Abstract
Active margins host more than half of submarine canyons worldwide. Understanding the coupling between active tectonics and canyon processes is required to improve modeling of canyon evolution and derive tectonic information from canyon morphology. In this paper we analyze high resolution geophysical data and imagery from Cook Strait canyon system (CS), offshore New Zealand, to characterize the influence of active tectonics on the morphology, processes and evolution of submarine canyons, and to deduce tectonic activity from canyon morphology. Canyon location and morphology bear the clearest evidence of tectonic activity, with major faults and structural ridges giving rise to sinuosity, steep and linear longitudinal profiles, cross-sectional asymmetry, and breaks in slope gradient, relief and slope-area plots. Faults are also associated with stronger and more frequent sedimentary flows, steep canyon walls that promote gully erosion, and seismicity that is considered the most likely trigger of failure of canyon walls. Tectonic activity gives rise to two types of knickpoints in CS. Gentle, rounded and diffusive knickpoints form due to short wavelength folds or fault break outs. The more widespread steep and angular knickpoints have migrated through canyon floor slope failures and localized quarrying/plucking. Migration is driven by base level lowering due to regional margin uplift and deepening of lower Cook Strait Canyon, and is likely faster in larger canyons because of higher sedimentary flow throughput. The knickpoints, non-adherence to Playfair’s Law, linear longitudinal profiles and lack of canyon-wide, inverse power-law slope-area relationships indicate that the CS is in a transient state, adjusting to perturbations associated with tectonic displacements and changes in base level and sediment fluxes. We conclude by inferring unmapped faults and regions of more pronounced uplift, and proposing a generalized model for canyon geomorphic evolution in tectonically-active margins.
Manuscript submitted to Geosphere:

Geomorphic response of submarine canyons to tectonic activity: Insights from the Cook Strait canyon system, New Zealand.

Aaron Micallef a,b*, Joshu J. Mountjoy c, Philip M. Barnes c, Miquel Canals b, Galderic Lastras b

a Department of Physics, Faculty of Science, University of Malta, Msida, MSD 2080, Malta.

b GRC Geociències Marines, Facultat de Geologia, Universitat de Barcelona, E-08028 Barcelona, Spain.

c National Institute of Water and Atmospheric Research, Private Bag 14901, Wellington, New Zealand.

*Corresponding author:
E-mail: aaron.micallef@um.edu.mt; Telephone: +356 23403613.

ABSTRACT

Active margins host more than half of submarine canyons worldwide. Understanding the coupling between active tectonics and canyon processes is required to improve modeling of canyon evolution and derive tectonic information from canyon morphology. In this paper we analyze high resolution geophysical data and imagery from Cook Strait canyon...
system (CS), offshore New Zealand, to characterize the influence of active tectonics on the morphology, processes and evolution of submarine canyons, and to deduce tectonic activity from canyon morphology. Canyon location and morphology bear the clearest evidence of tectonic activity, with major faults and structural ridges giving rise to sinuosity, steep and linear longitudinal profiles, cross-sectional asymmetry, and breaks in slope gradient, relief and slope-area plots. Faults are also associated with stronger and more frequent sedimentary flows, steep canyon walls that promote gully erosion, and seismicity that is considered the most likely trigger of failure of canyon walls. Tectonic activity gives rise to two types of knickpoints in CS. Gentle, rounded and diffusive knickpoints form due to short wavelength folds or fault break outs. The more widespread steep and angular knickpoints have migrated through canyon floor slope failures and localized quarrying/plucking. Migration is driven by base level lowering due to regional margin uplift and deepening of lower Cook Strait Canyon, and is likely faster in larger canyons because of higher sedimentary flow throughput. The knickpoints, non-adherence to Playfair’s Law, linear longitudinal profiles and lack of canyon-wide, inverse power-law slope-area relationships indicate that the CS is in a transient state, adjusting to perturbations associated with tectonic displacements and changes in base level and sediment fluxes. We conclude by inferring unmapped faults and regions of more pronounced uplift, and proposing a generalized model for canyon geomorphic evolution in tectonically-active margins.

Keywords: submarine canyons; active margin; tectonics; knickpoints; New Zealand
1. INTRODUCTION

Submarine canyons have long been recognized as principal sediment-transfer conduits that play an integral role in many aspects of continental margin development (Shepard, 1981; Normark and Carlson, 2003; Allen and Durrieu de Madron, 2009; Canals et al., 2013). The majority of published studies on canyon inception and development have been based on passive margin systems (e.g. Twichell and Roberts, 1982; Farre et al., 1983; Pratson et al., 1994; Pratson and Coakley, 1996; Pratson et al., 2009). However, active tectonic margins comprise a significant proportion of global continental margins and host more than half of submarine canyons worldwide (Harris and Whiteway, 2011). The morphology and evolution of canyons incising active margins are governed by climatic, sedimentary and oceanographic processes that are similar to those on passive margins, although tectonism tends to exert a predominant control at both local and regional scales. In particular, seafloor deformation, through folding, faulting, uplift or subsidence, has been shown to directly affect the location, alignment and geometry of many submarine canyons and channels worldwide; large-magnitude earthquakes, on the other hand, tend to influence facies distribution (e.g. Normark and Curray, 1968; Nagel et al., 1986; Lewis and Barnes, 1999; Laursen and Normark, 2002; Chiang and Yu, 2006; Le Dantec et al., 2010). Furthermore, canyons incising active margins tend to be shorter, steeper, and more dendritic and closely spaced than their counterparts in passive margins (Harris and Whiteway, 2011). Whilst excellent quality ultra-high resolution Autonomous Underwater Vehicle bathymetric data demonstrate detailed morphology of some canyon systems (e.g. Paull et al., 2011), most studies concerning canyons in active margins have
been based on coarse-resolution bathymetric data, which only provide useful information on macro-scale morphology. Detailed examination of relationships between active tectonics, seafloor processes and canyon development can only be made with continuous-coverage, high resolution bathymetric and seismic reflection data. It is therefore likely that the distinctive influence of active tectonics on submarine canyon morphology and processes has not been fully explored.

Tectonic geomorphology is a thriving field of subaerial geomorphology that examines the dynamic coupling between tectonics, climate and erosion (Crosby and Whipple, 2006; Bishop, 2007; Whipple, 2009; Brocklehurst, 2010). The focus of tectonic geomorphology has been the fluvial network which, by maintaining a direct connection to tectonic forcings, contains useful information on tectonic activity across a landscape (Wobus et al., 2006). Terrestrial river systems are known to respond to tectonics in several ways. Experimental results and field examples show how slope steepening due to uplift results in an increase in river sinuosity and convexity, as well as localized aggradation and degradation (Ouchi, 1985). Fault rupture to the land surface across a river bed can induce significant channel steps that propagate upstream. For example, the 1999 Chi-Chi earthquake produced surface offsets of 0.5 – 8 m that evolved upstream as a series of knickpoints of up to 18 m height over a period of 9 years (Yanites et al., 2010). Regionally high uplift rates affecting the entire channel reach can alter the equilibrium profile of a fluvial system and induce knickpoint propagation up a riverbed until the system re-attains some equilibrium state (Snyder et al., 2000). Reduction in post-glacial sediment supply can also drive knickpoint development and migration in some river
systems (e.g. Berryman et al., 2010). Another response is the dramatic and long lasting increase in sediment load due to earthquake-induced slope instability (Dadson et al., 2004). Many studies have dealt with quantitative analyses of digital elevation models, particularly focusing on channel morphology, to obtain information on the character, pattern and rates of tectonic deformation, and to develop long-term landscape evolution models (e.g. Howard, 1994; Burbank et al., 1996; Demoulin, 1998; Whipple and Tucker, 1999; Snyder et al., 2000; Kirby and Whipple, 2001; Snyder et al., 2003; Whittaker et al., 2008; Sougnez and Vanacker, 2011). Our ability to derive similar information from submarine canyon topography is severely limited by several factors. These include the paucity of data available to develop and calibrate process-based laws, the difficulties in obtaining in situ measurements of sediment flows, and the inapplicability of surface exposure dating techniques underwater (Huyghe et al., 2004; Mitchell, 2006). Knowledge of the effects of active tectonics on submarine canyon development is thus still insufficient to enable quantitative studies of canyon evolution. Considering that most data available from submarine canyons are morphological, a better understanding of the coupling between active tectonics and submarine canyon morphology and processes is required.

