discrete Choquet integrals: namely, the

degree of balance, the divergence, the variance indicator and Rényi entropies. All of these

indicators are considered from a local and a global perspective. Linearity of indicators

for linear combinations of capacities is investigated and, to illustrate the application of

results, indicators of the probabilistic ordered weighted averaging (POWA) operator are

derived. Finally, an example is provided to show the application to a specific context.

Keywords: Orness, Divergence, Entropy, Choquet integral, OWA, POWA

1. Introduction

Aggregation operators are very useful tools for summarizing information and have

been widely used in recent decades [1, 10, 31]. In this context, the Choquet integral [4],

a class of integral linked to non-additive measures, has taken a leading role. Integrals are

used to aggregate values of functions, and as such can be understood as aggregation oper-

ators. The Choquet integral includes a wide range of the aggregation operators as specific
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cases. Over the last few years, the Choquet integral has received much attention from

researchers, and this has generated new extensions and generalizations of this class of in-

tegral. For instance, Greco et al. [12] proposed an extension of Choquet integrals in which

the capacities depend on the values to be aggregated. Similarly, Yager [39] presented new

induced aggregation operators inspired by Choquet integrals and Xu [34] introduced some

intuitionistic fuzzy aggregation functions also based on the Choquet integral. Klement

et al. [13] presented a universal integral that covers the Choquet and the Sugeno integral

for non-negative functions, while Torra and Narukawa [32] studied a generalization of the

Choquet integral inspired by the Losonczi mean. Bolton et al. [3] connected the Choquet

integral with distance metrics and, more recently, Torra and Narukawa [33] introduced

an operator that generalizes the Choquet integral and the Mahalanobis distance.

Two specific cases of Choquet integral are the weighted arithmetic mean (WAM) and

the ordered weighted averaging (OWA) operator [35]. Several authors have turned their

attention to the study of the OWA operator [41], since it serves to provide a parameter-

ized family of aggregation operators between the minimum and the maximum. In order

to assess OWA operators appropriately, indicators for characterizing the weighting vec-

tor are required. Initially, Yager [35] introduced the orness/andness indicators and the

entropy of dispersion for just this purpose. Later, he propose complementary indicators,

including the balance indicator [36] and the divergence [38], for use in exceptional sit-

uations. Meanwhile, Fullér and Majlender [8] suggested the use of a variance indicator

and Majlender [16] introduced the Rényi entropy [26] as a generalization of the Shannon

entropy [27]. Some of these indicators have been extended for the Choquet integral. For

example, Marichal [18] and Grabisch et al. [10] presented several types of degree of or-

ness indicators: the former author specifically for Choquet integrals, the latter for general

aggregation functions. Likewise, Yager [37], Marichal [17] and Kojadinovic et al. [14]

studied the entropy of dispersion in the framework of the Choquet integral. However, to

the best of our knowledge, some of these indicators have yet to be defined at the Choquet

aggregation level.

The aim of this article is to further enrich the present characterization of the Choquet
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integral, by incorporating new indicators to earlier contributions and by presenting an

unified compilation of indicators for its characterization. Four indicators commonly used

for the OWA operator -that is, the degree of balance, the divergence, the variance indi-

cator and Rényi entropies- are extended to the discrete Choquet integral. The advantage

of incorporating these additional indicators is that they can help to cover a wide range

of situations, including exceptional types of aggregation that cannot be correctly charac-

terized with the degree of orness or the entropy of dispersion. Two different perspectives

are considered so as to allow both local and global indicators to be defined.

The linearity of indicators is investigated when dealing with linear combinations of

capacities. Indicators are presented for characterizing the probabilistic OWA (POWA)

operator [19, 20], which deals with a linear combination of two particular cases of Choquet

integrals (the OWA and the WAM) in order to obtain more complex aggregations. The

importance of these two aggregation operators is determined by the particular weight

assigned to them in the linear combination.

Finally, an example is presented to show the application of our results in a specific

context, namely a hypothetical customer online satisfaction assessment conducted using

survey analysis and Choquet aggregation. The main advantage of using Choquet integrals

is that a wide range of scenarios and attitudes can be considered and the one in closest

accordance with our interests can then be selected. The example includes the estimation

of indicators that characterize different Choquet integrals.

The rest of this paper is organized as follows. In section 2 some basic preliminaries

regarding the OWA operator and the Choquet integral are briefly reviewed. In section 3

the main indicators for characterizing the OWA operator and the existing indicators for

the Choquet integral are compiled. New indicators for the Choquet integral, the degree of

balance, the divergence, the variance indicator and Rényi entropies are presented in section

4. A concise analysis of the linearity of indicators with respect to linear combinations of

capacities is presented in section 5. In addition, the indicators inherited by the POWA

operator, understood as a Choquet integral, are also provided in this section. In section

6 an illustrative example is given and in section 7 the main conclusions of the article are
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summarized.

2. OWA operators and Choquet integrals

2.1. OWA operators

Ordered weighted averaging (OWA) operators were first introduced by Yager [35]. Let

�w = (w1, w2, ..., wn) ∈ [0, 1]n be such that
∑n

i=1 wi = 1. The OWA operator with respect

to �w is a mapping from R
n to R defined by OWA�w (x1, x2, ..., xn) :=

∑n
i=1 xσ(i) ·wi, where

σ is a permutation of (1, 2, ..., n) such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), i.e. xσ(i) is the i-th

smallest value of x1, x2, ..., xn.

OWA operators generalize the concept of the weighted arithmetic mean (WAM)1 by

requiring the components of �x = (x1, x2, ..., xn) ∈ R
n to be ordered before the aggregation

is computed. For convenience, we consider the components of �x in ascending as opposed

to descending order. The OWA operator has been widely developed in the literature

[41]. For example, Yager [40] proposed the use of generalized means to extend the OWA

operator. A further interesting generalization of the OWA operator is the Quasi-OWA

operator, in which quasi-arithmetic means2 are used [7]. A Quasi-OWA operator is defined

by Quasi-OWA�w (x1, x2, ..., xn) := g−1

(
n∑

i=1

g
(
xσ(i)

) · wi

)
, where g : R → R is a strictly

continuous monotonic function.

2.2. Choquet integrals

In order to analyze the Choquet integral the concept of capacity must first be defined.

Let N = {m1, ...,mn} be a finite set and 2N = ℘ (N) be the set of all subsets of N .

A capacity or a fuzzy measure on N is a mapping from 2N to [0, 1] which satisfies that

μ (∅) = 0 and that if A ⊆ B then μ (A) ≤ μ (B), for any A,B ∈ 2N (monotonicity).

1Note that the WAM with respect to �w is an aggregation operator defined as WAM�w (x1, x2, ..., xn) :=∑n
i=1 xi · wi. It is an aggregation operator on R

n.
2Merigó and Gil-Lafuente [22] presented similar generalizations when dealing with induced aggregation

operators.
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If μ is a capacity such that μ (N) = 1, then we say that μ satisfies normalization.

A capacity μ is additive if μ (A ∪B) + μ (A ∩B) = μ (A) + μ (B) for any A,B ⊆ N .

A capacity μ is symmetric if μ (A) = μ (B) for all A,B with the same cardinality (i.e.,

|A| = |B|).
Let μ be a capacity on N , and f : N → [0,+∞) be a function. Let σ be a per-

mutation of (1, ..., n), such that f
(
mσ(1)

) ≤ f
(
mσ(2)

) ≤ ... ≤ f
(
mσ(n)

)
and Aσ,i ={

mσ(i), ...,mσ(n)

}
, with Aσ,n+1 = ∅. The Choquet integral of f with respect to μ is de-

fined as

Cμ (f) :=
n∑

i=1

f
(
mσ(i)

)
(μ (Aσ,i)− μ (Aσ,i+1)) . (2.1)

Extensions of the Choquet integral of real functions (and not just positive-real func-

tions) can be found in the literature [25]. In this last reference, the asymmetric extension

is formulated as in expression (2.1) but taking into account that the domain of f is

(−∞,+∞).

