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We computed the second-quantized many-mode Hamiltonian for spinless ultracold bosons trapped
in different one-dimensional potentials and diagonalized it for a small number of atoms. We observed
the transition from the non-interacting gas to the Tonks-Girardeau gas, i.e. the fermionization pro-
cess, as we increase the strength of the interactions between the atoms. We computed the energy
spectrum, the one-body density matrix, the two-body correlations, the momentum distribution, the
natural orbitals and the occupations for different interaction strengths. We compared the fermion-
ization in different potentials with special attention to the largest occupation of the natural orbits,
the build up of quantum many-body correlations between different parts of the system, and the
energy of the ground and excited states.

I. INTRODUCTION

The first experimental realizations of a Bose-Einstein
condensate (BEC) [1, 2] paved the way for a huge num-
ber of research lines, both theoretical and experimental,
on the area of ultracold quantum gases. Ultracold atoms
provide a system highly isolated from the environment.
Moreover, this is an extremely versatile system because
the geometry of the trapping potential and the inter-
particle forces can be externally controlled. Thus, they
opened the possibility to reproduce condensed matter
phenomena in artificial systems. For example, the quan-
tum phase transition from a superfluid to a Mott insu-
lator was experimentally observed with ultracold bosons
trapped in a periodic external potential [3].

In these systems, the transverse degrees of freedom can
be frozen and the system can be regarded effectively as
one dimensional (1D) [4, 5]. Moreover, the interparticle
interactions can be well controlled by means of Feshbach
or confinement induced resonances [6]. For weakly inter-
acting regimes, the system is well described by the Gross-
Pitaevskii theory which is a mean field approach [9]. In
this regime, the atoms are said to be Bose-Einstein con-
densed, as they mainly occupy the lowest natural orbital.
The opposite regime, with infinite repulsive contact in-
teractions, is the so called Tonks-Girardeau (TG) regime.
In here, the system maps to non-interacting fermions, as
the infinite repulsive interactions for bosons play a similar
role than the Pauli exclusion principle for fermions [10].
However, this resemblance between the highly interact-
ing bosons and the non-interacting fermions exists only
for some quantities such as the total energy and the den-
sity profile, while other quantities such as the momentum
distribution differ completely [10, 11]. The experimental
realization of a TG gas in a single trap or in a periodic
optical lattice was recently reported [7, 8].

In this work, we will study this kind of system for dif-
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ferent trapping potentials paying special attention to the
transition from the non-interacting to the TG gas, tran-
sition also known as fermionization process. We anal-
ize quantities such as the one- and two-body correla-
tions, the energy spectrum, the momentum distribution
or the occupation of the orbitals. To treat these kind
of systems, different numerical approaches have been
performed, for instance, the Multi-Configuration Time-
Dependent Hartree method [12–14], which is computa-
tionally costly and permits one only to study the ground
state. Here, instead, we are going to use an exact diag-
onalization study like in Ref. [15]. The disadvantage of
this method is that we have to truncate the mode expan-
sion and use a few number of atoms in order to keep a
numerically manageable dimension of the Fock space.

The work is organized as follows. In Sec. II, a brief
description of the Hamiltonian of the system is provided.
We also discuss the mapping between the many body
system of bosons and the corresponding non-interacting
fermion system in the case of an infinite repulsive contact
force. All the definitions, in first and second quantiza-
tion, of the different operators and observables considered
in the work are also presented. In Sec III, the relevant
computational details are explicitly discussed. In Sec IV,
the results are provided for the different trapping poten-
tials considered. Finally, in Sec V, the conclusions of this
work are summarized.

II. THEORETICAL FRAMEWORK

The following Hamiltonian in first quantization

Ĥ = Ĥ0 + V2body, (1)

where Ĥ0,

Ĥ0 =

N∑
i=1

[− ~2

2m

∂2

∂z2i
+ V (zi)], (2)

describes a system of N spinless 1D bosons trapped in
an external trap. The two-body contact interaction is
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modeled by a delta potential of the form

V2body = g

N∑
i,j

δ(zi − zj), (3)

where the coupling constant g is the strength of the delta
force. For g → ∞, we get a system of hard core bosons
because the potential V2body can be seen as a constraint
in the wave function ψ(z1, z2, ..., zN ) of the form

ψ = 0 if |zi − zj | = 0, 1 ≤ i < j ≤ N. (4)

The constraint in Eq. (4) is always satisfied by the wave
function of non-interacting fermions because of antisym-
metry requirements. In this way, the Fermi-Bose map-
ping theorem [10] tells that, in this limit, the ground state
for bosons, ψB

GS , can be written as:

ψB
GS = |ψF

GS |, (5)

where ψF
GS is the wave function for non-interacting

fermions and solution of Ĥ0. Note that ψF
GS is given

by the Slater determinant

ψF
GS(z1, z2, ..., zN ) =

1√
N !