In subaerial geomorphology, the stream power erosion model has been developed to relate the fluvial erosive process to larger-scale landscape form. In many settings, local channel slope (S) and contributing drainage area (A) have been shown to be related by an inverse power law scaling (Flint, 1974; Howard, 1994; Whipple and Tucker, 2002):
where \(k \) is the steepness index and \(\theta \) is the concavity index. Inverse power law scaling in bedrock-eroding rivers has been interpreted to arise where there is a steady state between tectonic uplift and erosion. Thus, segments of individual slope-area profiles characterized by different values of steepness and concavity indices are often used to extract tectonic information from the landscape (Wobus et al., 2006). Channel steepness, in particular, has been predicted to correlate with rock uplift rates (Howard, 1994). These relationships are based on several assumptions, and their applicability are limited by many complexities, such as non-linearities in incision processes, adjustments in the channel, bed morphology or sediment size, and changes in climate or tectonic state (Whipple and Tucker, 1999; Snyder et al., 2000; Whipple and Tucker, 2002; Snyder et al., 2003). On the continental margins of the Atlantic USA and Taiwan, slope-area relationships similar to those reported for subaerial rivers have been shown to be common for submarine canyons (Mitchell, 2004, 2005; Ramsey et al., 2006; Brothers et al., 2013). The relationships for submarine canyons have been explained by a model where the frequency of flows experienced by the canyon increases downstream and with increasing contributing area, representing the upstream area of canyon walls with potentially unstable sediment capable of sourcing erosive sedimentary flows. In this model, erosion in the continental slope progresses towards a form of spatial equilibrium so that channels have concave-upwards long-profiles, with the downstream effect of increasing flow frequency being balanced by decreasing gradient. It is very difficult to corroborate this model with field data. The origin of the slope-area relationships is still unclear because
erosion by rivers and gravity flows differs in many aspects, particularly in terms of
density contrast, thickness, and flow transformation. Submarine canyons are
characterized by increasingly resistant lithology with depth, flank slope failures, spatial
and temporal changes in erosion mechanisms, and varied sediment input. The
downstream change in dynamical behavior of submarine gravity flows is quite different
from that of rivers because of the increase or loss of flow power with suspension or
deposition of particle load (Gerber et al., 2009). It has also been suggested that drainage
basin area in submarine canyons is not related to flow discharge as in terrestrial systems,
but results from the aggregation of random walks (Straub et al., 2007). The details of
submarine flow processes and their interaction with seafloor morphology and tectonic
processes are therefore still too vague to justify using morphological parameters to
extract tectonic information.

The purpose of this study is to carry out morphological and morphometric analyses of
high resolution bathymetric and seismic reflection data from the Cook Strait canyon
system (CS), which incises the Hikurangi Margin off New Zealand’s North Island, to: (i)
understand how tectonic activity influences submarine canyon morphology, processes
and evolution in an active margin, (ii) deduce current or past tectonic activity across the
Hikurangi Margin, and (iii) formulate a generalized model of canyon development in
response to tectonic forcing based on morphometric parameters. Addressing these
research objectives is important for developing a framework for reconstructing and
predicting canyon dynamics in active margins, which has direct implications also for
canyon oceanography and biology, as well as deriving tectonic information from canyon
morphology, which can improve offshore neo-tectonic analyses and hazard assessment. Cook Strait is an excellent site to investigate the signature of tectonism in submarine canyons - it comprises an active subduction-to-strike slip tectonic margin that is traversed by a series of active thrust and strike-slip faults, incised by New Zealand’s largest submarine canyon system, covered by high resolution seafloor data (Mountjoy et al., 2009; Lamarche et al., 2011) and there is excellent quality seismic reflection data available for subsurface imaging of stratigraphy and tectonic structure. The tectonic strain rates from GPS data, and the ground shaking potential from earthquake sources from paleoseismic and seismological studies, are very well known in this area, providing an excellent framework to assess the response of canyons to tectonic forcing.

2. REGIONAL SETTING

2.1 General setting and geomorphology

Cook Strait is the seaway between the North and South Islands of New Zealand and links the Tasman Sea with the Pacific Ocean (Figure 1). The strait narrows to 22 km width at the central neck, and widens towards the north and south. The majority of the seabed is at water depths of less than 150 m; the exceptions are the Narrows Basin, where depths exceed 300 m, and to the south-east of the Cook Strait. The seaway is subjected to strong tides, sustaining flows of 1.5 - 2 m s\(^{-1}\) over large areas, which are known to mobilize sediment up to cobble size (Carter et al., 1991; Stevens et al., 2012; Mountjoy et al., 2013). Active faults underlie the continental shelf (Barnes and Audru, 1999a; Pondard
and Barnes, 2010), although the morphology of the shelf is strongly affected by tidal
current scour and deposition (Lamarche et al., 2012a; Lamarche et al., 2012b). Beyond
the continental shelf, active tectonic deformation is a primary driver of large scale
seafloor geomorphology, and is known to have a significant influence on the canyon
system (Mountjoy et al., 2009). This region of the Hikurangi Margin is referred to as the
Cook Strait sector (Figure 1).

2.2 Tectonic setting, active deformation and earthquake sources

The CS is located on the southern Hikurangi Margin subduction system (Mountjoy et al.,
2009) (Figure 1). Subduction of the Pacific Plate underneath the Australian Plate is
occurring at a rate of ~38 mm yr\(^{-1}\) at 050° oblique to the plate margin (Beavan et al.,
2002). Slip partitioning results in an orthogonal convergence at a rate diminishing from
~20 mm yr\(^{-1}\) north of Cook Strait, to ~ 6 mm yr\(^{-1}\) south of the strait (Wallace et al., 2004).
The convergence results in numerous active upper-plate thrust and strike-slip faults
occurring throughout the region (Figure 2a; Barnes and Audru, 1999a, b; Pondard and
Barnes, 2010; Plaza-Faverola et al., 2012; Wallace et al., 2012; Henrys et al., 2013).
Thrust faulting beneath the continental slope is expressed as margin-parallel ridges that
reflect anticline development. Palliser and Opouawe banks are examples of folding and
bathymetric uplift in the hanging wall of northwest-dipping thrust faults (Figures 1, 2a).

Active faults have been incorporated into the New Zealand National Seismic Hazard
Model as generalized earthquake sources derived from quantification of active fault
parameters across New Zealand (Stirling et al., 2012; Litchfield et al., 2013). The CS is expected to experience ground shaking levels of 0.4 - 0.6 g over the 1000-year return period (Figure 3a; Stirling et al., 2012). Mean vertical slip rates for the faults crossing the lower CS vary from 1 - 4 mm yr\(^{-1}\) based on structural restorations and slip deficits (Barnes and Mercier de Lepinay, 1997; Wallace et al., 2012). Strike-slip faults crossing the upper canyon have horizontal rates of 4 - 12 mm yr\(^{-1}\), with very little overall vertical slip (Stirling et al., 2012). Single event displacements expected during coseismic rupture of each of the faults are shown in Figure 3a.

Two large earthquakes have occurred in the Cook Strait in historical, pre-instrumental times - the 1848 M7.5 Marlborough event and the 1855 M8.2 Wairarapa Earthquake (Grapes and Downes, 1997; Grapes et al., 1998). Most recently, on the 21 July and 16 August 2013 two earthquakes (M6.5 and M6.6, respectively) occurred on offshore faults beneath the continental shelf of south-western Cook Strait. The shaking from these latter events was widely felt but no surface rupture or geomorphic response was observed in post-event offshore surveys (Mountjoy, 2013). The potential for mega-thrust earthquakes on the Hikurangi Margin is poorly constrained, partly as no large historical events have occurred, and partly due to poor paleoseismologic evidence (e.g. Clark et al., 2011). Dislocation modeling for a hypothetical M9 subduction earthquake rupturing the entire length of the Hikurangi Margin, and accounting for approximately 1000 years of strain accumulation, results in up to 2 m vertical motion across the lower part of CS and subsidence of up to 2 m around the upper-most canyon (Fraser et al., 2014) (Figure 3b).
2.3 Submarine canyons

The CS comprises five major canyons, the flanks of which are characterized by numerous gully systems and landslide scars (Figure 1). Cook Strait Canyon is recognized as the major through-going feature extending from the shelf to the Hikurangi Channel at the toe of the margin (Mountjoy et al., 2009). In this paper we distinguish between the upper and lower reaches of the Cook Strait Canyon because they have distinctly different morphology and morphometrics. Nicholson, Wairarapa, and Palliser Canyons, and a relatively small canyon referred to informally here as Boo Boo Canyon, are tributaries that feed into Cook Strait Canyon. Campbell and Opouawe Canyons are single branch canyons that also connect to the Hikurangi Channel, but not to the Cook Strait Canyon (Figure 1). Canyon rims occur as shallow as 50 m on the continental shelf, and exit to the Hikurangi Channel at depths greater than 2500 m.