Choquet integrals can be generalized to obtain Choquet-like integrals [24, 13]. We

consider particular Choquet-like integrals which, inspired by quasi-arithmetic means, are

referred to here as Quasi-Choquet integrals3. These integrals are defined as follows. Given

a strictly continuous monotonic function g from R to R, the Quasi-Choquet integrals are

defined by

QCμ (f) := g−1

(
n∑

i=1

g
(
f
(
mσ(i)

))
(μ (Aσ,i)− μ (Aσ,i+1))

)
. (2.2)

2.3. Relationship between OWA operators and Choquet integrals

Let N = {m1, ...,mn} be a finite set and �w and �p be two vectors with components

belonging to [0, 1] and such that
∑n

i=1 wi = 1 and
∑n

i=1 pi = 1. Consider the aggregation

operators OWA�w and WAM�p defined on N .

3Alternative generalizations of the Choquet integral can be found in the literature. For instance, Yager

[40] generalized Choquet integrals inspired by generalized means. Tan and Chen [28] extended Yager’s

approach by using induced generalized aggregation operators. Merigó and Casanovas [21] extended these

models for environments with imprecise information that can be represented with interval numbers.

5



The representation of OWA and WAM operators as Choquet integrals has been shown

in the literature [9, 11]. Propositions 10(v) and proposition 10(vi) in Grabisch et al.

[11] imply that OWA and WAM operators can be understood as Choquet integrals with

respect to normalized capacities μ and P respectively, OWA�w = Cμ and WAM�p = CP .
These capacities are such that:

• μ (A) =
∑i−1

j=0 wn−j, for all A ∈ N with cardinality i (|A| = i), i = 1, ..., n. Because

of |Aσ,i| = n−i+1, then μ (Aσ,i) =
∑n

j=i wj for all i = 1, ..., n, being σ a permutation

as in the definition of OWA�w;

• P ({mi}) = pi for all i = 1, ..., n, being P additive. That is, the probability P
understood as an additive capacity on N .

Remark 2.1. The definitions of Quasi-OWA operators and Quasi-Choquet integrals con-

sidered in this section are such that neither the weights of Quasi-OWA operators nor the

capacity of Quasi-Choquet integrals are affected by functions g or g−1. Consequently, the

relationship between Quasi-OWA and Quasi-WAM operators and Quasi-Choquet integrals

can be established in a similar way as the relationship between OWA and WAM operators

and Choquet integrals. This reflects the fact that these relationships are based only on the

way in which the weights and capacities are linked.

3. Indicators for aggregation operators

3.1. Indicators associated with OWA operators

Various indicators associated with OWA operators can be found in the literature and

the main ones are briefly explained here. A summary of these indicators, their analytical

expressions and references are shown in Table 3.1.

Degree of orness

The degree of orness of an OWA�w operator was defined in Yager [35] as representing

the level of aggregation preference between the minimum and the maximum operators

given by �w ∈ [0, 1]n. The degree of orness of OWA�w can be understood as the value
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Table 3.1: Summary of indicators associated with OWA operators

Indicator Analytical expression Reference

Degree of orness ω (�w) =

n∑
i=1

(
i− 1

n− 1

)
· wi Yager [35]

Dispersion (Shannon entropy)1 Disp (�w) = −
n∑

i=1

ln(wi) · wi Yager [35]

Degree of balance Bal (�w) =

n∑
i=1

(
2i− (n+ 1)

n− 1

)
· wi Yager [36]

Divergence Div (�w) =

n∑
i=1

(
i− 1

n− 1
− ω(�w)

)2

· wi Yager [38]

Variance indicator D2 (�w) =
1

n

n∑
i=1

w2
i − 1

n2
Fullér and Majlender [8]

Rényi entropy (α �= 1) Hα (�w) =
1

1− α
log2

(
n∑

i=1

wα
i

)
Majlender [16]

1 If the Shannon entropy of �w is denoted by HS (�w) = −
n∑

i=1

log2(wi) · wi, then Disp (�w) = ln(2) ·HS (�w).

that the OWA�w operator returns when it is applied to �x∗ =
(

0
n−1

, 1
n−1

, ..., n−2
n−1

, n−1
n−1

)
or,

alternatively, as the value of WAM�w

(
�x∗).

Dispersion (Shannon entropy)

The dispersion indicator of an OWA�w operator was introduced by Yager [35] to measure

the amount of information given by �x that is used when OWA�w (�x) is computed. This

indicator provides the same information as the entropy introduced by Shannon [27] but

at a different scale, as shown in Table 3.1.

Degree of balance

The concept of degree of balance of an OWA�w operator was introduced by Yager [36]

and is closely related to the degree of orness, providing the same information but at a

different scale. The degree of orness of an OWA�w operator is in the range [0, 1], while the

degree of balance of the same operator is in the range [−1, 1]. However, both indicators

measure the degree to which the lower- or higher-valued elements are favored when weights

�w are applied. The degree of balance of an OWA�w can be understood as the value of the

OWA�w operator applied to �y = (y1, y2, ..., yn), with yi =
2i−(n+1)

n−1
for all i = 1, ..., n. Note
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that the permutation σ = id on (1, ..., n) satisfies that yσ(i) ≤ yσ(j) if i ≤ j, and thus

Bal (�w) = OWA�w (�y) and also Bal (�w) = WAM�w (�y).

Divergence indicator

The divergence indicator of an OWA�w operator was introduced by Yager [38] and

is understood to be the value of the WAM�w applied to �z = (z1, z2, ..., zn) where zi =(
i−1
n−1

− ω(�w)
)2

for all i = 1, ..., n. In general, zi ≤ zj does not hold if i ≤ j. Therefore,

divergence indicator Div (�w) cannot be expressed as OWA�w (�z).

From a statistical viewpoint, if the random variable X∗ is considered with x∗
i = i−1

n−1

and the probabilities P (X∗ = x∗
i ) are equal to wi for all i = 1, ..., n, then Div (�w) is just

the variance4 of the random variable X∗ with respect to the probabilities �p when the latter

are equal to the weights �w, i.e. �p = �w. In other words, we can understand the divergence

indicator as Div (�w) = V ar�w (X∗) = E�w

[
(X∗)2

]− (E�w [X∗]) 2.

The main advantage of the divergence indicator is that it complements the degree

of orness indicator, especially in situations where the degree of orness and the disper-

sion indicator are insufficient for characterizing a weighting vector �w. As Yager [38]

claimed when analyzing the OWA operator, such situations emerge for weighting vec-

tors that provide the same results for the degree of orness and for the dispersion in-

dicator. For example, let us consider two vectors in R
9, �w = (0, 0.5, 0, 0, 0, 0, 0, 0.5, 0)

and �w∗ = (0, 0, 0, 0.5, 0, 0.5, 0, 0, 0). An analysis of the degree of orness and the dis-

persion of OWA�w and OWA �w∗provides the same results: ω (�w) = ω
(
�w∗) = 0.5 and

Disp (�w) = Disp
(
�w∗) = 0.693. Thus, in order to distinguish between OWA�w and OWA �w∗

operators, an additional measure is required. By using the divergence indicator (Table

3.1), such a distinction can be achieved. In this particular example, Div (�w) = 0.140625

4The variance of a random variable X with respect to a probability P is V arP (X) :=

EP
[
(X − EP (X))

2
]
, where EP (X) denotes the mathematical expectation of random variable X with

respect to probability P. In the discrete and finite case, EP (X) =
∑n

i=1 xi · pi and V arP (X) =
n∑

i=1

(
xi −

n∑
i=1

xi · pi
)2

· pi.
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and Div
(
�w∗) = 0.015625. Thus, although OWA�w and OWA �w∗ presents identical degrees

of orness and dispersion, the latter has a lower divergence than the former.