∣∣∣∣∣∣∣
φ1(z1) ... φ1(zN )

...
. . .

...
φN (z1) ... φN (zN )

∣∣∣∣∣∣∣ , (6)

where the φi(z) are the eigenfunctions of the single-
particle Hamiltonian,

Hsp = −1

2

∂2

∂z2
+ V (z). (7)

and in the following they are called modes. A bosonic
system fulfilling Eq. (5) is the so called TG gas.

In second quantization, the Hamiltonian in Eq. (1)
with the interaction in Eq. (3) can be written as [16]

Ĥ =

∫
dzψ̂†(z)Hspψ̂(z) +

g

2

∫
dzψ̂†(z)ψ̂†(z)ψ̂(z)ψ̂(z).

(8)

We use harmonic oscillator length and energy scales, and
therefore, the energy will be in ~ω units and the distances

in harmonic oscillator length, lz =

√
~
mω

. Here m and

ω are the mass of the atom and the trapping frequency

respectively. We can expand the field operators ψ̂(z) as
a linear combination of M modes

ψ̂(z) =

M∑
n=1

ânφn(z), (9)

where the creation and annihilation operators â†k and âk
satisfy the bosonic commutation relations [â†k,âi]=δik and

[â†k,â†i ]= [âk,âi]=0. Therefore, the many-particle Hamil-
tonian built with M single-particle modes reads [15]

Ĥ =
∑
i

Eiâ
†
i â
†
i +

g

2

∑
i,j,k,l

Ii,j,k,lâ
†
i â
†
j âkâl, (10)

where Ii,j,k,l =
∫ +∞
−∞ dzφi(z)φj(z)φk(z)φl(z) and Ei are

the single particle energies associated to Hsp. Ii,j,k,l has
units of [1/lz] , and so g has units of [~ωzlz] and tells us
how strong the contact interaction is. Once we compute
this Hamiltonian we diagonalize it,

Ĥ|ψn(z)〉 = En|ψn(z)〉, (11)

and obtain the eigenvectors ψ̂(z)n with energies En. To
begin with, let us consider the ground state eigenvector

ψ̂1(z) ≡ ψ̂GS(z) with energy EGS .
The non-diagonal one-body density matrix is defined

as

ρ(1)(z, z′) ≡ 〈ψ̂†(z′)ψ̂(z)〉GS =
∑
i,j

〈â†i âj〉GSφi(z)φj(z
′),

(12)

which diagonal ρ(z) ≡ ρ(1)(z, z) gives us the particle den-
sity profile. In order to get the momentum distribution,
we must perform a Fourier transform of ρ(1)(z, z′)

n(k) = (2π)−1
∫ +∞

−∞
dz

∫ +∞

−∞
dz′ρ(1)(z, z′)e−ik(z−z

′).

(13)

On the other hand, ρ(1)(z, z′) can also be diagonalized as

ρ(1)(z, z′) =
∑
i

Nifi(z
′)∗fi(z), (14)

where fi are the natural orbitals and Ni their occupa-
tions, which fulfill:

∑
iNi = N . The average occupation

of the single-particle modes is

〈ni〉 = 〈a†iai〉, (15)

which is also normalized to N . We will also study the
existence of two-body correlations. The definition of the
diagonal two-body density matrix is

ρ(2)(z1, z2) ≡ 〈ψ̂†(z1)ψ̂†(z2)ψ̂(z2)ψ̂(z1)〉GS = (16)

= 〈â†i â
†
j âkâl〉GSφi(z1)φj(z2)φk(z1)φl(z2),

which we will also refer as two-body distribution func-
tion. We have also computed the analytic form of
ρ(1)(z, z′) and ρ(2)(z1, z2) for the TG limit. This is done
by using the analytic expression of ψB

GS(z1, z2, ..., zn) in
terms of the absolute value of the Slater determinant
given in Eq.(6) and using the first quantization expres-
sions [11]:

ρ(1)(z, z′) = N

∫
ψB
GS(z, z2, ..., zN )

×ψB
GS(z′, z2, ..., zN )dz2...dzN , (17)

ρ(2)(z1, z2) = N(N − 1)

∫
|ψB

GS(z1, z2, ..., zN )|2dz3...dzN .