Nicholson, Wairarapa, and the middle to upper reaches of Cook Strait Canyon are incised in Late Cenozoic sedimentary sequences of indurated and gently dipping mudstone, siltstone or sandstone (Mountjoy et al., 2009). The northern walls of Nicholson and Wairarapa Canyons may expose Torlesse Greywacke Mesozoic basement, consisting of well-indurated and slightly metamorphosed mudstones and silty sandstones. Palliser, Opouawe, Campbell, Boo Boo and the deeper part of Cook Strait Canyons are incised in Neogene slope and uplifted basin-floor turbidite sequences (Uruski, 2010).
The canyons can be divided in two groups. The upper canyons (Nicholson, Wairarapa and upper Cook Strait Canyons) incise the continental shelf, whereas the lower canyons (Palliser, Opouawe, Campbell, Boo Boo and lower Cook Strait Canyons) incise the continental slope. The morphological characteristics of each canyon are presented in Table 1.

3. DATA SETS

3.1 Multibeam echosounder data

This study is mainly based on 8400 km² of multibeam echosounder data collected between 2002 and 2005 using a hull-mounted Simrad EM300 multibeam system operating at a 30 kHz frequency, and a POS/MV system with differential Global Positioning System, on board the RV Tangaroa. The navigational accuracy and vertical accuracy of the multibeam echosounder data in 1000 m water depth are ±5 m and ±2 m, respectively. Bathymetry and backscatter data grids of 10 m × 10 m bin size were derived from the multibeam echosounder data. The bathymetry data were processed with C&C Technologies HydroMap software by accounting for sound velocity variations and tides, and by implementing basic quality control. The backscatter data were processed with SonarScope software developed by IFREMER (Augustin and Lurton, 2005). Processing included signal calibration and compensation, speckle noise filtering, texture analysis and image segmentation (Lamarche et al., 2011).
3.2 Multichannel seismic reflection profiles

Wide-angle, deep penetration multichannel seismic reflection (MCS) data were collected from the Cook Strait sector of the Hikurangi Margin in 2009-2010 (Ministry of Economic Development, 2010). Twenty six 2D seismic profiles were acquired during the Pegasus survey and processed to pre-stack time migration by GeoTrace (2010). These include five dip lines across the margin of the CS (PEG10-09 to -19), with an average line spacing of ~15 km, and two strike lines (PEG10-02 and -04).

3.3 DTIS

During research cruise TAN1103 carried out on board the RV Tangaroa in 2011, we acquired high definition video and still imagery of the seabed along four transects in Nicholson, Wairarapa and Cook Strait Canyons using NIWA’s Deep Tow Imaging System (DTIS). Real-time data processing and recording were carried out using the Ocean Floor Observation Protocol (OFOP) software.

4. METHODOLOGY

Standard morphometric attributes (slope gradient, slope aspect, profile and plan curvature) were extracted from the bathymetric data set using the Geographic Information System ESRI ArcGIS. Submarine gullies and canyon thalwegs were automatically mapped using standard GIS hydrology tools for terrestrial drainage.
network extraction, which included the computation of “flow direction” and “flow accumulation” routines across the study area after sinks in the grid were infilled (Tubau et al., 2013). The resulting maps were validated via a thorough visual inspection. Canyon longitudinal profiles were extracted along the automatically mapped canyon thalwegs. Morphological steps along the canyon floor were identified from slope gradient longitudinal profiles using a moving average that estimated the general trend of the slope gradient and eliminated peaks due to fine-scale roughness. The boundaries of submarine landslide scars were delineated from a geomorphometric map and an automated topographic classification (using the standard deviation of slope gradient) generated from the bathymetry data set using techniques described in Micallef et al. (2007). The boundaries of submarine canyons were delineated semi-automatically using morphometric attribute maps (slope gradient, slope aspect, profile curvature), the flow accumulation map, and the geomorphometric map. These maps clearly identify the pronounced and subtle changes in morphology along the canyon borders. The resolution of the maps is equivalent to the resolution of the bathymetric data, rather than the scale at which the landscape is being interpreted by the user (Micallef et al., 2007). Canyon relief was calculated by interpolating the bathymetry grid across the boundaries of submarine canyons and subtracting from the original bathymetry.

Thalweg slope gradient and upslope canyon area were extracted at 20 m isobath intervals along the floor of each canyon to generate slope-area plots (Brothers et al., 2013). Power law trend lines were fitted to the plots, from which the exponent (concavity index) and co-efficient (steepness index) were derived from the power law equation. The plots
comprised different segments of data points, which can be distinguished in terms of the
trend followed by the data and the values of concavity and steepness indices. The
division of the plots into segments was guided by a moving average calculated for all the
data points in each plot. The theoretical and methodological background of slope-area
plots is provided by Wobus et al. (2006).

Base level in the submarine environment has been defined as the deepest point in the
basin that can be reached by sedimentary gravity flows (Carter, 1988; Amblas et al.,
2011; Georgiopoulou and Cartwright, 2013). For this study, the regional base level of the
study area is interpreted to lie at 2700 m depth and located in the Hikurangi Trough
(CANZ, 2008).

Tectonic structures beneath the lower reaches of the CS were mapped in this study using
the high-fold Pegasus seismic survey profiles (Geotrace, 2010), archived single-channel
and low-fold multichannel seismic profiles (Barnes et al., 1998; Mountjoy et al., 2009),
and the multibeam bathymetric data.

5. RESULTS

5.1 Reinterpretation of active faulting and folding across the lower CS

Multibeam bathymetric data show a series of linear scarps extending along the steep
forelimb (downslope-facing) slopes of anticlinal ridges (e.g. Opouawe-Uruti Fault and
Pahaua Fault; Figure 1). These scarps were interpreted by Mountjoy et al. (2009) as fault
tip lines associated with the major thrust faults controlling ridge propagation. Until now it
was unclear whether or not faults continued across lower Cook Strait Canyon. In the new
Pegasus MCS data the observed linear scarps cannot be associated with fault tip
breakouts, and most of the major thrusts have blind tips beneath the forelimb of the
anticlinal ridges. An example is shown in Figure 4, where a blind thrust tip-related to a
major splay fault crossing the lower Cook Strait Canyon is developing a well formed
anticline with long term uplift rates in the order of 1.1 ± 0.4 mm yr⁻¹ (Barnes et al., 1998).
In Opouawe Canyon, splay faults do outcrop at the seafloor (Figure 2b), and in map view
extend along the seaward margin of the canyon floor.

5.2 Canyon morphology

The large-scale morphology of the CS as a whole has been described by Mountjoy et al.
(2009). The canyon network pattern is dendritic with three main canyons (Cook Strait,
Opouawe and Campbell Canyons) and four tributary canyons (Nicholson, Wairarapa,
Palliser, Boo Boo Canyons), most of them sinuous in planform. Where the canyon system
intersects a thrust fault (e.g. Wharekauhau fault), strike-slip fault (e.g. Boo Boo, Needles
faults) or a tectonic ridge (e.g. Palliser and Opouawe Banks), there is a change in
direction or offset of the canyon axis (e.g. Wairarapa, Cook Strait Canyons) (Figure 1).
Palliser, Opouawe and Boo Boo Canyons are also parallel to thrust faults, including the
Opouawe-Uruti and Pahaua faults (Barnes et al., 2010). Where the canyon intersects a
strike-slip fault (e.g. Needles, Wairarapa faults), the canyon is wider downslope (e.g.
Nicholson, Cook Strait Canyons) (Figure 1). The floors of the upper canyons, excluding the upper sections of Cook Strait and Nicholson Canyons, are characterized by a low backscatter (Figure 5a). In comparison, the floors of the lower canyons are associated with higher backscatter.

