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Abstract 

The goal of this paper is twofold: first, we aim to assess the role played by inventors’ 

cross-regional mobility and collaborations in fostering knowledge diffusion across 

regions and subsequent innovation. Second, we intend to evaluate the feasibility of 

using mobility and co-patenting information to build cross-regional interaction matrices 

to be used within the spatial econometrics toolbox. To do so, we depart from a 

knowledge production function where regional innovation intensity is a function not 

only of the own regional innovation inputs but also external accessible knowledge 

stocks gained through interregional interactions. Differently from much of the previous 

literature, cross-section gravity models of mobility and co-patents are estimated to use 

the fitted values to build our ‘spatial’ weights matrices, which characterize the intensity 

of knowledge interactions across a panel of 269 regions covering most European 

countries over 6 years.  
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1. Introduction and motivation 

 

Knowledge diffusion and creation have been core elements not only within the 

geography of innovation literature in the past two decades, but also within other related 

streams, such as new growth economics, regional science, or innovation studies. In 

large part, this relevance lies in the belief that the combination and recombination of 

previously unconnected ideas lead to new knowledge production, subsequent 

technological innovations, and ensuing economic growth and well-being (Aghion and 

Howitt, 1998; Jones, 1995). Further, knowledge diffusion in the form of knowledge 

spillovers is central to this literature as a cause of endogenous growth (Romer, 1986, 

1990). Still, despite the prominent role conferred to knowledge spillovers, measuring 

the actual channels through which knowledge is transmitted is far from straightforward. 

 

This paper follows this avenue of reasoning, and aims to assess the role played by the 

geographical mobility of skilled workers and their research collaboration patterns on the 

dissemination and creation of technical knowledge across a large panel of European 

regions, using a Knowledge Production Function (KPF hereafter) framework with 

‘neighbouring’ effects. A second contribution of this paper is more methodological. As 

it is well known in the spatial econometrics literature, one of the main weaknesses 

within related studies concerns the arbitrary choice of the weights matrix to characterize 

knowledge interactions across regions. The present inquiry aims to develop a 

refinement of the typical matrices based on purely geographical definitions precisely 

exploiting information on this cross-regional mobility of inventors and their 

collaborative ties. As it is customary assumed in the literature, distance matters so as the 

interdependences between units are stronger if they are closer in the space (Rincke, 

2010). Our tenet in this paper states, however, that distance matters precisely because 

labour mobility of skills and interpersonal formal ties tend to be regional in nature 

(Breschi and Lissoni, 2004, 2009; Singh, 2005; Zucker et al., 1998). With this idea in 

mind, we estimate a series of gravity models to explain both mobility and collaboration 

phenomena, using a set of geographical, administrative and cognitive variables. In so 

doing, a thorough analysis to choose the adequate estimation method is performed. 

Thus, we estimate year by year cross-sectional gravity model which allows us assessing 

the changing role of selected bilateral variables in explaining both mentioned 

phenomena. Afterwards, the fitted values of these estimations are used to build our 
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weights matrices to characterize cross-regional R&D diffusion patterns, which may 

explain a sizeable part of patent production heterogeneity across regions. 

 

The 1990s and early 2000s witnessed an overwhelming emphasis given to knowledge 

spillovers to explain both increasing returns to scale, marked spatial disparities in 

regional economic growth and the agglomeration of technological activities in space 

(Audretsch and Feldman, 1996, 2004; Jaffe et al., 1993). This avenue of research 

underscored the critical role played by spatial proximity to access these technological 

and knowledge advantages (Capello and Lenzi, 2012). The advent of spatial 

econometric techniques (Anselin, 1988; Cliff and Ord, 1973) and the use of the regional 

KPF with spatial interactions between units (most notably, Acs et al., 1994; Anselin, 

2000; Anselin et al., 1997; Bottazzi and Peri, 2003) featured a critical inflexion point 

among the related studies. Indeed, as stated by prominent scholars, there is no reason to 

assume that knowledge stops flowing because of regional borders (Audretsch and 

Feldman, 2004; Krugman, 1991). Therefore, spatial econometrics techniques and the 

spatial weight matrix notably improved the way in which such externalities were 

measured (Autant-Bernard and Massard, 2009). 

 

Soon this oversimplified approach was overtaken and different concepts of proximity 

were also highlighted (Boschma, 2005; Capello, 2009; Capello and Lenzi, 2012; Rallet 

and Torre, 1995). Thus, an increasing number of scholars pointed out that, even at close 

spatial proximity, knowledge flows are not automatically received just by ‘being there’. 

Rather, knowledge flows follow specific transmission channels, which are mainly based 

on market interactions and pecuniary externalities (Breschi and Lissoni, 2001a,b).  

 

For instance, economists have long suspected that mobility of skilled employees 

transmits knowledge across organizations. This literature draws, among others, on 

earlier contributions such as Arrow (1962), Rosen (1972) or Stephan (1996), who 

pioneering stated that mobility of personnel between firms provides a principal way of 

spreading information. Indeed, mobility of skills across firms and institutions is likely to 

diffuse knowledge. When they move, skilled workers take their embodied knowledge 

with them. Hence, firms learn about other firms’ research after employing innovators 

who work or have worked in competing labs. In return, mobile employees acquire 

knowledge from their new colleagues and, in general, promote new combinations of 
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knowledge (Laudel, 2003; Trippl and Maier 2010).1

 

 Further, when skilled workers 

move from place to place, their knowledge and skills move as well (Breschi et al., 2010; 

Coe and Bunnell, 2003) and hence, may constitute a central way to establish cross-

regional linkages and spread knowledge and information across the space (in this later 

regard, see empirical applications by Boschma et al., 2009, and Simonen and McCann, 

2008). 

Besides, networks2

 

 are critical for innovation. Cross-pollination of ideas, barters of tacit 

knowledge or the division of labour, have been regarded to be the underlying forces 

heading to network formation (Katz and Martin, 1997). In some instances, actors in 

regions build ‘pipelines’ in the form of alliances to benefit from knowledge hotspots 

around the world (Bathelt et al. 2004; Owen-Smith and Powell 2004). Although 

research collaboration can be considered as co-production of knowledge where inputs 

are transformed into outputs (Ponds et al, 2010), knowledge diffusion will occur as a 

by-product of such processes.  

In light of these arguments and the abovementioned literature, as well as the weaknesses 

of the typical weights matrix formerly referenced, the main aim of the present inquiry is 

to model and estimate a regional KPF with ‘neighbouring’ effects built using 

meaningful data, such as, precisely, mobility and collaborations information, to 

construct such matrices. We acknowledge that this approach is, however, not new. 

Moreno et al. (2005a) and Parent and LeSage (2008), among others, have exploited the 

concept of technological proximity between regions vis-à-vis spatial proximity in 

estimates of cross-regional externalities. Their underlying logic lies on the idea that 

knowledge externalities flow easily among members of epistemic communities of 

scientists and technicians in highly specialized technological fields, irrespective of their 

geographical location, due to the fact that they share a specific knowledge background 

and common jargon and codes. Similarly, Kroll (2009) and Ponds et al. (2010) have 

built weight matrices that display the intensity of pair-wise relationships using 
                                                           

1 Several empirical applications on the topic include, among others: Almeida and Kogut (1999), 
Corredoria and Rosenkopf (2010), Crespi et al. (2007), Fallick et al. (2006), Kim et al. (2006), Power and 
Lundmark (2004), Singh and Agrawal (2011) or Song et al. (2003). 
2 Note that the term ‘network’ used here is a simplification. As will be explained shortly, the bilateral 
structure of our co-patent data do not let us introducing the whole network structure in our estimations. 
Thus, we only consider direct networks – direct ties, and not the links that may happen between agents of 
two regions through, say, a third agent residing in a third region.  
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collaborative research data across regions to proxy the social distance between them at 

the aggregate level. In this way, they show the importance of reflecting non-spatial, 

more meaningful measures of proximity across regions in estimating the effects of 

cross-regional knowledge flows on regional innovative performance. Maggioni et al. 