(18)
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We will also make an analysis of the energy decomposi-
tion for the harmonic oscillator case. The energy consists
of three terms

Et = Ekin + Epot + Eint. (19)

The first term, Ekin, is the kinetic energy and is related
to the momentum distribution as

Ekin =
〈n(k)2〉GS

2
. (20)

The second term, Epot, is the trapping potential energy
which can be obtained from the density profile with

Epot =
〈z2〉GS

2
. (21)

Finally, the last term, Eint, can be obtained by means of
the two-body distribution function

Eint =
g

2

∫
dzρ(2)(z, z). (22)

However, we have only computed both Ekin and Epot and
obtained Eint as Eint = Et − Ekin − Epot.

Finally, we check if the virial theorem is fulfilled for
the harmonic oscillator trap and N = 2. To derive the
virial theorem, we scale an eigenstate of the Hamiltonian
as

ψ′(z1, z2) = λψ(λz1, λz2). (23)

Then, we compute the expectation value of the Hamilto-
nian for the new wave function ψ′

E(λ) = 〈ψ′|1
2

(− ∂2

∂z21
− ∂2

∂z22
+ z21 + z22) + gδ(z1 − z2)|ψ′〉.

(24)

Making use of the variational principle, we impose that
E(λ) has a minimum at λ = 1. In this way, we can obtain
the virial expression which gives a relation between the
three energy terms

2Ekin − 2Eosc + Eint = 0. (25)

This expression should be fulfilled for all g. In particular,
if we consider the case g = 0, i.e. Eint = 0, we obtain the
virial theorem for the harmonic oscillator, Ekin = Eosc.
Otherwise, if we consider g → ∞ fermionization takes
place and, according to Eq. (4), two atoms cannot be in
the same position giving again Eint = 0 and Ekin = Eosc.
For intermediate values of g, Eint is not zero and Eq. (25)
must be fulfilled.

III. NUMERICAL METHODS

As a first step, we compute the Fock basis for N num-
ber of atoms and a given number of single-particle modes,

M . That means defining all possible vectors that ar-
range the N particles in M modes which we write as:
|n1, n2, ..., nM 〉. For instance, for N = M = 2, the Fock
basis is

|20〉, |11〉, |02〉. (26)

The dimension of the Fock space, D, is the combination
with repetitions between N and M ,

D =

(
M +N − 1

N

)
. (27)

For a given N , we have to choose a proper M in order not
to have a too large D that would require extremely long
computational time and memory. At the same time we
have to study the convergence of the results depending on
the truncation of the modes expansion. For instance, we
have chosen N = 2, M = 25 and N = 3, M = 15 giving
325 and 560 Fock vectors respectively. Some calculations
with larger Fock basis have been performed so as to check
the numerical convergence of the method.

Next, we build the Hamiltonian given in Eq. (10).
The first term is easily computed because is diagonal.
The two-body interaction generates non-diagonal matrix
elements whose computation requires a lot of two-body
matrix elements. In order to reduce computational time,
a first program computes all the terms needed for a given
Fock basis. This program computes all the possible val-
ues of i, j, k, l that contribute in the two-body interac-

tions, 〈â†i â
†
j âkâl〉, and their respective coefficients. This

number of two-body matrix elements increases strongly
with N and M, for instance, for N = 3 and M = 15 the
number of terms is ∼ 300.000. We just have to calcu-
late these coefficients once and store them. Then, one
can easily compute both the interacting part of Ĥ and
ρ(2)(z1, z2).

Another program solves the Schrödinger equation for
Hsp using a finite difference method. The outputs are the
single-particle wave functions φi and the single-particle
energy spectrum Ei. This program also computes the
integrals Ii,j,k,l which are required in Eq. (10).