In cross-section, the canyons are generally V-shaped, with the floors widths reaching up to 2.5 km. The canyon walls comprise the steepest terrain across this part of the Hikurangi margin, locally reaching slope gradients of 30°. Some of the canyon walls, such as those of Wairarapa, Palliser, Opouawe and Boo Boo Canyons, are parallel to faults (Figure 1). The canyon walls are also asymmetric, with opposing walls of individual canyons showing a difference of up to 10° in slope gradient. The canyon walls have been eroded by either linear to dendritic gullies (Micallef and Mountjoy, 2011), or submarine landslides (Micallef et al., 2012) (Figure 5c-d). The highest gully densities are observed in the lower canyons (Table 1). There are 141 landslide scars on the walls of the CS; these have been interpreted as resulting from deep-seated, translational landslides occurring in Late Cenozoic to Pleistocene sequences (Mountjoy et al., 2009; Micallef et al., 2012). The landslide scars are located across the entire depth range covered by the canyons, although 65% of the scars (by area) occur in the shallow canyons (Figure 5c). The landslides scars are predominantly small, with median area and volume of 0.82 km² and 0.013 km³, respectively.

Estimated relief along the canyon thalwegs ranges between 330 m and 1200 m (Figure 5b); the highest values are recorded in the lower canyons (Table 1). All canyons show a
general increase in relief with distance down canyon. Abrupt changes in relief across canyons coincide with faults (Figure 5b).

5.3 Longitudinal profiles

The longitudinal profiles of the CS vary from convex (upper Cook Strait Canyon), to linear (lower Cook Strait, Boo Boo, Opouawe, Palliser and Wairarapa Canyons) to slightly concave (Nicholson and Campbell Canyons) (Figure 6). Breaks and concave changes in the longitudinal profile predominantly coincide with known faults (Figure 7). The steepest mean thalweg slope gradients are observed in the lower canyons (Table 1). We also note that Palliser and Boo Boo Canyons appear to be hanging above the lower Cook Strait Canyon.

5.4 Steps and depressions

The longitudinal profiles of the canyons are interrupted by twenty steps and eight depressions, 92% of which occur in the lower canyons (Figures 7; 8). The steps consist of individual convex to concave changes in slope that are generally associated with high backscatter. The depressions, all of which are located downstream of the mouth of lower Cook Strait Canyon, are smaller, occur in groups, and have upslope asymmetrical wave-like shapes in profile.
The heights and slope gradients of the steps vary between 20 m and 233 m, and 2.3° and 34.8°, respectively. All the steps correspond to the upper limits of crescent-shaped scars on the canyon floor, only a few of which extend across the entire canyon width. The higher and steeper the steps are, the more likely the scar extends across the entire canyon floor. Downslope of some of the steps, the canyon walls have abundant landslide scars (Figure 7d; Micallef et al., 2012). At least 4 steps (1, 17, 18, 28) have rounded lips, and are associated with low backscatter and with either faults or with propagating folds related to blind faults. The remaining steps have more angular lips, and the canyon floor downslope of the steps is associated with high backscatter. Half of the steps have a ridge at their base. DTIS-31 imagery of the seafloor downslope of step 4, located in the lower Cook Strait Canyon, shows the occurrence of bedrock containing rock mass defects exposed at the seafloor, large tabular and sub-angular blocks of mudstone, and angular fragments of mudstone scattered across the canyon floor (Figures 7h; 8).

We measured the distance along the seabed of steps from either the regional base level or the floor of the canyon in which a tributary canyon hosting the step drains. Figure 9 is a plot showing how some of these steps from Cook Strait, Palliser and Boo Boo Canyons can be classified into three groups (steps 7 and 12; steps 11 and 14; steps 3, 10 and 13) according to their distances from the floor of lower Cook Strait Canyon. We also plotted the total canyon area against the distance of steps in the lower canyons from their local base levels; the resulting plot shows a good power law relationship between these two variables (Figure 10).
5.5 Slope-area analyses

The thalweg slope-area plots for each submarine canyon are shown in Figure 11. The majority of the boundaries of the plot segments coincide with either a fault and/or a step (Figure 11). The power regression models fitted to the segments identified for each plot are predominantly characterized by low coefficients of determination (R^2). The lowest R^2 and the highest concavity index values coincide with segments of the canyons located in between faults and/or steps. The highest R^2 values for the inverse power law regression models occur in Nicholson and Wairarapa Canyons, and the upslope segment of Boo Boo Canyon, all of which are located upslope of faults or steps. Segments with the highest values of mean slope gradient have been mapped in Figure 12. These correspond to the upper and lower reaches of Campbell, Palliser, and Boo Boo Canyons, and the lower reaches of Opouawe Canyon. Where not coinciding with the canyon heads, segments with the highest mean slope gradients are associated with canyon areas located upslope of either faults or steps.
6. DISCUSSION

6.1 CONTROL OF TECTONICS ON CANYON MORPHOLOGY, PROCESSES AND EVOLUTION

6.1.1 Control of active tectonics on canyon morphology

The clearest influence of active tectonic deformation on canyons is in terms of location and planform shape. Alignment and proximity of Wairarapa, Palliser, Opouawe and Boo Boo Canyons with faults indicates that canyon erosion is likely to have taken place along traces of major faults or has been constrained by structurally-generated tectonic ridges. This would have taken place by steepening of the seabed associated with tectonic growth, diversion/focusing of gravity flows by topographic steps or lips, or dense fracturing of the bedrock by faults. At a first order, the dendritic and sinuous pattern of the CS is thus predominantly a result of the numerous thrust and strike-slip faults that intersect the canyon system at various angles (5° - 90°) across the continental shelf and slope. The new MCS data confirm that the tectonic ridges that are responsible for the sinuosity of the lower Cook Strait Canyon are active anticlines (Figure 4). The upper Cook Strait, Nicholson and Opouawe Canyons also show that canyon widening has occurred downslope of strike-slip faults intersecting the canyon axes. This is a result of the lateral shifting of the focus of erosion due to the displacement of the canyon by fault movement.
The occurrence of tectonic ridges is also partly responsible for the asymmetry observed in walls of the lower canyons because the forelimbs of the tectonic ridges in Cook Strait are up to two times steeper than their backlimbs (upslope-facing) (Mountjoy et al., 2009). The longitudinal profiles of the CS are steep (mean thalweg slope gradient of up to 5.74°; Table 1) and predominantly linear. Both of these morphological characteristics are a result of active tectonic deformation steepening the continental slope and being more effective than incision by sedimentary flows (Huyghe et al., 2004; Covault et al., 2011).

The morphological patterns identified so far are similar to those documented in other submarine canyons in tectonically active margins, e.g. La Jolla Canyon (Le Dantec et al., 2010), Monterey Canyon (Greene et al., 2002), San Antonio Canyon (Laursen and Normark, 2002), Kushiro Canyon (Noda et al., 2008), Kaoping Canyon (Chiang and Yu, 2006) and submarine channels in the Nankai Trough (Alves et al., in press). These patterns, together with the breaks/changes observed in canyon longitudinal slope profiles and mean slope gradient, relief and slope-area plots where the canyons intersect faults (Figures 5b; 7; 11, 12), indicate that tectonic activity leaves a clear topographic signature on the canyon morphology. These results are also similar to what has been reported for subaerial fluvial systems (e.g. Whipple, 2004; Wobus et al., 2006).
6.1.2 Control of active tectonics on canyon processes and evolution

(a) Sedimentary flows

The high backscatter observed in the Opouawe Canyon is a response to the occurrence of gravel (Geoffroy Lamarche, pers. comm), and in lower Cook Strait Canyon is due to dense sand (Philip Barnes, pers. comm.). Assuming that, for the entire CS, a high backscatter signal is indicative of coarser sediment or bedrock exposures (Mitchell, 1993a; Lamarche et al., 2011), we infer that the higher backscatter in the lower canyons, in comparison to the upper canyons, is indicative of a lack of fine-grained sediment of a certain thickness (Mitchell, 1993b). This implies that the sediment has been eroded by currents with velocities higher than the threshold of motion of fine-grained sediment. We suggest that this is a result of stronger, more frequent or more recent sedimentary flows (and the associated reduction in sediment deposition and increase in bedrock exposure) where thrust faults are located. The origin of these flows is likely earthquake-triggered mass wasting and knickpoint migration (see 6.1.2(c)). The high backscatter and inferred high canyon flow in the upper Cook Strait and Nicholson Canyons, on the other hand, is associated with remobilization of sediment deposited by tidal currents and earthquake triggering of mass wasting events in the upper canyons (Mountjoy et al., 2013).
(b) Submarine gullies and landslides