(2007) follows a similar approach, as spatial effects vis-à-vis network effects in the 

form of research collaborations are estimated in a spatial KPF framework. However, 

their approach reveals that when the spatial weight matrix is subtracted from the 

network matrix and a pure social matrix is considered on its own, important spatial 

effects remain unaccounted. Further examples include Morrocu et al. (2011a,b), who 

build a set of different weights matrices using various dimensions of proximity put to 

the forefront in the literature (see Boschma, 2005, as well as the French School of 

Proximity – Carrincazeaux et al., 2008).3

 

  

A main concern when using these meaningful matrices, however, is as follows: 

geography-based matrices are suitable to introduce exogenous variation into the models, 

allowing the identification of both endogenous and exogenous effects (Corrado and 

Figleton, 2012). Contrariwise, the necessary exogeneity of the r.h.s. variables might be 

compromised if weights matrices built with meaningful data are used (Harris et al., 

2011). To the best of our knowledge, Peri (2005) is the most known work that, in a KPF 

framework, has tried to deal with this drawback. In his study, Peri (2005) utilizes 

gravitational models to estimate cross-regional citation flows and plug the estimated 

fitted values into a pseudo-weights matrix, which characterize knowledge flows across a 

set of European and North-American regions. Our own paper builds partially on Peri’s 

contribution. Different from him, however, we rely on the weights matrix taken from 

the spatial econometrics toolkit to characterize pair-wise cross-regional interactions. In 

addition, our analysis relies on the actors more involved in innovation, namely, the 

inventors, and their mobility and networking practices. In sum, the principal novelty of 

our research with respect to the existing literature is the construction of cross-regional 

interaction matrices built using actual data. However, and contrary to usual approaches, 

we estimate spatial interaction models to get fitted values from actual data to plug them 

into our weights matrices. Again, this approach will also let us assessing the changing 
                                                           

3 Other studies have estimated models with meaningful data to characterise the weights matrix, beyond 
the KPF framework. It is not our intention to review them all here, but a selection of the most outstanding 
ones can be found in Corrado and Fingleton (2012), Harris et al. (2011) or Pinske and Slade (2010). 
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role of bilateral interaction variables over time in driving both spatial mobility and 

cross-regional co-patenting, for a large sample of European NUTS2 regions, which 

constitutes also a central aim of this research. 

 

The outline of the paper is as follows. In section 2 we offer the theoretical framework 

for the analysis of regional patent intensity, as well as the determinants of mobility and 

collaborations across the space. Section 3 describes the data sources, variables 

construction and econometric issues, and section 4 provides the main results. Finally we 

conclude in section 5. 

 

2. Framework of analysis 

 

A model of regional innovation and external accessible knowledge 

 

This section sketches a formal model of knowledge production of firms in regions 

which benefit from accessing extra-regional pools of ideas by means of workers’ 

mobility and bilateral technological ties. Our point of departure is the simplest 

specification of the knowledge production function of a representative firm4

 

 k of region 

i: 

)L,K(f·AY kitkititkit =  (1) 

 

where Y denotes innovation outputs, K denotes R&D inputs and L the skilled labour 

force of a representative firm k in region i at time t.  

 

Moreover, firms’ innovation output is allowed to depend on an R&D productivity index 

specific to each region, A. For simplicity, it is assumed that the KPF follows a Cobb-

Douglas functional form: 

 

,L·K·AY kitkititkit
αβ=   10 <<α ,  10 <<β ,  1=+βα  (2) 

 

                                                           

4 In our theoretical exposition, we mainly talk about firms, though research centres and universities could 
also be included as central innovative agents of regions. 
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Aggregating all over firms in region i yields to 

 

,L·K·A·eY ititit
C

it
αβ=  (3) 

 

where Yit denotes now the aggregated innovation output of region i, Kit the aggregated 

R&D expenditures, Lit the sum of scientists and technologists across all the 

organizations, and eC denotes the constant term capturing the impact of all common 

factors affecting innovation across all the sample of regions. In order to guarantee 

reliable results in the estimations, the regional observations need to be comparable in 

size: equation (3) is pre-multiplied by a factor of 1/N, where N is the total population of 

each region. That is, 

 
αβ
ititit

C
it l·k·A·ey =  (4) 

 

where N/Yy= , N/Kk= , and N/Ll= . In this way, the innovative intensity of regions 

depends on R&D expenditures per capita and the number of scientists and technologists 

as a proportion of the total population.  

 

The R&D productivity index, Ait, is allowed to depend on local interactions giving 

firms access to knowledge from their immediate vicinity – networks, technological 

spillovers, local labour mobility – as well as from more distant pools of ideas. Our 

focus on cross-regional interactions as well as the macro data at hand precludes us to 

observe the effect of micro-interactions at the local level and their effect on firms’ 

performance. In consequence, the R&D productivity index is assumed to depend on the 

external-to-the-region stock of knowledge available for firm k in region i at time t, and 

some general locational advantages of region i, proxied by a regional fixed-effect, ieδ .  

 

Let us denote SK as the stock of knowledge accumulated in regions other than i and 

accessible to all the firms in region i at time t. If knowledge accessible in one region 

was perfectly and immediately diffusible to all other regions, we would consider the 

external stock of knowledge accessible to region i simply as the sum of the knowledge 

stocks in all other regions. However, since diffusion is not perfect and, as we discussed, 

follow specific channels based on market mechanisms and embodied in individuals – 
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such as labour mobility of skilled individuals and networks of research collaboration, 

we assume that there is only a part of the stock generated in region, say, j that is 

accessible to region i, which will depend upon the strength of the ij-interactions in time 

t, that is 
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where m
t,ijω  and n

t,ijω  are bilateral weights that measure the strength of the interactions 

between region i and region j by means of, respectively, spatial mobility of the skilled 

labour force and geographical collaboration links. mρ  and nρ are the output elasticities 

of the potential of, respectively, mobility and collaborations to spread R&D stocks 

across European regions and therefore constitute the parameters of interest to be 

estimated in the present paper. 

 

Next, expressing (5) in logs and substituting it into the log-transformation of (4), yields 

to 

 

iti
ij

jt
n

t,ij
n

ij
jt

m
t,ij

m
ititit SKln·SKln·llnklncyln εδωρωραβ ++++++= ∑∑

≠≠

 (6) 

 

where a well-behaved error term is now added, itε . 

 

As can be observed in (6), we need to measure the intensity of bilateral linkages in the 

form of bilateral mobility of skilled workers and technological collaborations, m
t,ijω  and 

n
t,ijω  respectively, for each regional pair, in order to calculate the stock of external 

accessible R&D.  

 

Hence, as we will show in the empirical section, our framework of analysis 

encompasses two stages: we first estimate the magnitude of the interactions for each 

pair of regions ( m
t,ijω  and n

t,ijω ) using data both on mobility and co-patenting across 
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regions as a function of a set of explanatory bilateral variables; and secondly we use the 

fitted values of these estimations to infer the impact of the external knowledge in 

equation (6) through the parameters mρ and nρ . Thus, one main contribution of the 

present paper is to let the intensity of these linkages to be estimated by a number of 

bilateral characteristics of the regions affecting geographical mobility and collaboration 

patterns, to which we turn next. 

 

Knowledge interactions across-regions: a gravity approach 

 

Knowledge interactions and mobility of inventors 

 

Our primary interest lies on a linear utility model where the inventor’s utility of 

working and living in a location i has a deterministic part common to all the inventors, 

u, and an individual-specific stochastic component, k
iε . Specifically, k’s utility of 

working in location i can be expressed as 

 

( ) k
ii

k
i EuU ε+=  (7) 

 

Define the deterministic part u as a function of a vector of amenities and economic 

variables (Ei) of the i-th region affecting k-th utilities of that region. Individuals are 

rational, so their decision to move from one location to an alternative one will be based 

on a comparison between the expected utilities of the two locations. An individual will 

decide to migrate from location i to location j if the expected utility on the destination 

location is greater than the expected utility at the origin location minus the costs of 

relocating, which depend upon a set of geographical, administrative and cognitive 

distances, ijD : 

 

( ) ( ) ( )ij
k
i

k
j DCUEUE +>  (8) 

 

When condition (8) holds, we define a variable k
ijM  being equal to 1, and 0 otherwise. 

Thus, for individual k to migrate from location i to location j (and not to any other 

location r), the move must lead to higher expected utility and must mean that there 
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were no alternative moves that would have provided a larger improvement. By 

aggregating individual movements by region and employing a very general gravity-type 

model specification, we can write: 

 

( )ijjiij D,E,EfM =  (9) 

 

where Dij is a set of bilateral distance variables widely applied in gravity models of 

immigration. More specifically,  

 
ijij e·T·e·GD ijijij

γτψϕ=  (10) 

 

where ijG  is the euclidean distance between the i-th and the j-th centroids, which is 

likely to negatively affect bilateral inventors’ mobility because, among other reasons: 

(i) information on the destination location is more imperfect as the physical distance 

increases, (ii) transportation costs are likely to be larger, and (iii) regular encounters 

with family, friends and former colleagues will be more sparse in time at larger 

geographical distances. However, these effects are less likely to dominate in contiguous 

regions, and so, a dummy denoting the regions sharing a common border is also 

included, ijeψ . On the other hand, technological proximity, ijT , is included in order to 

proxy to what extent cognitive similarity (a shared, related, and complementary 

knowledge base) explains mobility across physically distant epistemic communities. 