Then, diagonalizing Ĥ, we get the N -particle energy
spectrum and the eigenvectors, ψn(z). With this
information, we can compute ρ(1)(z, z′) and ρ(2)(z1, z2).
We can obtain the rest of outputs from ρ(1)(z, z′).
For instance, the natural orbitals fi are obtained by
diagonalizing ρ(1)(z, z′) or the momentum distribution,
n(k) by means of Eq. (13).

IV. RESULTS

We restrict the spatial domain to z ∈ [−10, 10] and
discretize this domain with a step of δ = 0.01. Due to
the computational limitations, most of the simulations
are for N = 2. Nevertheless, calculations with N = 3 are
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FIG. 1. The potentials V(z) used in the calculations are plot-
ted in (a) and the respective single-particle ground state wave
function ψgs solving the Schrödinger equation without inter-
actions in (b). The potentials have the form of Eq. (28),
with α = 1, β = 0 for the harmonic (solid black line), α = 1,
β = 0.5 for the anharmonic (dotted blue line) and the Duff-
ing form [see Eq. (29)] with V0 = ∆ = 5 for the double well,
(dash-dotted green line).

also reported. The traps considered have the form

V (z) =
1

2
αz2 + βz4. (28)

In Fig. 1(a), the different trapping potentials are plotted.
For the harmonic trap, we use α = 1, β = 0. Raising β
we obtain a more squeezed trap (i.e., α = 1, β = 0.5).
To have a double well, we can change the sign of α. The
characteristic parameters of a double well are the height
of the barrier between the two wells: V0 and the distance
between the minimums, ∆. In order to have a better
control over these two parameters, we have used, instead
of Eq. (28), the so-called Duffing potential

V (z) = V0(
−8

∆2
z2 +

16

∆4
z4 + 1), (29)

which allows us to choose V0 and ∆ and sets the value
of the potential at the minimums at 0. An example
of a Duffing potential is also plotted in Fig. 1(a) with
V0 = ∆ = 5.
The single-particle ground state ψgs for these three po-
tentials are plotted in Fig. 1(b) where we can observe
that the initial Gaussian profile characteristic of the har-
monic oscillator potential gets thinner when the poten-
tial is squeezed. In the double well, due to the potential
barrier the wave function has a minimum at the origin
and two symmetric maximums take place at the center
of each well.

A. Harmonic Trap

We have made calculations for different values of g.
For small values we obtain a behavior close to a non-
interacting Bose gas while for g ∼ 20 we approach the
TG regime. The several computed observables allow to
do an analysis of this transition and the TG’s properties.
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FIG. 2. In panel (a), the first six values of the energy spec-
trum for N = 2. For clarity, we use a dashed-line where there
are two degenerate states for g = 0. We can observe fermion-
ization, i.e., reaching the TG energy, at g ∼ 20. In panel (b),
the energy of the ground state is decomposed in Ekin (dashed
red line), Eosc (dotted blue line) and Eint (dash-dotted green
line).
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FIG. 3. The virial theorem [left side of Eq. (25)] is plotted in
panel (a) for different g and 25 modes (dashed green line) and
15 modes (dotted blue line). We see that, as we increase g, it
deviates from 0 and hence, the virial is not exactly fulfilled.
This deviation is smaller as we increase the number of modes.
In panel (b), the ground state energy EGS for 15 and 25 modes
[same label as in panel (a)], 50 modes (dash-dotted cyan) and
the analytical one (solid red line) obtained in [17].
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1. Energy analysis

In Fig. 2 (a), for N = 2, the energy spectrum
shows that for small g, we have the spectrum of a
non-interacting Bose gas, i.e., with the sequence Ei =
1, 2, 3, 3, 4, 4, .... As we increase g, a transition towards
TG regime takes place. For g ∼ 20, the energy tends
to that of a non-interacting gas of trapped fermions, i.e.
E = 2, 3, 4, 4, 5, 5... At g = 0, some trivial degeneracies
appear in the spectrum, which are slightly broken as g in-
creases. Some of the excited states can be identified with
excitations of the center of mass motion. For these states,
the energy distance respect to the state without this ex-
citation does not depend on g, i.e., on the interaction
term. In the other cases the excitations are associated
to the relative motion which depends on the interaction
term. In the limit g → ∞, when the interaction energy
is 0, one again recovers the degeneracies but with larger
values of the energy [17].

