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Abstract. We investigate how correlations between the diversity of the connectivity of networks and the
dynamics at their nodes affect the macroscopic behavior. In particular, we study the synchronization
transition of coupled stochastic phase oscillators that represent the node dynamics. Crucially in our work,
the variability in the number of connections of the nodes is correlated with the width of the frequency
distribution of the oscillators. By numerical simulations on Erdös-Rényi networks, where the frequencies of
the oscillators are Gaussian distributed, we make the counterintuitive observation that an increase in the
strength of the correlation is accompanied by an increase in the critical coupling strength for the onset of
synchronization. We further observe that the critical coupling can solely depend on the average number of
connections or even completely lose its dependence on the network connectivity. Only beyond this state, a
weighted mean-field approximation breaks down. If noise is present, the correlations have to be stronger
to yield similar observations.

1 Introduction

In the last decade network science has become a field of
research with increasing importance. This is mainly due
to the fact that in principle any kind of coupling structure
can be mapped to a network of specific complexity. In this
way, one aims for understanding fundamental properties
that networks with given structure may have in common.
Besides a large variety of locally connected networks, the
two most prominent examples were coined by Watts and
Strogatz [1], and Barabási and Albert [2], who showed
that various networks can be divided into so-called small-
world or scale-free networks, respectively. In small-world
networks, all the nodes typically have the same range of
neighbor connections plus a few random shortcuts are es-
tablished. In contrast, scale-free networks are character-
ized by a significant amount of “hub” nodes with a very
large number of connections. Network science further owes
its popularity to the growing relevance of interdisciplinary
topics and to the advances in computer technology and
science [3].

One important topic is the study of the interplay be-
tween network topology and dynamics on the nodes, as
impressively reviewed in [4–8]. We pose the question, how
correlations between connectivity and dynamics on the
microscopic level affect the macroscopic behavior of a net-
work. Such a connection between the numbers of links in a
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network and the functional ability of the node dynamics is
evident and possibly caused by various reasons, for exam-
ple by limited energy supply, restricted space or chemical
resources, etc. Indeed, various types of neurons differ in
the typical number of connections and firing rates [9].

In order to approach the problem, we investigate the
synchronization transition of phase oscillators in com-
plex networks. The phenomenon of synchronization suits a
benchmark by virtue of its importance as a paradigmatic
emergence of collective behavior, as outlined for instance
in [10,11].

Only recently, Gómez-Gardeñes et al. [12] showed that
a special type of such a correlation can lead to an onset
of synchronization resembling a first-order phase synchro-
nization. This is remarkable, because the synchronization
transition was always found to be of second order, if one
only considers how different network topologies affect the
dynamics. They instead identified the natural frequency of
each node with its individual degree ω = k, i.e., its number
of connections. Furthermore, they interpolated between
Erdös-Rényi random networks and scale-free networks. In
this way it was found that the first-order nature of the
synchronization transition appears only in scale-free net-
works; those networks are characterized by an unlimited
dispersion of degrees. Hence, it was shown that a positive
correlation between the dynamics of the oscillators and
the large heterogeneity of the network has a drastic effect
on the onset of synchronization.

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2012-31026-x
http://www.springerlink.com


Page 2 of 6 Eur. Phys. J. B (2013) 86: 12

In this paper, we consider a more general correlation
between the degree and the frequency distributions; we
relate the diversity of the frequencies to the degrees. Two
different settings are generated, namely either positive or
negative correlations between the degree of a node and
how broad its oscillatory frequency varies from the mean
one. We explore whether this kind of correlation with fixed
average natural frequency is enough to yield a notable im-
pact on the synchronization transition. In particular, we
focus on the Erdös-Rényi random network model, which
often serves as an important benchmark [9]. We show by
simulations that the correlations can either support or im-
pede the synchronizability. The results are supported by
help of a weighted mean field theory [13] which allows to
formulate quantitative dependencies for the critical cou-
pling within the validity of the approximative theory. We
conclude by a qualitative discussion of our findings.

