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Abstract: We study the properties of Bose-Einstein Condensates in a harmonic trap. We consider
a mean-field description in terms of the Gross-Pitaevskii equation. We study properties of its
solutions, especially the ground state of the system, paying a special attention to the effects of
interaction. To obtain numerically the exact stationary states we use the Crank-Nicholson Scheme.

I. INTRODUCTION

The Bose-Einstein condensate is a quantum phe-
nomenon predicted by Einstein in 1925 based on a paper
from Bose. It was first observed in 1995 and for this
reason, later in 2001 Eric A. Cornell, W. Ketterle and
C. E. Wieman received the Nobel Prize. An extended
historical introduction can be found in Ref. [1].

When a number of bosons are trapped by an exter-
nal potential at very low temperature, most of the par-
ticles condense in the same single particle ground state.
Therefore we can describe the microscopic behavior of
the system with a single wave-function. This is called
the Bose-Einstein condensate (BEC).

There are two potential terms to consider. First, we
have an external harmonic potential which keeps the
atoms localized in space. Secondly, we have an inter-
action term due to the atom-atom interaction. We study
the whole system in a mean-field theory for a diluted con-
densate. In these conditions the equation which describes
the condensate is the Gross-Pitaevskii equation. We re-
strict this work to a one-dimensional problem, this is ex-
perimentally possible by using a much higher trapping
frequency in a plane than in the direction we will study.
This effectively freezes the dynamics on the transversal
plane leaving only one free direction.

We follow the next scheme. First, in Sec. II we ex-
plain the theoretical background and the external condi-
tions that we impose. In Sec. III we discuss the Crank-
Nicholson method and its applicability in the Gross-
Pitaevskii equation. We also show a way to compute sta-
tionary states of the system, especially the ground state,
which consist on performing an imaginary time evolution
instead of real time. In Sec. IV we study the equation
without interaction. We characterize the ground and first
excited state and temporal evolution. In Sec. V we in-
clude the interaction and again characterize the ground
state and compare it with the Thomas-Fermi limit, in
which the kinetic term is neglected

II. THEORETICAL BACKGROUND

A. Gross-Pitaevskii equation

We consider N bosons trapped by a harmonic trap
V = 1

2mω
2x2 at low temperatures, ideally zero.

For simplicity we will write all magnitudes in terms
of the following harmonic oscillator natural units. For

energy the unit is E0 = h̄ω, space a0 =
√

h̄
mω and time

t0 = ω−1.
We consider an effective repulsive contact atom-atom

interaction to describe the atomic collisions. Which is a
reasonable approximation for diluted gases. The expres-
sion of the internal potential is Vint = g1DNδ(xi − xj).

Assuming the many-body wave-function can be writ-
ten as ψ(x1, ..., xn) =

∏n
i=1 ϕ(xi), Gross and Pitaevskii

derived in the mean-field approximation the following
equation,

i
∂ϕ(x, t)

∂t
= −1

2

∂2ϕ(x, t)

∂x2
+ V (x)ϕ(x, t)

+ g1DN |ϕ(x, t)|2ϕ(x, t). (1)

The procedure to obtain this equation can be found in
Ref. [2]. Note this equation has several terms which are
similar to the Schrödinger equation. The second term is
the external potential,

V (x) =
1

2
x2. (2)

The last term is the interaction potential and breaks the
linearity of the equation. The constant g1D gives the
intensity of the interaction and is the relevant parameter.
The total energy is calculated with the following formula
[2],

E =
1

2

∫ ∞
−∞

(−ϕ∗(x, t)∂
2ϕ(x, t)

∂x2
+ x2|ϕ(x, t)|2

+ g1DN |ϕ(x, t)|4)dx. (3)

B. Virial Theorem

For the ground state of the Gross-Pitaevskii equation,
one can derive the following Virial theorem,

2〈T 〉 − 2〈V 〉+ 〈Vint〉 = 0. (4)

Where 〈T 〉, 〈V 〉 and 〈Vint〉 are the expectation values
of kinetic, harmonic oscillator potential and interaction
potential energy, respectively. In this relation we see that
if the interaction is zero we recover the Virial theorem for
the harmonic oscillator 〈T 〉 = 〈V 〉.
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C. Thomas-Fermi limit