Finally, a dummy variable indicating whether two regions belongs to the same country, 
ijeγ , is also introduced, in order to control for institutional, cultural or linguistic effects 

in the mobility decisions of inventors. 

 

Next, since the set of push and pull region-specific variables possibly influencing cross-

regional mobility, iE  and jE , is likely to be large, we introduce origin and destination 

fixed-effects, ieδ  and jeλ , and focus only on the abovementioned bilateral variables. As 

shown by Anderson and van Wincoop (2003), the inclusion of origin and destination 

fixed-effects in gravity models accords with theoretical concerns regarding the correct 

specification of these models, which translates into more consistent estimations. Thus, 
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introducing origin and destination fixed effects in equation (10), we obtain our basic 

gravity model: 

 

ij

J

1j

I

1i
ijijij ·e·e·e·T·e·G·eM jiijij0 ελδγτψϕβ ∏∏

==

=  (11) 

 

where 0eβ  is a constant term capturing the impact of all common factors affecting 

mobility across all the sample of regions and ijε  a well-behaved error term. 

 

Knowledge interactions and technological collaborations 

 

As it is customary in the recent literature on network formation (Autant-Bernard et al., 

2007; Cassi and Plunket, 2010; Mariani, 2004; Paier and Scherngell, 2011; Ter Waal, 

2011), we describe the payoffs of collaborating – in our specific case, co-patenting – as:  

 
khhkkh )X,X(f επ += . (12) 

 

with khε  being a pair-wise specific stochastic term. For each pair of inventors, k and h, 

a link is formed if and only if the associated payoffs of collaborating are, at least, 

expected to be positive, 0kh >π . Hence, the payoffs of collaborating would depend 

upon k’s and h’s observable characteristics, kX  and hX . They may refer to k’s and h’s 

talent, productivity or willingness to collaborate, but they may also refer to the features 

of the institution, city or region where they work that may affect their common 

likelihood to collaborate with each other. More specifically, individuals h and k will 

decide to collaborate when the associated payoffs of collaborating are greater than the 

costs of doing so, ( )khDC , 

 

( )hkkh DC>π  (13) 
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When condition (13) holds, we define a variable kh
ijN  being equal to 1, and 0 otherwise. 

By aggregating all individual decisions by pairs of regions, we end up specifying a 

gravity model of regional collaboration in the form of  

 

( )ijjiij D,X,XfN =  (14) 

 

where Nij is the sum of individual choices of inventors from region i collaborating with 

someone from region j, which depends on the characteristics of a representative 

inventor of region i (Xi) and the characteristics of a representative inventor of region j 

(Xj). For the same reasons abovementioned, the features of representative inventors in 

the i-th and the j-th regions are proxied by origin and destination fixed-effects, ieδ  and 
jeλ , while focusing only on Dij, which is again a set of bilateral distance variables 

widely applied in gravity models of spatial interactions. More specifically, 

 
ij

ij

ij

ij
e·T·e·GDij
γτψϕ=  (15) 

 

where ijG  is the euclidean distance between the i-th and the j-th centroids, which is 

likely to negatively affect inventors’ collaborations. Arguably, spatial proximity 

enables the formation of formal networks and collaborations: it facilitates the screening 

of potential partners (Storper and Venables, 2004), ease the managing and 

administration of the common project, and smoothes monitoring of partners’ 

fulfillments. A dummy denoting the regions sharing a common border is also included, 
ijeψ . Technological proximity, ijT , is introduced in order to proxy to what extent 

cognitive similarity (a shared, related, and complementary knowledge base) explains 

co-patenting across physically distant epistemic communities. Finally, again, a dummy 

variable indicating whether two regions belongs to the same country or not, ijeγ , is also 

introduced. All in all, the following gravity-type model for the case of cross-regional 

collaborations is also going to be estimated: 

 

ij

J

1j

I

1i
ij ·e·e·e·T·e·G·eN jiij

ij

ij

ij

0 ελδγτψϕβ ∏∏
==

=  (16) 
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where 0eβ  is a constant term capturing the impact of all common factors affecting 

collaboration across all the sample of regions and ijε  a well-behaved error term. 

 

3. Empirical application 

 

Data and variables construction 

 

Patent data per million population, from the REGPAT database (January 2010 edition), 

is used to proxy regional innovative intensity (in particular, EPO5 patents, fractional 

counting) – patent data correspond to the years 2000 to 2005. In spite of their 

shortcomings (Griliches, 1991; Verspagen and Schoenmakers, 2004), patent data have 

proved reasonably useful for proxying inventive activity. Since these data are prone to 

exhibit lumpiness from year to year, we have averaged out patent figures. Thus, a three-

year moving average is computed for every observation, thereby mitigating the effects 

of annual fluctuations in this variable, especially in those less populated areas.6

 

  

Proxies for the two main inputs of the regional KPF are also elaborated. R&D 

expenditures per capita are computed by CRENoS. Specifically, data were collected 

from Eurostat and some National Statistical Offices, with some elaboration for regions 

in specific countries (Belgium, Greece, Netherlands, Switzerland). Human capital is 

measured as the population with tertiary education (population aged 15 and over by 

ISCED level of education attained) over overall regional population and is again 

elaborated by CRENoS, collected from Eurostat. The stock of R&D of each region, 

which will be used to compute the available external stock of knowledge, is proxied 

using R&D data. The accumulation of R&D is described as 1tt D&δRD&RD&ΔR −−=  – 

see Peri (2005) – where δ  is an arbitrary depreciation rate set at 5%. Other depreciation 

rates, however, do not alter the results. The initial stock of R&D has been calculated 

using the perpetual inventory method, )g(D&RD&R nt0 δ+= − , where ntD&R −  is the 

first year for which the data were available, and g  is the geometric average annual 

growth rate of R&D expenditure between 1996 and 1998. All the variables, as well as 

                                                           

5 EPO stands for European Patent Office.  
6 Thus, the 2000 observations include averaged data from 2000 to 2002, whereas the 2005 observations 
include data from 2005 to 2007. 
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the remaining controls, are lagged one period in order to lessen endogeneity problems 

due to system feedbacks. Other controls include population density and population 

density squared, and specialization and concentration indexes – computed using patent 

data broken down into technological sectors (Schmoch, 2008). More specifically the 

specialization and the concentration index of industries are constructed using patents 

from 30 IPC7

 

 technological sectors. To calculate the technological specialization index, 

we employ the following formula 

∑ −=
It

ISt

it

iSt
Sit PAT

PAT
PAT
PATSpIn

2
1 , (17) 

 

where PAT is the number of patents in each region i for each sector S, expressed as a 

difference for the whole sample of regions (I). In a similar vein, the concentration index 

is built as follows: 

 

( )∑= 2/ StiStStit PATPATConIn . (18) 

In addition we also include regional fixed-effects, which allow us to control for 

important time-invariant confounders that might have biased previous estimates of the 

regional KPF. 

 

Data to build our ‘weights’ matrices and the dependent variables of the gravity models 

come also from EPO patents retrieved from the REGPAT database (January 2010 

edition). Three-year moving time-windows are computed, and are lagged one period 

with respect to the stock of regional R&D. This way, if per capita patent data are 

computed gathering data from t to t+2, the stock of R&D corresponds to the year t-1, 

whereas the mobility and collaborations weights matrices are computed using three-

year time-windows from t-4 to t-2.8

                                                           

7 International Patent Classification. 

 These time lags are introduced again to minimize 

endogeneity and reverse causality problems. Whereas purely geographical weights 

8 As it will be explained later on, the technological distance used as one of the r.h.s. variables of the 
gravity models is computed using 3-year time windows as well. Again, the windows are time-lagged, and, 
continuing with our example, they correspond to the years t-7 to t-5. Note, therefore, that the sets of 
variables corresponding to each estimation step never overlap in time.  



 15 

matrices can be assumed to be clearly exogenous, our matrices are not, as the structure 

of collaborations and mobility is likely to be related to patterns of patenting. Clearly, 

however, our weights matrices have the advantage of bearing a direct relation with the 

theoretical conceptualization of the structure of spatial dependence, rather than an ad-

hoc description of a spatial pattern based on geography. In addition, exogenous 

variables are used in our gravity-type estimations to capture, to some extent, the 

exogenous component of both mobility and networks and plug it into both weights 

matrices. We turn next to the description of the gravity variables. 