Variance indicator

A further approach that might be adopted in analyzing the features of OWA�w operators

is the computation of the variance of the weighting vector �w where each component is

considered equally probable. This indicator is defined as D2 (�w) =
1

n

n∑
i=1

w2
i −

1

n2
and,

for instance, has been used in [8] to determine the analytical expression of a minimum

variability OWA�w operator.

Rényi entropies

Entropy measures other than dispersion can be used to characterize the weighting

vector. Generalizations of the Shannon entropy that could be used include Rényi entropies

[16, 26]. Recall that the Rényi entropy of �w ∈ R
n with degree α ∈ R\{1} is defined as

Hα (�w) =
1

1− α
log2

(
n∑

i=1

wα
i

)
. Thus, given the OWA�w, Hα (�w) can be considered as the

Rényi entropy of degree α of this OWA operator.

3.2. Existing indicators extended to Choquet integrals

Some of the indicators described above have already been generalized for discrete

Choquet integrals, the case for example of the degree of orness and the dispersion indicator

(Shannon entropy). The purpose of this article is to propose indicators that have not

yet been defined for the Choquet integral. However, we describe the existing indicators

here in order to provide a complete compilation of indicators for characterizing Choquet

integrals. Hereinafter, the indicators are considered from two perspectives -the global

and the local. Broadly speaking, a global indicator does not depend on the input values

to be aggregated while a local one does. This terminology is taken from Dujmović [5],

who proposes a classification of orness indicators by means of a three-letter code5 X/Y/Z,

5This terminology is also adopted by Kolesárová and Mesiar [15] who provide an elegant explanation

of the two perspectives and, in addition, introduce a generalized characterization which they refer to as

the ‘mixed approach’.
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where X ∈ { L,G,M }, Y ∈ { D,I,S } and Z ∈ { N,C } (see Table 3.2). We extend this

categorization to all of the indicators. Indeed, here the categories G/D/N and L/D/N are

seen as global and local, respectively, and denoted as G and L. Note that we are focused

on the level of aggregation of points in the input space. The last two letters of the codes

are common to both categories, which means that we only consider direct indicators that

depend on the number of variables. This being the case, the categories can be determined

solely by the first letter in the suggested classification.

Table 3.2: Codes for the classification of indicators

Letter Type of indicator

L= Local indicator that has a specific value in each point of the input space R
n.

G= Global indicator that has an aggregated value that characterizes GCD in all points of the

input space R
n.

M= Mean value indicator obtained as the mean value of a local andness/orness indicator.

D= Direct indicator obtained by processing directly the GCD function in all points of Rn.

I= Indirect indicator obtained from the related features of the GCD function (e.g. from the

properties of the generator function of quasi-arithmetic means).

S= Statistical indicator (e.g. various forms of distribution of local andness/orness inside R
n).

N= An indicator that is a function of the number of variables n.

C= A constant indicator that is independent of n.

Source: Dujmović [5]. GCD stands for Generalized Conjunction/Disjunction function.

Interval [0, 1]n has been substituted by R
n.

Degree of orness for Choquet integrals

A generalization of the global degree of orness for Choquet integrals has been proposed

by Marichal [18]. As shown in expression (2.1), if Cμ is the Choquet integral with respect

to μ, then

ωG (Cμ) = 1

n− 1

n−1∑
i=1

⎡
⎢⎢⎣
(
n

i

)−1

·
∑
A⊆N
|A|=i

μ (A)

⎤
⎥⎥⎦ . (3.1)

Likewise, a local degree of orness for a Choquet integral has been suggested by Belles-

Sampera et al. [2], who propose the following local degree of orness,

ωL (Cμ) =
n∑

i=1

(
i− 1

n− 1

)
· (μ (Aid,i)− μ (Aid,i+1)) . (3.2)
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The idea underpinning this local generalization is to transfer to the Choquet integral the

fact that the degree of orness of OWA�w can be understood as the value that the OWA�w

operator returns when it is applied to �x∗ =
(

0
n−1

, 1
n−1

, ..., n−2
n−1

, n−1
n−1

)
and, at the same time,

as the value of WAM�w

(
�x∗). When considering a Choquet integral with respect to a

normalized symmetric capacity μ (that is, when dealing with OWA operators), the local

and global degrees of orness are equal, i.e. ωG (Cμ) = ωL (Cμ). On the other hand, if

μ is normalized and additive (Cμ = WAM�p with pi = μ({mi}) for all i = 1, ..., n), it is

straightforward to prove that ωG (Cμ) 
= ωL (Cμ). The difference derives from the fact that

ωL (Cμ) only takes into account one of the n! feasible permutations of (1, 2, ..., n) - the

identity permutation - while ωG (Cμ) considers them all. In order to simplify the notation,

hereinafter, ωL (μ) and ωG (μ) will be used instead of ωL (Cμ) and ωG (Cμ), respectively.
Alternative generalizations of the degree of orness for the Choquet integral and other

aggregation functions can be found in Grabisch et al. [10].

Dispersion (Shannon entropy) for Choquet integrals

The dispersion indicator (Shannon entropy) associated with the OWA operator has

been analyzed and generalized in several studies [37, 6, 17, 14]. Unlike the degree of

orness, the Shannon entropy is always a global indicator because the value of Disp (�w)

is not modified if wσ(i) instead of wi is used for all i (see Table 3.1). The analytical

expression of the generalization proposed in Yager [37] is shown in Table 3.3.

4. New indicators extended to Choquet integrals

Generalizations of the degree of balance, the divergence, the variance indicator and

Rényi entropies for Choquet integrals are proposed in this section. Each of these gen-

eralizations satisfies the following property: when the capacity μ linked to the Choquet

integral Cμ is symmetric and normalized (implying that a weighting vector �w exists such

that Cμ = OWA�w), then the indicators for Cμ coincide with the respective indicators for

OWA�w.
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Table 3.3: Summary of existing indicators extended to Choquet integrals

Indicator Analytical expression Reference

Global degree of orness1 ωG (μ) =
1

n− 1

n−1∑
i=1

⎡
⎢⎢⎣(ni

)−1 ·
∑
A⊆N
|A|=i

μ (A)

⎤
⎥⎥⎦ Marichal [18]

Local degree of orness ωL (μ) =

n∑
i=1

(
i− 1

n− 1

)
· (μ (

Aid,i

)− μ
(
Aid,i+1

))
Belles-Sampera et al. [2]

Dispersion (Yager’s Shannon entropy)2,� HY (μ) = −
n∑

i=1

φi (μ) ln [φi (μ)] Yager [37]

1 Other degrees of orness can be found in Grabisch et al. [10].

2 Following notation used in Kojadinovic et al. [14], where φi (μ) stands for the i-th component of the Shapley value of μ.

� Alternative entropy measures can be found in Dukhovny [6], Marichal [17] and Kojadinovic et al. [14].

Degree of balance for Choquet integrals

We propose expressions (4.1) for the global and local degrees of balance indicators

associated with Choquet integrals. Note that the degree of balance introduced by Yager

[36] was in the range [−1, 1], where values of the degree of orness from [0, 1] were rescaled.