This limit consist on neglecting the kinetic term in the
Gross-Pitaevskii equation, this is useful because in many
experiments with large number of atoms it gives a very
good approximation to the full solution. Also then the
solution of the Gross-Pitaevskii equation becomes ana-
lytic. Similar calculations and more information are in
Ref. [3]. In this situation, the Gross-Pitaevskii equation
for stationary states ϕ(x, t) = ϕ(x)eiµt becomes,

µϕ(x) = V (x)ϕ(x) + g1DN |ϕ(x)|2ϕ(x). (5)

From Eq. (5) and Eq. (2) the probability density is,

|ϕ(x)|2 =
µ− 1

2x
2

g1DN
. (6)

Forcing |ϕ(x)|2 ≥ 0 then this function is valid for
−
√

2µ ≤ x ≤
√

2µ and zero otherwise. Now to find µ

we need to impose normalization
∫√2µ

−
√

2µ
|ϕ(x, t)|2dx = 1,

µ =
1

2

(
3

2
g1DN

)2/3

. (7)

From the wave-function, an important relation can be
readily obtained which provides a simple formula for the
size of the BEC in this limit. Let us compute the mean
square radius of the atomic cloud,

〈x2〉 =

∫ √2µ

−
√

2µ

x2|ϕ(x, t)|2dx =
2

5
µ. (8)

And the total energy using Eq. (3),

E =
3

5
µ. (9)

In Sec. V we will compare these simple expressions with
the full numerical solution of Eq. (1).

III. NUMERICAL METHOD:
CRANK-NICHOLSON

To solve the Gross-Pitaevskii equation we use the
Crank-Nicholson method described in Ref. [4]. We work
in a finite box of length equal to 20a0, (−10 > x > 10).
Using this scheme Eq. (1) becomes,

i
ϕn+1
i − ϕni

∆t
= − 1

4∆x2
((ϕn+1

i+1 − 2ϕn+1
i + ϕn+1

i−1 )

+ (ϕni+1 − 2ϕni + ϕni−1)) +
1

2
Vi(ϕ

n+1
i + ϕni )

+
1

2
g1DN |ϕni |2(ϕn+1

i + ϕni ). (10)

Where the subindex i, refers to space and superindex
n, to time ϕni = ϕ(i∆x, n∆t). This method makes a

temporal average from n and n+1, it is centered in n+ 1
2

which allows one to achieve a second order accuracy in
time, this is the reason we have chosen this scheme. To
solve this system of equations, first we rearrange all these
terms,

fi = bϕn+1
i+1 + aiϕ

n+1
i + cϕn+1

i−1 . (11)

Where

b = i
∆t

4∆x2
, c = i

∆t

4∆x2

ai = −i
(

∆t

2∆x2
+
Vi∆t

2
+

1

2
g1DN |ϕni |2

)
− 1

fi = −i
(

∆t

4∆x2

(
ϕni+1 − 2ϕni + ϕni−1

)
− Vi∆t

2
ϕni

−1

2
g1DN |ϕni |2ϕni

)
− ϕni .

We use the Thomas method explained in Appendix A to
solve the tridiagonal system of equations. In our program
we set a discretization in x of 1000 points which allows
us a good description of the wave-function in the trap.

A. Imaginary Time

In this section we introduce a way to find station-
ary states using the method of imaginary time evolu-
tion. From quantum mechanics we know that evolution
is ruled by the evolution operator, a unitary operator
which for a time-independent Hamiltonian can be writ-

ten as: U = e
itH
h̄ , and the evolution of an initial state

is |ϕ(t)〉 = U |ϕ(0)〉. Now, if we change the parame-
ter t to a pure imaginary time t = −iτ , the operator
U is not anymore unitary and this evolution will make
the wave-function loose normalization and eventually col-
lapse. But if we normalize the wave-function after every
time step, the method will lead the wave-function to the
lowest-energy stationary state with a non-zero overlap
with the initial state.

This method does not require accuracy on time and
therefore we use a large time step (∆t = −i0.01) to ob-
tain the results in only a few seconds.