2 How degree-frequency correlations affect
the synchronization transition

The most prominent model in studying synchronization
phenomena is the Kuramoto model [14]

φ̇i(t) = ωi +
κ

N q

N∑

j=1

Aij sin (φj(t) − φi(t)) + ξi(t), (1)

where i = 1, . . . , N , with natural frequency ωi and
phase φi(t) of oscillator i at time t, respectively. The cou-
pling strength is denoted by κ, the number of oscillators
by N and q is a denseness parameter scaling the number
of links with changing N ; for q = 0 the network is sparse,
while it is dense for q = 1. Such a normalization is ap-
propriate as long as all the degrees share the same scaling
with the system size. Otherwise one may choose the max-
imum degree occurring in the network to guarantee an
intensive coupling term [8]. We consider undirected and
unweighted networks, in which case the adjacency matrix
is symmetric with elements Aij = 1, if the units i and j
are coupled, otherwise Aij = 0. Complex topologies of
real-world networks can be encoded into the adjacency
matrix, and decoded by counting all the degrees, which
are given by

ki =
N∑

j=1

Aij , (2)

ki > 0 by definition. Calculating the probabilities of oc-
curring degrees, yields the degree distribution P (k). Vari-
ous stochastic processes are brought together in the noise
terms ξi(t), such as the variability in the release of neu-
rotransmitters or the quasi-random synaptic inputs from
other neurons [15]. The sum of stochastic influences is
modeled by Gaussian white noise:

〈ξi(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = 2Dδijδ(t − t′).
(3)

The single parameter D scales the noise intensity and is
nonnegative. The angular brackets denote an average over
different realizations of the noise.

There are various possibilities how the individual oscil-
lation frequencies and degrees can be correlated, includ-
ing correlations between the mean values or the widths
of the corresponding distributions. In [16,17] the frequen-
cies and degrees are assumed to be positively correlated,
hence mean values and widths of the frequency and degree
distributions are directly correlated. It is found that with
increasing positive correlation, the oscillators are easier to
synchronize. This phenomenon gives rise to the fact that
one can observe an abrupt synchronization transition, if
the natural frequencies and degrees are identified [12].

However, we remark that with respect to many real-
world systems, one cannot observe a direct correlation be-
tween individual dynamics and connectivity. In neuronal
networks for instance, a higher number of connections is
not directly linked to a higher neuronal firing rate with
respect to one cell type. This is due to the balance of in-
hibition and excitation [18], where de- and acceleration
compensate each other. Therefore, the central idea in this
work is to consider correlations that are due to or affect
only the variability in the degree or the frequency distribu-
tion, respectively. Hence, the mean values are not affected.
To this end, we assume

√
〈ω2

i 〉 − 〈ωi〉2 = σn(ki). (4)

Each oscillator draws its natural frequency from the same
distribution function, but with an individual standard de-
viation, given by the degree ki. Here, σn(ki) is an abbre-
viation for the power-law function

σn(ki) = σ0

(
ki

〈k〉
)n

, n ∈ R. (5)

We call n the correlation power; σ0 stands for the origi-
nal standard deviation without correlations. Equation (5)
gives rise to two different settings, namely either posi-
tive, n > 0, or negative correlations, n < 0. Note that
for k < 〈k〉, i.e. nodes with degrees smaller than the aver-
age degree, the natural frequencies are the more sharply
distributed around the mean frequency, the larger is n,
while for k > 〈k〉 it is just the opposite case (see Fig. 1 for
visualization).