Here, the degree of balance is defined for any interval [a, b] ⊆ R where b > a.

BalG,[a,b] (Cμ) := (b− a) · ωG (μ) + μ (N) · a,
BalL,[a,b] (Cμ) := (b− a) · ωL (μ) + μ (N) · a.

(4.1)

Note that definitions (4.1) are linear transformations of the degree of orness. If μ is

not normalized, the values of the degree of balance belong to the interval [a · μ (N) , b −
a · (1− μ (N))]. These definitions fulfill linearity conditions with respect to capacities, as

shown in section 5.

It is straightforward to check that when μ is symmetric BalL,[a,b] (Cμ) = BalG,[a,b] (Cμ).
If, in addition, μ is normalized and a = −1 and b = 1 then Bal (�w) = BalL,[−1,1] (Cμ) =
BalG,[−1,1] (Cμ).

As in the case of the degree of orness, if μ is additive and normalized, then in general

BalL,[a,b] (Cμ) 
= BalG,[a,b] (Cμ). In particular, BalG,[a,b] (Cμ) = a+ b

2
and BalL,[a,b] (Cμ) =

b+ a ·
n∑

i=1

(
n− i

n− 1

)
· pi are both satisfied.
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Divergence indicator for Choquet integrals

Extensions of the divergence indicator to the Choquet integral level are provided in

this section. As mentioned previously in the context of OWA�w operators, situations exist

in which the degree of orness and the dispersion indicator are insufficient for characterizing

a weighting vector �w. In such instances, a supplementary measure providing additional

information is required. The divergence indicator is a good candidate to fill this gap.

The divergence indicator of a Choquet integral is defined from a global and a local

perspective. In order to introduce the global divergence indicator DivG (Cμ), we must first

define the ascending quadratic weighted additive (AQWA) capacity.

Definition 4.1 (AQWA capacity). Let μ be a capacity on N = {m1, ...,mn}. The as-

cending quadratic weighted additive (AQWA) capacity linked to μ is an additive capacity

η on N defined by

(i) η ({mj}) := 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎣
(

n

n− j + 1

)−1 ∑
A⊆N

|A|=n−j+1

μ (A)−
(

n

n− j

)−1 ∑
A⊆N

|A|=n−j

μ (A)

⎤
⎥⎥⎦ ,

for all j = 1, .., n;

(ii) η (A) :=
∑
mk∈A

η ({mk}); and η (∅) := 0.

Proof that η is a capacity on N is provided in Appendix A. Two specific cases of

AQWA capacities are those linked to symmetric capacities and those linked to additive

capacities:

• If μ is symmetric, then for all j = 1, ..., n

η ({mj}) = 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−j+1

n∑
k=j

wk

(
n

n− j + 1

) −

∑
A⊆N

|A|=n−j

n∑
k=j+1

wk

(
n

n− j

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

=
6(j − 1)2

(n− 1)n(2n− 1)
·
[

n∑
k=j

wk −
n∑

k=j+1

wk

]
=

6(j − 1)2

(n− 1)n(2n− 1)
· wj.

(4.2)

13



• If μ is additive, then for all j = 1, ..., n

η ({mj}) = 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−j+1

∑
mk∈A

μ({mk})

(
n

n− j + 1

) −

∑
A⊆N

|A|=n−j

∑
mk∈A

μ({mk})

(
n

n− j

)
⎤
⎥⎥⎥⎥⎥⎦ =

=
6(j − 1)2

(n− 1)n(2n− 1)
·
[

n∑
k=1

(
n−1
n−j

)
(

n
n−j+1

)wk −
n∑

k=1

(
n−1

n−j−1

)
(

n
n−j

) wk

]
=

=
6(j − 1)2

(n− 1)n(2n− 1)
·
[

n∑
k=1

n− j + 1

n
wk −

n∑
k=1

n− j

n
wk

]
=

=
6(j − 1)2

(n− 1)n(2n− 1)
· 1
n

n∑
k=1

wk.

(4.3)

The definition of the global divergence indicator for a discrete Choquet integral is as

follows:

DivG (Cμ) := n(2n− 1)

3(n− 1)
· ωG(η)− [2− μ (N)] · ω2

G(μ). (4.4)

We should point out that the divergence indicator of the OWA operator was inter-

preted as a variance, Div (�w) = E�w

[
(X∗)2

] − (E�w [X∗]) 2. The parallelism between this

interpretation and expression 4.4 is direct6. To some extent, Div (�w) could be considered

as a mean variance over permutations of the components x∗
i = i−1

n−1
for all i = 1, ..., n.

Hence, the global divergence is given a mean variability around the degree of orness of

any input value to be aggregated. In other words, the value of the global divergence is

associated with the scattering of the aggregation function around the global degree of

orness. This means that as the global divergence increases, the global degree of orness

becomes less absorbent in the aggregation process.

6The role that the mathematical expectation was playing for Div (�w) is now the role of the global

degree of orness, and η replaces X∗2 while μ maps to X∗. Factor
n(2n− 1)

3(n− 1)
emerges to guarantee that

η is a capacity (η (N) ≤ 1) and factor [2− μ (N)] ensures that not only normalized capacities μ are

considered.
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Remark 4.1. It can be proved that definition (4.4) is equivalent to

DivG (Cμ) =
n∑

i=1

(
i− 1

n− 1
− ωG(μ)

)2

·

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−i+1

μ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

μ (A)

(
n

n− i

)
⎤
⎥⎥⎥⎥⎥⎦ . (4.5)

The definition of the local divergence indicator is as follows:

DivL (Cμ) :=
n∑

i=1

(
i− 1

n− 1
− ωL(μ)

)2

· (μ (Aid,i)− μ (Aid,i+1)) . (4.6)

This definition is inspired by the fact that Div (�w) = WAM�w (�z) in the case of OWA

operators (see section 3.1) and corresponds to the local perspective.

When μ is symmetric and normalized, DivL (Cμ) = DivG (Cμ) = Div (�w) is satisfied.

The proof is as follows. Note that the global degree of orness of the AQWA capacity

linked to a symmetric capacity is equal to,

ωG(η) =
1

(n− 1)

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

η (A) =

=
1

(n− 1)

n−1∑
i=1

(
n

i

)−1 ∑
A⊆N
|A|=i

∑
mj∈A

6(j − 1)2

(n− 1)n(2n− 1)
· wj =

=
1

(n− 1)

n−1∑
i=1

(
n

i

)−1 n∑
j=1

(
n− 1

i− 1

)
6(j − 1)2

(n− 1)n(2n− 1)
· wj =

=
1

(n− 1)

n−1∑
i=1

i

n

n∑
j=1

6(j − 1)2

(n− 1)n(2n− 1)
· wj =

=
1

(n− 1)

6

(n− 1)n(2n− 1)

n− 1

2

n∑
j=1

(j − 1)2 · wj =

=
3(n− 1)

n(2n− 1)

n∑
j=1

(
j − 1

n− 1

)2

· wj.

(4.7)

If μ is symmetric, ωG(η) in expression (4.4) may be replaced by (4.7) and it holds:

DivG (Cμ) =
n∑

j=1

(
j − 1

n− 1

)2

· wj − [2− μ (N)] · ω2
G(μ), (4.8)
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),

Taking into account that when μ is symmetric ω2
G(μ) = ω2

L(μ), expression (4.8) is

equivalent to DivL (Cμ) as follows,

DivL (Cμ) =
n∑

i=1

[(
i− 1

n− 1

)2

− 2 ·
(
i− 1

n− 1

)
· ωL(μ) + ω2

L(μ)

]
· (μ (Aid,i)− μ (Aid,i+1)) =

=
n∑

i=1

(
i− 1

n− 1

)2

· wi − [2− μ (N)] · ω2
L (μ) .