 

Our model of geographical mobility of inventors is estimated year by year, from 1996 

to 2001 (both inclusive). As already stated in the introductory section, this approach 

allows us assessing the changing role of spatial and cognitive bilateral variables, such 

as geography, in driving this phenomenon. The dependent variable is built by full-

counting the movements of inventors crossing regional borders, data computed within 

3-year time-windows.9

 

 We therefore construct mobility asymmetrical matrices of 269 

rows and 269 columns for each time window, where each of the elements in the matrix 

is the number of inventors moving from region j to region i. If an inventor moves more 

than once, or if she returns to her former region, we compute these movements as 

separate and independent. By definition movements from region i to region i do not 

exist and therefore the diagonal elements of the matrix are always zero. Mobility is 

computed through the changes observed in the region of residence reported by the 

inventor in patent documents from the EPO. Of course, in this way we only capture 

mobility if the inventor applies for a patent before and after the move, and so we 

probably underestimate real mobility. We compute each movement exactly in between 

the origin and the destination patents, but only if there is a maximum time lapse of five 

years between the two patents – otherwise, the time elapsed would be too large and the 

exact time of the move would be too uncertain.  

A thorough disambiguation process of the names of the inventors in patents was carried 

out in order to track their mobility patterns, as it is done in Miguélez and Gómez-

Miguélez (2011), among others. In brief, we first clean, harmonize and code all the 

                                                           

9 Note, therefore, that the 1996-window corresponds to data from 1996 to 1998, whilst the 2001-window 
corresponds to data from 2001 to 2003. 
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inventors’ names and surnames. Afterwards, we test whether each pair of names belong 

to the same individual, using a wide range of characteristics, such as their address, the 

applicants and groups of applicants of their patents, their self-citations, or the 

technological classes to which their patents belong – up to 15 different tests were run. 

 

The co-patenting gravity model is also estimated year by year, and cross-regional 

collaborations are computed within 3-year time-windows as well. EPO co-patents 

between inventors residing, at the time of the patent application, in different NUTS2 

region, are used as a proxy for regional bilateral collaboration. Obviously, the 

underlying assumption is that co-patents reflect inventors’ collaborative practices 

between non-co-located peers. Based on the addresses of the inventors appearing in the 

patent document, we compute the pair-wise number of collaborations between each pair 

of regions, and a matrix of 269 rows and 269 columns for each time window was also 

constructed. The elements of these matrices, and therefore the dependent variable of 

our gravity models, is simply the number of all technological collaborations within a 

given time window between two regions i and j, irrespective of the number of inventors 

listed in each patent, being the diagonal elements of the matrix, again, always zeros. 

Because of the nature of a collaboration, the matrices are symmetrical by definition, 

meaning that the final number of observations reduces to (N*N-1)/2.10

 

 

The explanatory variables of the gravity models coincide in both cases. These include: 

(i) the Euclidean distance between the regions’ centroids, (ii) a dummy variable 

indicating whether the two region share a common border, and (iii) a dummy variable 

indicating whether the two regions belong to the same country or not. In addition, 

cognitive proximity is proxied by an index of technological dissimilarity (in our case, 1 

minus technological similarity), being similarity measured as the uncentred correlation 

between regional vectors of technological classes of patents (Jaffe 1986). 

 

Note, importantly, that our sample of 269 European NUTS2 regions is relatively large 

compared to previous studies and covers a high number of countries (EU-27 plus 

                                                           

10Note that, because of the use of co-patent data in this study, it is impossible to know whether cross-
regional collaborations occur between or within firms’ boundaries. Studying the different role of these 
different types of cross-regional linkages would be an interesting issue that, unfortunately, we cannot 
approach using our current dataset. We thank one of the referees for rising this point. 
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Norway and Switzerland).11

 

 Table 1 provides summary statistics of the variables used 

for the KPF estimation, whereas tables 2 and 3 provide yearly figures for the mobility 

and collaborations dependent variables. 

[Insert Tables 1, 2 and 3 about here] 

 

Table 4 provides the correlation matrix corresponding to the KPF variables. Arguably, 

some pairs of variables show relatively large correlation coefficients (though “only” 

around 0.7). Introducing alternatively in the KPF estimations one or the other variable 

of each pair does not change to a large extent the quantitative results, though – results 

provided upon request. The correlation among the remaining independent variables is, 

in general, sufficiently small and collinearity does not pose a significant problem in our 

estimations. Note, importantly, that the correlation between the R&D stocks weighted 

either by mobility or by networks is not particularly large, which was a potential 

concern when introducing both variables at the same time in the estimations. 

 

[Insert Table 4 about here] 

 

Econometric issues 

 

A natural way to estimate the gravity models, equations (11) and (16), would be to 

apply a logarithmic transformation and OLS techniques. Santos Silva and Tenreyro 

(2006, 2010) show, however, that this standard procedure in a gravity model may 

induce a form of heteroskedasticity of the error term because of the log transformation 

of the data, and OLS would be inconsistent. In addition to this, the number of zeros in 

the dependent variables is relatively large, making a logarithmic transformation of these 

variables impossible. To address these issues, Santos Silva and Tenreyro (2006, 2010) 

suggest estimating the multiplicative form of the model by Poisson pseudo-maximum 

likelihood. 

 

                                                           

11 We have omitted the regions of Las Canarias, Ceuta, Melilla, Madeira, Açores, Guadeloupe, 
Martinique, Guyane and Reunion, as well as Malta and Cyprus, due to their distance from continental 
Europe. In addition, four Greek regions filed no patent applications in our period of analysis and so were 
removed from the study. We do not expect this omission to alter our results significantly. 
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Further, their suggested estimators are particularly suitable in our case because our 

response variables are discrete, with a distribution that places the probability mass at 

non-negative integer values only, with data concentrated in a few small discrete values, 

right-tailed and intrinsically heteroskedastic, with variance increasing with the mean 

(Cameron and Trivedi, 1998). Again, count data models are more suitable in this 

framework. 

 

The most basic type of count data model is derived from the Poisson distribution. 

However, the Poisson distribution assumes equidispersion – that is, the conditional 

variance equals the conditional mean. But the conditional variance often exceeds the 

conditional mean (Burger et al., 2009; Long, 1997), which is a clear symptom of 

overdispersion. As a result, the Poisson regression may lead to consistent but inefficient 

estimates (Burger et al., 2009), with standard errors biased downward (Cameron and 

Trivedi, 1998; Long, 1997). Over-dispersion tests, based on the significance of α , the 

dispersion parameter, can be performed to guide our model choice. 

 

An important issue is related to the disproportionate number of zero that our dependent 

variables contain. Although count data models are explicitly designed to deal with the 

presence of zeros, these zeros may come from different data generating processes. 

Specific estimation techniques might be therefore required, such as the use of zero-

inflated models. In these models, the estimation process includes two parts: first the 

probability of observing mobility from j to i, ϕ , is estimated by means of a probit or 

logit model, which is a function of certain characteristics – a set of covariates that 

predict the probability of belonging to the strictly-zero group; and second, the count 

data model is estimated for the probability of each count for the group that has non-zero 

probability. 

 

In the following section, we thoroughly compare the performance of various types of 

count data models in order to choose the most appropriate estimation technique. 
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4. Results 

 

Our empirical analysis consists of two differentiated parts. First, in the following 

subsection we present the results of estimating the weights matrices m
ijω  and n

ijω  using 

data on mobility of skilled workers and technological collaborations between regions, 

and the selection criteria used among different count data models. Afterwards, we use 

these estimated values along with data on regional R&D to estimate the elasticities mρ  

and nρ in equation (6).  

 

Estimation of knowledge interactions 

 

Model (i) in table 5 shows the OLS estimations of the gravity model of cross-regional 

mobility, included for comparison purposes, for the case of the time window 2001-

2003. Besides, columns (ii) to (v) show, respectively, the Poisson Pseudo-Maximum 

Likelihood estimation (PPML), the Negative Binomial Pseudo-Maximum Likelihood 

(NBPML), the Zero Inflated Poisson Pseudo-Maximum Likelihood (ZIPPML) and the 

Zero-Inflated Negative Binomial Pseudo-Maximum Likelihood (ZINBPML), thereby 

accounting for the discrete nature of the dependent variable, the presence  (or excess) of 

zeros, and over-dispersion. In particular, column (ii) takes into account the count data 

nature of dependent variable, whilst column (iii) also controls for over-dispersion. 