Submarine gully erosion in the Cook Strait sector occurs above a threshold slope gradient of 5.5° (Micallef and Mountjoy, 2011). Since the more intense gully erosion is observed on the walls of the lower CS, we suggest that active tectonics play a direct role in promoting submarine gully erosion by generating steep terrain. Submarine gullies, in turn, contribute to canyon evolution by establishing the template along which submarine canyons grow (as in Tubau et al., 2013; Vachtman et al., 2013). Submarine landslides, on the other hand, are mostly located in the upper canyons, where vertical tectonic deformation is the least pronounced as faults are predominantly strike-slip. This confirms that landslide preconditioning is mostly related to canyon incision and wall undercutting. In addition, Cenozoic sedimentary basins within which the upper canyons have formed are less tectonically deformed than units underlying the continental slope, resulting in stratigraphic geometries that are more prone to large bedding-parallel slope failure. Earthquake-generated ground motion is likely to be the primary slope-failure triggering mechanism for most landslides, however, and will act as a secondary preconditioning factor via slope deformation or generation of excess pore pressures in high permeability horizons (Sultan et al., 2004; Mountjoy et al., 2009; Mountjoy et al., 2013). Irrespective of their causes, submarine landslides have an important influence in canyon evolution by eroding walls, extending canyons laterally, and introducing material into the canyon floor (Micallef et al., 2012).
(c) **Knickpoint formation and evolution**

In the CS, the morphology and location of some steps, such as those in Nicholson (step 1), upper Opouawe (steps 17 and 18) and lower Opouawe (step 28) Canyons, reflect deformation of the canyon floor, either as short wavelength folds or fault break outs (e.g. Wharekauhau fault (Mountjoy et al., 2009)) (Figure 8). This explains the generally low slope gradients measured at these steps (Table 2). We suggest, however, that the majority of the steps across the CS have predominantly formed by slope failures on the canyon floor and localized quarrying and plucking, both driven by sedimentary flows. Our inference is based on morphological evidence - the crescent-shaped depressions on the canyon floor, which are likely the scars of rotational slope failures (e.g. Paull et al., 2011), and the ridges at their base and the sub-angular blocks observed on the DTIS imagery, which are evidence of slope failure and quarrying/plucking processes (Figure 7). Steps associated with slope failures and erosion have higher slope gradients than fold/fault-controlled steps, which is likely a result of landslides revealing more cohesive material whereas only shallow buried sediments are currently being eroded at folds/faults.

In view of the above, we interpret the steps as knickpoints, which in fluvial systems are defined as steep gradient sections between low gradient sections along a course (Howard, 1994). Submarine knickpoints have been widely reported in active tectonic margins (e.g. Kukowski et al., 2001; Orpin, 2004; Adeogba et al., 2005). In submarine canyon-channel systems, knickpoints are proposed to initiate either where tectonic motion has deformed
the seafloor (Soh and Tokuyama, 2002; Mitchell, 2006; Heiniö and Davies, 2007), or where channel levées have been breached (Pirmez et al., 2000; Estrada et al., 2005).

In the CS, we differentiate between knickpoints associated to faults and folds, and knickpoints formed by canyon floor slope failures and erosion. We also infer differences in the way in which these two types of knickpoints have evolved. Knickpoints associated to folds and faults diffuse (Figure 13), developing into smoother, gentler breaks of slope through upstream erosion and downstream deposition by channelized sedimentary flows until an equilibrium profile is restored (e.g. step 1 in Nicholson Canyon). This is similar to the mechanisms of gradient adjustments reported in submarine channels (Kneller, 1995; Pirmez et al., 2000; Georgiopoulou and Cartwright, 2013) and it would explain the lower backscatter observed along the canyon floor where such knickpoints are located. It is compatible with knickpoint evolution in terrestrial alluvial fans (e.g. Paola, 2000), but differs from examples of fault-induced knickpoint migration in river systems undergoing detachment-limited erosion (e.g. Yanites et al., 2010).

Knickpoints formed by canyon floor slope failures and erosion, on the other hand, are located upslope of both additional slope instabilities along the adjacent canyon walls (Figure 7d) as well as canyon floors with high backscatter (Figure 5a), both of which we interpret as suggesting upslope knickpoint migration. We propose that knickpoint migration is driven by base level lowering (Figure 13). For the entire CS, the regional base level is the Hikurangi Trough, which is lowered due to regional uplift of the margin (Figure 3b). Given that the maximum coseismic uplift of the lower canyon system
associated with subduction earthquakes may be ~2 m (Figure 3b), it is likely that a major
derivation of knickpoint migration is initiated after several, rather than one, uplift events. The
upper reaches of the CS may have competing vertical tectonic processes from upper plate
fault rupture contrasting with inter-seismic and co-seismic subduction thrust deformation,
which led to ephemeral canyon longitudinal profile changes. Figure 3b, for example,
shows that Nicholson Canyon is expected to subside by up to 2 m during hypothetical
giant subduction earthquakes, whilst fault rupture during the M8 1855 Wairarapa
earthquake produced substantial coseismic uplift at Cape Turakirae (McSaveney et al.,
2006) and presumably uplift of the upper reaches of the CS. For Palliser and Boo Boo
Canyons, the base level is the lower Cook Strait Canyon floor, which is lowered by
canyon floor erosion. The latter is likely to have been affected by regional base level
lowering, but also by changing sediment fluxes associated with varying climates and sea
levels. During sea level lowstands associated with glacial periods, coarse clastic
sediments were fed directly into the heads of the upper CS canyons by terrestrial rivers
and longshore drift. This is likely to have led to entrenchment of the upper CS canyons
and transient aggradation of the Cook Strait Canyon (e.g. Mountain et al., 1996). Sea
level rise accompanying the transition into interglacial periods disconnected the upper CS
canyon heads from a direct sediment supply. Such a reduction in post-glacial sediment
supply is thought to have resulted in the erosion of older, lowstand canyon system and
initiated localized knickpoint migration (Mountjoy et al., 2009). We propose that the
knickpoint created by base level lowering migrates up canyon as an entrenchment
knickpoint that retrogressively down-cuts and erodes the lower CS. This erosion takes
place through slope failure and/or quarrying/plucking processes driven by sedimentary
flows (e.g. Pirmez et al., 2000; Mitchell, 2006; Toniolo and Cantelli, 2007; Amblas et al., 2011; Turmel et al., 2011). Our inference is reinforced by the fact that the knickpoint lips are angular, which is indicative of advective migration (Mitchell, 2006), as well as the spatial association between knickpoints in Palliser, Boo Boo and upper Cook Strait Canyons, which are shown to be located at a similar distance from their base level (Figure 9). The latter is similar to what has been observed in subaerial fluvial systems, where knickpoints recording transient conditions lie at a near constant elevation from the base level (e.g. Niemann et al., 2001). The wall slope failures located downslope of the knickpoints are likely to have been triggered by undermining and loss of support (Sultan et al., 2007; Micallef et al., 2012). Knickpoints formed by canyon floor slope failures and erosion are therefore evidence of a renewed phase of incision in the lower reaches of the CS.

We do not exclude that, in the CS, knickpoints associated to faults also migrate upslope, as documented by Mitchell (2006), or that knickpoints associated to slope failure also diffuse. In our study area we do not have information on how the morphology of a knickpoint changes as it translates upstream through the canyon system. However, it is possible that a knickpoint degrades and reforms as it encounters regions of higher or lower erodibility, as documented in submarine channels (Pirmez et al., 2000) and subaerial fluvial systems (Crosby and Whipple, 2006).

In subaerial fluvial geomorphology, the stream power erosion model provides the most popular quantitative tool to describe knickpoint retreat (Howard and Kerby, 1983; Bishop
et al., 2005; Crosby and Whipple, 2006). According to this model, knickpoint migration rate is a function of drainage area and local slope. The stream erosion model seems to be relevant to explain knickpoint evolution in the CS as well. Figure 10 shows a good positive relationship between the area of lower canyons and the distance of knickpoints from their local base level, the latter being indicative of the rate at which knickpoint migrate upslope. An incisional pulse triggered by a change in base level is thus likely to be best transmitted in the main Cook Strait Canyon and to be slower in its tributaries and the other canyons. The fact that knickpoints migrate fastest in the largest canyons is likely a result of a higher and more erosive volume of sedimentary flows. The inference that the erosive capacity of sedimentary flow increases with canyon area is also supported by numerical models (Pratson and Coakley, 1996; Pratson et al., 2000). Based on these considerations, the rate of knickpoint migration should also decrease with time because, as it moves upslope, the canyon drainage area is bound to decrease.