In Fig. 2(b), we show in detail the three components
of the energy, Ekin, Epot and Eint as we detailed in
Eq. (19). Note that Eint shows a maximum at g ∼ 2
and after that decreases as g increases. In the limit
g →∞, Eint becomes 0 because two atoms cannot be in
the same position, and therefore, the expectation value
of the contact interaction is 0. Furthermore, in this limit,
Ekin = Epot = 1 fulfilling the virial theorem (25). The
fact that Eint ≈ 0 is another criteria for considering that
fermionization has taken place.

Let us study the error due to the truncation in the
mode expansion. In Fig. 3(a), the left side of Eq. (25) is
plotted as a function of g for 15 and 25 modes. The value
should be 0 for all g, instead, it decreases from 0 at g = 0
to ∼ −0.1 for larger g. This error is larger as we increase
g because more modes are needed to have a proper com-
putation, since there are more non-negligible terms in the
Hamiltonian involving the upper levels. To check that,
in Fig. 3(b) we show the ground state energy, EGS as
a function of g for different number of modes compared
with the analytic value computed in Ref. [17]. We can
see that the energy that we obtain is always larger than
the analytical one and that the calculated energy is more
accurate as we increase the number of modes. This fact
can be understood taking into account the variational
property of the diagonalization method. We have as a
trial wave function a linear combination of a finite num-
ber of Fock vectors. Solving the Schrödinger equation
of the truncated Hamiltonian, we obtain the coefficients
that give us the best energy which will be always an up-
per bound of the exact one. If we increase the number
of modes, the trial wave function is closer to the exact
one and so the energy gets closer to the analytical one
too. However, this convergence is rather slow as it can
be seen in Fig. 3(b).

FIG. 4. ρ(1)(z, z′) is plotted for the cases g = 2 in (a) and

g = 20 in (b). For small g, in (a), ρ(1)(z, z′) still resembles a

Gaussian. For large g, in (b), ρ(1)(z, z′) takes the form of a TG
gas. The panels (c) and (d) show the two-body distribution

function ρ(2)(z1, z2) for g = 1 and g = 20 respectively. Notice

that ρ(2)(z, z) ≈ 0 for g = 20.

FIG. 5. Same plot as in Fig. 4 for N = 3.
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FIG. 6. The density profile, ρ(z), is plotted for N = 2 (a)
and for N = 3 (b) for g = 0 (thin solid red line), g = 1 (dash-
dotted cyan line), g = 10 (dashed green line), g = 20 (dotted
blue) and the analytic TG limit (thin solid black line). For
small values of g, we get a Gaussian profile. As we increase
g, the profile flattens until that it has the same form as the
TG limit for g ∼ 20. The two-body distribution function,
ρ2(z,−z), is plotted for N = 2 (c) and for N = 3 (d) for
g = 1, 10 and 20 with the same labels as in panels (a) and
(b). We observe that for large g it decays to 0 at z1 = z2 = 0
because two atoms cannot be in the same place.

2. One- and two-body correlations

In Fig. 4(a) and (b), ρ1(z, z′) is plotted for g = 2
and g = 20 respectively and N = 2. The same is done
for N = 3 in Fig. 5(a) and (b). The initial Gaussian
form in (a) changes towards the characteristic density
profile of a TG gas with strong off-diagonal correlations
[11]. This transition is clearly appreciated in Fig. 6 (a)
and (b), where the diagonal ρ(1)(z, z) ≡ ρ(z) is plotted
for N = 2 and N = 3 respectively for several values
of g. The initial ρ(z) of non-interacting bosons (NIB),
ρ(z)NIB = Nφ2gs(z), ρ(z) flattens to obtain the non-

interacting fermion profile (NIF), ρ(z)NIF =
∑N

i=1 φ
2
i (z).