(4.9)

When μ is additive and normalized, expression (4.4) can be simplified. Note that η is

additive but not normalized. If μ is additive and normalized then from expression (4.3)

η(N) =
1

n
. Furthermore, we know that

ωG (η) =
1

n− 1

n−1∑
i=1

⎡
⎢⎢⎣
(
n

i

)−1

·
∑
A⊆N
|A|=i

∑
mj∈A

η({mj})

⎤
⎥⎥⎦ =

=
1

n− 1

n−1∑
i=1

[(
n

i

)−1

·
n∑

j=1

(
n− 1

i− 1

)
η({mj})

]
=

=
1

n− 1

n∑
j=1

n−1∑
i=1

(
i

n

)
6(j − 1)2

(n− 1)n(2n− 1)
· 1
n
=

=
1

n− 1

n∑
j=1

[
n− 1

2
· 6(j − 1)2

(n− 1)n(2n− 1)
· 1
n

]
=

1

2n
.

As μ is additive and normalized ωG (μ) =
1

2
, and hence expression (4.4) in this situa-

tion becomes

DivG (Cμ) = n(2n− 1)

3(n− 1)

1

2n
− (2− 1)

1

4
=

1

12
· n+ 1

n− 1
. (4.10)

In general, it is easy to observe that DivG (Cμ) 
= DivL (Cμ) when μ is additive and

normalized.

Variance indicator and Rényi entropies for Choquet integrals

In section 3.1 above two additional indicators for OWA operators were shown, namely

the variance indicator of the weighting vector and the Rényi entropy of degree α. The

generalized definitions of the global indicators for Choquet integrals can be provided but
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the local perspective for this indicators is not considered. The reason for this being that

the two indicators are only defined in terms of the weighting vector in the case of OWA

operators, but not in terms of
i− 1

n− 1
or

2i− (n+ 1)

n− 1
.

The global variance indicator of a capacity linked to a Choquet integral may be defined

as

D2
G (Cμ) = 1

n

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−i+1

μ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

μ (A)

(
n

n− i

)
⎤
⎥⎥⎥⎥⎥⎦

2

− μ(N)2

n2
. (4.11)

The global Rényi entropies of degree α ∈ R\{1} for a Choquet integral with respect

to μ may be defined as

HG,α (Cμ) = 1

1− α
log2

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−i+1

μ (A)

(
n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

μ (A)

(
n

n− i

)
⎤
⎥⎥⎥⎥⎥⎦

α⎞
⎟⎟⎟⎟⎟⎠ . (4.12)

Table 4.1: Summary of new indicators extended to Choquet integrals.

Indicator Analytical expression

Global degree of balance BalG,[a,b] (Cμ) = (b− a) · ωG (μ) + μ (N) · a
Local degree of balance BalL,[a,b] (Cμ) = (b− a) · ωL (μ) + μ (N) · a
Global divergence DivG (Cμ) = n(2n− 1)

3(n− 1)
· ωG(η)− [2− μ (N)] · ω2

G(μ)

Local divergence DivL (Cμ) =
n∑

i=1

(
i− 1

n− 1
− ωL(μ)

)2

· (μ (
Aid,i

)− μ
(
Aid,i+1

))

Variance indicator D2
G (Cμ) = 1

n

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−i+1

μ (A)

( n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

μ (A)

( n

n− i

)
⎤
⎥⎥⎥⎥⎥⎦

2

− μ(N)2

n2

Rényi entropy (α �= 1) HG,α (Cμ) = 1

1− α
log2

⎛
⎜⎜⎜⎜⎜⎝

n∑
i=1

⎡
⎢⎢⎢⎢⎢⎣

∑
A⊆N

|A|=n−i+1

μ (A)

( n

n− i+ 1

) −

∑
A⊆N

|A|=n−i

μ (A)

( n

n− i

)
⎤
⎥⎥⎥⎥⎥⎦

α⎞
⎟⎟⎟⎟⎟⎠
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5. Indicators with respect to a linear combination of capacities

5.1. Linearity features of the extended indicators

Let us denote any global or local indicator associated with a Choquet integral with

respect to a capacity μ as F (μ). We want to assess the expressions of F (λ1μ1 + λ2μ2),

where λ1, λ2 ∈ [0, 1] and μ1, μ2 are capacities defined on N . If the indicator is linear with

respect to capacities then F (λ1μ1 + λ2μ2) = λ1F (μ1) + λ2F (μ2) must hold.

Linearity of the degree of orness and the degree of balance

The global and the local degrees of orness are both linear with respect to capacities.

From expressions (3.1) and (3.2) with μ = λ1μ1+λ2μ2, and noting that (λ1μ1 + λ2μ2) (A) =

λ1μ1 (A)+λ2μ2 (A) for anyA ∈ 2N , then it is deduced that ωG (λ1μ1 + λ2μ2) = λ1ωG (μ1)+

λ2ωG (μ2) and ωL (λ1μ1 + λ2μ2) = λ1ωL(μ1) + λ2ωL(μ2).

The linearity of the degree of balance (global and local) with respect to capacities

can be assessed using the above expressions and the fact that this indicator is a linear

transformation of the degree of orness (as shown in section 4). The expression

Bal∗,[a,b] (Cλ1μ1+λ2μ2) = (b− a)ω∗(λ1μ1 + λ2μ2) + (λ1μ1 + λ2μ2) (N) a =

= λ1(b− a)ω∗(μ1) + λ1μ1 (N) a+ λ2(b− a)ω∗(μ2) + λ2μ2 (N) a =

= λ1Bal∗,[a,b] (Cμ1) + λ2Bal∗,[a,b] (Cμ2) ,

(5.1)

holds for global and local indicators (i.e., either if ∗ = G or ∗ = L). Thus, the degree of

balance is linear with respect to capacities.

Non-linearity of the divergence, the dispersion, the variance indicator and Rényi entropies

The divergence indicator is not linear with respect to capacities in the general case,

as can be deduced from expressions (4.4) and (4.6). Nonetheless, a result that charac-

terizes the geometric locus where the divergence indicator satisfies linearity is presented

in Appendix B. Although not explicitly proved, the lack of linearity of the dispersion,

the variance indicator and Rényi entropies is evident due to the lack of linearity (in the

general case) of functions ln(x), x2 and log2(x), respectively.
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5.2. Application: inherited indicators of POWA operators

Indicators for the probabilistic ordered weighted averaging (POWA) operator are de-

rived. The POWA operator was introduced in Merigó [19], Merigó and Wei [23] and

Merigó [20]. Let �w = (w1, w2, ..., wn) ∈ [0, 1]n be such that
∑n

i=1 wi = 1 and let

�p = (p1, p2, ..., pn) ∈ [0, 1]n be such that
∑n

i=1 pi = 1. In addition, consider β ∈ [0, 1]. The

POWA operator with respect to �w, �p and β is a mapping from R
n to R defined by

POWA�w,�p,β (x1, x2, ..., xn) := β ·
n∑

i=1

xσ(i) · wi + (1− β) ·
n∑

i=1

xσ(i) · pσ(i), (5.2)

where σ is a permutation of (1, 2, ..., n) such that xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n), i.e. xσ(i) is

the i-th smallest value of x1, x2, ..., xn.