B. Real Time

The real-time evolution of an initial wave-function re-
quires larger precision for the method to converge. We
have found that we need a step time at most of ∆t =
0.0001 or lower in order to achieve good convergence of
the method. Larger values for ∆t cause small spurious
fluctuations in the wave-function at the first steps and
eventually grow to loose the wave-function. Since the
time step is so small it takes a few minutes to compute 10
time units. If we neglect the internal interaction term in
the Gross-Pitaevskii equation we may increase the time
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FIG. 1: Evolution of the energy and overlap with the ground
state with initial wave-function, ϕ(x, 0) = C, ϕ = ϕσG(x) with
σ = 0.01 and σ = 20 as function of the imaginary time.

step by a factor 10 keeping stability in the simulation.
This proves that the nonlinear term is a source of nu-
merical instability.

IV. NON-INTERACTING CASE: HARMONIC
OSCILLATOR

First we discuss the non-interacting case which is es-
sentially the single particle problem trapped by a har-
monic potential. This is also discussed in Ref. [3].

A. Stationary states

The eigenfunctions of the harmonic oscillator are well
known, thus we can use them to explore the convergence
of the imaginary time method. For the ground state the

wave-function takes the form, ϕσG(x) =
(

1
πσ2

)1/4
e

−x2

2σ2

with σ = 1.
We consider three different initial wave-functions and

study how the methods converge to the exact solution.
First, we consider two initial functions, the same expres-
sion than the ground state, but with different σ, σ = 0.01,
σ = 20 and the last one is a constant ϕ(x, 0) = C. In
Fig. 1 we see the evolution of the energy and the overlap
with the ground state. As a function of the imaginary
time they converge to energy 1

2hω and overlap equal to
1, does finding the correct result.

Now we do the same for the first excited state where

the wave-function is, ϕσ1 (x) =
(

1
πσ2

)1/4√
2xe

−x2

2σ2 with
σ = 1. The initial functions are with σ = 0.01, σ = 20
and the last one ϕ(x, 0) = Cx. Note these wave-functions
are orthogonal to the ground state but have a non-zero
overlap with the first exited state. In Fig. 2 we see that
the energy converges to 3

2hω and the overlap with ϕ1
1

state converges to 1, finding again the correct result.
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FIG. 2: Evolution of the energy and overlap with the first
excited state with initial wave-function, ϕ(x, 0) = Cx, ϕ =
ϕσ1 (x) with σ = 0.01 and σ = 20 as function of the imaginary
time.
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FIG. 3: Evolution of the energy with initial function, ϕ(x, t =
0) = ϕG(x− 2).

B. Non-stationary states

Now, we will see the evolution in real time of a non-
eigenstate function. Our initial function now is ϕ(x, 0) =
ϕG(x − 2). Fig. 3 shows the evolution of the following
magnitudes, total energy, kinetic energy and potential
energy. The total energy remains constant as expected
and the kinetic and potential energies oscillate with the
same period but opposite phase.

Fig. 4 shows the evolution of the wave-function at dif-
ferent times. The wave packet oscillates within the har-
monic oscillator. As expected, the center of the cloud
oscillates in a way similar to the classical oscillation with
frequency ω.

V. INTERACTING CASE

Now we study the Gross-Pitaevskii equation including
the interaction term. We fix N = 100 and vary the inter-
action strength g1D. This is experimentally possible by
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FIG. 4: Evolution of the initial wave-function ϕ(x, 0) =
ϕG(x− 2). The color code is |ϕ(x, t)|2.

means of Feshbach resonances discussed in Ref. [5].

A. Ground state properties

We want to study the properties of the ground state.
We use, as we did in the previous section, the method
of imaginary time. The initial wave-function in this
case is ϕσG(x) with σ = 1, which is the ground state
of the harmonic oscillator without interaction. First
we prove quantitatively the convergence of the method
and verify that Crank-Nicholson can be applied in a
non-linear equation as Gross-Pitaevskii equation. For
this purpose we rewrite Eq. (1) for stationary states
ϕ(x, t) = ϕ(x)eiµt,

µ(x) =
− 1

2
∂2ϕ(x,t)
∂x2 + V (x)ϕ(x, t) + g1DN |ϕ(x, t)|2ϕ(x, t)

ϕ(x, t)
.