Finally, columns (iv) and (v) take also on board the disproportionate presence of zeros 

in the dependent variable for, respectively, the Poisson and negative binomial 

estimations. As a general conclusion, we observe that apart from the OLS estimation, 

the coefficient estimates are very similar for the rest of the cases in terms of 

significance and sign. The geographical distance and the technological/cognitive 

distance are negative, as expected, and strongly significant. We find that both greater 

geographical as well as cognitive distances between two regions tend to hamper 

knowledge workers’ mobility. The results are in line to what is found in the regional 

migration literature at the European level (Crozet, 2004) as well as the results for the 

specific case of inventors (Miguelez and Moreno, 2012). In general, since the 

covariates are expressed in logarithmic form, the estimated coefficients can be 

interpreted as elasticities (Cameron and Trivedi, 1998). Meanwhile, sharing a common 

border and belonging to the same country foster the inter-exchange of inventors, as 
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expected. Note, importantly, that geographical and cognitive distance tend to show 

smaller coefficient estimates in zero-inflated models, which might be a symptom of the 

upward bias introduced in their non-zero-inflated counterparts. We discuss this issue 

shortly. 

 

[Insert Table 5 about here] 

 

Being the OLS estimation disregarded in theoretical grounds, a first graphical way to 

assess the different performance of count data models and to help choosing the most 

suitable one is to look at the probability distribution and compare the expected 

probabilities to the observed probabilities. Figure 1 shows this. The points above the 

horizontal axis indicate an over-prediction of the probability of observing mobility, 

whilst points below the axis indicate under-prediction. Clearly, ZIPPML (labelled ‘zip’ 

in the graph) and ZINBPML (‘zinb’) seem to perform the best, as the difference 

between expected and observed probabilities tends to be lower for all the cases. Note, 

however, that the ZINBPML (‘zinb’) seems to slightly under-predict the zeros whilst 

the ZIPPML (‘zip’) seems to slightly over-predict the ones. In order to choose between 

these two estimation methods, more formal statistical tests can also be used, to which 

we turn next. 

 

[Insert Figure 1 about here] 

 

Broadly speaking, the ZIPNBML presents a lower AIC and a higher log-likelihood 

value (OLS set aside), which seems to indicate its superiority over the other methods in 

terms of fit. In addition to this, both over-dispersion tests and Vuong statistics (bottom 

of table 5) seem to clearly point to the use of ZINBPML to the detriment of the other 

estimation methods. 

 

Table 6 presents the gravity estimations of co-patenting across regions in Europe, same 

period as before, same estimation techniques. Again, aside from the case of the OLS 

estimations, included for comparison purposes but disregarded on theoretical grounds, 

the coefficient estimates are comparable among estimation methods – it is worth noting, 

however, important differences in their magnitudes. In general, the results found accord 
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with previous empirical findings in similar contexts (Hoekman et al, 2009; Maggioni et 

al., 2007). 

 

[Insert Table 6 about here] 

 

As before, the difference between the expected probabilities to the observed 

probabilities is plotted in figure 2. As can be seen, the conclusions for the case of cross-

regional cooperation slightly differ from before. All the models seem to over-predict 

the number of zeros, though ZIPPML (labelled ‘zip’) and ZINBPML (‘zinb’) largely 

outperforms PPML (‘poisson’) and NBPML (‘nbreg’). Meanwhile, all the models seem 

to under-predict ones, being, in this order, ZIPPML (‘zip’) and ZINBPML (‘zinb’) 

outperforming the other methods. It seems, therefore, that ZIPPML (‘zip’) would be the 

chosen model based on the graphical representation of expected probabilities. We next 

turn to examining additional statistical tests in order to clarify this extreme and take a 

final decision. 

 

[Insert Figure 2 about here] 

 

Despite the former graphical results, statistical tests seem to point to the use of the 

ZINBPML again – see bootom of table 6, according to the AIC criteria, the value of the 

log-likelihood and the over-dispersion and Vuong statistics. In order to be as consistent 

as possible with the mobility case, we chose to estimate the gravity models of 

collaboration by means of ZINBPML, but we present robustness checks of the KPF 

estimation with ZIPPML estimations of both gravitational models, in order to study the 

stability and significance of the estimated parameters. 

 

Finally, tables 7 and 8 show the ZINBPML estimations, respectively, for the case of 

mobility and networks, and from 1996 to 2001 (from the time window 1996-1998 to the 

time window 2001-2003). Interestingly enough, the coefficients barely change over 

time, which is, admittedly, an unexpected result. Note, however, that somehow the 

different estimations partially overlap so as to observe big differences between them.12

                                                           

12 Although origin and destination fixed effects fairly control for origin and destination important features 
in a cross-sectional setting, they do not so in a longitudinal framework. Thus, when a panel gravity model 
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[Insert Table 7 and 8 about here] 

 

The impact of external accessible knowledge on innovation production 

 

Table 9 presents the results of the pooled OLS as well as the random and fixed effects 

estimation of the regional KPF, including the stock of knowledge in the external 

regions, weighted both by fitted mobility values and fitted networking values.13 At first 

sight results are consistent across methods of estimation in relation to the significance 

and sign of the core variables, namely R&D and human capital, as well as our focus 

variables. This is so irrespective of the consideration of control variables (columns (iv) 

to (vi)). However, the magnitude of their impact differs substantially from one method 

to another.14

 

 Clearly, the point estimates of most of the variables are dramatically 

changed when regional fixed-effects are included, signalling the importance of time-

invariant unobserved heterogeneity. With the aim of using the most adequate model for 

the interpretation of our results, we use the Hausman test, which rejects the null 

hypothesis that individual effects are uncorrelated with the independent variables. This 

points to the preference of the fixed effect model – columns (iii) and (vi) – to the 

expense of the random-effects. 

The elasticity of patents with respect to R&D expenditures when the fixed-effects 

estimations are carried out presents significant values (around 0.21), which is in line 

with the value obtained in the literature (Acs et al., 1994; Bottazzi and Peri, 2003; Jaffe, 

1989). Additionally, the human capital parameter is significant and with the expected 

positive sign, with similar values to those reported elsewhere (around 0.19 as in Bottazi 

and Peri, 2003).  

                                                                                                                                                                          

is estimated, and origin and destination are included, important time-variant origin and destination 
variables would also need to be included. This would imply including variables such as GDP per capita 
and other economic variables, amenities, and the like. Unfortunately, this kind of variables covering the 
whole sample of regions is not readily available. In addition to this, and more important, introducing 
variables such as the GDP will probably plague our first stage of endogeneity problems, which is 
precisely what we want to avoid. For these reasons, we prefer to estimate separate cross-sections and get 
the fitted values separately to plug them into our knowledge interaction matrices. 
13 m

ijω  and n
ijω  have been row-standardized, as it is usually done in the spatial econometrics literature. 

14 In principle, again, the coefficients can be interpreted as elasticities, since the variables in the 
regression are expressed in natural logarithmic form: the proportional increase in patenting activity in 
response to a 1% increase in a given explanatory variable. 
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Column (vi) further includes additional control variables: population density, 

population density squared, and specialization and concentration indices. Population 

density is significantly positive, pointing to the presence of agglomeration and 

urbanization economies, and its quadratic form is also included, being negative. These 

results would indicate evidence that overly dense areas suffer several costs related to 

congestion effects of agglomeration (negative externalities). On the other hand, the 

specialization index is positive whereas concentration seems to affect negatively the 

innovative activity. 

 

More important for our purposes are the significant and positive parameters obtained 

for the two variables proxying the available stock of knowledge from other regions. 

The elasticity of patenting activity with respect to R&D stocks in the rest of the 

European regions, weighted by the mobility of researchers between each pair of 

regions, presents a significant value of 0.012. Also positive, although of a greater 

magnitude, is the elasticity of patenting with respect to R&D stocks in the rest of 

European regions weighted by the intensity of collaborative networks across regions, 

with a value of 0.037. Despite the difficulty of interpreting the magnitude of these 

elasticities, the results seem to confirm that the production of knowledge in regions 

depends not only on its own research efforts and internal factors, but also on the 

knowledge available in other regions, accessible through mobile inventors and bilateral 

collaborations. In addition, it seems that among the two mechanisms through which 

knowledge diffuses and which we have explicitly considered in this paper, regions 

benefit more from external knowledge stocks when the transmission is through 

networks of collaboration than through the movement of highly skilled workers. The 

impact of the later is one third of the former.  

 

Already in the design of the Innovation policy in a knowledge-based economy 

(European Commission, 2000, p. 5), the European Commission made emphasis on 

knowledge mobility, since “the importance of tacit and specialised knowledge calls for 

greater mobility of knowledge workers”. Equally, it was highlighted that “European 

heterogeneity or variety can be exploited through networking of firms and scientists, to 

create a vibrant learning culture in which many different ideas and approaches are 

available as inputs to firms’ innovation and learning” (p. 6). In our paper we have 



 24 

empirically confirmed that policies fostering mobility and collaborations across 

inventors allow higher innovation outputs. Thus, policies that facilitate the mobility of 

knowledge among firms, stimulate collaborations among firms in their knowledge 

activities and foster senior knowledge workers visiting other institutions, even when 

crossing the borders of a region, has a benefit for the whole EU.    