An alternative expression to (5.2) is

POWA�w,�p,β (x1, x2, ..., xn) =
n∑

i=1

xσ(i) · vi,σ, (5.3)

where vi,σ = β · wi + (1 − β) · pσ(i) for all i = 1, ..n. It is straightforward to see that

vi,σ ∈ [0, 1] and
∑n

i=1 vi,σ = 1. Note that the POWA operator can be understood as a

weighted average between an OWA operator and a WAM. When the random variable X

that can take n different values denoted by {xi}i=1,...,n is such that P (X = xi) = pi for

all i = 1, ..., n, then the POWA operator can also be understood as a weighted average

between an OWA operator and the mathematical expectation of the random variable X:

POWA�w,�p,β (�x) = β ·OWA�w (�x)+(1−β)·WAM�p (�x) = β ·OWA�w (�x)+(1−β)·E (X) . (5.4)

Note that this implies two different levels of decision-maker preference. The first level

concerns the introduction of an OWA operator as an additional way of evaluating the

likeliness of the random events, and which differs from that provided by real risk in-

formation. The second concerns the degrees of plausibility given to the OWA operator

introduced in the previous step, on the one hand, and to the WAM representing real risk

information, on the other.

Taking into account the relationship between OWA operators and Choquet integrals

(section 2.3), expression (5.4) may be formulated as POWA�w,�p,β = β · Cμ + (1 − β) · CP .
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The capacities μ and P are normalized, where the former is symmetric and the latter a

probability. This expression is a convex combination of two Choquet integrals that com-

bines an OWA and a probabilistic perspective. Considering now the linearity of Choquet

integrals with respect to the capacity (see Proposition 9(i) in [11]), the representation of

the POWA operator as a Choquet integral is directly derived as

POWA�w,�p,β = Cβ·μ+(1−β)·P . (5.5)

Therefore indicators for the POWA operator may be defined as follows:

ω∗(POWA�w,�p,β) := ω∗(β · μ+ (1− β) · P) = β · ω∗(μ) + (1− β) · ω∗(P),

HY (POWA�w,�p,β) := −β ·
n∑

i=1

φi (μ) ln [β · φi (μ) + (1− β) · φi (P)]−

−(1− β) ·
n∑

i=1

φi (P) ln [β · φi (μ) + (1− β) · φi (P)] ,

Bal∗,[a,b](POWA�w,�p,β) := Bal∗,[a,b](Cβ·μ+(1−β)·P) = β ·Bal∗,[a,b](Cμ) + (1− β) · Bal∗,[a,b](CP),
Div∗(POWA�w,�p,β) := Div∗(Cβ·μ+(1−β)·P),

D2
G(POWA�w,�p,β) := D2

G(Cβ·μ+(1−β)·P),

HG,α(POWA�w,�p,β) := HG,α(Cβ·μ+(1−β)·P).

Note that the linearity properties of the degree of orness and the degree of balance

allow the degree of orness and the degree of balance indicators to be defined for the POWA

operator as linear combinations of the indicators associated to the underlying OWA and

WAM operators7.

To conclude, we have derived indicators for the POWA operator. However, the POWA

operator is only one of a set of possible examples. For instance, the weighted ordered

weighted averaging (WOWA) operator introduced by Torra [29] might also be considered

7The dispersion, the divergence, the variance indicator and Rényi entropies of the POWA operator are

not linear combinations of the dispersion, the divergence, the variance indicator and Rényi entropies of

the underlying OWA and WAM operators. Only in special cases, such as those derived in Appendix B for

the divergence, is linearity satisfied. Note that the dispersion and the divergence for the POWA operator

introduced in [20] represents an alternative approach. Here, the author proposes a linear combination of

these indicators for the underlying OWA and WAM operators.
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and the inherited indicators shown, due to the relationship between the WOWA operator

and the Choquet integral with respect to particular capacities (see Theorem 4 in Torra

[30]).

6. Illustrative example

In section 3.1 above, an example of two different OWA operators with the same de-

gree of orness and dispersion was presented as a means of introducing the divergence

indicator for OWA operators. In the example that follows a hypothetical decision-making

situation is described -involving customer on-line satisfaction assessment- in which the

usefulness of the divergence indicator can be illustrated. Here, the two aggregation func-

tions considered are Choquet integrals, both sharing the same global degree of orness but

presenting different dispersion values. One of the goals of the decision maker is to hold an

aggregation operator that does not return overly concentrated results. As such, what is

sought is a large dispersion or a large divergence. The relevance of the global divergence

indicator in this example is based on the fact that it leads to a quite distinct selection to

that determined by the dispersion. In other words, the global divergence indicator does

not provide the same kind of information as that provided by the dispersion indicator. A

possible interpretation of this is that while the dispersion measures the amount of input

information used in the aggregation process, the global divergence measures the distance

separating the aggregated value from the value associated with the global degree of orness.

Hence, the adoption of the latter indicator is more appropriate for fulfilling the objective

of the decision maker in this context.

A company allows its customers to complete an on-line survey recording their satisfac-

tion with the services provided by the company. This survey is divided in three sections:

after-sales services (1), flexibility to satisfy the customers’ requirements (2) and service

quality (3). Each section contains several questions, and each question can be scored

by the client with a value from {−3,−2,−1, 0, 1, 2, 3}, where −3 represents the lowest

possible valuation and +3 the highest. Suppose that the average score in each section

is assigned as the score of the section. The company’s community manager is interested
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in ranking the answers to this survey based on the scores recorded for each of the three

sections, named x1, x2 and x3. The aim is to present the most favorable answers at the

top of the ranking, and to employ a ranking system that will allow some variability among

the ranking’s values.

The community manager is provided by the company’s IT team with two aggregation

functions to rank the surveys. Both are Choquet integrals defined on N = {m1,m2,m3}:
one with respect to capacity κ and the other with respect to capacity μ, which are defined

by:

• κ (∅) = 0, κ({m1}) = κ({m2}) = κ({m3}) = 0.3, κ({m1,m2}) = κ({m1,m3}) =

κ({m2,m3}) = 0.85 and κ(N) = 1;

• μ (∅) = 0, μ({m1}) = 0.3, μ({m2}) = 0.2, μ({m3}) = 0.60625, μ({m1,m2}) =

0.54375, μ({m1,m3}) = 0.95, μ({m2,m3}) = 0.825, and μ(N) = 1.

The community manager must therefore select one of the two aggregation functions

to build the ranking. To compare both aggregation operators, the community manager

starts by considering the values returned when scores x = (x1, x2, x3) = (1,−1.2, 0.5) and

x = (x1, x2, x3) = (−1.4, 0.85,−0.2) are taken into account. Expression (2.1) has to be

used to compute these values.

The value that the first aggregation operator assigns to x is Cκ (x) = −1.2 × 0.15 +

0.5 × 0.55 + 1 × 0.3 = 0.395 and the value that it assigns to x is Cκ (x) = −1.4 × 0.15 +

(−0.2) × 0.55 + 0.85 × 0.3 = −0.06. The value that the second aggregation operator

assigns to x is Cμ (x) = −1.2 × 0.45625 + 0.5 × 0.34375 + 1 × 0.2 = −0.175625 and the

value that it assigns to x is Cμ (x) = −1.4× 0.175 + (−0.2)× 0.625 + 0.85× 0.2 = −0.2.

As such, both aggregation operators are ranking x and x in a similar way, although with

different ranking values8

8Some abuse of notation has been implemented with Choquet integrals: x has been used instead of

the function that has generated values x = (x1, x2, x3) = (1,−1.2, 0.5). Something similar has occurred

in the case of x.
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A fixed order in the components of the input data vector (x1,x2 and x3) cannot be

assumed. Consequently, the community manager prefers global to local indicators. Hence,

the next element that the community manager assesses with regard to the aggregation

operators is their global degree of orness. As can be shown, ωG (κ) = 0 × 0.15 + 0.5 ×
0.55 + 1× 1 = 0.575 and ωG (μ) = 0× 0.227083 + 0.5× 0.395833 + 1× 0.377083 = 0.575,

so ωG (κ) = ωG (μ) and thus this indicator is not useful for selecting one or other of the

aggregation operators.