Knickpoint formation and evolution may be attributable to factors other than folds and faults, changes in base level, or changing sediment fluxes. A factor that cannot be completely ruled out is variation in lithological resistance (Miller, 1991; Mitchell, 2004; Phillips et al., 2010). We are unable to constrain the stratigraphy of the floor of the entire CS, and it is plausible that where stratigraphy is truncated by erosion, resistant beds along the floors may create canyon steps (e.g. ‘stratigraphy truncated by erosion’ in Figure 4b). On the other hand, it is unlikely that we would observe the morphologies and morphometric patterns described in section 5.4 if lithological resistance were the primary control of knickpoint formation and evolution. Thus we propose that the role of changing
lithological resistance in knickpoint formation and evolution is secondary and localized, although sediment/rock properties may help explain difference in knickpoint morphology.

(d) Cyclic steps

Spatially-periodic depressions occur downslope of the mouth of the lower Cook Strait Canyon, where sedimentary flows evolve from confined to unconfined conditions. We interpret these depressions as cyclic steps, which are manifestations of a fundamental morphodynamic instability of Froude-supercritical flow over an erodible bed (Parker and Izumi, 2000). Cyclic steps are long-wave erosional/depositional bedforms that are bounded by a hydraulic jump and that migrate upstream as a coherent, quasi-permanent train of permanent form (Fildani et al., 2006; Kostic, 2011). The upslope asymmetrical shape of cyclic steps in CS is indicative of a low energy setting because of a decrease in vertical thickness and velocity, and a resulting drop in the Froude number, due to spreading of the flow at the canyon mouth (Cartigny et al., 2011; Fildani et al., 2013). We propose that this zone of seafloor is an incipient channel developing along a train of cyclic steps which, with ongoing plate convergence and uplift of the continental slope and southeastward migration of the deformation front, would link the mouth of lower Cook Strait Canyon with the Hikurangi channel.
A channel equilibrium profile is a depth profile created by the erosional and depositional action of gravity flows over a period of thousands of years such that the prevailing sediment discharge is carried through the channel with minimum aggradation or degradation (Pirmez et al., 2000; Ferry et al., 2005). Factors such as the power, frequency and geometry of flows, and the availability of sediment, are the dominant shaping mechanisms that determine the ability of a channel to reach equilibrium (Kneller, 2003). Since the ocean system is not a steady-state system, the channel equilibrium is transient and also dependent on other factors such current regime, slope stability, and strength of near-seafloor sediments (Georgiopoulou and Cartwright, 2013). Topographic steady state, on the other hand, entails a sustained balance between rock uplift and the erosion of the channel (Willgoose et al., 1991; Howard, 1994).

There are many indications that the lower CS is neither in equilibrium nor in a steady state. These include:

(i) Formation and migration of knickpoints (Figure 8), which have been suggested as the dominant mode of channel adjustment in response to a perturbation, and indicate a lack of equilibrium between tectonic and sedimentary processes (Whipple and Tucker, 1999; Crosby and Whipple, 2006).
(ii) The Palliser and Boo Boo Canyon tributaries do not approach the lower Cook Strait Canyon at the same elevation, disobeying Playfair’s Law and indicating disequilibrium across the entire canyon system (Playfair, 1802; Niemann et al., 2001).

(iii) The canyons’ longitudinal profiles are predominantly linear (Figure 6), which contrasts with the graded profile associated with canyon systems in equilibrium (Gerber et al., 2009; Covault et al., 2011).

(iv) The general lack of canyon-wide, inverse power-law slope-area relationships associated with a spatially equilibrated erosion rate (Figure 11; Whipple, 2004; Wobus et al., 2006).

We therefore consider the lower CS to be in a transient state. The system is undergoing continuous adjustment to perturbations associated with tectonic displacements, base level changes and varying sediment fluxes. These perturbations dominate over the capacity of sedimentary flows to establish an equilibrium profile and topographic steady state.

6.2 TECTONIC INFORMATION FROM CANYON MORPHOLOGY

We use canyon morphology to extract information on two aspects of tectonic activity across the Cook Strait:

(i) Faulting: The MCS data show that few fault tips actually propagate to the seafloor. Single event displacements on these faults may be high (e.g. 10 m
across the lower Cook Strait Canyon, as in Figure 3a); however, the
topmost tip of the fault is buried by several hundred meters of folded but
unbroken sedimentary sequences. The response of the canyon floor to faulting
is thus a localized upward flexure of up to several meters. By analyzing the
canyon longitudinal profiles (Figure 7), we are able to propose four new sites
where unmapped faults, not identified in the MCS data, may have caused
localized upward flexure. All of these sites comprise prolongations of already
known faults across the canyon floor, and include the Wairarapa fault across
Nicholson Canyon, the Opouawe-Uruti fault at step 17 and another in the
lower reaches of Opouawe Canyon, and a fault in the upper reaches of the
lower Cook Strait Canyon.

(ii) Uplift and incision patterns: The steepest canyon thalweg slope gradients are
recorded in Boo Boo, Campbell, Palliser and Opouawe Canyons (Figures 7,
12; Table 2). The highest relief, and the canyon segments with lowest R^2 and
highest concavity index values in the slope-area regression models, occur in
lower Cook Strait, Boo Boo, Campbell, Palliser and Opouawe Canyons
(Figures 5b, 12; Table 2). This indicates that the slopes hosting the lower
canyons have been undergoing more pronounced rates of uplift and shortening
than those hosting the upper canyons, as confirmed by Figures 2 and 4
(Whipple and Tucker, 1999; Snyder et al., 2000; Kirby and Whipple, 2001;
Wobus et al., 2006; Cowie et al., 2008).
6.3 A MODEL FOR CANYON DEVELOPMENT IN RESPONSE TO TECTONIC FORCING

The schematic in Figure 13 summarizes the reported results in a generalized model of canyon geomorphic evolution in tectonically-active continental margins. The model is based on the following:

a. Thrust and strike-slip faults control canyon location and planform shape, in particular width, sinuosity, and dendritic network patterns.

b. Uplift due to folds and/or faults results in:
 (i) Linear to convex thalweg longitudinal profiles;
 (ii) Abrupt changes in, and high values of, slope gradient;
 (iii) Canyon wall asymmetry;
 (iv) Dense gully erosion;
 (v) Hanging valleys at canyon confluences;
 (vi) Slope-area plots with low R^2 values; where not affected by faults or knickpoints, the slope-area plots have high R^2 values for inverse power relationships.

c. Seismicity is a main trigger of slope instability across canyon walls, which are preconditioned by undercutting from canyon incision and are responsible for canyon elongation and widening. Seismicity is also associated with higher and more frequent sedimentary flows along the canyon thalweg.

d. Two types of knickpoint develop:
(i) Gentle and rounded knickpoint formed by folds or fault break outs that diffuses by upstream erosion and downstream deposition;

(ii) Steep and angular knickpoints, which are driven by base level lowering (due to regional uplift or deepening of downstream canyons) or changing sediment fluxes, and which migrate upslope by canyon floor slope failures and localized quarrying/plucking; the knickpoint migration rate is a function of the canyon area and the associated sedimentary flow throughput.

Future work will focus on refining the quantitative relationship between canyon morphometric parameters and tectonic processes to enable the direct extraction of quantitative tectonic information from morphology.

7. CONCLUSIONS

Tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology in the Cook Strait canyon system (CS), Hikurangi Margin off New Zealand’s North Island, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and canyon wall asymmetry and width. We also report breaks/changes in canyon longitudinal slope profiles and mean slope gradient, relief and slope-area regression models at the intersection with faults.
Across the CS we observe two types of knickpoints related to tectonic activity. The first type consists of low slope gradient knickpoints that are rounded and diffusive, forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and downstream deposition. The second, more widespread type of knickpoints have high slope gradients and angular profiles. These knickpoints have undergone upslope advective migration through slope failures on the canyon floor and localized quarrying and plucking by sedimentary flows. The migration is driven by base level lowering due to multiple episodes of regional uplift of the margin and deepening of lower Cook Strait Canyon floor by sedimentary flows, or by changing sediment fluxes. Variation in lithological resistance is likely to play a secondary and localized role in knickpoint formation and evolution. The stream erosion model is applicable to CS, and knickpoint migration is faster in the larger canyons. The formation and migration of knickpoints, the non-adherence to Playfair’s Law, the linear longitudinal profiles and the lack of canyon-wide, inverse power-law slope-area relationships indicate that CS is a system that is neither in topographic steady state nor in equilibrium, and that it is undergoing continuous adjustments to perturbations associated with tectonic displacement and changes in base level and sediment fluxes.