We consider Erdös-Rényi like random networks that
are constructed by assigning an edge probability

pe = pN q−1, 0 ≤ p, q ≤ 1 (6)

for any two of the N nodes in the network with the scal-
ing parameter q introduced in equation (1). The further
additional requirement is that besides the edge probabil-
ity, each node is a priori connected to another randomly
chosen one. In this way we guarantee that there are no iso-
lated nodes, which are not interesting here, because they
are not able to take part in the synchronization process
and they only reduce the effective system size. Hence, the
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Fig. 1. (Color online) Conditional Gaussian frequency distri-
bution with σ0 = 1 shown as a function of the correlation
power n and the relative degree k/〈k〉 (inset).

average degree reads

〈k〉 = 2 + pN q

(
1 − 3

N

)
, (7)

which is approximately pN q for q > 0 and N → ∞. The
first term in equation (7) stems from the random connec-
tions that are a priori chosen, whereas the second term
is a result of the edge probabilities, equation (6). Higher
moments and the degree distribution P (k) are not known
exactly. However, for large systems and q > 0, the second
term in equation (7) dominates and the degrees become
binomially distributed [5].

In our simulations, the stochastic differential equations
are integrated up to t = 600 with time step Δt = 0.05
by using the Heun scheme. We consider a Gaussian fre-
quency distribution with zero mean and standard devia-
tion σn(ki), where σ0 = 0.2 (cf. Eq. (5)). Moreover, we
discard the data up to t = 200, by which transient effects
are safely avoided. The statistical equilibria are further
calculated as averages over at least 100 different network
realizations. The different network configurations do not
differ only in the configuration of the connections, but the
oscillators on the network differ as well: all the natural fre-
quencies and the initial values of the phases change from
one configuration to another.

In order to measure the critical coupling strength, we
perform a finite-size scaling analysis [13,19], where we take
networks of size N = 300, 500, 800, 1200 with q = 0.4.
Figure 2 displays the measured critical coupling strengths
(red circles). As expected, both a larger noise intensity D
and a decrease of the number of connections, here pa-
rameterized by the inverse edge probability 1/p, impedes
the synchronizability. This causes the higher coupling
strength κc needed for the onset of synchronization (com-
pare panels (a)–(d)).

Besides that, we observe that κc increases with the
correlation power n, which is by far not a foregone con-
clusion. One could have expected that both settings of
correlation, i.e. n < 0 and n > 0 in (5), lead to a decrease
of κc, because the latter marks the transition from the
completely asynchronous to a partially synchronous state,

and not to the completely synchronous state. For any cor-
relation power, oscillators with a narrower frequency dis-
tribution appear which are easier to synchronize. Hence,
a lower coupling strength would be needed for the onset
of synchronization.

Instead, the uncorrelated case n = 0 needs a crit-
ical coupling strength intermediate to the two settings
with n �= 0. Positive correlations require higher critical
coupling strengths κc, negatively correlated networks can
be easier synchronized, i.e. κc decays.

First, we provide an intuitive explanation for this ob-
servation above; in the next section a mathematical rea-
soning will be given. The phenomenon of synchronization
arises by virtue of interactions. Therefore, nodes with a
larger degree k > 〈k〉 (hubs) are more crucial than nodes
with a smaller degree k < 〈k〉 (compare with Ref. [20]).
If the frequencies of these hubs are much broader spread
around the average frequency, it is more difficult for the
whole network to exhibit a synchronized oscillation. In
other words, a population of oscillators is easier to syn-
chronize, if the important nodes possess frequencies closer
to the average frequency. In particular, for the case n > 0,
hubs are favored to have a great variability of frequencies,
whereas sparsely linked nodes do the opposite. Necessary
coupling for the onset of synchronization has to be larger
than in the uncorrelated case. Differently for n < 0, the
less linked nodes own an increased variabilty compared to
the uncorrelated case, but the hubs are now easier to syn-
chronize since their frequencies are narrower distributed.

We further observe that the curves for different n ap-
proach each other with increasing noise intensity D. This
is due to the fact that a strong noise outweighs the diver-
sity of the oscillators given by the frequency distribution;
the effect of correlations is destroyed for large noise inten-
sities and they become negligible.