The decision maker is obliged therefore to compute an additional indicator, one that

could help in the selection of a particular aggregation operator. Let us suppose that the

global divergence indicator is calculated for Cκ and Cμ. AQWA capacities linked to κ and

μ are determined by the following values: AQWAκ ({m1}) = 0, AQWAκ ({m2}) = 0.11

and AQWAκ ({m3}) = 0.24; and AQWAμ ({m1}) = 0, AQWAμ ({m2}) = 0.07917 and

AQWAμ ({m3}) = 0.30167. The global degrees of orness of these AQWA capacities are

0.175 and 0.19042, respectively, and thusDivG (Cκ) = 0.106875 andDivG (Cμ) = 0.145417.

As long as a greater divergence is preferred to build a more scattered ranking, the second

aggregation operator Cμ is selected.

Table 6.1: Values of the global indicators for the Choquet integrals in the example

Indicator Cκ Cμ OWA�w WAM�p AQWA - κ AQWA - μ

Degree of orness 0.575 0.575 0.7 0.5 0.175 0.19042

Dispersion 1.098612 0.970458 1.098612 0.746033 0.585308 0.562310

Degree of balance [-1,1] 0.15 0.15 0.4 0 0 0

Divergence 0.106875 0.145417 0.085 0.166667 0.095302 0.099972

Variance indicator 0.027222 0.005703 0.040556 0 0 0

Rényi entropy (α = 1.5) 1.331768 1.528260 1.170201 1.584963 6.128682 5.763268

OWA�w and WAM�p are such that Cμ = β ·OWA�w + (1− β) ·WAM�p in the example, with β = 0.375.

Once the selection has been finalized, a number of remarks should be made. For

instance, Cκ is equivalent to an OWA operator because κ is a normalized symmetric

capacity. In fact, Cκ is equivalent to OWA�w with �w = (w1, w2, w3) = (0.15, 0.55, 0.3). It is

easy to check that ω (�w) = ωG (κ). As for Cμ, it is equivalent to a POWA�w,�p,β operator.
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The specific vectors �w, �p and value β to obtain the equivalence are �w = (0.05, 0.5, 0.45),

�p = (0.25, 0.05, 0.7) and β = 0.375. Note that in this situation, ω (�w) = 0× 0.05 + 0.5×
0.5 + 1 × 0.45 = 0.7 and that the global degree of orness for the Choquet integral with

respect to the capacity driven by �p is 0.5, because it is a normalized additive capacity.

Given these degrees of orness and recalling β = 0.375, it is straightforward to check

the linearity of the global degree of orness for Choquet integrals in this particular case:

ωG (μ) = 0.575 = 0.375 × 0.7 + 0.625 × 0.5. Additionally, the linearity with respect to

capacities of the degree of balance and the lack of linearity of the dispersion, the divergence

and the variance indicators, as well as the non-linearity of Rényi entropies can be checked

in Table 6.1.

7. Discussion and conclusions

New indicators for characterizing the discrete Choquet integral have been presented

with the aim of complementing those already available, so that a more complete formu-

lation, covering a wider range of situations, might be provided. This need has arisen

because at times the degree of orness and the entropy of dispersion may not be sufficient.

This paper has, therefore, introduced the degree of balance, the divergence, the variance

indicator and Rényi entropies as indicators within the framework of the Choquet inte-

gral. This paper has shown that these four indicators, which are commonly used for the

OWA operator, can also be considered for the Choquet aggregation. It is our assertion

that specific expressions of these indicators can be readily obtained for any aggregation

operator that might be interpreted as a Choquet integral. We discuss the potential of

the divergence indicator to provide supplementary information to decision makers in a

fictitious example.

The paper has also undertaken an additional analysis of the linearity features of the

indicators with respect to capacities. The conditions that capacities must satisfy in or-

der to obtain linearity of the divergence indicator have likewise been investigated. The

linearity analysis has been conducted to examine the inherited indicators for the POWA

operator, an aggregation operator that can be understood as a Choquet integral with
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respect to a linear combination of capacities.
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Appendix A. AQWA is a capacity defined on N

To prove that η is a capacity on N it is necessary to see that η(A) ∈ [0, 1] for all

A ⊆ N , η(∅) = 0 and that η(A) ≤ η(B) if A ⊆ B. By definition of AQWA capacity,

η(∅) = 0. If η({mk}) ≥ 0 then η(A) ≤ η(B) if A ⊆ B because η (A) :=
∑
mk∈A

η ({mk}). So

let us see that η({mk}) ≥ 0. Recall that by definition 4.1, for all j = 1, ..., n

η ({mj}) := 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎣
(

n

n− j + 1

)−1 ∑
A⊆N

|A|=n−j+1

μ (A)−
(

n

n− j

)−1 ∑
A⊆N

|A|=n−j

μ (A)

⎤
⎥⎥⎦ .

The first factor is less than or equal to 1, because
6(j − 1)2

(n− 1)n(2n− 1)
=

(j − 1)2∑n
k=1(k − 1)2

≤ 1.

For the second factor, for each j, two situations are considered: whether sn−j+1 =

#{A s.t. |A| = n−j+1} =

(
n

n− j + 1

)
is greater or less than sn−j = #{A s.t. |A| =

n− j} =

(
n

n− j

)
. Once this notation is introduced, this second factor may be rewritten

as
1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)− 1

sn−j

∑
A⊆N

|A|=n−j

μ (A). So, supposing j is fixed:

• If sn−j+1 ≥ sn−j, then

1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)− 1

sn−j

∑
A⊆N

|A|=n−j

μ (A) ≥∗

≥∗ 1

sn−j+1

∑
A⊆N

|A|=n−j

μ (A)− 1

sn−j

∑
A⊆N

|A|=n−j

μ (A) =

=

(
(n− j + 1)!(j − 1)!

n!
− (n− j)!(j)!

n!

)
·
∑
A⊆N

|A|=n−j

μ (A) =

=
(j − 1)!(n− j)!(n+ 1)

n!
·
∑
A⊆N

|A|=n−j

μ (A) ≥ 0.

The hypothesis is used to ensure that inequality ≥∗ holds, because
∑
A⊆N

|A|=n−j+1

μ (A) ≥

∑
A⊆N

|A|=n−j

μ (A) under the hypothesis. This is true due to the fact that there are fewer
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summands on the right-hand side (sn−j ≤ sn−j+1) and, in addition, each summand

on the right is less than or equal to one on the left (μ is monotone);

• If sn−j+1 < sn−j, then

1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)− 1

sn−j

∑
A⊆N

|A|=n−j

μ (A) =

=
1

sn−j

⎡
⎢⎢⎣ ∑

A⊆N
|A|=n−j+1

μ (A) +
sn−j − sn−j+1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)

⎤
⎥⎥⎦− 1

sn−j

∑
A⊆N

|A|=n−j

μ (A) ≥∗∗

≥∗∗ 1

sn−j

⎡
⎢⎢⎣ ∑

A⊆N
|A|=n−j+1

μ (A) +
sn−j − sn−j+1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)

⎤
⎥⎥⎦−

− 1

sn−j

∑
B⊆N

|B|=n−j

⎛
⎜⎜⎝ ∑

A⊆N
|A|=n−j+1

1

sn−j+1

μ (A)

⎞
⎟⎟⎠ =

=
1

sn−j

⎡
⎢⎢⎣ ∑

A⊆N
|A|=n−j+1

μ (A) +
sn−j − sn−j+1

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)− sn−j

sn−j+1

∑
A⊆N

|A|=n−j+1

μ (A)

⎤
⎥⎥⎦ = 0.