Canyon morphology also allows us to infer tectonic activity across the CS. From the canyon longitudinal profiles we can propose four new sites in Nicholson, Opouawe and lower Cook Strait Canyons where unmapped prolongations of known faults have caused localized upward flexure. The occurrence in the lower canyons of steep thalweg slope gradients, high relief, and low values of R^2 in the slope-area regression models, and their
spatial association with faults and steps, indicate that the lower slopes have undergone
more pronounced rates of uplift and shortening than those hosting the upper canyons.

The reported canyon morphological parameters and their response to tectonic activity
allow us to propose a generalised model for canyon geomorphic evolution in tectonically-
active continental margins.

8. ACKNOWLEDGMENTS

This research was undertaken with funding from Marie Curie Intra-European Fellowship
PIEF-GA-2009-252702 and Marie Curie Career Integration Grant PCIG13-GA-2013-
618149 within the 7th European Community Framework Programme, NIWA under
Coasts and Oceans Research Programme 2013/14 and the Royal Society of New Zealand
International Mobility Fund contract ISATB09-37. We are indebted to Shanaka de Silva,
David J.W. Piper, Neil C. Mitchell and Atsushi Noda for their insightful reviews. Emma
Cassar is thanked for her assistance with GIS analysis.
References

Barnes, P.M., and Mercier de Lepinay, B., 1997, Rates and mechanics of rapid frontal accretion along the very obliquely convergent southern Hikurangi margin, New Zealand: Journal of Geophysical Research, v. 102, p. 24931-24952.

CANZ, 2008, New Zealand Region Bathymetry, 1:4 000 000: Wellington, New Zealand, National Institute of Water and Atmospheric Research.

Mitchell, N.C., 1993a, Comment on the mapping of iron-manganese nodule fields using reconnaissance sonars such as GLORIA: Geo-Marine Letters, v. 13, p. 244-247.

Mountjoy, J.J., 2013, Cook Strait quakes too small for landslide-tsunami, Water and Atmosphere, Volume 8: Wellington, NIWA.

Turmel, D., Locat, J., and Parker, G., 2011, Upstream migration of knickpoints: Geotechnical considerations, in Yamada, Y., Kawamura, K., Ikehara, K., Ogawa,

Table 1: Morphometrics of the Cook Strait canyon system (CS).

<table>
<thead>
<tr>
<th>Canyon</th>
<th>Nicholson</th>
<th>Cook Strait</th>
<th>Wairarapa</th>
<th>Bootrap</th>
<th>Palliser</th>
<th>Opouawe</th>
<th>Campbell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (km)</td>
<td>21.3</td>
<td>50.3</td>
<td>79.0</td>
<td>36.0</td>
<td>12.1</td>
<td>22.7</td>
<td>58.1</td>
</tr>
<tr>
<td>Maximum width (km)</td>
<td>8.9</td>
<td>12.7</td>
<td>14.8</td>
<td>10.7</td>
<td>5.6</td>
<td>11.9</td>
<td>13.7</td>
</tr>
<tr>
<td>Depth from canyon head to mouth (m)</td>
<td>600</td>
<td>1000</td>
<td>1400</td>
<td>1000</td>
<td>1000</td>
<td>1600</td>
<td>2200</td>
</tr>
<tr>
<td>General orientation</td>
<td>NW-SE</td>
<td>NW-SE</td>
<td>N-S</td>
<td>NE-SW</td>
<td>W-E</td>
<td>NE-SW</td>
<td>NE-SW</td>
</tr>
<tr>
<td>Area (km²)</td>
<td>113</td>
<td>386</td>
<td>436</td>
<td>320</td>
<td>35</td>
<td>166</td>
<td>465</td>
</tr>
<tr>
<td>Mean thalweg slope gradient (°)</td>
<td>1.28</td>
<td>1.07</td>
<td>1.25</td>
<td>1.28</td>
<td>5.74</td>
<td>3.09</td>
<td>2.08</td>
</tr>
<tr>
<td>Landslide density (km⁻¹)</td>
<td>0.0976</td>
<td>0.233</td>
<td>0.082</td>
<td>0.1327</td>
<td>0</td>
<td>0.1947</td>
<td>0.066</td>
</tr>
<tr>
<td>Gully density (km⁻¹)</td>
<td>0.67</td>
<td>0.27</td>
<td>0.81</td>
<td>0.51</td>
<td>2.37</td>
<td>0.86</td>
<td>1.12</td>
</tr>
<tr>
<td>Maximum relief (m)</td>
<td>330</td>
<td>440</td>
<td>1200</td>
<td>450</td>
<td>640</td>
<td>600</td>
<td>640</td>
</tr>
</tbody>
</table>
Table 2: Step and depression morphometrics.