Finally, it turns out to be beneficial to plot the criti-
cal coupling strength κc as a function of the inverse edge
probability 1/p as done in Figure 2. In this way we observe
two distinct regions: for small correlation power n, the
critical coupling strength increases sublinearly as a func-
tion of 1/p, while for large n, it increases superlinearly.
In panel (d) a linear dependence is located between n = 1
and n = 2 for D = 0. For larger noise intensities or smaller
standard deviations σ0 (compare inset in panel (c)), the
separation between the two regions appears for larger cor-
relation powers n. The shaded areas (orange) in panels (c)
and (d) depict up to which n we find the superlinear region
by numerical simulations.

A linear dependence indicates that the onset of syn-
chronization κc solely depends on the mean degree 〈k〉,
which is determined by p. Hence, for a certain nc, the
onset of synchronization seems to become independent of
higher moments of the degree distribution. The hetero-
geneity in the network is masked by the correlations.

3 Theoretical considerations

In what follows, we discuss an approximation scheme [13]
that allows to reproduce analytically our observations
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Fig. 2. (Color online) The critical coupling strength depicted as a function of the inverse edge probability, which is pro-
portional to the inverse average degree (see Eq. (7)). Measurements are done via finite-size scaling analysis with systems of
size N = 300, 500, 800, 1200 and q = 0.4. Furthermore, a Gaussian frequency distribution is used with zero mean and standard
deviation σn(ki), where σ0 = 0.2 (cf. Eq. (5)). Markers connected by dashed lines (red) show simulation results, while (blue)
solid lines depict corresponding theoretical results, obtained by numerical integration. The thick solid (green) line in panel
(d) is exactly obtained by equation (15) with n = 1, 2. The arrows show the direction of increasing n, from n = −2 to n = 4.
Panels (a)–(d) show results with decreasing noise intensity: (a) D = 1.5, (b) D = 0.5, (c) D = 0.05, and (d) D = 0. Inset in
(c) presents κc comparing σ0 = 0.2 with σ0 = 0.02 in case of n = 3. Inset in (d) depicts the discrepancy κc, Sim−κc, Th between
simulation and theory as a function of the denseness parameter q in case of n = 1 and p = 0.1. In the unshaded regions of (a)–(d)
simulation results are accompanied by theoretical results, whereas in the shaded areas (orange) in (c) and (d) a superlinear
growth of κc cannot be described by our mean-field theory.

above. We replace the random network by a fully con-
nected network with random coupling weights that mimic
the actual network structure. Requiring thereby the con-
servation of the individual degrees, ki =

∑N
j=1 Ãij ,

i = 1, . . . , N (cf. Eq. (2)), the elements of the approxi-
mated adjacency matrix read

Ãij = ki
kj∑N
l=1 kl

. (8)

Inserting this into equation (1) yields a weighted mean-
field approximation and effectively a one-oscillator de-
scription [13]. In the following we consider the thermo-
dynamic limit N → ∞, where the system is conveniently
described by the density ρ(φ, t|ω, k), which is normalized
according to

∫ 2π

0 ρ(φ, t|ω, k)dφ = 1 ∀ ω, k, t.
For given degree k and natural frequency ω,

ρ(φ, t|ω, k)dφ gives the fraction of oscillators having a
phase between φ and φ + dφ at time t (indices can be
neglected, since all the nodes are assumed to be statisti-
cally identical).

The completely asynchronous state is given by
ρ(φ, t|ω, k) = 1/(2π) ∀ ω, k, t and we aim at calculating the
critical coupling strength, where it loses its stability, which
marks the onset of synchronization. The linear stability of
the completely asynchronous state is characterized by a

single real-valued eigenvalue λ given by a self-consistent
equation [13]:

1 =
κ

2N q〈k〉
∫ +∞

−∞
dω′ ∑

k′

(λ + D)k′2

(λ + D)2 + ω′2 P (ω′, k′) . (9)

The sum over k′ covers all possible degrees, which could
be further approximated by an integral. The joint proba-
bility density P (ω, k) takes into account the possibility of
correlations between the frequencies and degrees. In the
derivation of equation (9) we assume that, with regard to
the ω-dependency, P (ω, k) has a single maximum at fre-
quency ω = 0 (this choice is always possible due to the
rotational symmetry) and is symmetric with respect to it.