 

According to Licht (2009), the importance of R&D policies has already been 

underlined by the 3% target of the Lisbon strategy, whereas for diffusion policies 

remain a further need for action for policy makers. This paper gives empirical 

confirmation that knowledge externalities flow easily among regions whose individuals 

are in contact thanks to the mobility of skilled workers or thanks to technological 

collaborations, irrespective of their geographical proximity, and so, policies with this 

target seems to be well founded.  

 

In short, the empirical analysis undertaken here support the hypothesis concerning the 

importance of collaborations and, to a lesser extent, of labour mobility as the means 

fostering the geographical diffusion of knowledge. However, several extensions to this 

initial approach can next be made.  

 

Robustness checks 

 

In this section we summarize several robustness checks performed to study the stability 

and significance of the estimated parameters, and the results encountered so far. The 

initial checks refer to the way of constructing the two variables proxying the stock of 

R&D in external regions. Column (i) estimates our main equation with fitted values 

from previous gravity models for mobility and collaborations that have been estimated 

using the ZIPPML method. The coefficients and resulting conclusions are virtually 

unchanged. The same occurs when the actual values of collaborations and mobility, 

instead of the fitted ones, are used for the weights of the stock of R&D in external 

regions (column (ii)). 

 

The remaining robustness checks are related to the role of physical proximity per se in 

the transmission of knowledge. In column (iii) we allow the production of knowledge 

in a region to depend not only on its own research efforts and internal factors, but also 
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on the knowledge available in the physically close neighbouring regions. The latter is 

proxied by the sum of the R&D stocks in the regions sharing a border, where each stock 

is divided by the number of contiguous regions (row-standardized weight matrix), as it 

is customary done in the related literature. As it is shown, the impact exerted by the 

knowledge available in the physically neighbouring regions is significantly positive and 

clearly of a much higher magnitude than that exerted thanks to the knowledge 

transmitted through networks of collaboration or mobility of inventors. Even though the 

related studies tend to interpret the estimates of cross-regional spatial effects as 

evidence of geographical knowledge spillovers (among many others, see: Bottazi and 

Peri, 2003; Moreno et al., 2005a, 2005b), we are reluctant to this interpretation because 

of the criticisms these matrices have received due to the lack of theoretical foundations 

behind their specification. Contrarily, a reasonable interpretation we can actually make 

is in terms of the role of physical distance in explaining both mobility and co-patents. 

Most probably, inventors place a high value on locating close to their former 

colleagues, workmates, friends and acquaintances when they decide to move, from 

whom they can get constant inflows of information about job and business 

opportunities, as well as technical solutions. Equally, and despite of the increasing use 

of ICT technologies which allow communications across distances, still the costs of 

searching potential partners, and those derived from negotiation between the partners, 

formation of contracts, agreement on the amount of knowledge and information that 

have to be exchanged, managing and administration of the common project, as well as 

monitoring of partners’ fulfilments, are likely to be less significant if agents have the 

chances to interact and meet frequently because of physical co-location. In sum, the 

different effects at work are likely to occur at short spatial distances and almost 

impossible to disentangle from one another. We acknowledge that further research to 

ascertain what drives these large coefficients is definitely needed. Thus, we claim that 

an important part of knowledge diffusion across regions in the knowledge production 

process are driven by ties of research collaborations and labour mobility. Column (iv) 

includes the three variables at a time, that is, the stock of knowledge in the remaining 

regions weighted by mobility, collaborations and spatial contiguity. In principle, one 

would expect the values of the parameter of the stock of R&D in the contiguous 

neighbouring regions to fall significantly when the other two variables are included in 

the regressions. This appears not to be true, since the parameter decreases but only 

slightly (from 0.52 to 0.47). It is worth mentioning though that our focal variables 
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remain strongly significant even when purely spatial effects are introduced – though 

with slightly smaller coefficient estimates, as it is the case of the spatial R&D variable. 

It seems, therefore, that the three variables partially overlap. This points to the need to 

undertake further research to investigate the additional actual channels by which 

knowledge diffuses over the space, beyond contiguity and physical proximity per se. 

Finally, column (v) repeats our main estimation but including the regional stock of 

R&D per capita instead of the R&D expenditures per capita. In this case, the own R&D 

parameter is considerably larger, though the conclusions and main results regarding the 

remaining parameters are maintained.  

 

 

5. Concluding remarks 

 

Although knowledge and innovation are well recognized as critical pillars of ‘smart 

growth’ in Europe, the right strategies that can help the continent to move in this 

direction are not so evident. Arguably, a pivotal element to ensure regional economic 

growth lies in accessing external sources of knowledge and facilitating interactive 

learning and interaction in innovation. This knowledge diffusion can take place through 

diffusive patterns based on knowledge externalities, that rely on informal transmission 

channels, relatively bounded in space, but also through intentional relations such as 

spatial mobility of skilled employees and geographical networks of research 

collaboration (Moreno and Miguelez, 2012; ESPON, 2012) 

 

The present inquiry is a first step in this direction and estimates a KPF where 

geographical interactions occurring across regions in the production of knowledge are 

introduced. Specifically, a more meaningful modelling of these interactions through 

inventors’ mobility and co-patenting data has been considered when building weights 

matrices to describe the strength of bilateral knowledge relations across European 

regions. We acknowledge that a thorough spatial econometric analysis could be 

performed estimating our production function by means of SAR and SEM models. 

Indeed, inventors’ mobility and collaboration data, and the approach we have suggested 

here – the gravity estimations, could be used to build weights matrices to estimate these 

spatial lag models and spatial error models (Anselin, 1988). Our own future research 

will definitely go in this direction.  
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We also acknowledge that geographical mobility and collaborations are intrinsically 

interrelated and these interrelations could affect our results. Further research should 

contemplate how to incorporate them in our empirical model through, for instance, 

Structural Equation Models, where mobility and collaborations influences each other 

and the geographical diffusion of knowledge at the same time. 

 

We find that both collaborations and, to a lesser extent, mobility, foster knowledge 

diffusion across European regions. Hence, from a policy perspective, these results 

illustrate that, not only R&D and human capital efforts are important to generate 

innovations at the regional level, but also the degree of connectivity of agents with the 

outside world, which give them access to global knowledge hotspots is useful for 

innovation. Such idea of connectivity, among others, is precisely in the core of the 

‘smart specialisation’ strategy recently launched by the European Commission 

(McCann and Ortega-Argilés, 2011). 
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Table 1. Summary statistics knowledge production function 
 Obs. Mean St.Dev. Min. Max. 
ln(PAT)p.c. 1,614 3.61 1.91 -3.93 6.77 
ln(R&D)p.c. 1,614 -1.79 1.53 -6.55 1.06 
lnHK 1,614 -9.31 0.50 -11.83 -8.29 
Wcolls*lnStockR&D 1,614 8.39 1.70 0.00 10.31 
Wmob*lnStockR&D 1,614 7.05 3.57 0.00 10.63 
ln(population density) 1,614 4.93 1.20 1.12 9.12 
Special. Index 1,614 6.06 2.95 2.06 21.14 
Concen. Index 1,614 0.10 0.12 0.00 1.00 
Note: The 1,614 observations correspond to 269 regions over 6 periods. 
 
Table 2. Summary statistics, mobility. 3-year time windows: 1996-2001 

All links Obs. Mean St.Dev. Min. Max. 
Mobility1996 72,092 0.11 1.20 0 59 
Mobility1997 72,092 0.12 1.37 0 79 
Mobility1998 72,092 0.14 1.61 0 134 
Mobility1999 72,092 0.15 1.92 0 207 
Mobility2000 72,092 0.16 2.27 0 254 
Mobility2001 72,092 0.16 2.61 0 275 
Positive links Obs. Mean St.Dev. Min. Max. 
Mobility1996 2,319 3.28 5.84 1 59 
Mobility1997 2,588 3.37 6.43 1 79 
Mobility1998 2,817 3.53 7.40 1 134 
Mobility1999 2,899 3.67 8.89 1 207 
Mobility2000 2,948 3.83 10.60 1 254 
Mobility2001 2,903 3.89 12.42 1 275 

Note: The variables on mobility and collaborations are build summing up within time windows of three years. Thus, 
for instance, mobility1996 corresponds to all the movements observed in 1996, 1997 and 1998. 
 