This NIF profile is already reached at g ∼ 20.
ρ2(z1, z2) is showed in Fig. 4(c) and (d) for N = 2

and in Fig. 5(c) and (d) for N = 3, for g = 1 and g =
20 respectively. We observe that increasing g, ρ2(z, z)
becomes zero. This is because two atoms cannot be in
the same place as a direct consequence of the infinity
interaction potential. For more clarity, we have plotted
ρ(2)(z,−z) in Fig. 6(c) and (d). We can observe that the
behavior of the two-body correlations evolves faster than
the one-body ones, and that from g = 10 the profile is
already near 0 at z1 = z2 having a similar form as for
g = 20.
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-3 -2 -1 0 1 2 3

n(k
)

k

b) g=0
g=5

g=20
NIF

0

0.5

1

-3 -2 -1 0 1 2 3

|f i(z)
|2

z

a) i=1
i=2
i=3

FIG. 7. In (a), the modulus square of the first three natural
orbitals, |fi(z)|2, are plotted for g = 20. Panel (b) shows
the momentum distribution for different values of g and the
analytical one for non-interacting fermions (NIF). Notice that
this momentum distributions are normalized to the number
of atoms.

3. Momentum distribution and natural orbitals

From ρ(1)(z, z′), we can obtain the natural orbitals
fi(z) and the momentum distribution n(k) with Eq. (14)
and (13) respectively. Fig. 7 shows, for N = 2, the
first three fi(z) for g = 20 in (a) and the momentum
distribution, n(k), in (b) for different values of g. We
can observe that n(k) does not change appreciably as we
increase g although the corresponding ρ(z) is completely
different [see Fig. 6(a)]. On the other hand, the NIF
momentum distribution is completely different from that
of the TG. We can also observe that the high momentum
tail of the TG momentum distribution decays more
slowly than for low g, indeed, n(k) ∝ 1/k4 in accordance
with the predictions in Ref. [18, 19].

Finally, the single-particle average occupation of the
mode i, 〈ni〉, and the natural orbital occupation, Ni, are
shown in Fig. 8 (a) and (b) respectively for N = 2. For
small values of g, the occupation is restricted to the low-
est single-particle state, and therefore we have a large
condensate fraction, defined as the largest occupation of
the natural orbitals. As we increase the interaction, more
single-particle states are occupied. Nevertheless, the oc-
cupation distribution is not that of NIF, i.e. 〈ni〉 = 1
in the N first levels, and 0 in the upper ones. Instead,
we observe a large value of the occupation of the lowest
single-particle state and non zero values of 〈ni〉 for i > N .
On the other hand, the ground state natural occupation
fulfill the condition NGS ≈ N−0.41 obtained in Ref. [11].
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FIG. 8. The average single-particle occupations, 〈ni〉 = 〈a†iai〉
(a), and the natural orbital occupations Ni (b), are plotted
for g = 0.5 (squares), g = 5 (crosses) and g = 20 (circles)
for N = 2. They have a similar behavior filling more excited
orbitals as we increase g.

Another thing that can be easily observed is that this
redistribution of the NIB occupation as we increase g is
stronger for 〈ni〉 than for Ni. For instance, for i = 3 and
g = 20 〈n3〉 ∼ 0.3 and N3 ∼ 0.1.
In Fig. 9, we plot the single-particle average occupation
and the natural orbitals occupations for N = 3. In here,
we observe that the second excited single-particle state
is more occupied than the first one for g = 20. In fact,
this is a general characteristic of the TG gas that the even
states are in proportion more occupied than the odd ones
[15].

B. Anharmonic Trap

If we raise the parameter β in Eq. (28) while α is kept
constant, the central profile of the trap does not change
but the potential grows more quickly as we increase z.
In Fig. 10(a), the trap for β = 0.5 is compared with the
harmonic oscillator one. The respective eigenvalues are
shown as horizontal lines. We can see that this squeezing
of the potential raises and separates the single-particle
eigenvalues with respect to those from the harmonic os-
cillator. In the TG gas regime, the ground state is ob-
tained from the absolute value of the Slater determinant
which, for N = 2, is

ψB
GS = |φ1(x1)φ2(x2)− φ1(x2)φ2(x1)|, (30)

where φ1 and φ2 are the numerically calculated eigen-
functions of the anharmonic potential with eigenvalues
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FIG. 9. Same plot and labels as in Fig. 8 for N = 3.
We observe that for the average single-particle occupations,
〈ni〉 = 〈a†iai〉, the second excited state is more occupied than
the first one.