The critical condition λ = λc = 0 yields the critical
coupling strength

κc = 2N q〈k〉
[∫ +∞

−∞
dω′ ∑

k′

Dk′2

D2 + ω′2 P (ω′, k′)

]−1

.

(10)
This equation is not valid in the noise-free case, where one
has to take the limit λ → 0+ in equation (9) with D = 0
resulting in

κc = 2N q〈k〉
[
π

∑

k′
k′2P (0, k′)

]−1

. (11)
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To see this, note that limλ→0+

∫ +∞
−∞ dω′λ/

(
λ2 + ω′2) =

π
∫ +∞
−∞ dω′δ(ω′) [21].
Assuming a given degree distribution P (k), the joint

frequency and degree distribution separates as P (ω, k) ≡
g(ω|k)P (k) with the conditional frequency distribution
g(ω|k). It gives the probability that an oscillator at a node
with degree k has the natural frequency ω. It includes the
relation (4), i.e. the correlations between the degree and
the frequency variation.

First, in accordance with the numerics above, we con-
sider a Gaussian frequency distribution:

ggauss(ω|k) =
1√

2πσn(k)
e
− 1

2
ω2

σn(k)2 , (12)

with σn(k) expressed by (4). Taking the integral, we derive
the critical coupling strength (10):

κc, gauss = 2

√
2
π

σ0N
q〈k〉1−n

×
〈

k2−n erfc
(

D√
2σn(k)

)
exp

(
D2

2σn(k)2

)〉−1

,

(13)

which is an intensive parameter and scales with the vari-
ation of frequencies for small σ0 (see inset in panel (c) of
Fig. 2).

By calculating dκc/dn, we want to validate that the
critical coupling strength indeed grows with the correla-
tion power, as stated in the previous section. To this end,
we use equation (13) and arrive at a sufficient condition
for dκc, gauss/dn > 0, namely

2√
π

y >
(
2y2 − 1

)
exp

(
y2

)
erfc (y) , (14)

with y = D (〈k〉/k)n
/

(√
2σ0

)
. Since we have y > 0, the

inequality (14) is true; in fact, the right-hand side divided
by y, approaches 2/

√
π from below for y going to infinity.

In the noise-free case D = 0 we find

κc, gauss(D = 0) = 2

√
2
π

σ0N
q 〈k〉1−n

〈k2−n〉 . (15)

Interestingly, for n = 1 and n = 2, we get the same critical
coupling strength growing inversely to the average degree:

κc, gauss(D = 0, n = 1, 2) = 2

√
2
π

σ0

p
(16)

in the thermodynamic limit (cf. Eq. (7)). In Figure 2
the solid blue lines describe the critical coupling strength
as given by numerical integration of equations (13)
or (15) with a binomial degree distribution and system
size N = 1000. In panel (d) for n = 1, 2, instead of the
numerical integration of equation (15), the exact expres-
sion (16) is shown (thick green line). The agreement be-
tween theory and simulation is satisfactory in (a)–(d) and

confirms the previous observations. The weighted mean-
field approximation does not yield superlinear dependen-
cies. Simulation results in the shaded (orange) areas in
panels (c) and (d) are therefore not covered by the the-
ory; the validity of the approximation restricts to corre-
lation strengths with sub- and linear growth of κc. For
large noise intensities D the theory overestimates the crit-
ical coupling strength κc, irrespective of the correlation
power n, but this may turn into the opposite case when
decreasing D depending on n. In summary, there seems to
be some particular noise values where the agreement be-
tween theory and simulation is particularly good. As pre-
sented in the inset of panel (d), deviations between the re-
sults from the numerical simulations κc, Sim and from the
weighted mean-field theory κc, Th can be further reduced
by increasing q. Hence, more densely connected networks
are better reflected by the theory.