Table 3. Summary statistics, collaborations. 3-year time windows: 1996-2001 
All links Obs. Mean St.Dev. Min. Max. 
Collab.1996 36,046 1.34 15.37 0 1,355 
Collab.1997 36,046 1.54 16.73 0 1,449 
Collab.1998 36,046 1.76 18.80 0 1,622 
Collab.1999 36,046 1.91 20.11 0 1,701 
Collab.2000 36,046 2.01 21.31 0 1,711 
Collab.2001 36,046 2.03 21.35 0 1,642 
Positive links Obs. Mean St.Dev. Min. Max. 
Collab.1996 5,291 9.159 39.228 1 1,355 
Collab.1997 5,638 9.818 41.326 1 1,449 
Collab.1998 6,074 10.445 44.79 1 1,622 
Collab.1999 6,399 10.78 46.718 1 1,701 
Collab.2000 6,678 10.848 48.54 1 1,711 
Collab.2001 6,755 10.808 48.34 1 1,642 

Note: The variables on mobility and collaborations are build summing up within time windows of three years. Thus, 
for instance, mobility1996 corresponds to all the movements observed in 1996, 1997 and 1998. 
 
Table 4. Correlation matrix, knowledge production function 
 1 2 3 4 5 6 7 8 
1. ln(PAT)p.c. 1        
2. ln(R&D)p.c. 0.90 1       
3. lnHK 0.52 0.56 1      
4. Wcolls*lnStockR&D 0.55 0.54 0.26 1     
5. Wmob*lnStockR&D 0.78 0.73 0.40 0.51 1    
6. ln(population density) 0.26 0.29 0.19 0.09 0.23 1   
7. Special. Index -0.75 -0.72 -0.40 -0.51 -0.73 -0.34 1  
8. Concen. Index -0.51 -0.49 -0.28 -0.55 -0.49 -0.22 0.66 1 
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Table 5. Gravity estimations – mobility (2001-2003), various techniques. 
 (i) (ii) (iii) (iv) (v) 

 
OLS 

ln( ijM +1) ppml nbpml zippml zinbpml 

Ln(Geographic distance) -0.003 -0.975*** -0.916*** -0.690*** -0.704*** 
 (0.002) (0.134) (0.049) (0.120) (0.055) 
Contiguity dummy 0.488*** 0.774*** 1.075*** 0.885*** 1.208*** 
 (0.027) (0.133) (0.077) (0.121) (0.076) 
Ln(Cognitive distance) -0.063*** -0.331*** -0.404*** -0.224*** -0.263*** 
 (0.004) (0.096) (0.052) (0.087) (0.057) 
Same country dummy 0.307*** 1.713*** 2.176*** 0.780*** 1.417*** 
 (0.009) (0.156) (0.062) (0.150) (0.079) 
Constant -0.139*** 0.524 -0.329 -0.072 -0.761 
 (0.024) (1.437) (0.872) (1.298) (0.910) 
Origin F.E. yes yes yes yes yes 
Destination F.E. yes yes yes yes yes 
Overdispersion   0.270***  -0.221*** 
   (0.068)  (0.052) 
LR of 0=α      4466.65*** 
p-value     0.000 
Vuong    5.97*** 6.90*** 
p-value    0.000 0.000 
Observations 72,088 50,401 50,401 50,401 50,401 
Adjusted R2 0.309     
BIC -8,076.42 33,495.29 25,850.41 29,990.54 25,534.72 
AIC -13,045.85 29,496.31 21,842.60 25,947.43 21,482.78 
Log-likelihood 7,063.92 -14,295.15 -10,467.30 -12,515.71 -10,282.39 
McFadden djusted-R2 0.309 0.694 0.343 0.519 0.354 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Overdispersion tests largely reject the null 
hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of 
each regression. The tests performed point to the need of the zero-inflated models to accommodate our estimations to 
the excess of zeros. ‘ppml’ stands for poisson pseudo-maximum likelihood; ‘nbpml’ stands for negative binomial 
pseudo-maximum likelihood; ‘zippml’ stands for zero-inflated Poisson pseudo-maximum likelihood; and ‘zinbpml’ 
stands for zero-inflated negative binomial pseudo-maximum likelihood. Due to the inclusion of fixed effects, pseudo-
maximum likelihood estimations do not converge unless we drop the regional fixed-effects (and their corresponding 
observations) for which the region has zero recorded inventors’ flows to every other region in the sample. This 
explains the smaller number of observations used in these estimations (see Santos Silva and Tenreyro, 2010). For the 
case of ‘zippml’ and ‘zinbpml’, the logit part is not shown here but can be provided upon request. In these cases, the 
variables chosen as regressors in the binary part are the same as those of the count data part. In principle, there is no 
formal restriction to including the same regressors in both processes, aside from possible theoretical concerns. 
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Table 6. Gravity estimations – collaborations  (2001-2003), various techniques. 
 (i) (ii) (iii) (iv) (v) 

 
OLS 

ln( ijN +1) ppml nbpml zippml zinbpml 

Ln(Geographic distance) -0.116*** -0.902*** -0.815*** -0.837*** -0.762*** 
 (0.007) (0.044) (0.028) (0.046) (0.034) 
Contiguity Dummy 0.856*** 0.869*** 1.022*** 0.925*** 1.029*** 
 (0.057) (0.061) (0.061) (0.061) (0.059) 
Ln(Cognitive distance) -0.194*** -0.197*** -0.363*** -0.165*** -0.222*** 
 (0.010) (0.049) (0.034) (0.052) (0.035) 
Same country dummy 1.188*** 1.666*** 2.097*** 1.403*** 1.930*** 
 (0.023) (0.079) (0.045) (0.080) (0.049) 
Constant 0.329*** 1.723*** 0.531 1.754*** 0.553 
 (0.079) (0.598) (0.523) (0.599) (0.533) 
Origin F.E. yes yes yes yes yes 
Destination F.E. yes yes yes yes yes 
Overdispersion   -0.313***  -0.601*** 
   (0.041)  (0.048) 
LR of 0=α     12.33 1200 
p-value    0.000 0.000 
Vuong     6.21 
p-value     0.000 
Observations 36,044 33,674 33,674 33,674 33,674 
Adjusted-R2 0.608     
BIC 52,528.863 66,509.488 52,004.326 63,699.906 51,837.742 
AIC 47,934.423 62,103.485 47,589.898 59,251.779 47,381.192 
Log-likelihood -23,426.211 -30,528.742 -23,270.949 -29,097.890 -23,161.596 
McFadden djusted-R2 0.602 0.875 0.327 0.800 0.329 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Overdispersion tests largely reject the null 
hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of 
each regression. The tests performed point to the need of the zero-inflated models to accommodate our estimations to 
the excess of zeros. ‘ppml’ stands for poisson pseudo-maximum likelihood; ‘nbpml’ stands for negative binomial 
pseudo-maximum likelihood; ‘zippml’ stands for zero-inflated Poisson pseudo-maximum likelihood; and ‘zinbpml’ 
stands for zero-inflated negative binomial pseudo-maximum likelihood. Due to the inclusion of fixed effects, pseudo-
maximum likelihood estimations do not converge unless we drop the regional fixed-effects (and their corresponding 
observations) for which the region has zero recorded inventors’ flows to every other region in the sample. This 
explains the smaller number of observations used in these estimations (see Santos Silva and Tenreyro, 2010). For the 
case of ‘zippml’ and ‘zinbpml’, the logit part is not shown here but can be provided upon request. In these cases, the 
variables chosen as regressors in the binary part are the same as those of the count data part. In principle, there is no 
formal restriction to including the same regressors in both processes, aside from possible theoretical concerns. 
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Table 7. Gravity estimations – mobility. Zero-inflated negative binomial, 1996-
2001 

 (i) (ii) (iii) (iv) (v) (vi) 
 1996 1997 1998 1999 2000 2001 
Ln(Geographic 
distance) -0.654*** -0.702*** -0.758*** -0.733*** -0.738*** -0.704*** 