E1 and E2, which differ from those of the harmonic trap.
Therefore, the energy in the TG limit is ETG = E1 +E2,
which corresponds to NIFs trapped in this potential. In
Fig. 10(b), ETG as a function of β is plotted. We can
see that ETG increases as we raise β as a consequence of
having larger single-particle eigenvalues E1 and E2. In
this case, the fermionization process needs larger values
of g, as shown in Fig. 11, where the ground state en-
ergy for different β are plotted as a function of g. As β
is increased, the energy tends more slowly to the corre-
sponding ETG. For instance, for β = 0 (the case studied
in the preceding section), the ETG energy is practically
reached at g = 30. Instead, for β = 10 the energy is
around 5% smaller at the same value of g.

ρ(1)(z, z′) and ρ(2)(z1, z2) for β = 10 and N = 2 are
plotted in Fig. 12(a) and (c), respectively. To compute
them, we used the TG analytical limit, [see Eq. (30)] and
the first quantization expressions in Eq. (18). We can
see that the shape is similar to the harmonic case, being
more squeezed in the anharmonic potential. To observe
better this behavior, we plot in Fig. 12(b) and (d) the
densities ρ(z) = ρ(1)(z, z) and ρ(2)(z1,−z1) for β = 10,
and compare with the harmonic oscillator results. The
profiles have similar shapes but the harmonic oscillator
one is wider. However, the TG gas for β = 10 has ap-
proximately the same natural occupations distribution,
Ni, as in the harmonic oscillator. This effect can be seen
in Fig. 13(a) where the natural orbitals occupations are
plotted for the harmonic trap and the anharmonic one
for β = 10. Nevertheless, the momentum distribution
n(k) plotted in Fig. 13(b) differs completely between the
different traps and, as we observed in Fig. 7(b), differs
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FIG. 10. In panel (a) the harmonic potential (solid red line)
and the anharmonic one for β = 0.5 (dashed green line). Hor-
izontal lines represent the respective single-particle energies.
In panel (b), we plot the energy of the Tonks-Girardeau gas
for N = 2, ETG = E1 + E2, as a function of β.
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FIG. 11. Ground state energy as a function of the interaction
energy g for different β and N = 2. The values of β are 0
(solid thick red line), 0.1 (dashed green line), 1 (dotted blue
line) , 5 (dash-dotted-dotted line) and 10 (dash-dotted cyan
line). As a guide to the eye, we also plot an horizontal black
line at the respective value of ETG.

also from the respective NIF momentum distribution.

C. Double well

Finally, we consider a Duffing double well potential [see
Eq. (29)] with the parameters V0 = ∆ = 5 [see Fig. 1
(a)]. These parameters produce a quite high barrier and,
therefore, the single-particle eigenvalues of this double
well are quasi-degenerate by pairs, i.e. E1 ' E2 < E3 '
E4 < ...

The first seven eigenvalues of the energy spectrum of
the system with N = 2 are shown in Fig. 14 as a function
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FIG. 12. One- and two-body densities, ρ1(z, z′) (a) and
ρ2(z1, z2) (c), for β = 10 in the TG limit. A similar profile
as the harmonic oscillator but more squeezed as we can see
in ρ(z) (b) and in ρ2(z,−z) (d), where the values for β = 10
(dash green line) are compared with those of the harmonic
oscillator (solid red line).

of g. For g = 0, we have three states which are almost
degenerate, they correspond to the Fock states: |2, 0, ...〉,
|1, 1, 0, ...〉 and |0, 2, 0, ...〉. Their energy is basically twice
the lowest single-particle eigenvalue, E(g = 0) ≈ 2E1.
When g increases, the quasi-degeneracy is lost and the
ground state (with no degeneracy) has an energy which
is practically independent of g. That is because it is not
sensitive to the interaction energy. In the Fock basis,
and for g 6= 0, this ground state is: C(|20〉 − |02〉) where
C is a normalization constant. The energy of the other
states grows as we raise g keeping their degeneracy and
reaching an asymptotic value in which they do not feel
the interaction anymore. In this limit, they merge with
other two states which energy does not depend on g.

The density profile of the ground state, ρGS(z), for
g = 1, 10 and 20 is plotted in Fig. 15. One can appreciate
that the profile does not depend on the value of g and that
the two atoms are equally distributed in the two wells.
However, two clarify whether the interaction affects the
energy of this state, we report in Fig. 16 the two-body
distribution function, ρ(2)(z1, z2), for g = 20. In fact,
ρ(2)(z, z) = 0 and, therefore, the expectation value of the
interaction energy is zero in this state [see Eq. (22)].