(12)
Now we have a chemical potential which formally de-
pends on x. A good test of the convergence of the imag-
inary time evolution is to check that µ(x) ' µ, constant.
In Fig. 5 we depict µ(x) after the imaginary time evolu-
tion. Indeed we find a good convergence of the results.

Lets now discuss the properties of the BEC. In Fig. 6
we show the dependence of the properties of the BEC
with the parameter g1DN . First, we observe that in ab-
sence of atom-atom interaction we recover the results dis-
cussed in Sec. IVA. On the top panel we show the average
value of kinetic, external potential, internal potential and
total energy which verifies the Virial Theorem showed in
Sec. IIB. We see that increasing g1D makes all energies
grow except the kinetic energy which diminishes. In the
middle panel we show the mean square radius, this gives
a measurement of the size of the BEC which grows with
g1D, as expected from a repulsive interaction. The bot-
tom panel shows the chemical potential which also grows
with g1D. All these magnitudes are compared with the
Thomas-Fermi prediction discussed in Sec. IIC which is
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FIG. 5: Chemical potential computed with Eq. (12). The fact
that the result is constant in all the domain reflects the con-
vergence of the imaginary time method. The final imaginary
time is τ = 10.
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FIG. 6: Variation of energies, mean square radius and chem-
ical potential for the ground state for different values of g1D
compared to the Thomas Fermi prediction.

very close to the exact solution for large interaction.

Fig. 7 shows the profiles of the wave-function for differ-
ent intensities of interaction and compares them with the
prediction of the Thomas-Fermi. For low values of g1D

the wave-function is similar to the harmonic oscillator
ground state and is very different from the Thomas-Fermi
prediction. For larger interaction the wave-function be-
comes wider and it matches the Thomas-Fermi profile
only differing in the tails where the kinetic energy is still
important.
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FIG. 7: Profile of the ground state for different values of g1DN = 1, 5, 10, 20, compared with the Thomas Fermi prediction.

VI. CONCLUSIONS

We have discussed the properties of Bose-Einstein con-
densates in mean-field approximation which we described
by the Gross-Pitaevskii equation. We used the Crank-
Nicholson scheme to numerically obtain the exact solu-
tions of this equation. We proved the convergence of the
method and the effectiveness of imaginary time evolu-
tion method using the non-interacting case (Sec. IV) and
found the well-known harmonic oscillator results.

For the interacting case (Sec. V) we saw that the
Crank-Nicholson scheme is valid for this non-linear equa-
tion and therefore we have computed the properties of
the BEC. We have shown that interaction introduces a
non-linear term in the equations which adds numerical
instability. We see that interaction makes the BEC grow
in size and energy and for large interactions we find that
Thomas-Fermi approximation is justified as the exact re-
sults match the analytic prediction of this limit.

An interesting next step in this work would be to study
the time evolution in the Gross-Pitaevskii equation to
obtain the dynamic properties introduced by the inter-
action.

APPENDIX A: THOMAS METHOD

We use the Thomas algorithm to solve tridiagonal sys-
tems of equations detailed in Ref. [6]. Given the system
of equations in matrix notation, Tϕ = f

T =


a1 c1
b2 a2 c2

. . .
. . cn−1

bn an

 . (A1)

Where ϕ is the solution of the system. The matrix T can
be decomposed as a product of two different matrices
T = LU ,

L =


1
β2 1

. .
. .
βn 1

U =


α1 c1

α2 c2
. .
. cn−1

αn

 .

(A2)
Now to solve the original system is equivalent to solve
the following systems, Lg = f and Uϕ = g, but these are
much easier to solve. The algorithm to solve the system
consist on the following steps;

1) α1 = a1

2) βi = bi
αi−1

; αi = ai − βici−1, i = 2, 3, ..., n

3) g1 = f1

4) gi = fi − βigi−1, i = 2, 3, ..., n

5) ϕn = gn
αn

6) ϕi = gi−ciϕi+1

αi
, i = n− 1, n− 2, ..., 1.
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