 (0.055) (0.056) (0.055) (0.056) (0.056) (0.055) 
Contiguity Dummy 1.253*** 1.187*** 1.114*** 1.159*** 1.159*** 1.208*** 
 (0.081) (0.077) (0.073) (0.072) (0.075) (0.076) 
Ln(Cognitive distance) -0.308*** -0.234*** -0.143** -0.116** -0.181*** -0.263*** 
 (0.068) (0.069) (0.063) (0.057) (0.057) (0.057) 
Same country dummy 1.579*** 1.558*** 1.524*** 1.458*** 1.435*** 1.417*** 
 (0.096) (0.094) (0.087) (0.079) (0.077) (0.079) 
Constant -1.137 -1.043 -0.853 -0.248 -0.632 -0.761 
 (0.800) (0.862) (0.920) (0.795) (0.858) (0.910) 
Origin F.E. yes yes yes yes yes yes 
Destination F.E. yes yes yes yes yes yes 
LR of 0=α  1,783.67 2,082.29 2,236.44 2,647.52 3,608.57 4,466.65 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Vuong 6.45 6.31 6.47 7.22 7.05 6.90 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Observations 43,062 44,321 45,591 46,879 47,966 50,401 
Non-zero obs. 2,319 2,588 2,817 2,899 2,948 2,903 
BIC 20,704.10 22,506.88 24,174.98 24,845.37 25,553.64 25,534.72 
AIC 17,019.18 18,757.52 20,361.08 20,966.76 21,620.99 21,482.78 
Log-likelihood -8,084.59 -8,947.76 -9,743.54 -10,040.38 -10,362.49 -10,282.39 
Adjusted-R2 0.356 0.357 0.356 0.358 0.353 0.354 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Overdispersion tests largely reject the null 
hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of 
each regression. The tests performed point to the need of the zero-inflated models to accommodate our estimations to 
the excess of zeros. In these cases, the variables chosen as regressors in the binary part are the same as those of the 
count data part. In principle, there is no formal restriction to including the same regressors in both processes, aside 
from possible theoretical concerns. 
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Table 8. Gravity estimations – collaborations. Zero-inflated negative binomial, 
1996-2001 

 (i) (ii) (iii) (iv) (v) (vi) 
 1996 1997 1998 1999 2000 2001 
Ln(Geographic 
distance) -0.677*** -0.657*** -0.683*** -0.696*** -0.724*** -0.762*** 

 (0.033) (0.033) (0.034) (0.033) (0.034) (0.034) 
Contiguity Dummy 1.043*** 1.065*** 1.071*** 1.067*** 1.063*** 1.029*** 
 (0.058) (0.058) (0.056) (0.057) (0.057) (0.059) 
Ln(Cognitive distance) -0.264*** -0.227*** -0.247*** -0.267*** -0.243*** -0.222*** 
 (0.041) (0.039) (0.037) (0.038) (0.036) (0.035) 
Same country dummy 2.119*** 2.144*** 2.032*** 2.024*** 1.929*** 1.930*** 
 (0.052) (0.051) (0.049) (0.049) (0.048) (0.049) 
Constant 1.133 1.011 0.777 0.476 0.879* 0.553 
 (0.771) (0.790) (0.609) (0.521) (0.519) (0.533) 
Origin F.E. yes yes yes yes yes yes 
Destination F.E. yes yes yes yes yes yes 
Overdispersion 7,332.72 8,301.07 9,695.56 12,000 12,000 12,000 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Vuong 6.51 7.09 7.41 6.66 6.75 6.21 
p-value 0.000 0.000 0.000 0.000 0.000 0.000 
Observations 30,034 30,043 30,281 32,003 32,902 33,674 
Non-zero obs. 5,291 5,638 6,074 6,399 6,678 6,754 
BIC 40,702.82 43,446.34 46,850.60 49,120.99 51,391.51 51,837.74 
AIC 36,547.78 39,291.15 42,674.83 44,800.22 46,997.64 47,381.19 
Log-likelihood -17,773.89 -19,145.57 -20,835.41 -21,884.11 -22,975.82 -23,161.59 
Adjusted-R2 0.342 0.335 0.327 0.331 0.327 0.329 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Overdispersion tests largely reject the null 
hypothesis of no overdispersion. Vuong statistics (Vuong, 1989), are also performed and reported at the bottom of 
each regression. The tests performed point to the need of the zero-inflated models to accommodate our estimations to 
the excess of zeros. In these cases, the variables chosen as regressors in the binary part are the same as those of the 
count data part. In principle, there is no formal restriction to including the same regressors in both processes, aside 
from possible theoretical concerns. 
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Table 9. Main estimation results. Dep. Var.: lnPATpc, KPF 1999-2004 
 (i) (ii) (iii) (iv) (v) (vi) 
 Pooled OLS RE FE Pooled OLS RE FE 
ln(R&D)p.c. 0.838*** 0.744*** 0.204*** 0.805*** 0.737*** 0.210*** 
 (0.021) (0.027) (0.038) (0.022) (0.028) (0.038) 
lnHK 0.120*** 0.115*** 0.187*** 0.171*** 0.116*** 0.188*** 
 (0.045) (0.038) (0.036) (0.044) (0.038) (0.036) 
Wmob*lnStockR&D 0.133*** 0.023*** 0.011** 0.105*** 0.023*** 0.012*** 
 (0.008) (0.005) (0.005) (0.008) (0.005) (0.005) 
Wcolls*lnStockR&D 0.058*** 0.043*** 0.039*** 0.046*** 0.040*** 0.037*** 
 (0.013) (0.007) (0.007) (0.014) (0.008) (0.007) 
ln(population density)    0.373*** 0.335* 4.943** 
    (0.073) (0.177) (2.307) 
ln(population density)^2    -0.040*** -0.022 -0.438* 
    (0.007) (0.017) (0.229) 
Special. Index    -0.079*** 0.003 0.031*** 
    (0.011) (0.009) (0.008) 
Concen. Index    0.253 -0.172 -0.360*** 
    (0.222) (0.114) (0.102) 
Constant 4.798*** 5.488*** 5.320*** 5.159*** 4.430*** -7.903 
 (0.416) (0.368) (0.343) (0.440) (0.569) (5.837) 
Hausman test  413.07***  444.62*** 
AIC 3,628.26  -177.098 3,539.652  -197.111 
BIC 3,655.192  -150.1656 3,588.13  -148.6328 
Observations 1,614 1,614 1,614 1,614 1,614 1,614 
Adjusted R2 0.848   0.856   
R2 within  0.0788 0.0996  0.0816 0.1151 
R2 between  0.8503 0.8415  0.8461 0.0896 
R2 overall  0.8320 0.8158  0.8284 0.0894 
Number of periods 6 6 6 6 6 6 
Number of regions 269 269 269 269 269 269 
Standard errors in parentheses  *** p<0.01, ** p<0.05, * p<0.1 
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Table 10. Robustness checks. Dep. Var.: lnPATpc 
 (i) (ii) (iii) (iv) (v) 
 zippml Actual values Spatial  

R&D 
Spatial  
R&D 

Stock 
R&Dpc 

 FE FE FE FE FE 
ln(R&D)p.c. 0.210*** 0.206*** 0.090** 0.090** 0.398*** 
 (0.038) (0.038) (0.039) (0.039) (0.045) 
lnHK 0.190*** 0.191*** 0.071* 0.062 0.108*** 
 (0.036) (0.036) (0.038) (0.038) (0.038) 
Wmob*lnStockR&D 0.012*** 0.014***  0.009** 0.008* 
 (0.005) (0.004)  (0.004) (0.005) 
Wcolls*lnStockR&D 0.036*** 0.034***  0.024*** 0.029*** 
 (0.007) (0.007)  (0.007) (0.007) 
Wcontig*lnStockR&D   0.522*** 0.470***  
   (0.053) (0.054)  
ln(population density) 4.939** 4.510* 4.523** 5.174** 4.835** 
 (2.310) (2.303) (2.250) (2.245) (2.268) 
ln(population density)^2 -0.438* -0.396* -0.589*** -0.621*** -0.513** 
 (0.229) (0.229) (0.225) (0.224) (0.225) 
Special. Index 0.031*** 0.031*** 0.037*** 0.038*** 0.039*** 
 (0.008) (0.008) (0.008) (0.008) (0.008) 
Concen. Index -0.366*** -0.374*** -0.440*** -0.368*** -0.396*** 
 (0.102) (0.102) (0.097) (0.099) (0.100) 
Constant -7.847 -6.827 -6.672 -9.060 -6.511 
 (5.846) (5.822) (5.680) (5.681) (5.741) 
Hausman test 443.78*** 447.43*** 356.04*** 351.68*** 127.56*** 
AIC -193.6534 -196.5001 -269.3157 -284.8043 -252.792 
BIC -145.1752 -148.0218 -226.224 -230.9396 -204.3137 
Observations 1,614 1,614 1,614 1,614 1,614 
R2 within 0.1132 0.1148 0.1528 0.1630 0.1451 
R2 between 0.0889 0.1063 0.0004 0.0036 0.0535 
R2 overall 0.0887 0.1060 0.0005 0.0038 0.0539 
Number of periods 6 6 6 6 6 
Number of regions 269 269 269 269 269 
Standard errors in parentheses  *** p<0.01, ** p<0.05, * p<0.1 
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Figure 1. Observed versus estimated probability of the number of movements. 
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Figure 2. Observed versus estimated probability of the number of collaborations. 
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