In this case, we can say that there is no fermioniza-
tion in the ground-sate. The existence of the two quasi-
degenerate single-particle states of different parity, al-
lows a ground state whose two-body distribution function
has zeros when two atoms occupy the same position. Of
course, that will depend on the height of the barrier, V0.
When we sufficiently decrease it, fermionization will take
place because there will be contact interaction between
the atoms. In addition, it is almost certain that fermion-
ization will take place in some of the excited states prob-
ably giving a TG at each size of the chain.
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FIG. 13. TG exact natural occupations, Ni, for β = 10
(dashed green line) and for the harmonic oscillator (solid red
line) are plotted in (a). In panel (b) we report the momentum
distribution n(k) for the TG limit for β = 10 (dashed green
line) and for harmonic oscillator (solid red line). There are
also plotted the NIF n(k) for β = 10 (dash-dotted green line)
and harmonic oscillator (dotted red line).

2

4

6

0 10 20

E

g

FIG. 14. Energy spectrum for the Duffing double well with
V0 = ∆ = 5, as a function of g. The seven first eigenvalues
are shown. The ground state (solid red line) is constant, and
then the levels are degenerated by pairs.

V. CONCLUSIONS

We performed an extensive numerical study about the
transition, commonly known as fermionization, from the
non-interacting gas of bosons to the Tonk-Girardeau gas
trapped by harmonic, anharmonic and double well po-
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-5 0 5

ρ G
S(

z)

z

FIG. 15. Density profile for the ground state, ρGS(z) for g = 1
(solid red line), g = 10 (dash green line ) and g = 20 (dotted
blue line). For ρgs(z). The three profiles overlap

FIG. 16. Two-body distribution function for the ground state,

ρ
(2)
GS(z1, z2), and g = 20. We can observe that its diagonal,

ρ
(2)
GS(z, z), is zero.

tentials. We used a computational method based in the
diagonalization of a many-mode expansion of the second-
quantized Hamiltonian. We studied the error introduced
by the truncation in the number of modes used in the ex-
pansion of the second-quantized fields. For the harmonic
potential, we observe the Tonks-Girardeau behavior at a
coupling constant g ≈ 20~ωlz, where ω is the trapping
frequency and lz the harmonic oscillator length. In this
limit, the one- and two-body densities coincide with the
analytic limit obtained by Girardeau et. al., with the
Fermi-Bose mapping theorem [11]. Moreover, the parti-
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cle density is the same as the one corresponding to non-
interacting fermions. However, other quantities like the
momentum distribution and the natural orbital occupa-
tions differ completely, due to the different symmetriza-
tion condition for fermions and bosons.

We also studied the transition from the non-interacting
gas of bosons to the Tonks-Girardeau gas in the anhar-
monic potential obtained by considering a parabolic con-
tribution and a quartic one in the total trapping poten-
tial. We demonstrated that the Tonks-Girardeau limit
equally exist for this potential and used an analytical
expression for the first-quantized wave function in this
limit. We conclude that the existence of the Tonks-
Girardeau gas does not depend on an equal spacing be-
tween the energetic levels. We showed that a similar
transition as that observed for the harmonic trap takes
place between the non-interacting and Tonks-Girardeau
limits as g is increased, but it requires larger values of
the interaction strength because the energetic space be-
tween the single-particle eigenvalues is larger than in the
harmonic trap. The one- and two-body densities have a
similar shape as those calculated for the harmonic po-
tential but they are more spatially concentrated in the
center of the trap. The natural orbital occupation distri-

bution in the Tonks-Girardeau regime is approximately
the same as in the harmonic case, while their momen-
tum distributions differ, due to the different form of the
single-particle modes.

Finally, we considered a double well potential con-
structed by adding an inverted parabola and a quartic
potential, resembling a Duffing potential. We showed
that the ground state energy, density profile and two-
body distribution function do not depend on the g con-
sidered. In this way, the ground state does not show a
fermionization process. However, this phenomena will
depend on the height of the barrier. It would be very
interesting to study the existence of fermionization on
the excited states but this goes beyond the scope of the
present work.

VI. ACKNOWLEDGMENTS

The author is specially grateful to M.A.Garcia-March
and A.Polls for the continuous support and guidance dur-
ing the realization of this work and to Bruno Julià Dı́az
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