<table>
<thead>
<tr>
<th>Label</th>
<th>Type</th>
<th>Bathymetric depth (m)</th>
<th>Canyon</th>
<th>Height (m)</th>
<th>Gradient (°)</th>
<th>Extension</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>step</td>
<td>717</td>
<td>Nicholson</td>
<td>20</td>
<td>8.8</td>
<td>narrow</td>
</tr>
<tr>
<td>2</td>
<td>step</td>
<td>1033</td>
<td>Wairarapa</td>
<td>71</td>
<td>24.3</td>
<td>canyon width</td>
</tr>
<tr>
<td>3</td>
<td>step</td>
<td>1147</td>
<td>upper Cook Strait</td>
<td>21</td>
<td>6.8</td>
<td>narrow</td>
</tr>
<tr>
<td>4</td>
<td>step</td>
<td>1253</td>
<td>lower Cook Strait</td>
<td>33</td>
<td>2.3</td>
<td>narrow</td>
</tr>
<tr>
<td>5</td>
<td>step</td>
<td>1354</td>
<td>lower Cook Strait</td>
<td>54</td>
<td>13.9</td>
<td>canyon width</td>
</tr>
<tr>
<td>6</td>
<td>step</td>
<td>1396</td>
<td>lower Cook Strait</td>
<td>47</td>
<td>7.3</td>
<td>narrow</td>
</tr>
<tr>
<td>7</td>
<td>step</td>
<td>1340</td>
<td>Boo Boo</td>
<td>50</td>
<td>18.6</td>
<td>narrow</td>
</tr>
<tr>
<td>8</td>
<td>step</td>
<td>1256</td>
<td>Boo Boo</td>
<td>68</td>
<td>30.0</td>
<td>narrow</td>
</tr>
<tr>
<td>9</td>
<td>step</td>
<td>1199</td>
<td>Boo Boo</td>
<td>79</td>
<td>29.8</td>
<td>narrow</td>
</tr>
<tr>
<td>10</td>
<td>step</td>
<td>1065</td>
<td>Boo Boo</td>
<td>98</td>
<td>29.0</td>
<td>canyon width</td>
</tr>
<tr>
<td>11</td>
<td>step</td>
<td>816</td>
<td>Boo Boo</td>
<td>233</td>
<td>31.2</td>
<td>canyon width</td>
</tr>
<tr>
<td>12</td>
<td>step</td>
<td>1542</td>
<td>Palliser</td>
<td>125</td>
<td>25.7</td>
<td>canyon width</td>
</tr>
<tr>
<td>13</td>
<td>step</td>
<td>1483</td>
<td>Palliser</td>
<td>31</td>
<td>10.8</td>
<td>canyon width</td>
</tr>
<tr>
<td>14</td>
<td>step</td>
<td>1391</td>
<td>Palliser</td>
<td>28</td>
<td>9.0</td>
<td>narrow</td>
</tr>
<tr>
<td>15</td>
<td>step</td>
<td>1286</td>
<td>Palliser</td>
<td>88</td>
<td>19.0</td>
<td>canyon width</td>
</tr>
<tr>
<td>16</td>
<td>step</td>
<td>589</td>
<td>Palliser</td>
<td>59</td>
<td>26.4</td>
<td>canyon width</td>
</tr>
<tr>
<td>17</td>
<td>step</td>
<td>1499</td>
<td>Opouawae</td>
<td>21</td>
<td>6.7</td>
<td>narrow</td>
</tr>
<tr>
<td>18</td>
<td>step</td>
<td>1850</td>
<td>Opouawae</td>
<td>49</td>
<td>8.5</td>
<td>narrow</td>
</tr>
<tr>
<td>19</td>
<td>step</td>
<td>1917</td>
<td>Opouawae</td>
<td>115</td>
<td>19.2</td>
<td>canyon width</td>
</tr>
<tr>
<td>20</td>
<td>step</td>
<td>508</td>
<td>Campbell</td>
<td>85</td>
<td>31.6</td>
<td>canyon width</td>
</tr>
<tr>
<td>21</td>
<td>step</td>
<td>719</td>
<td>Campbell</td>
<td>32</td>
<td>28.5</td>
<td>canyon width</td>
</tr>
<tr>
<td>22</td>
<td>step</td>
<td>972</td>
<td>Campbell</td>
<td>114</td>
<td>34.8</td>
<td>canyon width</td>
</tr>
<tr>
<td>23</td>
<td>step</td>
<td>1400</td>
<td>Campbell</td>
<td>38</td>
<td>21.0</td>
<td>narrow</td>
</tr>
<tr>
<td>24</td>
<td>step</td>
<td>1995</td>
<td>Campbell</td>
<td>74</td>
<td>14.4</td>
<td>narrow</td>
</tr>
<tr>
<td>25</td>
<td>step</td>
<td>2149</td>
<td>Campbell</td>
<td>78</td>
<td>13.4</td>
<td>narrow</td>
</tr>
<tr>
<td>26</td>
<td>step</td>
<td>2217</td>
<td>Campbell</td>
<td>165</td>
<td>22.0</td>
<td>canyon width</td>
</tr>
<tr>
<td>27</td>
<td>step</td>
<td>2383</td>
<td>lower Cook Strait</td>
<td>58</td>
<td>8.1</td>
<td>narrow</td>
</tr>
<tr>
<td></td>
<td>step</td>
<td></td>
<td>Opouawe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>----------</td>
<td>-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>28</td>
<td>2495</td>
<td>depression</td>
<td>49</td>
<td>9.4</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2507</td>
<td>lower Cook Strait</td>
<td>120</td>
<td>6.8</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2538</td>
<td>lower Cook Strait</td>
<td>50</td>
<td>4.1</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2609</td>
<td>lower Cook Strait</td>
<td>60</td>
<td>11.3</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2639</td>
<td>lower Cook Strait</td>
<td>50</td>
<td>9.5</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2686</td>
<td>lower Cook Strait</td>
<td>25</td>
<td>4.8</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2683</td>
<td>lower Cook Strait</td>
<td>55</td>
<td>5.7</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2694</td>
<td>lower Cook Strait</td>
<td>30</td>
<td>3.4</td>
<td>narrow</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2687</td>
<td>lower Cook Strait</td>
<td>20</td>
<td>3.8</td>
<td>narrow</td>
<td></td>
</tr>
</tbody>
</table>
Figure captions

Figure 1: Location map (inset) and shaded relief bathymetric map of Cook Strait with main structural elements of the southern Hikurangi margin (angle of illumination is NW). The borders of the submarine canyons are denoted by white polygons. The black triangles indicate the direction of the thrust faults. The dashed dark red lines represent the continental shelf break. The Hikurangi channel in the inset is denoted by ‘HC’.

Figure 2: a) Depth-migrated regional multichannel seismic reflection (MCS) profile Pegasus09-19 illustrating the active plate interface between the subducting Pacific Plate and the overlying Australian Plate (modified from Plaza-Faverola et al. (2012)). Active faults in the upper plate are deforming the continental slope and forming ridges (e.g. Opouawe Bank) that have a controlling influence on slope morphology. Location shown in figure 1. Acronyms: BSR (Bottom Simulating Reflector), O-UF (Opouawe-Uruti fault), PF (Pahaua fault), MES (late Cretaceous sequence), LIP (lithospheric plate). b) Enlargement of the part of the MSC profile illustrating the shallow details of active fault tips as they approach the seabed. Green arrows are indicative of old canyons/channels that have subsequently been infilled.

Figure 3: a) Active faulting and ground shaking. Background color stretch shows the peak ground acceleration in pga expected for a return period of 1000 years. The red lines represent the seismic sources in the probabilistic seismic hazard model used to generate the ground shaking levels and the associated values show the range of Single Event
Displacements expected for each fault (after Stirling et al. (2012)). b) The Hikurangi subduction zone beneath Cook Strait. Blue contours show the depth of the subduction interface (after Ansell and Bannister, (1996)). White contours and green to red color stretch show the predicted uplift of the seafloor for a full rupture of the Hikurangi subduction thrust (after Fraser et al. (2014)).

Figure 4: a) Time-migrated MCS reflection profile Pegasus09-15 illustrating the actively propagating folds beneath lower Cook Strait Canyon. Stratigraphy after Plaza-Faverola et al. (2012). Location shown in figure 1. b) Enlargement of profile illustrating the blind fault tips beneath the canyon, and erosion of stratigraphy within the canyon.

Figure 5: Maps of (a) acoustic backscatter, (b) relief, (c) landslide scars and (d) gullies across the Cook Strait canyon system (CS).

Figure 6: Normalized canyon longitudinal profiles of all CS canyons.

Figure 7: Longitudinal profile maps of all canyons in CS denoting locations of faults known from seismic reflection data (in red), new faults mapped from morphological data (in purple), steps (in blue), and depressions (in green). The black dashed lines on maps locate canyon thalwegs. Bathymetric maps with isobaths (20 m interval) are shown for step 1 (figure a) – step 1 in Nicholson Canyon floor coincides with channelized morphology located to the SW of a 70 m high escarpment associated to the Wharekauhau fault; step 2 (figure b) - double arcuate scar on Wairarapa Canyon floor with ridge below;
steps 12-15 (figure d) – four crescent-shaped scars on the Palliser Canyon floor with similarly shaped scars across the canyon walls; steps 7-11 (figure e) – a series of five crescent-shaped scars on the Boo Boo Canyon floor, with step 11 comprising the highest step (233 m) across the entire CS; depressions 29-36 (figure h) – a series of upslope-asymmetric depressions downstream of the mouth of lower Cook Strait Canyon. DTIS imagery from transect 31 downslope of step 4 is shown in figure h; the location of this transect is shown in figure 8. The location of figures 7a, 7b, 7d, 7e and 7h is shown in figure 8.

Figure 8: Map of steps and depressions across the CS.

Figure 9: Bar chart of the distance of selected steps from the local base level (floor of lower Cook Strait Canyon). The step number is denoted in bold and italics. Steps that have similar distances are denoted by same bar color.

Figure 10: Plot of canyon area against the distance of steps from the local base level (measured from either the regional base level or the floor of the canyon in which the canyon hosting the step drains), for lower canyons.

Figure 11: Thalweg slope-area plots for all canyons in the CS. A dashed black line in each plot represents a moving average estimated for all points in the plot. The moving average was used to divide the plot into segments (denoted by differently coloured points). Regression analyses were carried out to determine the regression model for slope
and area (power law; dark grey solid line), the coefficient of determination (R^2), and the mean of the slope values (x) for each segment. Where possible, the boundaries between segments are associated with fault or steps.

Figure 12: Map of slope-area segments for each canyon shaded according to the mean slope gradient.

Figure 13: Summary model illustrating modes of canyon response to active tectonic processes.
Figure 10

Distance = 36(Area)^{1.17}
R^2 = 0.65
Localized uplift over blind faults. Deformation affects local area and diffuses with time. Canyon profile gradient change over structure.

Regional base level lowered by margin uplift or change in sediment input. Canyon down-cutting response affects entire canyon due to canyon floor slope failures and localized plucking/quarrying.

Normalized longitudinal profile determined by extent of tectonic deformation.

Canyon wall landslides widen and lengthen canyons.

Hanging valley formed in response to base level lowering.

Morphology and processes in areas of concentrated tectonic activity:
- Higher density of gullies
- Canyon cross-sectional asymmetry
- Larger/more frequent sedimentary flows
- Low R^2 for slope-area plots