In this case, the hypothesis is used to prove inequality ≥∗∗: for any B ⊆ N such

that |B| = n− j, μ (B) ≤
∑
A⊆N

|A|=n−j+1

1

sn−j+1

μ (A) under the hypothesis. Otherwise, a

contradiction with the fact that μ is monotone arises.
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As this result implies η(A) ≤ η(B) if A ⊆ B, if η(N) ≤ 1 is shown then η(A) ∈ [0, 1]

will hold for each A ⊆ N . To see that η(N) ≤ 1 , note first that for all j = 1, ..., n,

η ({mj}) := 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎣
(

n

n− j + 1

)−1 ∑
A⊆N

|A|=n−j+1

μ (A)−
(

n

n− j

)−1 ∑
A⊆N

|A|=n−j

μ (A)

⎤
⎥⎥⎦ ≤

≤ 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎣
(

n

n− j + 1

)−1 ∑
A⊆N

|A|=n−j+1

μ (A)

⎤
⎥⎥⎦ ≤

≤ 6(j − 1)2

(n− 1)n(2n− 1)
·

⎡
⎢⎢⎣
(

n

n− j + 1

)−1 ∑
A⊆N

|A|=n−j+1

1

⎤
⎥⎥⎦ ≤

≤ 6(j − 1)2

(n− 1)n(2n− 1)
.

Given the previous inequalities, η(N) =
∑
mj∈N

η ({mj}) ≤
n∑

j=1

6(j − 1)2

(n− 1)n(2n− 1)
= 1.

Hence, the fact that η is a capacity has been proved.

Appendix B. Conditions for the linearity of the divergence indicator

A result that characterizes the geometric locus where the divergence indicator satisfies

linearity is given here.

A first remark must be made. If the following notation is introduced,

γ∗(μ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n∑
i=1

(
i− 1

n− 1

)2

[μ (Aid,i)− μ (Aid,i+1)] , ∗ = L

n(2n− 1)

3(n− 1)
· ωG(η), ∗ = G,

(B.1)

then taking into account expressions (4.4) and (4.6), both global and local divergence

indicators may be interpreted as the sum of two components: One linear with respect to

capacities (γ∗(μ)) and another one that is not (−[2− μ(N)] ·ω2
∗(μ)). Or, in other words,

if expression (B.2)
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Div∗ (Cλ1·μ1+λ2·μ2) =

= λ1 · γ∗(μ1)− [2− λ1 · μ1 (N)− λ2 · μ2 (N)] · λ2
1 · ω2

∗(μ1)+

+λ2 · γ∗(μ2)− [2− λ1 · μ1 (N)− λ2 · μ2 (N)] · λ2
2 · ω2

∗(μ2)−
−2 · [2− λ1 · μ1 (N)− λ2 · μ2 (N)] · λ1 · λ2 · ω∗(μ1) · ω∗(μ2)

(B.2)

is compared to

λ1 ·Div∗ (Cμ1) + λ2 ·Div∗ (Cμ2) =

= λ1 · γ∗(μ1)− [2− μ1 (N)] · λ1 · ω2
∗(μ1)+

+λ2 · γ∗(μ2)− [2− μ2 (N)] · λ2 · ω2
∗(μ2),

(B.3)

then the linearity condition of the divergence indicator is

λ1 · [2 · λ1 − λ2
1 · μ1(N)− λ1 · λ2 · μ2(N)− 2 + μ1(N)] · ω2

∗(μ1)+

+ λ2 · [2 · λ2 − λ2
2 · μ2(N)− λ1 · λ2 · μ1(N)− 2 + μ2(N)] · ω2

∗(μ2)+

+ 2 · λ1 · λ2 · [2− λ1 · μ1 (N)− λ2 · μ2 (N)] · ω∗(μ1) · ω∗(μ2) = 0.

(B.4)

Note that if

A := λ1 ·
[
2 · λ1 − λ2

1 · μ1(N)− λ1 · λ2 · μ2(N)− 2 + μ1(N)
]
,

B := λ2 ·
[
2 · λ2 − λ2

2 · μ2(N)− λ1 · λ2 · μ1(N)− 2 + μ2(N)
]
,

C := λ1 · λ2 · [2− λ1 · μ1 (N)− λ2 · μ2 (N)] ,

then condition (B.4) may be written as

(
ω∗(μ1) ω∗(μ2)

)
·
⎛
⎝ A C

C B

⎞
⎠ ·
⎛
⎝ ω∗(μ1)

ω∗(μ2)

⎞
⎠ = 0. (B.5)

Interestingly, expression (B.5) is that of a degenerate conic section with respect to

x = ω∗(μ1) and y = ω∗(μ2). So, given λ1, λ2 ∈ [0, 1], the linear combinations λ1 ·μ1+λ2 ·μ2

such thatDiv∗ (Cλ1·μ1+λ2·μ2) = λ1·Div∗ (Cμ1)+λ2·Div∗ (Cμ2) can only be found by choosing

μ1 and μ2 among those capacities that satisfy that the pair (ω∗(μ1),ω∗(μ2)) belongs to

the degenerate conic section given by expression (B.5). Assuming λ1 
= 0, the particular

degenerate conic section can be determined by Δ = C2 −A ·B: If Δ < 0 then expression
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(B.5) does not have any solutions in R (the conic section is two imaginary points); if

Δ = 0 then the solutions to (B.5) lies on the line ω∗(μ2) =
A
−C

·ω∗(μ1) (the conic section

is a line counted twice); and if Δ > 0 then solutions to expression (B.5) belongs to the

line ω∗(μ2) =
A

−C+
√
Δ
· ω∗(μ1) or to the line ω∗(μ2) =

A
−C−√

Δ
· ω∗(μ1) (the conic section

is two different lines).

There are some specific cases of special interest:

• Normalized capacities. In the framework of decision making under risk and

uncertainty, for example, μ1 (N) = μ2 (N) = 1 is usually required. In this case

A = λ1 · [λ1 · (2− λ1 − λ2)− 1], B = λ2 · [λ2 · (2− λ1 − λ2)− 1], and C = λ1 · λ2 ·
(2− λ1 − λ2). So Δ = [2− (λ1 + λ2)] · (λ1 + λ2) − 1. Note that λ1 + λ2 ≤ 1 is a

necessary condition to guarantee that λ1 · μ1 + λ2 · μ2 is a capacity on N . But the

key remark is the following: Δ = − (λ1 + λ2 − 1)2, so Δ ≤ 0 always for normalized

capacities.

• Normalized capacities and λ1 + λ2 = 1. Without loosing any generality, we can

write λ1 = β and λ2 = 1−β. Taking advantage of the previous item, A = β ·(β − 1),

B = (β − 1) · β, and C = β · (1− β). Therefore, condition (B.5) becomes

β · (β − 1) · [(ω∗(μ1)− ω∗(μ2))
2] = 0. (B.6)

Expression (B.6) is fulfilled either if β = 0 or β = 1, or if ω∗(μ1) = ω∗(μ2). Non-

trivial cases are such that β ∈ (0, 1), for which expression (B.6) is equivalent to

ω∗(μ1) = ω∗(μ2). In the case of the local divergence indicator, this is the line x = y

restricted to x ∈ [0, 1]. In the case of the global divergence indicator, this is the

point (x, y) = (1
2
, 1
2
), as long as ωG(μ2) =

1
2
because μ2 is a probability on N .
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