4 Generalizations

The network model under consideration constitutes al-
ready a generalized model, since it allows to interpolate
between sparse and dense random networks. Here we dis-
cuss two further generalizations, namely other frequency
distributions and different normalization variants of the
coupling term (cf. Eq. (1)). In particular, we consider now
a Lorentzian and a uniform frequency distribution:

glorentz(ω|k) =
σn(k)

π

1
σn(k)2 + ω2

,

guni(ω|k) =
1

2
√

3σn(k)
, |ω| ≤ √

3σn(k).
(17)

Note that in case of the Lorentzian, σn(k) does not have
the meaning of a standard deviation, instead it is the scale
parameter for the width of the distribution. We further
introduce a generalized normalization N (k) instead of N q,
which can be a function of the degree k. Then we find for
the critical coupling strength:

κc, lorentz = 2〈k〉
〈

k2

N (k)
1

D + σn(k)

〉−1

, (18)

κc, uni =2
√

3σ0〈k〉1−n

〈
k2−n

N (k)
arctan

(√
3σn(k)
D

)〉−1

.

(19)

Let us now specify the normalization N (k) by considering
two cases: N (k) = 〈k〉 and N (k) = k. In the first case, one
assumes again that the system-size scaling of the number
of connections is the same for all nodes. In order to distin-
guish the two normalizations, we denote the critical cou-
pling strength by κa or κw, respectively. In the noise-free
case D = 0 we obtain, in contrast to (15), the following
relations with the same constant of proportionality C:

κa = Cσ0
〈k〉2−n

〈k2−n〉 , κw = Cσ0
〈k〉1−n

〈k1−n〉 , (20)

irrespective of whether we consider a Gaussian, a
Lorentzian or a uniform frequency distribution. Only the
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constant of proportionality C is different, namely Cgauss =
2
√

2/π ≈ 1.60, Clorentz = 2 or Cuni = 4
√

3/π ≈ 2.21.
Again we find a disappearance of network effects for

specific correlation powers. The phenomenon is even more
pronounced here, since κa becomes a constant for n = 1, 2.
Moreover we see that κw(n) = κa(n + 1). Correspond-
ingly, κw becomes a constant for n = 0, 1. It has been
pointed out in the literature, e.g. in [8], that the addi-
tional weight introduced by the normalization N (k) = k
can mask the heterogeneity of the network. Our results
constitute a generalization of this statement. Preliminary
numerical simulations can reproduce our theoretical re-
sult κw(n) = κa(n+1), while the point where the onset of
synchronization loses its dependence on the network con-
nectivity is found to appear at smaller values of n than
predicted by the theory.

5 Conclusion

We assumed correlations between the degree number in a
complex network and the variance of frequencies of phase
oscillators belonging to the nodes. By estimating numer-
ically and analytically the critical coupling strength that
marks the onset of synchronization, we were able to show
that correlations can favor as well as impede the ability
of creating coherent network oscillations. In both scenar-
ios, the behavior of hubs (nodes with large degree) plays
a dominant role. Stronger coupling is necessary, if the
hubs have broadly distributed frequencies. The onset of
synchonization is shifted up, despite the fact that the
less linked nodes possess a narrower frequency band and
would, taken separately, synchronize at lower couplings.
The opposite happens in case that hubs have narrowed
distributions. We have further demonstrated that noise
acting on the frequencies plays a crucial role; correlation
effects become maximally strong in case of vanishing noise
intensity.

We mention that our analysis was performed for edge
probabilities p larger than 0.1. In this region we have
found a good applicability of the weighted mean field the-
ory proposed in [13]. Analytical results agree satisfacto-
rily with numeric ones for sufficiently large noise D or not
too strong correlation powers n and dense enough scaling
of the links q > 0 in particular, as long as the critical
coupling grows sub- or linearly with 1/p. Beyond a cer-
tain denseness parameter for given correlation power, the
weighted mean-field approximation breaks down.

In a recent preprint [22], the masking of the structural
heterogeneity was independently found for another type
of correlation.
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